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Abstract—The recently reported successes of convolutional
neural networks (CNNs) in many areas have generated wide
interest in the development of field-programmable gate array
(FPGA)-based accelerators. To achieve high performance and
energy efficiency, an FPGA-based accelerator must fully utilize
the limited computation resources and minimize the data com-
munication and memory access, both of which are impacted and
constrained by a variety of design parameters, e.g., the degree
and dimension of parallelism, the size of on-chip buffers, the
bandwidth of the external memory, and many more. The large
design space of the accelerator makes it impractical to search
for the optimal design in the implementation phase. To address
this problem, a performance model is described to estimate the
performance and resource utilization of an FPGA implemen-
tation. By this means, the performance bottleneck and design
bound can be identified and the optimal design option can be
explored early in the design phase. The proposed performance
model is validated using a variety of CNN algorithms com-
paring the results with on-board test results on two different
FPGAs.

Index Terms—Analytical modeling, convolutional neural
networks (CNNs), field-programmable gate array (FPGA).

I. INTRODUCTION

ANY reported successes of convolutional neural
Mnetworks (CNNs) for computer vision tasks [1]-[6]
have motivated the development of hardware implementa-
tions of CNNs. In particular, there has been increased interest
in field-programmable gate arrays (FPGAs) as a platform
to accelerate the post-training inference computations of
CNNs [7]-[13]. To achieve high performance and low energy
cost, a CNN accelerator must: 1) fully utilize the limited com-
puting resources to maximize the parallelism when executing
the large number of operations for different convolution layers

Manuscript received August 27, 2018; revised December 6, 2018; accepted
January 17, 2019. Date of publication February 4, 2019; date of current version
March 18, 2020. This work was supported in part by the NSF I/UCRC Center
for Embedded Systems through NSF under Grant 1230401, Grant 1237856,
Grant 1701241, Grant 1361926, Grant 1535669, Grant 1652866, and Grant
1715443, in part by the Intel Labs, and in part by the Center for Brain-Inspired
Computing (C-BRIC), one of six centers in JUMP, an SRC program sponsored
by DARPA. This paper was recommended by Associate Editor Y. Wang.
(Corresponding author: Yufei Ma.)

Y. Ma, Y. Cao, and J.-S. Seo are with the School of Electrical, Computer
and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: yufeima@asu.edu; yu.cao@asu.edu; jaesun.seo@asu.edu).

S. Vrudhula is with the School of Computing, Informatics, Decision
Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: vrudhula@asu.edu).

Digital Object Identifier 10.1109/TCAD.2019.2897634

with varying dimensions; 2) exploit the data locality by saving
only the required data in on-chip buffers to minimize the cost
of external memory (e.g., DRAM) accesses; and 3) manage
the data storage patterns in buffers to increase the data reuse
and reduce the data movements.

With the intervals of computation and off-chip commu-
nication overlapped using the dual buffering (or ping-pong
buffering) technique, the performance of the CNN accel-
erator will be limited by either the computation delay or
the DRAM transfer delay, and the actual bound will be
determined by the values of the associated design parame-
ters, as described by the roofline model in [7] and [9]. The
computation delay is determined by the number of parallel
processing engines (PEs), their utilization, and the operating
frequency. The DRAM transfer latency is mainly affected by
the external memory bandwidth and the number of DRAM
accesses, and the latter is strongly affected by the size of
the on-chip buffers. With regard to the energy efficiency
(i.e., performance per watt), the main components that deter-
mine the dynamic power consumption are the computation
logic and the memory traffic, the latter requiring efficient
data movement and high data reuse. All these considerations
show that there are numerous design parameters that determine
the performance and energy efficiency of a CNN accelera-
tor, making it impractical to find their optimal values during
the implementation phase, as the synthesis of one FPGA
design may take several hours. Robust and parametric mod-
els become a necessity for efficient design space exploration
and selection of the optimal values of the design param-
eters. The architectural design space must be numerically
characterized by design variables to control the accelerator
performance and efficiency. For instance, loop optimization
techniques [7], [11], such as loop unrolling and tiling, are
employed to customize the acceleration strategy of parallel
computation and data communication for convolution loops,
whose variables in turn affect the resource utilization and
memory access.

