

due to their stability. To utilize the polymer to its full effect (Fig. 1) the precatalyst is first dissolved in methanol, which is subsequently completely removed. This preformation in methanol also has a positive effect on the monomeric SDS due to the better solubility. The polymer effect here, however, does not increase the reactivity as much as in the case of acetal hydrolysis.¹⁶

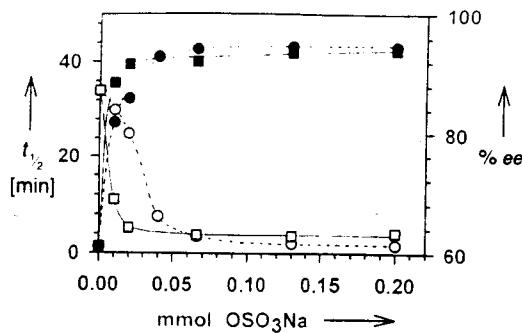


Fig. 1. Hydrogenation of 1 mmol **1f** in 15 mL H₂O in the presence of micelle-forming substances with 0.01 mmol precatalyst **4** (for conditions see Table 1). Open symbols: $t_{1/2}$; filled symbols: % ee (**S**); circles: SDS as micelle-forming substance; squares: polymerized micelles with OSO₃Na groups.

The function of the precatalyst **4** is determined by the axial aglycone. As we were recently able to demonstrate, induction of chirality in hydrogenation reactions decreases with an increasing number of axial substituents on the pyranose ring in analogous rhodium(I) chelate complexes of type **3**, which are protected by a benzylidene group in the 4,6-position of the carbohydrate residue.¹⁷ Thus we have now also demonstrated this decrease in optical induction for the first of the conformatively less rigid analogues carrying an axially oriented substituent without the inflexibility imposed by the dioxane ring (Table 2). The enantioselectivity of such conformatively labile seven-membered chelates was shown to be very sensitive to the influences of a modifier.^{18, 19} We conjecture that this is a key to direct optical induction over a wide range.

Experimental Procedure

The experimental procedures for the hydrogenation, the synthesis of the precatalyst **2** and the substrates, the derivatization of the hydrogenated products, and the determination of the enantioselectivity are described or referred to in ref. [3], and the synthesis of polymerized micelles in ref. [6]. With polymerized micelles the formation of the catalyst was performed in methanol. For all experiments of Figure 1 and Table 2—but not for those of Table 1—a homogenous solution was made from the precatalyst and the micelle-forming compounds under argon in methanol (5 mL) by stirring for 1 h. The solvent was then removed under vacuum, the dry residue dispersed in water (15 mL) under argon by stirring for 1 h, the substrate added, stirred for 10 min, the argon atmosphere replaced with hydrogen, and the hydrogenation started by stirring. The hydrogenated products were isolated by exhaustive extraction with dichloromethane. For the acid hydrogenation products and the ester from **1f**, the results of the determination of selectivity were additionally checked in double experiments by conversion in methanol to exclude the possibility of enantiomer enrichment during isolation. For this, the hydrogenation suspension was quantitatively evaporated to dryness, and the residue dissolved in methanol. This procedure was also applied to all experiments with the precatalyst **4**. For the enantiomeric excesses determined by gas chromatography, the standard deviation was less than $\pm 1\%$ ee; similar results were also obtained for the derivatized hydrogenation products of **1a**, **e**, **h**, and **i**, which were separated by HPLC. To determine the substrate solubility, a small excess of substrate was stirred in water (100 mL) at 25 °C for 1 h, the filtrate evaporated on a watch glass, dried under vacuum, and the residue weighed.

Synthesis of **5**, the glucopyranoside ligand of **3**: A solution of methyl-4,6-O-anisylidene- α -D-glucopyranoside (21.78 g, 32 mmol) in pyridine (20 mL) was added to Ph₃PCl (15.53 g, 70.4 mmol) in THF (100 mL) within 5 min with vigorous stirring. Pyridine hydrochloride precipitated out. The next day the solid residue was extract-

ed four times with boiling THF until only the pyridine hydrochloride remained. The pooled solutions were subsequently reduced under vacuum to 50 mL. The target compound crystallized out at 0 °C and was obtained in a very pure form in low yield after recrystallization in anhydrous, oxygen-free toluene triethylamine (70:30); 10.8 g (33.3%), m.p. 175–178 °C; $[\alpha]_D^{25} = +86.9$ (*c* = 2 in CHCl₃); ³¹P NMR (101.2 MHz, [D₆]pyridine, 25 °C): $\delta = 113.6$ (d, ³J(P,P) = 2.5 Hz); 116.5 (d, ³J(P,P) = 2.5 Hz); ¹³C NMR (62.8 MHz, [D₆]pyridine, 25 °C): $\delta = 54.5$, 54.8 (CH₃, α -CH₃), 62.7 (C6), 68.7 (C2,3,4,5), 99.5 (d, ³J(C,P) = 6 Hz; C1), 101.3 (C7) and arene-C signals; correct elemental analysis (C,H,P); MS (70 eV): *m/z* 680 ([M⁺]).

