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Efficient Network Construction Through
Structural Plasticity

Xiaocong Du
Yufei Ma

Abstract—Deep Neural Networks (DNNs) on hardware is
facing excessive computation cost due to the massive num-
ber of parameters. A typical training pipeline to mitigate
over-parameterization is to pre-define a DNN structure with
redundant learning units (filters and neurons) with the goal
of high accuracy, then to prune redundant learning units after
training with the purpose of efficient inference. We argue that it
is sub-optimal to introduce redundancy into training in order
to reduce redundancy later in inference. Moreover, the fixed
network structure further results in poor adaption to dynamic
tasks, such as lifelong learning. In contrast, structural plasticity
plays an indispensable role in mammalian brains to achieve
compact and accurate learning. Throughout the lifetime, active
connections are continuously created while those that are no
longer important are degenerated. Inspired by such observation,
we propose a training scheme, namely Continuous Growth and
Pruning (CGaP), where we start the training from a small
network seed, then literally execute continuous growth by adding
important learning units and finally prune secondary ones for
efficient inference. The inference model generated from CGaP is
sparse in the structure, largely decreasing the inference power
and latency when deployed on hardware platforms. With popular
DNN structures on representative datasets, the efficacy of CGaP
is benchmarked by both algorithmic simulation and architectural
modeling on Field-programmable Gate Arrays (FPGA). For
example, CGaP decreases the FLOPs, model size, DRAM access
energy and inference latency by 63.3%, 64.0%, 11.8% and 40.2%,
respectively, for ResNet-110 on CIFAR-10.

Index Terms— Deep learning, structural plasticity, model prun-
ing, hardware acceleration, algorithm-hardware co-design.

I. INTRODUCTION

EEP Neural Networks have various applications includ-
ing image classification [1], object detection [2], speech
recognition [3] and natural language processing [4]. However,
the accuracy of DNNs heavily relies on massive amounts
of parameters and deep structures, making it hard to deploy
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Fig. 1. Energy breakdown for modern DNN structures, results from
simulation by the FPGA performance model [5]. Due to the redundancy
in parameters, multiply-accumulator (MAC) and external memory (DRAM)
access dominate the energy consumption.

DNNs on resource-limited embedded systems. When training
or inferring the DNN models on hardware, the model must be
stored in the external memory such as dynamic random-access
memory (DRAM) and fetched multiple times. These oper-
ations are expensive in computation, memory access, and
energy consumption. For example, Fig. 1 shows the energy
consumption of one inference pass in several modern DNN
structures, simulated by the FPGA performance model [5]
under the setting of 300 MHz operating frequency and
19.2 GB/s DRAM bandwidth. The input image size is 32 x 32.
A typical DNN model is too large to fit in on-chip memory. For
instance, VGG-19 [6] has 20.4M parameters. Running such a
model requires frequent external memory access, exacerbating
the power consumption of a typical embedded system.

Previous researches have designed customized hardware
for DNN acceleration [7], [8]. Most of them are limited
to relatively small neural networks, such as LeNet-5 [9].
For larger networks such as AlexNet [1] and VGG-16 [6],
additional efforts are usually required to improve the hard-
ware efficiency [10], [11]. For example, [10] saves the energy
through data gating and zero skipping. Some other works
focus on data reuse of convolutional layers and demon-
strate the results on specific hardware [7], [12]-[14]. However,
their improvements are limited on those networks where
fully-connected layer is widely used, such as RNNs and
LSTMs.

To support more general models, network pruning is a
popular approach by removing secondary weights and neu-
rons. Network pruning executes a three-step procedure, which
1) trains a pre-designed network from scratch, 2) removes
less important connections or filters/neurons according to a
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Fig. 2. The proposed CGaP scheme. CGaP starts the training from a seed network instead of an over-parameterized one, gradually grows important learning
units during the training and reaches peak capacity at the end of growth, then prunes secondary filters and neurons to generate an inference model with

structured sparsity and up-to-date accuracy.

saliency score (a metrics to measure the importance of weights
and learning units) [15]-[19], or by adding a regularization
term into the loss function [20], [21], and 3) fine-tunes to
recover the accuracy.

However, the above pruning techniques suffer from two
limitations: (1) training a large and fixed network from scratch
could be sub-optimal as it introduces redundancy; (2) in
the process of training, pruning only discards less important
weights at the end of training but does not strengthen important
weights and nodes. These limitations of network pruning
confine the learning performance as well as the model pruning
efficiency (i.e., how many parameters can be removed and how
structured the sparsity is).

In contrast to the static DNN model, the biological ner-
vous system exhibits active growth and pruning through the
lifetime. [22]-[24] have observed that the rapid growth of
neurons and synapses takes place in an infant’s brain and
is vital to the maturity of an adult’s brain. In brains, some
neurons and synapses are used more frequently and are conse-
quently strengthened. Those neurons and synapses that are not
used consistently are weakened and removed. The structural
plasticity of brain is central to the study of developmental
biology.