The starting point of this paper is a general system-level
model of a CNN accelerator shown in Fig. 1, which includes
the external memory, on-chip buffers, and PEs. The hardware
architectural parameters, e.g., buffer sizes, are determined by
the design variables that control the loop unrolling and tiling.
Combining the design constraints and the choices of the accel-
eration strategy, a more fine-grained performance model is
built to achieve better prediction for a specific design imple-
mentation, e.g., the design strategy in [11]. By this means,
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Fig. 1. General CNN hardware accelerator with three levels of hierarchy,
where the loop design variables determine the key accelerator metrics, e.g.,
delay, resource usage, and memory access.

the proposed performance model makes it possible to identify
the performance bottleneck and design limitations in the early
development phase by exploring the design space through
unrolling and tiling variables.

The main contributions of this paper are as follows.

1) The design objectives and resource costs are formu-
lated using the design variables of loop unrolling and
tiling.

2) A high-level performance model is proposed to estimate
the accelerator throughput, on-chip buffer size, and the
number of external and on-chip memory accesses.

3) The design space is efficiently explored through the
proposed model instead of the real FPGA compilation
to identify the performance bottleneck and obtain the
optimal design configurations.

4) The performance model is validated for a specific design
strategy across a variety of CNN algorithms comparing
with the on-board test results on two different FPGAs.

5) Evaluate the techniques that may further enhance the
performance of our current design by improving the
efficiency of DRAM transactions and PE utilization.

The remainder of this paper is organized as follows.

Section II overviews the procedure to map CNN opera-
tions onto an FPGA hardware system. A coarse-grained
performance model is presented in Section III for rough
estimation, and the fine-grained model is discussed in the
following sections for a specific design strategy. Section IV
estimates the size and latency of DRAM accesses. The latency
of convolution and other layers are formulated and estimated
in Section V. The on-chip buffer size requirement is analyzed
in Section VI, and the size of buffer access is discussed in
Section VII. Experiments are performed to explore the design
space in Section VIII. Section IX evaluates the techniques that
may further improve the current design performance.

II. CNN INFERENCE ACCELERATOR ON FPGA
A. Overview of Convolution Operation

The main operation in CNN algorithms involves accumu-
lating the products of pixel values (e.g., features, activations,
or neurons) with kernel weights, along different dimensions
of the kernel and feature maps. Fig. 2 shows the four nested
loops involved in CNNs. Note that the prefix N (for “num-
ber”) used in describing various parameters (e.g., Nix, Niy,
Nif, etc.) denote the sizes of the kernel and feature maps. The
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Fig. 2. Convolution operation is implemented by four levels of loops to
MAC input features with kernel weights, where i: input, o: output, k: kernel,
[ feature, x: x-axis (width), and y: y-axis (height), and the parameters of loop
dimensions are prefixed with N [11].

loop operations shown in Fig. 2 are written as

Nif Nky Nkx
pixel; (no; x, y) = Z Z Z pixel; _(ni; S x x4+ kx, S x y + ky)
ni=lky=1 kx=1
x weight(ni, no; kx, ky) + bias(no) (1)
where S is the sliding stride, x € {1,2,...,Nox},

y € {1,2,...,Noy}, no € {l,2,...,Nof}, L €
{1,2,...,#CONVs}, and #CONVs is the number of convo-
lution layers.

B. CNN Hardware Acceleration System

In the general model of a CNN accelerator shown in Fig. 1,
due to the large data volume, both the weights and intermediate
pixel results are stored in the external memory, e.g., DRAM.
The input and weight on-chip buffers temporally store the
input data to be processed by the PEs, and the PE results
are saved in the output buffers. After completing the computa-
tion, the results are transferred back to DRAM from the output
buffers, which will be used as the input to the subsequent layer.

C. Convolution Loop Optimization

Loop optimization techniques [7], [11], e.g., unrolling
and tilling, are employed to customize the computation and
communication patterns in a CNN accelerator. Loop unrolling
directs the parallel computation along different convolu-
tion dimensions, and the variables representing the unrolling
degrees are prefixed by P (see Fig. 3). These variables deter-
mine the number of PEs, which in turn determine the required
number of DSPs in the FPGA to implement PEs, and thus
decide the computation delay. The data flow from buffers into
PEs is also impacted by loop unrolling variables, which affect
the number of buffer access. Loop tilling divides a large CNN
layer into multiple small tiles, which can be accommodated
by on-chip buffers to increase data locality. Tiling sizes are
represented by variables prefixed with 7 as shown in Fig. 3.
The required buffer capacity is determined by the tiling vari-
ables, which also affect the DRAM access and thus the latency
of DRAM transactions. The relationship between loop vari-
ables and the key specifications of accelerators, e.g., delay,
DSP usage, buffer size, and memory access that affect memory
power consumption, are shown in Fig. 1.
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Fig. 3. Convolution acceleration strategy is customized by loop unrolling

(Px) for parallel computation and loop tiling (7) for data buffering. The par-
allelism is within one input feature map (Pix x Piy) and across multiple kernel
maps (Pof). The demanded buffer size can be changed by tuning variables
Toy and Tof [11].