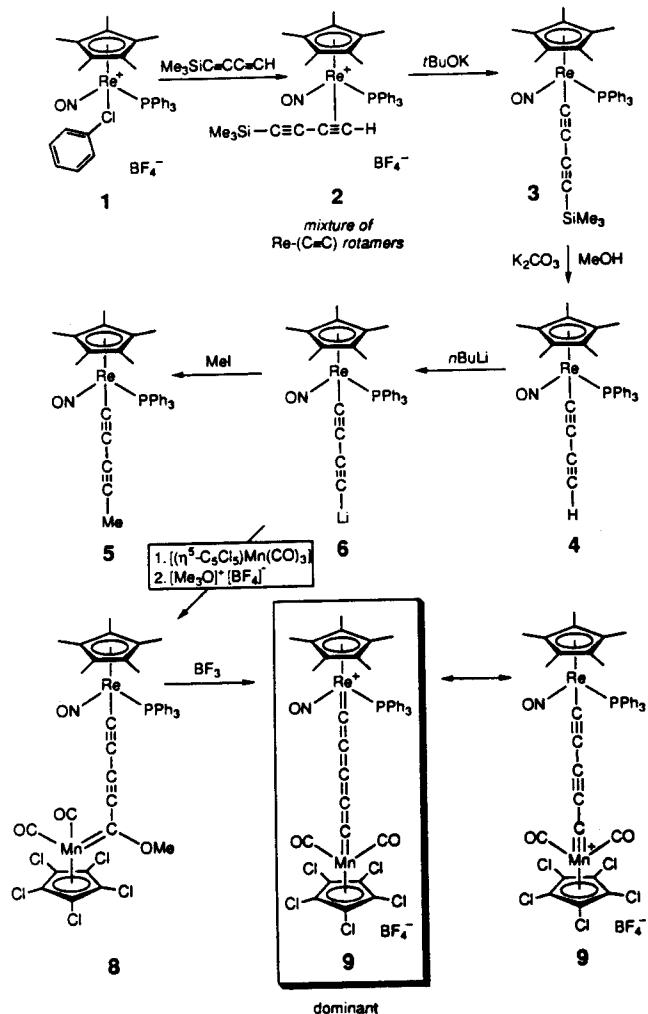
Synthesis of **4**: [Rh^I(cod)(acac)] (1.55 g, 5 mmol) and **5** (3.4 g, 5 mmol) were dissolved in THF (5 mL) to afford the chelate, and 40% aqueous HBF₄ (10 mmol) added. The yellow solution turned red. After 28 h, of which 10 h were at 65 °C, the solution was filtered to remove impurities. Oxygen-free diethyl ether (40 mL) were stirred into the filtrate, and the complex separated out as an orange syrup. The remaining yellow solution was decanted, and diethyl ether (40 mL) was again added to the oil. The product **4** crystallized out: 4.3 g (89.7%); ³¹P NMR (101.2 MHz, CDCl₃, 25 °C): $\delta = 132.7$ (dd, ¹J(P,Rh) = 178, ²J(P,P) = 27 Hz); 137.3 (dd, ¹J(P,Rh) = 181, ²J(P,P) = 27 Hz); ¹³C NMR (62.8 MHz, CDCl₃, 25 °C): $\delta = 27.9$, 28.9, 30.7, 30.9 (CH₂ of cod), 55.1 (CH₃), 60.9 (C6), 68.7, 70.7, 76.2 (³J(C,P) = 8 Hz), 80.8 (³J(C,P) = 9 Hz) (C2,3,4,5), 98.3 (d, ³J(C,P) = 4 Hz; C1), 101.5, 102.2 (CH of cod), 128.5–134.6 (C-phenyl); LSI-MS (positive, matrix: sulfolane): *m/z* 773 [M⁺ – BF₄], 665 [773 – cod].

Received: May 24, 1994 [Z6965IE]
German version: *Angew. Chem.* 1994, 106, 2272

- [1] G. Oehme, E. Paetzold, R. Selke, *J. Mol. Catal.* 1992, 71, L1; I. Grassert, E. Paetzold, G. Oehme, *Tetrahedron* 1993, 49, 6605.
- [2] To substantiate the usefulness of the value *Q* for comparison of the selectivity see ref. [3].
- [3] R. Selke, C. Facklam, H. Foken, D. Heller, *Tetrahedron: Asymmetry* 1993, 4, 369.
- [4] In ref. [3] the formulas are erroneously given for the complex derived from methyl- α -D-glucopyranoside, which at that time was not known.
- [5] R. Selke, P. Barthélémy, J. P. Roque, „Chiral Reactions in Heterogeneous Catalysis“, ChiCat-Symposium, Brüssel, Oktober 1993.
- [6] B. André, B. Boyer, G. Lamaty, J. P. Roque, *Tetrahedron Lett.* 1991, 32, 1881.
- [7] R. Selke, M. Schwarze, H. Baudisch, I. Grassert, M. Michalik, G. Oehme, N. Stoll, B. Costiella, *J. Mol. Catal.* 1993, 84, 223.
- [8] D. Seebach et al. have a fascinating example from (taddol)tinanium coordination chemistry, in which the induction range extends from 90% ee (*R*) to over 90% ee (*S*) product: D. Seebach, D. A. Plattner, A. K. Beck, Y. M. Wang, D. Hunzicker, *Helv. Chim. Acta* 1992, 75, 271. Results, deductions, and literature about the dependence of the enantioselectivity on the ligand conformation in analogous catalyst chelate complexes can also be found here.
- [9] Investigations have, for example, produced an inversion of the route of induction for a precatalyst analogous to **3** with a 4,6-O-benzylidene protective group upon changing to apolar solvents: R. Selke, *J. Prakt. Chem.* 1987, 329, 717.

Towards One-Dimensional Carbon Wires Connecting Single Metal Centers: A Cumulenic C₅ Chain that Mediates Charge Transfer between Rhenium and Manganese Termini **

Weiging Weng, Tamás Bartik, and John A. Gladysz*


Compounds in which linear elemental carbon chains span two transition metals, [L_xMC_xM'L_x], exhibit a variety of unusual physical and chemical properties.^{1,11} However, only complexes with x = 1–4 have been isolated to date. We have been particularly interested in charge transfer and electron delocalization across the wire-like C_x moieties^{2–4} and have sought to study such phenomena in longer-chain compounds. We reported earlier that C₃ complexes can be prepared by methoxide group ab-

[*] Prof. Dr. J. A. Gladysz, Dr. W. Weng, Dr. T. Bartik
Department of Chemistry, University of Utah
Salt Lake City, UT 84112 (USA)
Telefax: Int. code + (801) 581-8433

[**] We thank the National Science Foundation for support of this research.

straction from bimetallic Fischer carbene complexes of the formula $[L_nMC\equiv CC(OMe)=M'L'_n]$.¹² These are in turn accessed from $[L_nMC\equiv CLi]$ species, metal carbonyl complexes, and $[Me_3O]^+[BF_4]^-$. In this communication, we describe the extension of this methodology to a C_5 complex,¹³ which shows several remarkable properties relative to its C_3 counterpart.