Inspired by this observation from biology, we propose
a training scheme named Continuous Growth and Pruning
(CGaP), which leverages structural plasticity to tackle the
aforementioned limitations of pruning techniques. Instead of
training an over-parameterized network from scratch, CGaP
starts the training from a small network seed (Fig. 2(a)),
whose size is as low as 0.1%-3% of the full-size reference
model. In each iteration of the growth, CGaP locally sorts
neurons and filters (also known as output channels in some
literature) according to our saliency score (Section III-B).
Based on the saliency score, important learning units are
selected and the corresponding new units are added (see
Fig. 2(b)). The selection and addition of important units
help reinforce the learning and increase model capacity. Then
a filter-wise and neuron-wise pruning will be executed on
the post-growth model (Fig. 2(c)) based on pruning metrics.
Finally, CGaP generates a significantly sparse and structured
inference model (Fig. 2(d)) with accuracy improved. In the
generated inference model, large amounts of filters and neu-
rons have been removed, achieving structured pruning. Com-
pared to non-structured pruning [15], CGaP benefits hardware

implementation as it reduces the computation volume and
memory access without any additional hardware architecture
change.

Algorithmic experiments and hardware simulations validate
that CGaP significantly decreases the number of exter-
nal and on-chip memory accesses, accelerating the infer-
ence by bypassing the removed filters and neurons.
On the algorithm side, we demonstrate the performance
in accuracy and model pruning on several networks
and datasets. For instance, CGaP reduces 78.9% parame-
ters of VGG-19 with 40.37% accuracy improvement on
CIFAR-100 [25], 85.8% parameters with +0.23% accuracy
improvement on SVHN [26]. For ResNet-110 [27], CGaP
reduces 64.0% parameters with 4+0.09% accuracy improve-
ment on CIFAR-10 [25]. These results exceed the state-of-
the-art pruning methods [15]-[18], [28], [29]. Furthermore,
we validate the efficiency of the inference model generated
from CGaP using FPGA simulator [5]. For one inference pass
of VGG-19 on CIFAR-100, previous non-structured pruning
approach [15] requires energy consumption of 2.7 x 10° pJ in
accessing DRAM and 5.6 ms inference latency, while CGaP
requires only 2.2 x 10 pJ and 4.4 ms latency.

The contribution of this paper is as follows:

o A brain-inspired training flow (CGaP) with a dynamic
structure is proposed. CGaP grows the network from a
small seed and effectively reduces over-parameterization
without sacrificing accuracy.

o The advantage of structured sparsity of the infer-
ence model generated from CGaP is validated using a
high-level FPGA performance model including on-chip
buffer access energy, external memory access energy and
inference latency.

o The discussion and understanding of the reason that the
growth improves the learning efficiency are provided.

The rest of the paper is organized as follows. Section II
introduces the background of model pruning. Section III
demonstrates the saliency score used to select the learning
units. Section IV describes the proposed Continuous Growth
and Pruning scheme. Section V presents the experimental
results from algorithmic simulations. Section VI demonstrates
the simulation results from FPGA performance modeling.
Section VII discusses the understanding of network plasticity
as well as ablation study. Section VIII concludes this work
and discusses the insight into future work.
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II. PREVIOUS WORK

There have been broad interests in reducing the redundancy
of DNNs in order to deploy them on a resource-limited
hardware platform. The structural surgery is a widely used
approach and can be categorized into destructive direction and
constructive direction. We will discuss these two directions,
as well as orthogonal approaches to our methods in this
section.

A. Destructive Methods

The destructive methods zero out specific connections or
remove filters or neurons in convolutional or fully-connected
layers, generating a sparse model. Weight magnitude
pruning [15] pruned weights by setting the selected weights
to zeros. The selection is based on L1-norm, i.e., the absolute
value of the weight. Weight magnitude pruning generates a
sparse weight matrix, but not in a structured way. In this case,
specific hardware design [30] is needed to take advantage of
the optimized inference model, otherwise the non-structured
sparsity does not benefit hardware acceleration due to the
overhead in model management. The kernel-wise pruning [16]
pruned kernels layer by layer based on the saliency met-
rics of each filter and achieved structured sparsity in the
inference model. Compared to [16], CGaP prunes filters,
leading to a more structured inference model. Besides the
saliency-based pruning, the penalty-based approach has been
explored by [21], [31] and structured sparsity was achieved.
Our method is different from all the above pruning schemes
from two perspectives: (1) We start training from a small seed
other than an over-parameterized network; (2) Besides remov-
ing secondary filters/neurons, we also reinforce important ones
to further improve learning accuracy and model compactness.

B. Constructive Methods

The constructive approaches include techniques that
add new connections or filters to enlarge the model
capacity. [32], [33] increased network size by adding random
neurons with fresh initialization (i.e., weights are randomly
initialized, without pre-trained information). They evaluated
their approach on basic XOR problems. Different from their
approach, CGaP selectively adds neurons and filters that are
initialized with the information learned from the previous
training. Meanwhile, CGaP is validated on modern DNNs
and datasets under more realistic scenarios. [34] grew the
smallest Neural Tree Networks (NTN) to minimize the number
of classification errors on Boolean function learning tasks,
and used pruning to enhance the generalization of NTN. [35]
improved the accuracy of radial basis function (RBF) networks
on function approximation tasks by adding and removing
hidden neurons. To enhance the accuracy of spike-based
classifiers, [36] progressively added dendrites to the network,
and then optimized the topology of the dendritic tree. Different
from them, CGaP aims at improving the efficiency of the
inference model of modern Deep Neural Networks on image
classification tasks. [37] constructed the DNN by activating
connections and choosing a set of convolutional filters among

a bunch of randomly generated filters according to their
influence on the training performance. However, this approach
highly depends on trial and error to find the optimal set
of filters that could reduce loss the most. This approach is
sensitive to power and timing budgets, limiting its extension
on large datasets. Unlike their work, CGaP directly grows the
network from a seed, minimizing the effort on trail and error.