D. Convolution Acceleration Strategy

To accurately predict the real implementation, a specific
accelerator design strategy is needed to characterize the fine-
grained performance model with detailed design options. The
output stationary acceleration strategy of unrolling and till-
ing in [11] is adopted in this paper as shown in Fig. 3.
The loop unrolling or the parallel computations are only per-
formed within one input feature map (Pix = Pox > 1 and
Piy = Poy > 1) and across multiple kernel maps (Pof > 1).
That is, in Fig. 3, the Pix x Piy blue pixels in an input feature
map are operated in parallel with green weights from Pof dif-
ferent kernel maps, resulting in Pox x Poy pixels in each of the
Pof output feature maps. Therefore, the total number of PEs
[multiply and accumulate (MAC) units] is Pox x Poy x Pof.
The data required to compute one final output pixel are fully
buffered, i.e., Tkx = Nkx, Tky = Nky, and Tif = Nif, so that
the partial sum can be consumed inside the MAC unit with-
out saving in the buffer. To ensure that the DRAM accesses
are from continuous addresses, the entire row of the feature
map is buffered, i.e., Tix = Nix and Tox = Nox. If the on-chip
RAM capacity is large enough, either all pixels or all weights
of one layer are fully buffered, so that each data only needs
to be fetched from DRAM once to reduce DRAM access.
Finally, the required buffer sizes of each layer can be changed
by tuning 7oy and Tof.

III. COARSE-GRAINED PERFORMANCE MODEL

In this section, a coarse-grained performance model of a
general CNN accelerator that is independent of a specific
acceleration strategy, is presented. Then, more detailed design
choices and constraints (e.g., unrolling and tiling variable set-
tings, memory storage pattern, and computation dataflow) are
introduced to create a more precise and fine-grained model in
the following sections. Table I lists the mainly used abbrevi-
ations and units in this paper, which indicate the meaning of
the variables discussed afterward.

TABLE I
LIST OF ABBREVIATIONS AND UNITS

Abbreviation | Description || Abbreviation | Description
Pz Pixel Rd Read
Wt Weight Wr Write
Buf Buffer InBuf Input Buffer
WtBuf Weight Buffer OutBuf Output Buffer
BW Bandwidth 1T One Tile
Unit | Description || Unit | Description
bit / byte Data Size word RAM Depth
ms Delay Time MHz Frequency

A. Computation Latency

The number of multiplication operations per layer is Nm =
Nif x Nkx x Nky x Nof x Nox x Noy. The number of PEs that
determines the degree of parallel computations by unrolling
is Pm = Pif x Pkx x Pky x Pof x Pox x Poy. A similar rea-
soning is applied to determine the number of clock cycles
for one buffered tile (17) of convolution. This is denoted by
#cycles_1T, and is expressed as follows:

o [ e 1 | 1

#eycles 1T= | — || — |[|=—=1||= || — || =— |

Pif || Pkx || Pky || Pof || Pox || Poy
2)

The number of tiles for one convolution layer is

Hiles — Nif || Nkx || Nky || Nof || Nox || Noy 3
o= |5 | | 3 | 2 | 2 [ | @

The total number of computation clock cycles of one convo-
lution (CV) layer is

#eycles _1CV = #tiles x #cycles_1T. 4)

B. On-Chip Buffer Size

Determined by the tiling variables, the input buffer (/nBuf)
size (bit) requirement to store one tile of input pixels is

bit_InBuf = Tix x Tiy x Tif x bit_Px 5)

where bit_Px is the bit width of one pixel (Px). Similarly, the
size (bit) requirement of weight buffer (WrBuf) to store one
tile of weights is

bit_WitBuf = Tkx - Tky - Tif - Tof - bit_Wt (6)

where bit_Wrt is the bit width of one weight (Wf). The out-
put buffer (OutBuf) size (bit) requirement to store one tile of
output pixels is

bit_OutBuf = Tox x Toy x Tof x bit_Px. @)