The substitution-labile chlorobenzene complex **1**¹⁴ was treated in situ with the 1,3-diyne $HC\equiv C-C\equiv CSiMe_3$. Workup gave the terminal alkyne complex **2** in 95% yield (Scheme 1). Reac-

Scheme 1. Synthesis of the C_5 -bridged bimetallic complex **9**.

tion of **2** and t -BuOK gave the σ complex **3** (96% yield). Protodesilylation (K_2CO_3, CH_3OH) gave the air-stable butadiynyl complex **4** (84% yield), which melted with decomposition at $105-108^\circ C$. Complexes **2-4** and other new compounds below were characterized by microanalysis, IR and NMR (1H , ^{13}C , ^{31}P) spectroscopy (Table 1). Most features were similar to those of the monoalkynyl analogues;¹⁷ however, the $\tilde{\nu}(NO)$ values in the IR spectrum were $7-20\text{ cm}^{-1}$ higher, and additional bands assigned to $C\equiv C$ were observed ($2139-1975\text{ cm}^{-1}$).

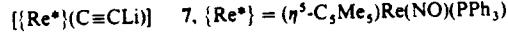
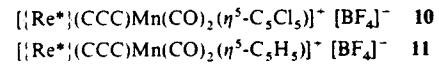

Complex **4** was treated with 1.0 equiv of n -BuLi in THF at $-80^\circ C$. When the reaction was monitored by ^{31}P NMR, resonances were observed at $\delta = 21.3$ and 21.0 (70:30; $\delta = 21.0$). One sharp resonance was obtained when the sample was warmed to $10-20^\circ C$ ($\delta = 21.0$). Addition of MeI, either at

Table 1. Selected data for the new compounds:

2: Tan solid, m.p. $118-121^\circ C$ (decomp.); 1H NMR (300 MHz, CD_2Cl_2 , $25^\circ C$, CD_2Cl_2 int.): $\delta = 7.79-7.50$ (m, 6H; $3C_6H_5$), $7.48-7.31$ (m, 9H; $3C_6H_5$), 7.09 8.24 (major/minor rotamer) (d, $J(H, P) = 19.7$ Hz, 1H; $\equiv CH$ <i>syn anti</i> to $PPPh_3$), 1.85 1.77 (s, 15H; $C_5(CH_3)_5$), 0.34 0.37 (s, 9H; $Si(CH_3)_3$); $^{13}C\{^1H\}$ NMR (75 MHz, CD_2Cl_2 , $25^\circ C$, CD_2Cl_2 int.): $\delta = 134.0$ (d, $J(C, P) = 10.7$ Hz; σ -Ph), 133.3 (br s; σ -Ph), 129.9 (br d, $J(C, P) = 3.7$ Hz; m -Ph), 114.9 113.2 (s; $C\equiv CSi$), 110.3 109.9 (s; $C_5(CH_3)_5$), 92.1 92.9 (d, $J(C, P) = 3.6$ 7.0 Hz, $HC\equiv C$), 96.6 108.0 (d, $J(C, P) = 18.0$ 2.4 Hz, $HC\equiv C$), 95.2 110.4 (s; $C\equiv CSi$), 9.65 (s; $C_5(CH_3)_5$), -0.51 0.98 (s; $Si(CH_3)_3$); $^{31}P\{^1H\}$ NMR (121 MHz, C_6D_6 , $25^\circ C$, 85% H_3PO_4 ext.): $\delta = 21.1$ 17.6 (s, 21:79); IR (CH_2Cl_2 , KBr): $\tilde{\nu} = 2139$ 2138 (m) ($C\equiv C$), 1706 1694 (s) (NO); MS (positive ions FAB (Cs^+), 3-nitrobenzyl alcohol (3-NBA), CH_2Cl_2 matrix): m/z (%) 736 (100) [M^+]. Correct elemental analysis.
3: Orange solid, m.p. $105-108^\circ C$ (decomp.); 1H NMR (300 MHz, C_6D_6 , $25^\circ C$, TMS): $\delta = 7.75$ -7.63 (m, 6H; $3C_6H_5$), 7.04 -6.95 (m, 9H; $3C_6H_5$), 1.55 (s, 15H; $C_5(CH_3)_5$), 0.17 (s, 9H; $Si(CH_3)_3$); $^{13}C\{^1H\}$ NMR (75 MHz, C_6D_6 , $25^\circ C$, C_6D_6 int.): $\delta = 135.3$ (d, $J(C, P) = 51.6$ Hz; σ -Ph), 134.3 (d, $J(C, P) = 10.7$ Hz; σ -Ph), 130.1 (d, $J(C, P) = 2.3$ Hz; p -Ph), 128.4 (d, $J(C, P) = 10.1$ Hz; m -Ph), 112.3 (s; $ReC\equiv C$), 105.8 (d, $J(C, P) = 15.9$ Hz; $ReC\equiv C$), 100.6 (s; $C_5(CH_3)_5$), 93.5 (d, $J(C, P) = 2.7$ Hz; $C\equiv CSi$), 80.6 (s; $C\equiv CSi$), 10.0 (s; $C_5(CH_3)_5$), 0.91 (s; $Si(CH_3)_3$); $^{31}P\{^1H\}$ NMR (121 MHz, C_6D_6 , $25^\circ C$, 85% H_3PO_4 ext.): $\delta = 21.1$ (s); IR (CH_2Cl_2 , KBr): $\tilde{\nu} = 2118$ 2119 (m) ($C\equiv C$), 2098 2097 (m) ($C\equiv C$), 1653 1648 (s) (NO); MS (EI, 30 eV): m/z (%) 735 (100) [M^+]. Correct elemental analysis.
4: Orange solid; m.p. $84-86^\circ C$ (decomp.); 1H NMR (300 MHz, C_6D_6 , $25^\circ C$, TMS): $\delta = 7.75$ -7.65 (m, 6H; $3C_6H_5$), 7.07 -6.94 (m, 9H; $3C_6H_5$), 1.95 (d, $J(H, P) = 1.0$ Hz, 1H; $\equiv CH$), 1.57 (s, 15H; $C_5(CH_3)_5$); $^{13}C\{^1H\}$ NMR (75 MHz, C_6D_6 , $25^\circ C$, C_6D_6 int.): $\delta = 135.4$ (d, $J(C, P) = 51.4$ Hz; σ -Ph), 134.3 (d, $J(C, P) = 10.9$ Hz; σ -Ph), 130.2 (s; p -Ph), 128.3 (d, $J(C, P) = 10.0$ Hz; m -Ph), 110.8 (s; $ReC\equiv C$), 102.1 (d, $J(C, P) = 15.9$ Hz; $ReC\equiv C$), 100.5 (s; $C_5(CH_3)_5$), 72.4 (s; $C\equiv CH$), 65.2 (s; $C\equiv CH$), 10.0 (s; $C_5(CH_3)_5$); $^{31}P\{^1H\}$ NMR (121 MHz, C_6D_6 , $25^\circ C$, 85% H_3PO_4 ext.): $\delta = 20.9$ (s); IR (CH_2Cl_2 , KBr): $\tilde{\nu} = 3305$ 3287 (m) ($C\equiv C$), 2115 2113 (s), 1975 1975 (w) ($C\equiv C$), 1644 1645 (s) (NO); MS (EI, 70 eV): m/z (%) 663 (4) [M^+]. Correct elemental analysis.
5: Yellow-orange solid, m.p. $61-65^\circ C$ (decomp.); 1H NMR (300 MHz, C_6D_6 , $25^\circ C$, TMS): $\delta = 7.80$ -7.72 (m, 6H; $3C_6H_5$), 7.07 -6.92 (m, 9H; $3C_6H_5$), 1.81 (s, 3H; $\equiv CH_3$), 1.61 (s, 15H; $C_5(CH_3)_5$); $^{13}C\{^1H\}$ NMR (75 MHz, C_6D_6 , $25^\circ C$, C_6D_6 int.): $\delta = 135.7$ (d, $J(C, P) = 50.6$ Hz; σ -Ph), 134.4 (d, $J(C, P) = 10.2$ Hz; σ -Ph), 130.1 (s; p -Ph), 128.3 (d, $J(C, P) = 9.8$ Hz; p -Ph), 111.6 (s; $ReC\equiv C$), 100.3 (s; $C_5(CH_3)_5$), 96.8 (d, $J(C, P) = 17.3$ Hz; $ReC\equiv C$), 71.9 (s; $C\equiv CCH_3$), 69.1 (d, $J(C, P) = 3.1$ Hz; $C\equiv CCH_3$), 10.0 (s; $C_5(CH_3)_5$), 4.5 (s; $\equiv CCH_3$); $^{31}P\{^1H\}$ NMR (121 MHz, C_6D_6 , $25^\circ C$, 85% H_3PO_4 ext.): $\delta = 21.0$ (s); IR (CH_2Cl_2 , KBr): $\tilde{\nu} = 2193$ 2194 (m), 2027 2029 (m) ($C\equiv C$), 1644 1644 (s) (NO); MS (EI, 70 eV): m/z (%) 677 (100) [M^+].
8 and 9: see Experimental Procedure.
10: Yellow-brown solid, m.p. $101-106^\circ C$ (decomp.); 1H NMR (300 MHz, CD_2Cl_2 , $25^\circ C$, CD_2Cl_2 int.): $\delta = 7.57$ -7.46 (m, 15H; $3C_6H_5$), 1.93 (s, 15H; $C_5(CH_3)_5$); $^{13}C\{^1H\}$ NMR (75 MHz, C_6D_6 , $25^\circ C$, C_6D_6 int.): $\delta = 287.8$ (s; $Mn=C$), 221.1 (d, $J(C, P) = 11.8$ Hz; $ReC\equiv C$), 218.2 (s; CO), 218.0 (s; CO), 168.9 (s; $ReC\equiv C$), 133.5 (d, $J(C, P) = 11.3$ Hz; σ -Ph), 132.6 (s; p -Ph), 129.7 (d, $J(C, P) = 11.1$ Hz; m -Ph), 108.0 (s; $C_5(CH_3)_5$), 100.1 (s; C_5Cl_5), 10.1 (s; $C_5(CH_3)_5$); $^{31}P\{^1H\}$ NMR (121 MHz, CD_2Cl_2 , $25^\circ C$, 85% H_3PO_4 ext.): $\delta = 19.7$ (s); IR (CH_2Cl_2): $\tilde{\nu} = 1899$ (s) ($C=C=C$), 2047 (m), 2007 (w) ($C\equiv O$), 1717 (s) (NO); UV/VIS (CH_2Cl_2): λ_{max} (ϵ) = 266 (sh, 17000), 334 sh (16000), 414 (49000), 554 sh nm (2700); MS (positive ions FAB (Cs^+), 3-NBA/benzene matrix): m/z (%) 998 (30) [M^+], 615 (100) [$\{Re^*\}^+ + 1$]. Correct elemental analysis.