C. Orthogonal Methods

The orthogonal methods, such as low-precision quantization
and low-rank decomposition, compress the DNN models by
quantizing the parameters to fewer bits [38], [39], or by find-
ing a low-rank approximation [40], [41]. Note that our CGaP
approach can be combined with these orthogonal methods to
further improve inference efficiency.

III. SALIENCY SCORE

In this section, we describe the detailed methodology of
CGaP, starting from the saliency score, which is used to sample
the importance of a learning unit. Section III-A defines the
terminology we use in this paper. Section III-B provides the
mathematical proof of the saliency score we adopt.

A. Terminology

A DNN can be treated as a feedforward multi-layer archi-
tecture that maps the input images to certain output vectors.
Each layer is a certain function, such as convolution, ReLU,
pooling and inner product, whose input is &X', output is ) and
parameter is VY in case of convolutional and fully-connected
layers. Hereby the convolutional layer (conv-layer) is for-
mulated as: )}, = AX; « W, wherein X; e RIxWixHi
YV € RO[XWO/XHO/ N /YlJrl e R1/+|xWi/+1xHi/+1’ W, €
RO<IixKxK “\where subscript ; denotes the index of the layer.
And the fully-connected layer is represented by: )V, = A7- W,
where the input A; € R%, the output ), € RO & X1 €
R+t and the parameter matrix is W, € RO,

1) Convolutional Layer (Conv-Layer) I: the 4 dimensions
of its weight matrix are: the number of output channels Oy,
the number of input channels [;, and the kernel width and
height K, respectively. We denote the o-th 3D filter, which
generates the o-th output channel in the feature map, as W/ €
RI*KxK “The j-th 2D kernel in the o-th filter is denoted
as W' € RE*K_On the other hand, a 4D weight tensor
W} € ROXIXKxK "\which operates on the i-th input feature
map, is a package of O; kernels across all output channels.
For example, in Fig. 3, le,picked is a 3D filter consisting of /;

kernels, and le+1,pr0jected as well as Wl]Jrl,mapped are both
4D tensors with dimension of O; x 1 x K x K, which include
all the output channels but have only one input channel located
at j. The W/*"™" € R!*! refers to one weight at the m-th row
and the n-th column in the o-th filter of the i-th input channel.

2) Fully-Connected Layer (fc-Layer) l: input X} propagate
from one hidden activation i to the next layer. We refer
the whole set of Wli’ fan—our A4S @ meuron Nli. This neuron
receives information from previous layer [ — 1 through its
fan-in weights Wl’;fan_m e RPI-1 (as shown in Fig. 4)
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Algorithm 1 Entire Flow
Input: Model seed Miyitial
1: Initialize a small network model My renr < Minitial -
2: for epoch = 1 to E do
Train current model M yrrens and fetch Accuracy.
if epoch% =0 and Mcyrrent < Teapa. then

owth
Grow the network according to Algorithm 2

3
4
5:
6: M yrrent < Mgrown~
7:  end if

8 Mpeak < Mcurrent-
9

S § epoch%f e = =0 and Accuracy > t4ccu. then
10: Prune the network following Algorithm 3

11: Meyrrent < Mpruned-
12:  end if
13: end for

14: Mfinal < Mcyrrens and test Mfinal-
Output: Final compact model M fiyq

J
Wz,

J
W ? VVH— Lprojected
Lnewborn

ched I/Vl-k],projecteaf
picke m

e
NN
O,

Fig. 3. TIllustration of two-step growth in conv-layers. The growth phase fol-
lows a two-step (growing and mapping) procedure. After Fhe filter le, picked
(green) is picked and split aside, giving birth to W/ newborn  (OTange),
the projected input-wise ﬁlter,l wl]+1,projeczed (blue) in layer [ + 1, is as
well split aside, generating WIJ +1,mapped (black).

and propagates to the next layer through fan-out weights

1, fan—out e R Also note that the output dimension
of layer | — 1 equals to the input dimension of layer /,
i.e., O—1 = I;. The weight pixel in layer / at the cross-point
of row o and column i is denoted as Wl Fan—our € RIXT,
Moreover, the ‘depth’ of a DNN model indicates the number
of layers, and the ‘width’ of a DNN model refers to the number
of filters or neurons of each layer.

3) Learning Units: Growing or pruning a filter W/ indi-
cates adding or removing Wy € R*X*K and its correspond-
ing output feature map. Growing or pruning a neuron Nli
means adding or removing both Wl’; fan—our € ROx1 and
Wli,fanfin € RIXIFI'

B. Saliency Score

We adopt a saliency score to measure the effect of a single
filter/neuron on the loss function, i.e., the importance of each
learning unit. The saliency score is developed from Taylor
Expansion of the loss function. Previously, [42] applied it on
pruning. In this paper, we adopt this saliency score and apply it
on the growth and pruning scheme. In this section, we provide
a mathematical formulation of the saliency score.

The saliency score represents the difference between the loss
with and without each unit. In other words, if the removal of
a filter/neuron leads to relatively small accuracy degradation,
this unit is recognized as an unimportant unit, and vice versa.
Thus, the objective function to get the filter with the highest
saliency score is formulated as:

argmin| AL(W})|
wy
& argmin|L(QY; X, W) — L X, W) =0). (1)
Wy

Using the first-order of the Taylor Expansion:

L X, W) = L X, W) =0)| at W =0. (2
we get:
LY, X, W)
|A£(W10)| = |TWIO|
I
oL\, X w ;
S S S iy
i=0 m=0 n=0 an

Similarly, the saliency score of a neuron is derived as:

oL(Y; X, W
|A£(N1)| — |¥Wl,fan—out|

I, fan—out

LY X, W)

W, 0wt 4)
0 an,fan—outo’l L. fan—out

@]

IV. CGAP METHODOLOGY

With the saliency score as the foundation, we develop the
entire CGaP flow atop. This section explains the overall flow
and the detailed implementation of each step in CGaP.