The theoretical sizes of the input, weight, and output buffers
are the maximum possible values of bit_InBuf, bit_WtBuf, and
bit_OutBuf of all the convolution layers, respectively. In an
actual implementation, the sizes of the buffers used may be
larger than these values due to inefficient storage pattern and
extra garbage data.
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C. DRAM Access and Latency

In theory, the size of one tile of data read from or written to
the external DRAM should be the same as the size of buffered
data. Therefore, the size (bytes) of input pixels (Px) read
(Rd) from DRAM for one convolution tile is byfe_RdPx =
bit_InBuf /8. The size (bytes) of one tile of weights (Wr)
read from the DRAM is byte_RdWt = bit_WtBuf /8. The
size (bytes) of one tile of output pixels written (Wr) to the
DRAM is byte_WrPx = bit_OutBuf /8. The latency (millisec-
onds or ms) of DRAM transactions of one tile (17") of data
is determined by the size of DRAM access and the memory
bandwidth. This is given by

byte_DRAM_1T
BW_Memory x 100
where BW_Memory is the external memory bandwidth (GB/s)

and byte_DRAM_1T is the size of DRAM access of one tile,
which can be byte_RdPx, byte_RdWt, or byte_WrPx.

ms_DRAM 1T = (3

D. On-Chip Buffer Access

The size (bits) of on-chip buffer access (bit_Buf_Access) is
computed by multiplying the number of access clock cycles
(#cycles_Access) with the total bit width of the corresponding
buffers (width_Buf)

bit_Buf_Access = #cycles_Access x width_Buf . )]

During computation, it is assumed that data are continuously
read from input and weight buffers and the results are written
into the output buffers every clock cycle. Then, to estimate
the buffer access during computation, #cycles_Access equals
the number of computation cycles, and width_Buf can be the
total bit width of input/weight/output buffers. The size (bits) of
buffer access by direct memory access (DMA) that writes into
input and weight buffers and reads from output buffers is the
same as the size of external memory access. The data stored
in the input or weight buffers may be read multiple times
during computation, hence the size of data read from buffers
may be larger than the size of data written into buffers from
DRAM. Since each result is written into output buffers only
once, the size of write and read operations of output buffers
is the same.

E. Other Implementation Methods of Convolution

Instead of the aforementioned direct implementation of the
convolution loop operations, convolution can also be per-
formed as matrix multiplication [8] or accelerated in the
frequency domain [14], [15]. Since these methods require
significantly different hardware architecture and dataflow, we
only briefly analyze them with our modeling parameters.

1) Matrix Multiplication: The MAC operations in convo-
lution can be mapped to matrix multiplication [8], which can
utilize the library optimized for GPU, e.g., BLAS used by
Caffe. The original 4-D kernel weights are transformed to
be a matrix with Nof rows and Nkx - Nky - Nif columns.
The 3-D input feature map is transformed into a matrix
with Nkx - Nky - Nif rows and Nox - Noy columns. There
are redundant data in the transformed feature matrix due to

the overlapped sliding of the kernel window. Therefore, this
method could lead to either complex dataflow and extra hard-
ware to perform the transform on the fly or additional DRAM
accesses due to the redundant data.

2) Fast Fourier Transform: FFT [16] can reduce the num-
ber of multiplications from ® (Nox - Noy- Nkx - Nky) to ® (Nox -
Noy -log,(Nox)) and even further to ® (Nox - Noy - log, (Nkx))
with Overlap-and-Add [16]. The original kernel weights and
input features are transformed into the frequency domain to do
multiplications, and then the inverse FFT is applied to recover
the results. Therefore, extra hardware is required to imple-
ment the transform. In addition, the computation reduction is
decreased with smaller kernel size.

3) Winograd Transform: Winograd transform [15] is
another approach to reduce the convolution operations. The
number of multiplications of the original convolution in one
tile is ® ((Tkx - Tox)(Tky - Toy)), while in Winograd it is only
O ((Tkx + Tox — 1)(Tky + Toy — 1)). For example, with kernel
size of 3 x 3 and tiled output features of 2 x 2, we can achieve
2.25x reduction of multiplication operations. However, the
addition operations are increased in Winograd, and additional
storage and bandwidth are required by the transform matrices.
The operations can be further reduced with larger feature tiles,
but the complexity of the transform matrix will significantly
increase. Since Winograd essentially unrolls the computation
within a kernel window, the varying kernel sizes can affect its
computation efficiency.