$-80^\circ C$ or room temperature, gave the 1,3-pentadiynyl complex **5** ($\delta = 20.9$) in 95% yield, as determined by NMR and IR spectroscopy.¹⁸ These data were taken as evidence for the formation of C_4Li complex **6**, which is possibly present as a mixture of aggregates. The deprotonation of a butadiynyl iron complex and subsequent reactions with metal halides to give $[L_nMC\equiv C-C\equiv CM'L_n]$ complexes has been previously reported by Wong.¹⁹

We sought to elaborate **6** to a bimetallic Fischer carbene complex. Thus, $[(\eta^5-C_5H_5)Mn(CO)_3]$ and $[Me_3O]^+[BF_4]^-$ were added to **6** under various conditions; however, no evidence was found for an adduct with a $ReC\equiv C-C\equiv CC(OMe)=Mn$ linkage, although the corresponding reaction of the lower homologue **7** worked well.²¹ The major product was **5**. Hence, an analogous



reaction was conducted with $(\eta^5\text{-C}_5\text{Cl}_5)\text{Mn}(\text{CO})_3$,^[10] which should be more conducive to nucleophile addition from the standpoints of both reaction rate and equilibrium. Workup gave the dark purple C_5OMe complex **8** (77% yield).^[11] Thus, the $\text{ReC}\equiv\text{C}-\text{C}\equiv\text{CLi}$ moiety in **6** is less basic and/or nucleophilic than the $\text{ReC}\equiv\text{CLi}$ moiety in **7**, a trend often observed for organic analogues.

Toluene/hexane solutions of **8** were treated with excess BF_3 gas (Scheme 1). The C_5 complex **9** precipitated as a dark brown solid. Workup gave **9** (52% yield) that was approximately 94% pure by NMR spectroscopy. Several unusual properties of **9** became immediately apparent and have so far precluded further purification or crystallization. First, **9** is extremely light-sensitive, both in solution and the solid state. Second, **9** decomposes on the time scale of hours in the dark at room temperature; the rate apparently depends upon the concentration of **9**. In all cases, a black decomposition product formed that gave ESR signals and broad NMR signals.^[12] Elemental analyses gave values for the carbon, hydrogen, and chlorine content that were within 1–5% of those calculated for **9**.

Complex **9** was characterized spectroscopically. The ^{13}C NMR spectrum showed a downfield ReC signal ($\delta = 218.4$) with a $^2J(\text{C}, \text{P})$ value (12.5 Hz) near the range typical of $^+ \text{Re}=\text{C}$ linkages (10.0–12.3 Hz).^[13] Other signals assigned to the C_5 chain were observed at $\delta = 296.2$ (MnC), 119.1, 110.6, and 107.0. The $\tilde{\nu}(\text{NO})$ value (1718 cm^{-1}) in the IR spectrum was in a range diagnostic of cationic $^+ \text{Re}=\text{C}$ compounds (1719 – 1698 cm^{-1}) and much higher than that characteristic of neutral $\text{Re}-\text{C}\equiv\text{C}$ compounds (1653 – 1630 cm^{-1}). Thus, the cumulene resonance form $^+ \text{Re}=\text{C}=\text{C}=\text{C}=\text{C}=\text{Mn}^+$ dominates over the alternative $\text{Re}-\text{C}\equiv\text{C}-\text{C}\equiv\text{C}-\text{C}\equiv\text{Mn}^+$ (Scheme 1).^[15] A very strong IR band at 1953 cm^{-1} was presumed to be associated with the cumulene fragment.

We sought to characterize the optical properties of **9**. As a prelude, the new C_3 complex **10** was prepared similarly to **9** from $\text{ReC}\equiv\text{CLi}$ complex **7**. Complex **10**, and the previously reported chlorine-free analogue **11**, did not exhibit any unusual photo-

chemical or thermal reactivity.^[2] Thus, the cyclopentadienyl chlorines in **9** are not an intrinsic source of instability. This implicates the carbon chain length in **11** as the key labilizing feature. Complex **10** exhibited signals in the IR ($\tilde{\nu} = 1717(\text{s})$ (NO), $1899(\text{vs}) \text{ cm}^{-1}$ ($\text{C}=\text{C}=\text{C}$)) and ^{13}C NMR ($\delta = 221.1$ (d, $^2J(\text{C}, \text{P}) = 11.8$ Hz; ReC), 287.8 (s; MnC), 168.9 (s; CCC)) spectra indicative of a dominant “cumulenic” resonance form, $^+ \text{Re}=\text{C}=\text{C}=\text{C}=\text{Mn}^+$. These results parallel those for **11**, which was also crystallographically characterized.^[2]

The UV/visible spectra of **9**–**11** are compared in Figure 1. The yellow-brown solutions show very intense absorptions at 480 (**9**), 414 (**10**), and 392 (**11**) nm ($\epsilon = 60\,500$, 49 000, and $56\,000 \text{ M}^{-1} \text{ cm}^{-1}$, respectively). Weaker bands occur at longer wavelengths (634, 554 sh, and 484 nm; $\epsilon = 4800$, 2700, and $3700 \text{ M}^{-1} \text{ cm}^{-1}$). Thus, either increased carbon chain lengths (**9** vs **10**) or electronegative chlorine substituents on the manganese cyclopentadienyl ligand (**10** vs **11**) result in absorptions at longer wavelengths. The latter trend suggests that the transitions have appreciable rhenium-to-manganese charge transfer character.

Attempts to trap **9** as a stable adduct have to date been unsuccessful. No reaction occurs with TCNE, ethylene, or SMe_2 at ambient temperature, and PMe_3 gives a complex mixture of unusual products. Nonetheless, we anticipate an array of un-

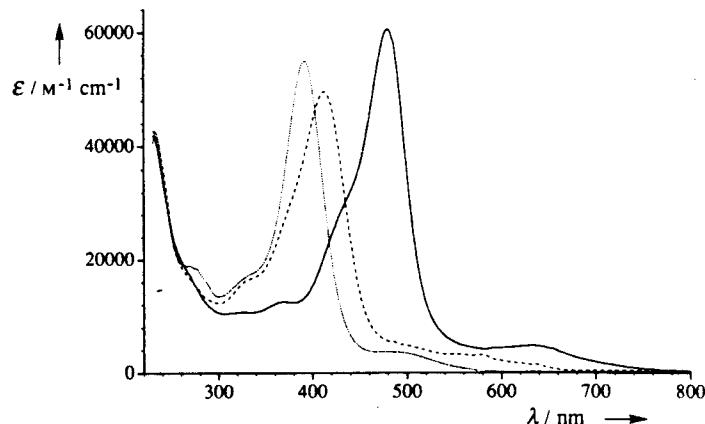


Fig. 1. UV-visible spectra of compounds **9**–**11**. (CH_2Cl_2 , ambient temperature, $c = 2.3$ – $3.9 \times 10^{-5} \text{ M}$). — **9**, ---- **10**, ····· **11**.

usual properties for this series of compounds. Further examples of complexes with C_5 and longer chains will be reported in the near future.