The CGaP scheme is described in Algorithm 1. Starting
from a small network seed, the growth takes place periodically
at a frequency of fgrown (see Algorithm 1 line 4, where ‘%’
denotes the operation to obtain the remainder of division).
During each growth, important learning units are chosen and
grown at growth ratio £ layer by layer from the bottom (input)
to top (output), based on the local ranking of the saliency
score. The growth phase stops when reaching a capacity
threshold 7¢4pq., followed by several epochs of training on
the peak model M ... When the training accuracy reaches a
threshold 7,c¢., the pruning phase starts. Pruning is performed
layer by layer, from the bottom layer to the top layer, at the
frequency of fp,uning. The details in the growth phase and the
pruning phase is demonstrated as follows.

A. Growth Phase

Algorithm 2 presents the methodology in the growth phase.
Each iteration of growth in a layer consists of two steps:
growth in layer / and mapping in the adjacent layer. There
are two conditions need to be discussed separately: convo-
lutional layers (Fig. 3) and fully-connected layers (Fig. 4).
Due to the difference between these two kinds of operation as
discussed previously, after the growth of layer /, the mapping
in conv-layer takes place at the adjacent layer [+1. In fc-layers,
the mapping is in layer [ — 1.
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Algorithm 2 Growth Phase

Input: Current network M yrrens
1: for each layer / = 1 to L do

2. for each filter W/ in conv-layer /, or each neuron Nli in fc-layer / do
Calculate growth score GSwp according to Eq. 3 and GS i according to Eq. 4.

end for

Sort all units and select £ Oy filters or f1I; neurons with the highest GSW[o or GSN;'.

Add one filter/neuron on the side of the each picked filter/neuron in layer /.
Initialize picked and new-born filters (neurons) according to Eq. 5 and Eq. 6.
Map corresponding input-wise weight in layer / 4+ 1 (fan-in weights in layer / — 1).
10: Initialize projected and mapped filters according to Eq. 7 and Eq. 8 (neurons according to Eq. 9 and Eq. 10).

3
4
5:
6: for each filter j = 1 to SO, (for fc-layer, f1;) do
7
8
9

11: end for
12: end for

Output: Mg o,

Algorithm 3 Pruning Phase

Input: Current network M yrens

1: for each weight Wlo’i’m’” e R™! in conv-layer [ or each Wlo’i e R™1 in fc-layer [ do
2:  Calculate weight pruning score PSwy according to Eq. 11 for conv-layers and Eq. 12 for fc-layers.

3: end for
4: Sort weights by PSw.
Zero-out

5: the lowest yw [[(Oy, I, K, K) weights in conv-layer and yw [[(I;, O;) weights in fc-layer.

6: for each filter Wl" (neuron Nli) in all layers do
Zero-out

7:  entire filter W (neuron Nli) if the weight sparsity is larger than pruning rate yr (yn).

8: end for
Output: M, yped

J
VVZ, picked

J
VVL newborn

J
I/VZ-I ,projected

J
I/VI-I ,mapped

Fig. 4. Illustration of two-step growth in fc-layers. First, fan-out weights

lJ, newborn (0range) is added, then fan-in weights le—l, mapped (black) form

the connections from the newborn neuron to all neurons in ﬁlyer [—1.

1) Growth in Conv-Layer l: According to the local ranking
of the saliency score (Eq. 3), we sort all the 3D filters in this
layer. With a growth ratio §, 0O, filters are selected in the
[-th layer at the ¢-th growth. On the side of each selected filter
W{,picked € RI*KxK a5 shown in Fig. 3, we create a new

J c RIXKXK

filter that has the same size, named Wl,n ewborn

. j . .
In the_ ideal case, the new filter Wl,newbom and existing
filter le picked A€ expected to collaborate with each other

and optimize the learning. The existing filter Wl] picked has

already learned on the current task. To keep the same learning

pace between the existing filter and the new filter, we initialize

ljnewborn as follows:
J = oW/ ~U([—
Wl,newborn - O-Wl,picked + X ~U([—u, 1D, Q)
J = oW/ ~U([—
Wl,picked - O-Wl,picked + X ~U([—u, 1), (6)

where ¢ € (0,1] is a scaling factor and X is a constant
following uniform distribution in [—gu, u], where u € (0, 1].
Instead of random initialization, the above initialization helps
reconcile the learning status of the newborn filters with the
old filters. Meanwhile, the scaling factor prevents output
from an exponential explosion caused by the feedforward
propagation J; = A} * W;. The noise X prevents the learning
from sticking at a local minimum that leads to sub-optimal
solutions. No matter which distribution the noise X follows,
X in a reasonable range is able to provide similar perfor-
mance. However, other distributions usually introduce more
hyper-parameters and thus, require more efforts in parameter
tuning. For example, Gaussian noise introduces more hyper-
parameter, e.g., the standard deviation, than uniform noise. For
simplicity, we use uniformly distributed noise.