IV. MODELING OF DRAM ACCESS

In this section, more accurate models of the DRAM access
are constructed by including the design constraints and the
variables of loop acceleration described in Section II-D.

A. Data Size of Convolution DRAM Access

The DMA engine shown in Fig. 1 is used to transfer data
to and from off-chip DRAM. To achieve the maximum band-
width, the data width of both the DMA (bit_DMA) and the
DRAM controller (bit_DRAM) are set to be 512 bits.

Pox represents the number of pixels that are computed
in parallel in each output feature map. For the feature map
transfer, the number of groups of Pox pixels associated
with one DMA address is then given by #PoxGroup =
Lbit_DMA/(Pox x bit_Px)]|, where bit_Px is the bit width per
pixel. The effective or actual DMA bandwidth (as a fraction
of the maximum) is then given by

#PoxGroup x Pox x bit_Px
bit_DMA

For example, if Pox = 7, bit_DMA = 512, and bit_Px = 16,
then there are #PoxGroup = 4 groups of Pox pixels in one
DMA address, and 4 x 7 x 16 = 448 bits are the effective
number of bits out of the DMA bit width of 512 bits, resulting
in eff _DMA_Px = 0.875.

The intermediate pixel results stored in DRAM are arranged
row-by-row, map-by-map, and layer-by-layer. One convolution
tile needs Tix x Tiy x Tif input pixels. Then, the size (bytes)

eff _DMA_Px = (10)
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of the input pixels read (Rd) from the DRAM for one tile is

Tix x Tiy x Tif x bit_Px
eff _.DMA_Px x 8

Note that if eff _DMA_Px < 1, it implies more bytes are read
than necessary due to the alignment of data storage. Similarly,
the size (bytes) of output pixels written (Wr) to DRAM for
one convolution tile is

byte_RdPx =

Y

Tox x Toy x Tof x bit_Px
eff _DMA_Px x 8

byte_WrPx = (12)

For convolution weights, the ratio of effective DRAM
bandwidth to the maximum of reading weights from DRAM is
Lbit_DMA /bit_Wt] x bit_Wt
bit_DMA

The size (bytes) of input weights read from DRAM for one
convolution tile is

eff_DMA_Wt = (13)

Tkx - Tky - Tif - Tof - bit_Wt
eff _DMA_Wt x 8 '

byte_RdWt = (14)

B. DRAM Access Delay of One Tile

The data width of the DRAM controller interface to the
FPGA is assumed to be bit_DRAM, running at frequency
of MHz DRAM. This means the theoretical maximum
DRAM bandwidth (BW_DRAM in GB/s) is (bit_DRAM/8) x
(MHz_DRAM/ 103), which is normally very difficult to sus-
tain due to the noncontiguous DRAM access. For example,
if bit_ DRAM = 512 bits, with MHz_DRAM = 266 MHz,
then BW_DRAM = (512/8) x (266/10%) = 17.0 GB/s as the
maximum DRAM bandwidth.

In the CNN acceleration system described in [11], the
DMA engine is operated at the same clock frequency as the
CNN accelerator core (i.e., MHz_Accelerator) with read/write
data width (bir_DMA) of 512 bits. An asynchronous first-
input, first-ouput (FIFO) can be inserted between DMA and
the DRAM controller to synchronize data across the two
clock domains. Then, the DMA bandwidth (BW_DMA) is
(bit_DMA/8) x (MHz_Accelerator/10%). By this means, the
bandwidth of the external memory is bounded by the effec-
tive bandwidth of both the DRAM controller and the DMA as
BW_Memory = min(BW_DRAM, BW_DMA), which is used
in (8) to calculate the DRAM latency.

The more accurate and specific DRAM access sizes of one
tile (byte_DRAM_1T) are discussed in this section, includ-
ing byte_RdPx, byte_WrPx, and byte_RdWt. Then, we can
use (8) to compute their corresponding DRAM access delay
(ms_DRAM_1T), e.g., ms_RdPx, ms_WrPx, and ms_RdWt,
respectively.