Experimental Procedure

8: A Schlenk tube was charged with **4** (0.048 g, 0.072 mmol) in THF (5 mL). The mixture was cooled to -80°C . Then $n\text{BuLi}$ (36 μL , 2.3 M in hexane) was added with stirring. After 1 h, a solution of $[(\eta^5\text{-C}_5\text{Cl}_5)\text{Mn}(\text{CO})_3]$ [10] (0.028 g, 0.075 mmol) in THF (3 mL) was added via a cannula. After 1 h, the cold bath was removed. After a further hour, the red-orange solution was transferred via a cannula to a Schlenk flask that had been charged with $[\text{Me}_3\text{O}]^+ [\text{BF}_4]^-$ (0.050 g, 0.32 mmol). The mixture was cooled to -80°C and stirred for 0.5 h. The cold bath was then removed. After 0.5 h, the sample was concentrated to ca. 2 mL, and hexane (10 mL) was added. Chromatography (N_2 , Florisil; hexane \rightarrow hexane/THF 1:1 (v/v)) gave a deep purple fraction. The solvent was removed under oil pump vacuum to give **8** as a dark purple powder (0.059 g, 0.056 mmol, 77%). M.p. 114 – 116°C ; ^1H NMR (300 MHz, C_6D_6 , 25 $^\circ\text{C}$, TMS): $\delta = 7.65$ – 7.55 (m, 6 H; $3\text{C}_6\text{H}_5$), 7.12–6.95 (m, 9 H; $3\text{C}_6\text{H}_5$), 3.53 (s, 3 H; OCH_3), 1.55 (s, 15 H; $\text{C}_5(\text{CH}_3)_5$); $^{13}\text{C}(\text{H})$ NMR (75 MHz, C_6D_6 , 25 $^\circ\text{C}$, C_6D_6 int.): $\delta = 288.9$ (s; MnC), 228.2 (s; CO), 228.1 (s; CO), 167.1 (d, $J(\text{C}, \text{P}) = 14.8$ Hz; $\text{ReC}\equiv\text{C}$), 134.2 (d, $J(\text{C}, \text{P}) = 52.4$ Hz; $i\text{-Ph}$), 134.0 (d, $J(\text{C}, \text{P}) = 10.8$ Hz; $o\text{-Ph}$), 130.7 (s; $p\text{-Ph}$), 128.6 (d, $J(\text{C}, \text{P}) = 10.3$ Hz; $m\text{-Ph}$), 127.4, 116.3, 82.4 (3s; $\text{C}\equiv\text{C}\equiv\text{C}\equiv$), 102.1 (s; $\text{C}_5(\text{CH}_3)_5$), 97.0 (s; C_5Cl_5), 63.3 (s; OCH_3), 9.9 (s; $\text{C}_5(\text{CH}_3)_5$); $^{31}\text{P}(\text{H})$ NMR (121 MHz, C_6D_6 , 25 $^\circ\text{C}$, 85% H_3PO_4 ext.): $\delta = 20.6$ (s); IR ($\text{CH}_2\text{Cl}_2/\text{KBr}$): $\tilde{\nu} = 2057$ – 2054 (m), 2046–2044 (m) sh ($\text{C}\equiv\text{C}$), 1965/1962 (s), 1925/1922 (s) ($\text{C}\equiv\text{O}$), 1655/1657 (s) cm^{-1} (NO); UV/VIS (CH_2Cl_2): λ_{max} (ϵ) = 264 sh (29 000), 318 (19 000), 376 sh (13 000), 502 sh (14 500), 562 nm (21 000); MS (positive ions FAB (Cs^+), 3-NBA/benzene matrix): m/z (%): 1053 (3) [M^+], 614 (100) [$[\text{Re}]^+$]. Correct elemental analysis.