2) Mapping in Conv-Layer [+ 1: After the number of filters
in layer [ grows from O;; to (1 + $)0O;,, the number of
output feature maps also increases from Oy, to (1 + £)O;,.
Therefore, the input-wise dimension of layer / 4+ 1 should
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increase correspondingly in order to be consistent in data
propagation. To match the dimension, we first locate the 4D
tensor W{ijmjmed ig layer [+ 1, which processes the feature

maps generated by W/ picked Then we add a new 4D tensor
J : J J
Wl;l—l,mapped adjacent to Wl+1,pr0jected’ The Wl+1,mapped and

WJ

141, projectea ar€ initialized as follows:

J J
Wl+1,mapped = 0Wl+l,projected + X~ U([—,u, ,u]), )
w/ '

— J ~ —
I+1,projected — 0Wl+l,projected +X U([ M, ,u]) ®)

To summarize, as illustrated in Fig. 3, the filter W/ picked
(green) is selected according to the saliency score and a

new tensor W/’ newborn OTange) is added. Then the input-wise

tensor le +1,projected (in blue dashed rectangular) in layer [+ 1

is projected, and le +lmapped (in black dashed rectangular) is
generated.

After layer [ grows and layer [ + 1 is mapped, layer [ 4 1
grows and layer / + 2 is mapped, so on and so forth till
the last convolutional layer. It is worth mentioning that for
the ‘projection shortcuts’ [27] with 1 x 1 convolutions in
ResNet [27], the dimension mapping is between the two layers
that the shortcut connects, not necessarily to be the adjacent
layers.

3) Growth and Mapping in fc-Layers: As illustrated
in Fig. 4, the neuron growth in fc-layers / occurs at fan-out
weights, and its initialization follows Eq. 5 and 6.

The mapping in fc-layers take place in the fan-in weights
as follows:

J J
Wlfl,mapped = O-Wlfl,Projected + X ~U(—p, 1D, )
J J
Wlfl,projected = O-Wlfl,projected + X~ U([—u, ul).
(10)

After growing the last conv-layer, We flatten the output
feature map of this conv-layer, treat it as the input from layer
[ — 1 and map in the same manner.

B. Pruning Phase

Pruning in each layer consists of two steps: weight pruning
and unit pruning. First, we sort weight pixels locally in each
conv-layer according to Eq.11:

LY X, W) i
PSW/(),i,m,n - |W lo,l,m,nl (1 l)
ow,
and in each fc-layer according to Eq.12:
LY X W) i
PSW”’i = Iil l(,)flan—out| (12)

! an,fanfouto’

In each layer, 100yw% weight pixels with the lowest PSw
are set as zero, where yw € (0, 1) is the weight pruning rate.
Then the entire filter/neuron whose sparsity is larger than the
filter/neuron pruning rate yr or yy € (0, 1) is set to zero. In
this way, a large amount of entire filters/neurons are pruned,
leading to a compact inference model.

V. ALGORITHMIC EXPERIMENTS

To evaluate the proposed approach, we present experimental
results in this section. We perform experiments on
several modern DNN structures (LeNet [9], VGG-Net [6],
ResNet [27]) and representative datasets (MNIST [9],
CIFAR-10, CIFAR-100 [25], SVHN [26]).

A. Training Setup

1) Network Structures: The LeNet-5 architecture consists
of two sets of convolutional, ReLU [44] and max pooling
layers, followed by two fully-connected layers and finally a
softmax classifier. The VGG-16 and VGG-19 structures we use
have the same convolutional structure as [6] but are redesigned
with only two fully-connected to be fairly compared with the
pruning-only method [16]. Therefore, the VGG-16 (VGG-19)
has 13 (16) convolutional layers, each is followed by a batch
normalization layer [45] and a ReLU activation. The structures
of ResNet-56 and ResNet-110 follow [16]. Each convolutional
layer is followed by a batch normalization layer and ReLU
activation. During the training, the depth of the networks
remains constant since CGaP does not touch the depth of the
network, but the width of each layer changes.

Note that in the following text, we denote the full-size
models trained from scratch without sparsity regularization
as ‘baseline’ models. The three-step pruning schemes that
remove weights or filters but do not execute network growth
are denoted as ‘pruning-only’ models.

2) Datasets: MNIST is a handwritten digit dataset in
grey-scale (i.e., one color channel) with 10 classes from
digit 0 to digit 9. It consists of 60,000 training images
and 10,000 testing images. The CIFAR-10 dataset consists
of 60,000 32 x 32 color images in 10 classes, with 5000 train-
ing images and 1000 testing images per class. The CIFAR-100
dataset has 100 classes, including 500 training images and
100 testing images per class. The Street View House Num-
ber (SVHN) is a real-world color image dataset that is resized
to a fixed resolution of 32 x 32 pixels. It contains 73,257 train-
ing images and 26,032 testing images.

3) Hyper-Parameters: We set the learning rate to be 0.1 and
divide by 10 for every 30% of the training epochs. We train our
model using Stochastic Gradient Descent (SGD) with a batch
size of 128 examples, a momentum of 0.9, and a weight decay
of 0.0005. The loss function is the cross-entropy loss with
softmax function. We train 60, 200, 220 and 100 epochs on
MNIST, CIFAR-10, CIFAR-100 and SVHN datasets, respec-
tively. In the growth phase, we have hyper-parameters set as
follows: the growth stopping condition cpq. = O1,pbaselines
i.e., the growth stops at the ¢-th growth if the number of filters
in the (¢ + 1)-th growth is larger than the baseline model. The
growth ratio S is set as 0.6. The growth frequency forowrn 1S
set as 1/3. The scaling factor o in Eq. 5 to Eq. 10 is set to
0.5 and y is 0.1. The pruning frequency fpruning is set to be 1.
The setting of the weight pruning rate yw follows [15], [16]
and [18] for LeNet-5, VGG-Net and ResNet, respectively. yr
and yy is set to be same as yw.

4) Framework and Platform: The experiments are per-
formed with PyTorch [46] framework on one NVIDIA
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Fig. 5. Number of parameters during training, plotted at the end of each epoch. In the beginning, the model size increases gradually due to the growth. After
the growth ends and several epochs of training on the peak model, one drop can be observed after the first pruning. There are several iterations of pruning at

a frequency of 1.

TABLE I
EVALUATION OF THE PERFORMANCE ON MNIST

TABLE IV
EVALUATION OF THE PERFORMANCE ON CIFAR-10

Method Accuracy | FLOPs  Pruned | Param. Pruned Method Accuracy | FLOPs  Pruned | Param. Pruned
LeNet5-Baseline 99.29 | 4.59M - 431K - VGG16-Baseline 93.25 630M - | 153M -
Pruning [17] 99.26 | 0.85M  81.5% 112K 74.0% Pruning [16] 9340 | 410M  34.9% | 54M  64.7%
Pruning [15] 99.23 | 0.73M  84.0% 36K 92.0% CGaP 9359 | 280M 562% | 4.5M  70.6%
CGaP 99.36 0.44M 90.4% 8K 98.1% ResNet-56-Baseline 93.03 268M - | 0.85M -
Pruning [28] 92.56 182M 32.1% 0.73M 14.1%

Pruning [43] 90.20 134M  50.0% NA -

CGaP 93.20 181M 32.5% | 0.53M 37.6%

TABLE II ResNet-110-Baseline 93.34 523M - 1.72M -

EVALUATION OF THE PERFORMANCE ON CIFAR-100. ‘NA’ Pruning [16] 93.11 310M  40.7% 1.16M 32.6%
MEANS ‘NOT AVAILABLE’ IN THE ORIGINAL PAPER Pruning [29] 93.52 300M  40.8% NA -

CGaP 93.43 192M  63.3% 0.62M 64.0%

Method Accuracy | FLOPs  Pruned | Param. Pruned
VGG19-Baseline 72.63 797M - | 204M -
Pruning [28] 71.85 NA - | 10.1IM 50.5%
Pruning [18] 72.85 50IM  37.1% 5.0M 75.5%
CGaP 73.00 373M  532% 4.3M 78.9 %
TABLE III
EVALUATION OF THE PERFORMANCE ON SVHN
Method Accuracy | FLOPs  Pruned | Param. Pruned
VGG19-Baseline 96.02 79T - | 204M -
Pruning [18] 96.13 398M  50.1% 3.1M 84.8%
CGaP 96.25 206M  74.2% 2.9M 85.8%

GeForce GTX 1080 Ti platform. It is worth mentioning that
experiments performed with different frameworks may have
variation in accuracy and performance. Thus, to have a fair
comparison among CGaP, baseline and pruning-only methods,
all the results in Table I, II, III and IV are obtained from
experiments with PyTorch framework.

B. Performance Evaluation

With training setup as aforementioned, we perform exper-
iments on several datasets with modern DNN architectures.
In Table I, Table II, Table III and Table IV, we summarize
the performance attained by CGaP on MNIST, CIFAR-100,
SVHN, and CIFAR-10 datasets, respectively. To be specific,
the second column ‘Accuracy’ denotes the inference accuracy
in percentage achieved by the baseline model, the up-to-date
pruning-only approaches and CGaP approach, respectively.

The column ‘FLOPs’ represent the calculated number of
FLOPs of a single inference pass. The calculation of FLOPs
follows the method described in [42]. Fewer FLOPs means
lower computation cost in one inference pass. The neighboring
column, ‘Pruned’, represents the reduction of FLOPs in the
compressed model as compared to the baseline model. The
column ‘Param.” stands for the number of parameters of
the inference model. Fewer parameters promise a smaller
model size. The last column, ‘Pruned’, denotes the percentage
pruned in parameters compared to the baseline. Larger pruned
percentage implies fewer computation operations and more
compact model. The best result of each column is highlighted
in bold.

The results shown in Table I to IV prove that CGaP
outperforms the previous pruning-only approaches in accuracy
and model size. For instance, as displayed in Table IV,
on ResNet-56, our CGaP approach achieves 93.20% accuracy
with 32.5% reduction in FLOPs and 37.6% reduction in para-
meters, while the up-to-date pruning-only method [28] that
deals with static structure only reaches 92.56% accuracy with
32.1% reduction in FLOPs and 14.1% reduction in parameters.
On ResNet-110, though [29] achieves 0.09% higher accuracy
than CGaP, CGaP overwhelms it by trimming 22.5% more
FLOPs.

C. Visualization of the Dynamic Structures

Fig. 5 presents the dynamic model size during CGaP
training. During the growth phase, the model size continuously
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Fig. 6. The VGG-19 structures learned by CGaP on CIFAR-100 and SVHN datasets. The shared Y-axis for three sub-./ is the number of parameters of the

model.

increases and reaches a peak capacity. When the pruning phase
starts, the model size drops.

Furthermore, the sparsity achieved by CGaP is structured.
In other words, large amounts of filters and neurons are
entirely pruned. For instance, the baseline LeNet-5 without
sparsity regularization has 20, 50 filters in conv-layer 1 and
conv-layer 2, 500 and 10 neurons in fc-layer 1 and fc-layer
2, denoted as [20-50-500-10] (number of filters/neurons in
[conv1-conv2-fcl-fc2]). The model achieved by CGaP con-
tains only 8, 17 filters and 23, 10 neurons, denoted as
[8-17-23-10]. Compared to baseline results, CGaP signifi-
cantly decreases 60%, 66%, 95.4% units for each layer (the
output layer should remain the same as the number of classes
all the time). In this case, the pruned filters and neurons
are skipped in the inference pass and thus accelerating the
computation pipeline on hardware.