9: This procedure was carried out in the dark. A Schlenk tube was charged with **8** (0.094 g, 0.089 mmol), toluene (10 mL), and hexane (8 mL). The mixture was cooled to -60°C . Then BF_3 gas was bubbled through the solution for 1 min. A dark solid precipitated. The supernatant was removed with a syringe, and the solid was washed with hexane (3 \times 5 mL) and dried under oil pump vacuum. The solid was extracted with CH_2Cl_2 (2 \times 2 mL). The extracts were filtered through a Celite pad (1 cm). Hexane (10 mL) was added, and the dark brown precipitate was collected by filtration, washed with hexane (2 \times 2 mL), and dried under oil pump vacuum to give **9** (0.051 g, 0.046 mmol, 52%). ^1H NMR (300 MHz, CD_2Cl_2 , 25 $^\circ\text{C}$, CD_2Cl_2 int.): $\delta = 7.64$ –7.49 (m, 9 H; $3\text{C}_6\text{H}_5$), 7.48–7.36 (m, 6 H; $3\text{C}_6\text{H}_5$), 1.95 (s, 15 H; $\text{C}_5(\text{CH}_3)_5$); $^{13}\text{C}(\text{H})$ NMR (75 MHz, CD_2Cl_2 , -20°C , CD_2Cl_2 int.): $\delta = 296.2$ (s; MnC), 220.8 (s; CO), 220.2 (s; CO), 218.4 (d, $J(\text{C}, \text{P}) = 12.5$ Hz; ReC), 133.2 (d, $J(\text{C}, \text{P}) = 10.9$ Hz; $o\text{-Ph}$), 132.4 (s, $p\text{-Ph}$), 129.5 (d, $J(\text{C}, \text{P}) = 10.6$ Hz; $m\text{-Ph}$), 119.1, 110.6, 107.0 (3s; CCCCC), 108.5 (s; $\text{C}_5(\text{CH}_3)_5$), 100.4 (s; C_5Cl_5), 10.0 (s; $\text{C}_5(\text{CH}_3)_5$); $^{31}\text{P}(\text{H})$ NMR (121 MHz, CD_2Cl_2 , 85% H_3PO_4 ext.): $\delta = 20.5$ (s); IR ($\text{CH}_2\text{Cl}_2/\text{KBr}$): $\tilde{\nu} = 2045$ –2042 (s), 2008–1996 (s) ($\text{C}\equiv\text{O}$), 1953–1948 (vs) ($\text{C}=\text{C}=\text{C}=\text{C}$), 1718–1705 (s) cm^{-1} (NO); UV/VIS (CH_2Cl_2): λ_{max} (ϵ) = 262 (19 000), 370 (12 500), 442 sh (33 000), 480 (60 000), 634 nm (48 000); MS (positive ions FAB (Cs^+), 3-NBA CH_2Cl_2 matrix): m/z (%): 1022 (4) [M^+], 614 (100) [$[\text{Re}]^+$].

Received: May 31, 1994 [Z 6986]
German version: *Angew. Chem.* 1994, **106**, 2272

[1] a) H. Lang, *Angew. Chem.* 1994, **106**, 569–572; *Angew. Chem. Int. Ed. Engl.* 1994, **33**, 547–550; b) W. Beck, B. Niemer, M. Wieser, *ibid.* 1993, **105**, 969–996 and 1993, **105**, 923–949; c) main group analogues: H. J. Bestmann, D. Hadawi, H. Behl, M. Bremer, F. Hampel, *ibid.* 1993, **105**, 1198–1200 and 1993, **105**, 1205–1208.

[2] W. Weng, J. A. Ramsden, A. M. Arif, J. A. Gladysz, *J. Am. Chem. Soc.* **1993**, *115*, 3824–3825.
 [3] N. Le Narvor, C. Lapinte, *J. Chem. Soc. Chem. Commun.* **1993**, 357–359.
 [4] a) Y. Zhou, J. W. Seyler, W. Weng, A. M. Arif, J. A. Gladysz, *J. Am. Chem. Soc.* **1993**, *115*, 8509–8510; b) J. W. Seyler, W. Weng, Y. Zhou, J. A. Gladysz, *Organometallics* **1993**, *12*, 3802–3804.
 [5] For an unusual complex in which the carbons of a bent C₃ linkage are coordinated to three, two, zero, zero, and three cobalts, respectively, see G. H. Worth, B. H. Robinson, J. Simpson, *Organometallics* **1992**, *11*, 501–513.
 [6] T.-S. Peng, C. H. Winter, J. A. Gladysz, *Inorg. Chem.* **1994**, *33*, 2534–2542.
 [7] J. A. Ramsden, W. Weng, J. A. Gladysz, *Organometallics* **1992**, *11*, 3635–3645.
 [8] The ³¹P NMR shifts of [Re⁺(C≡C–C≡CX)] complexes are much less sensitive to the nature of X than those of ReC≡CX analogues.
 [9] A. Wong, P. C. W. Kang, C. D. Tagge, D. R. Leon, *Organometallics* **1990**, *9*, 1992–1994.
 [10] a) S. A. Kur, M. J. Heeg, C. H. Winter, *Organometallics* **1994**, *13*, 1865–1869; b) W. A. Hermann, M. Huber, *J. Organomet. Chem.* **1977**, *140*, 55–61.
 [11] Analogous reactions with the monochlorocyclopentadienyl complex $[(\eta^5\text{-C}_5\text{H}_5\text{Cl})\text{Mn}(\text{CO})_3]$ gave mixtures of **5** and a C₃OMe adduct that we could not easily purify.
 [12] Isolated by precipitation with hexane or ether. Found (two independently prepared samples): C, 44.77–42.64; H, 3.54–3.17; Cl, 12.51–12.41. Calcd for precursor **9**: C, 43.33; H, 2.73; Cl, 15.99. A UV visible spectrum showed no features at > 300 nm other than intense tailing. A FAB mass spectrum showed no peaks with *m/z* higher than 614 ([Re⁺*]). IR (CH₂Cl₂): $\bar{\nu}$ = 1726(s) br, 2043(s), 1974(s), and weaker unresolved bands at 1850–2000 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂, 25 °C, CD₂Cl₂ int.): δ = 7.75 (br m; C₆H₅), 1.95 (s; C₃(CH₃)₃); ³¹P NMR (121 MHz, CD₂Cl₂, 25 °C, 85% H₃PO₄ ext.): δ = 22 (br s); ESR (CH₂Cl₂ (g)) 2.02 (sextet, *A*_{iso} 97 G).
 [13] Limiting values are taken from **3**–**5** and pentamethylcyclopentadienyl complexes in ref. [4a] and [8].
 [14] The ¹³C NMR chemical shifts of the ReC and CMn units are also consistent with this conclusion, although the former is intermediate between limiting model compounds, and the latter must be compared with neutral carbene and cationic carbyne complexes of the $[(\eta^5\text{-C}_5\text{H}_5)\text{Mn}(\text{CO})_3]$ fragment [2].

4 is closely related to that of the tetraphosphacubane, **3** as one corner C atom of the “cube” can be considered to be replaced by a triangle of CCP atoms (Fig. 1).