Another example is provided in Fig. 6, which visualizes the
VGG-19 structures from CGaP as well as the baseline structure
on two different tasks. In the baseline model, the width
(number of filters/neurons) of each layer is abundant, from
64 filters (the bottom conv-layers) to 512 filters (the top
conv-layers). The baseline VGG-19 structure is designed to
have a large enough size in order to guarantee the learning
capacity. However, it turns out to be redundant, as proved by
the structure that CGaP generated: 37.7% to 82.6% filters are
pruned out in each layer. Meanwhile, in the baseline model,
the top conv-layers are designed to have more filters than the
bottom layers, but CGaP shows that it is not always necessary
for top layers to have a relatively large size.

D. Validating the Saliency-Based Growth

Fig. 7 validates the efficacy of our saliency-based growth
policy. Selective growth, which emphasizes the important units
according to the saliency score, has lower cross-entropy loss
than randomly growing some units. The spiking in Fig. 7
is caused by the first iteration of pruning and this loss is
recovered by the following iterative fine-tuning. In selective
growth, this loss is 1.4x lower than that in random growth.
This phenomenon supports our argument that selective growth
assists the pruning phase. The detailed understanding of
growth will be further discussed in Section VII.

To summarize the results from the algorithm simulations,
the proposed CGaP approach:

bt
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o
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Fig. 7. Saliency-based growth outperforms random growth. The loss is
monotonically decreasing from epoch 0 to 220 with small glitches. Here we
zoomed in from epoch 120 to 220 to show the loss at the end of the training.

120

o Largely compresses the model size by 37.6% (ResNet-56)
to 98.1% (LeNet-5) for representative DNN structures.

o Decreases the inference cost, to be specific, number of
FLOPs, by 32.5% (ResNet-56) to 90.4% (LeNet-5) on
various datasets.

o Does not sacrifice accuracy and even improves accuracy.

o Outperforms the state-of-the-art pruning-only methods
that deal with fixed structures.

VI. EXPERIMENTS ON FPGA SIMULATOR

The results above demonstrate that CGaP generates an
accurate and small inference model. In this section, we further
evaluate the on-chip inference cost of the generated models
and compare CGaP with previous non-structured pruning [15].
As CGaP achieves structured sparsity, CGaP outperforms the
previous work on non-structured pruning in hardware accel-
eration and power efficiency. We validate this by performing
the estimation of buffer access energy, DRAM access energy
and latency using the performance model for FPGA [5].

A. Overview of the FPGA Simulator

[5] is a high-level performance model designed to estimate
the number of external and on-chip memory access, as well
as the latency. The resource costs are formulated by the
acceleration strategy as well as the design variables that control
the loop tiling and unrolling. The performance model has
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Fig. 8. Estimation on FPGA performance model.

been validated across several modern DNN algorithms in
comparison to on-board testings on two FPGAs, with the
differences within 3% [5].

In the following experiments, the setup follows: the pix-
els and weights are both 16-bit fixed point, the data width
of DRAM controller is 512 bits, the accelerator operat-
ing frequency is 300 MHz, and the DRAM bandwidth
is 19.2 GB/second. The parameters related to loop tiling and
unrolling follow the setting in [5].

B. Results From FPGA Performance Model

The on-chip and external memory access energy across
VGG-16, VGG-19, ResNet-56 and ResNet-110 is displayed
in Fig. 8(a) and Fig. 8(b), respectively. The inference latency
is shown in Fig. 8(c). Though the models generated from
weight magnitude pruning and CGaP have the same sparsity,
CGaP outperforms non-structured magnitude weight pruning
in hardware efficiency and acceleration. For example, with the
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Fig. 9. Visualization of the filters in convl_1 in VGG-19 on CIFAR-100 at
four specific moments (a-d). Inside each figure, the top bar is CGaP model and
the bottom bar is baseline model. X-axis is the index of output-wise weights
and Y-axis is the index of input-wise weights.

same setup of the pruning ratio during training, magnitude
weight pruning decreases 1.0% on-chip access energy, 1.0%
DRAM access energy and 0.8% latency for VGG-19 on
CIFAR-100, while the CGaP achieves 21.6%, 15%, and 21.1%
reduction. The non-structured weight pruning [15] is able to
improve the power and latency efficiency in comparison to
baseline. However, the improvement is limited. In contrast,
CGaP achieves significant acceleration and energy reduction.
The reason is that the non-structured sparsity, i.e., scattered
weight distribution, leads to irregular memory access that
weakens the acceleration on hardware in a real scenario.

VII. DISCUSSION

In Section V and VI, the performance of CGaP has been
comprehensively evaluated on algorithm platforms and hard-
ware platforms. In this section, we provide a more in-depth
understanding of the growth to explain why selective growth is
able to improve the performance from the traditional pipelines.
Furthermore, we provide a thorough ablation study to validate
the robustness of the proposed CGaP method.

A. Understanding the Growth

Fig. 9 illustrates a visualization of the weights in the
bottom conv-layer (convl_1) in VGG-19, at the moment of
initialization, after the first growth, after the last growth and
when training ends. Inside each figure, the upper bar is the
CGaP model, whose size varies at different training moments.
The lower bar is from the baseline model, whose size is static
during training. At the initialization moment (Fig. 9(a)), CGaP
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TABLE V
THE IMPACT OF VARIOUS STRUCTURES AND SIZES OF THE INITIAL SEED OF VGG-19

Initial seeds ‘2 ‘@ ‘6’ ‘8 ‘10 ‘12’
convl_n 2 4 6 8 10 12

conv2_n 4 8 12 16 20 24

#filters conv3_n 8 16 24 32 40 48
convd_n 16 32 48 64 80 96

conv5_n 16 32 48 64 80 96

#param | Initial (M) 0.01 0.06 0.13 0.23 0.36 0.53
Testing accuracy* | -0.69% | -02% | -0.16% | +0.37% | +0.04% | 0.29%
*Relative accuracy of the final VGG-19 model on CIFAR-100 as compared to the baseline.
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Fig. 10. A larger seed leads to a larger final model but fewer iterations in
the growth phase.

model only has 8 filters in this layer while the baseline model
has 64 filters. Then the number of filters grows to 13 after
one iteration growth (Fig. 9(b)), meaning the most important
5 filters are selected and added. It is clear that the pattern
in Fig. 9(b) is more active than that in (a), indicating the
filters have already fetched effective features from the input
images. More important, along with the growing, the pattern
in CGaP model becomes more structured than that in the
baseline model, as shown in Fig. 9(c). Benefiting from this
well-structured pattern, our CGaP model has higher learning
accuracy than the baseline model. From Fig. 9(c) to Fig. 9(d),
relatively unimportant filters are removed, and important ones
are kept. We observe that most of the filters that are favored by
the growth, such as filters at index 36, 48, 72, 96 in Fig. 9(c),
are still labeled as important filters in Fig. 9(d) even after
a long training process between the growth phase and the
pruning phase. Leveraging the growth policy, the model is
able to recover quickly from the loss caused by pruning (the
spiking in Fig. 7).

B. Robustness of the Seed

The performance of CGaP is stable under the variation
of the initial seeds. To prove this, we scan several seeds
in different size and present the variation in accuracy and
inference model size. The structure of 6 scanned seeds is
listed in Table V. Each seed has a different number of filters
in each layer, e.g., seed ‘2’ has 2 filters in block convl.
The size of the seeds varies from 0.01M to 0.53M. Fig. 10
presents the final model size and the number of growth of each

seed. A larger seed leads to a larger final model but requires
fewer iterations of growth to reach the intended model size.
Generally speaking, there is a trade-off between the inference
accuracy and the model size. Though the seed varies a lot
from each other, the final accuracy is quite robust, as listed in
the ‘Accuracy’ row in Table V. It is worth mentioning that,
even though the seed ‘2’ degrades the accuracy of 0.69% from
baseline, the inference model size is only 2.4M, significantly
smaller than the baseline size (20.4M).

C. Robustness of the Hyper-Parameters

CGaP is conditioned on a set of hyper-parameters to achieve
optimal performance, while it is stable under the variation of
these hyper-parameters. Empirically, we leverage the follow-
ing experience to perform parameter optimization: a smaller
growth rate S for a larger seed and vice versa; threshold
Tcapa 18 set based on the user’s intended model size; a smaller
Sferowrn for a complicated dataset and vice versa; a relatively
greedy growth (larger f and fgrown) prefers a larger noise p
but smaller ¢ to push the model away from sticking at a local
minimum. Tuning of the pruning ratio of each layer is in a
similar manner to that of the other pruning works [15] [16].

In particular, we scan 121 combinations of the scaling factor
o and noise u in the range [0.0, 1.0] with the step=0.1 and
provide the following discussion. For VGG16 on CIFAR-10,
the accuracy of several corner cases are 90% (u=1, =0, which
is a case of random initialization), 89% (u=1, o=1), 84%
(u=0, o=1, which is another case of mimicking its neighbor
without scaling) and 10% (u=0, 6=0, the training is invalid in
this case), 93% (1=0, =0, which is another case of mimicking
its neighbor with scaling), 88% (1=0.5, ¢=0, which is another
case of random initialization). The best accuracy of 93.6%
is under ©=0.1, 6=0.5. The combinations in the zone that
u €1[0,0.5] and o € (0, 0.5] always provide >92% accuracy.
To summarize, ¢ impacts more than x as u is relatively small;
o should not be too large and 0.5 is safe for future tasks and
networks; adding a noise improves the accuracy (like from
93% to 93.6%) as it prevents local minimum; inheriting from
the neighbor is more efficient than randomly initializing since
the network is able to resume the learning right after the
growth.

VIII. CONCLUSION AND FUTURE WORK

Modern DNNs typically start training from a fixed and
over-parameterized network, which leads to redundancy and
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is lack of structural plasticity. We propose a novel dynamic
training algorithm, Continuous Growth and Pruning, that ini-
tializes training from a small network, expands the network
width continuously to learn important learning units and
structures and finally prunes secondary ones. The effectiveness
of CGaP depends on where to start and stop the growth, which
learning unit (filter and neuron) should be added, and how
to initialize the newborn units to ensure model convergence.
Our experiments on benchmark datasets and architectures
demonstrate the advantage of CGaP on learning efficiency
(accurate and compact). We further validate the energy and
latency efficiency of the inference model generated by CGaP
on FPGA performance simulator. Our approach and analysis
will help shed light on the development of adaptive neural
networks for dynamic tasks such as continual and lifelong
learning.
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