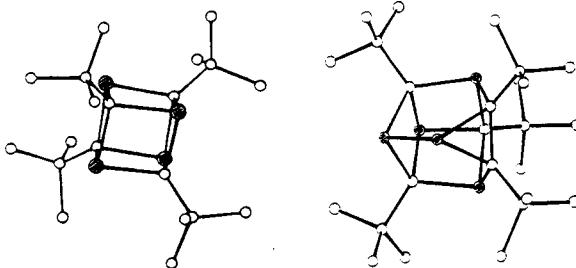


Fig. 1. Structure of **3** (left) and **4** (right) in the crystal. (○ carbon, ● phosphorus) [6–8].

Whereas the P₃C₂tBu₂⁻ ring ion exhibits η^1 - and η^5 -ligating behavior towards transition metals, the corresponding P₂C₃tBu₃⁻ ion only exhibited η^5 - or η^3 -ligation.^[11, 9, 10] Since the structurally well characterized $\eta^1\text{-P}_3\text{C}_2\text{tBu}_2$ complexes typified by $[\text{M}(\eta^1\text{-P}_3\text{C}_2\text{tBu}_2)_x(\text{PR}_3)_y\text{X}]$ (M = Pd, Pt; X = halide; x = 2, y = 2, z = 0; x = 1, y = 2, z = 1) all contained stabilizing phosphane ligands,^[11] we have now carried out a reaction of the more labile complex [PtCl₂(cod)] (cod = 1,5-cyclooctadiene) with a mixture of the P₃C₂tBu₃⁻ and P₂C₃tBu₃⁻ ring ions in dimethoxyethane and obtained nonmetal-containing organophosphorus compounds, presumably via unstable organometallic intermediates.

The reaction product mixture was chromatographed and the known P₅C₅tBu₅ (**4**), P₅C₅tBu₅H₂ (**7**), and the new compound P₄C₆tBu₆H₂ (**8**), whose structure is similar to **7**, were separated and characterized by their ³¹P{¹H} NMR spectra.^[8, 12, 13] Of special interest was a fraction which yielded a colorless compound (**2**), which exhibited a parent ion in the mass spectrum at *m/e* = 600, indicative of a hexamer of tBuCP. The ³¹P{¹H} NMR spectrum of **2** is very simple, consisting of two singlets of relative intensity 2:1 whose chemical shifts are characteristic of $\lambda^3\sigma^3$ P atoms (δ = 4.8 (P^A), 184.0 (P^B); relative to H₃PO₄). The simplicity of the ¹H NMR spectrum (singlets at δ = 1.64 and 1.25 of relative intensity 1:2) strongly suggests a highly symmetric cage structure.

The molecular structure of P₆C₆tBu₆ (**2**), which was established subsequently by a single crystal X-ray structural determination,^[14] consists of a lanternlike hexameric cage containing two 3-membered CCP rings (Fig. 2). There is a close similarity between the C_{2h} symmetry exhibited by **2** and the D_{3d} symmetry of the C₁₂H₁₂ hydrocarbon p-[3².5⁶]octahedrane (**1**, Fig. 3, left),^[15] as well as the obvious structural relationship of **2** to the D_{3d} structure computed recently for the hypothetical P₁₂ molecule **9**^[15] (Fig. 3, right). These results provide further strong support for previous contentions about the similarity in chemical behavior of P and CR fragments in both organic and organometallic chemistry.^[1, 2, 3]

Ab initio calculations on oligomers of HCP as a model for tBuCP oligomers were performed with the Gaussian 92 program.^[19] The MP2(fu)/6-21G* (fu = full, all electrons correlated) geometry of the model hexamer is in good accord with that determined for **2**. Experimental bond lengths and bond angles for P₆C₆tBu₆ and corresponding theoretical values for P₆C₆H₆ are summarized in Figure 4. Reaction energies computed at different levels for the HCP → 1/n(HCP)_n (*n* = 2–6) reac-

A Novel Hexamer of tBuC≡P: Synthesis, Structure, and Theoretical Studies**

Vinicio Caliman, Peter B. Hitchcock, John F. Nixon,*
 Matthias Hofmann, and Paul von Ragué Schleyer*

The organic and organometallic chemistry of phosphaalkynes (RC≡P) is developing rapidly.^[1–4] The very recent report^[5] by de Meijere and co-workers of the “cage” hydrocarbon C₁₂H₁₂ (**1**), with D_{3d} symmetry, prompts us to describe the synthesis and structure of the novel isostructural P₆C₆tBu₆ cage compound (**2**) that represents the largest known oligomer of the phosphaalkyne tBuC≡P.

A landmark in the chemistry of phosphaalkynes was Regitz et al.’s synthesis and structural characterization of the very stable tetraphosphacubane P₄C₄tBu₄ (**3**), made either thermally from tBuC≡P or more efficiently by use of the precursor complex [Zr(η⁵-C₅H₅)₂(P₂C₂tBu₂)].^[6, 7] Previously^[8] the related pentameric cage compound P₅C₅tBu₅ (**4**) was obtained readily by oxidative coupling of the 1,3-di- and 1,2,4-triphosphacyclopentadienyl ring systems **5** and **6**. The structure of pentamer

[*] Prof. Dr. J. F. Nixon, V. Caliman, Dr. P. B. Hitchcock
 School of Chemistry and Molecular Sciences, University of Sussex
 GB-Brighton BN1 9QJ (UK)
 Telefax: Int. code + (273) 67-7196

Prof. P. von R. Schleyer, Dipl.-Chem. M. Hofmann
 Computer-Chemie-Centrum des Instituts für Organische Chemie
 der Universität Erlangen-Nürnberg
 Nägelsbachstrasse 25, D-91052 Erlangen (FRG)
 Telefax: Int. code + (9131) 85-9132

[**] We thank the Science and Engineering Research Council (SERC), the Brazilian Government (CNPq) (fellowship for V.C.), and the Deutsche Forschungsgemeinschaft (Graduierten Kolleg für Phosphor Chemie) for financial support.