C. DRAM Access of Other Layers

The DRAM access and performance of other layers, e.g.,
max pooling, fully connected (FC), and Eltwise, are also inves-
tigated and included in our performance model. Since the
analysis process of theses layers are similar to the convolu-
tion layer, for simplicity, their detailed formulas used in the
performance model are not presented.

The pixels of max-pooling layers are also transferred to
and from the DRAM with loop tiling performed, depending
on the adopted design choices [11], [17]. For max pooling,
the calculation of the DRAM transfer sizes of input and output
pixels are similar to byte_RdPx in (11) and byte_WrPx in (12),
respectively.

The weights of FC layers are stored in DRAM in the same
way as convolution and reuse the same weight buffers. Since
the intermediate results of FC layers are small (<20 KB), they
are always kept in the on-chip RAMs.

The Eltwise layer performs element-wise summation of the
outputs of two layers. The Eltwise layer is executed after its
two precedent layers are finished, so that it can directly read
the results of one layer from the output buffers, without access-
ing DRAM. However, the Eltwise layer still needs to read the
outputs of the other layer from DRAM as the output buffers
were already refreshed.

V. MODELING OF LATENCY
A. Computation Delay (ms) of One Convolution Tile
Setting Pif = Pkx = Pky = 1, Tif = Nif, Tkx = Nky,
Tkx = Nky, and Tox = Nox as described in Section II-D, (2)
can be written as

. Tof Nox Toy
#cycles_1T = Nif - Nkx - Nky - ’750—‘ . ’7%—‘ . ’713_0)/—‘
(15)

Then, the computation delay (ms) of one convolution tile is

#eycles 1T
MHz_Accelerator x 103

where MHz_Accelerator is the clock frequency of the accel-
erator in MHz. The number of tiles of one convolution layer
(#tiles) is [Nof /Tof[Noy/Toy] based on (3) with Nif = Tif,
Nkx = Tkx, Nky = Tky, and Nox = Tox as described in
Section II-D.

ms_Compute = (16)

B. Overall Delay (ms) of One Convolution Layer

With dual buffering technique, the DRAM access is over-
lapped with computation to improve performance [7], [10].
The overall tile-by-tile delay of one convolution layer is illus-
trated in Fig. 4. Since the dual buffering pipeline is only within
one layer with the current design choice, after the start of one
layer and before the computation of the first tile, both the input
pixels and weights (Wr) of one tile are first read from DRAM.
This is shown as “Input + W¢” at the beginning of one layer in
Fig. 4. Similarly, after the completion of the last tile’s com-
putation, its output pixels are transferred back into DRAM,
which is shown as “Output” at the end in Fig. 4. Therefore,
for each convolution layer, the delay of transferring inputs of
the first tile and outputs of the last tile cannot be overlapped
with the computation, and this delay is denoted as

ms_Mem = ms_RdPx + ms_RdWt + ms_WrPx. (17

If the convolution layer has only one tile that is 7iy = Niy
and Tof = Nof, there is no overlapping of memory transfer and
computation as shown in Fig. 4(a), and the delay of this tile
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#tiles_f = [Nof/ Tof|

Fig. 4. Tile-by-tile delay of one convolution layer, and the DRAM access delay is overlapped with the computation delay due to dual buffering technique.
(a) Both inputs and weights fully buffered, (b) only weights fully buffered, (c) only inputs fully buffered, and (d) neither inputs nor weights fully buffered.

Algorithm 1: Delay Estimation of one Convolution Layer
(ms_ICV), Where C = ms_Compute, I = ms_RdPx, W =
ms_RdWt, and O = ms_WrPx

input : C, I, W, O, #tiles, #tiles_y, #tiles_f
output: ms_ICV

1 if Tiy = Niy and Tof = Nof then
2 | T[]=C

3 else if Tiy < Niy and Tof = Nof then
4 for t =1 to #tiles do

5 if t = 1 then

6 | T[] = max(C,I)

7 else if 1 = #tiles then

8 | T[] = max(C, 0)

9 else

10 | T[] = max(C,I+ 0)
1 end

end
else if 7iy = Niy and Tof < Nof then
for t = 1 to #tiles do
if t = 1 then
\ T[t] = max(C, W)
else if 1 = #tiles then
\ T[t] = max(C, O)

e T e S~ S e
® NN R WN

19 else

20 | T[] = max(C, W+ 0)

21 end

22 end

23 else

24 for if =1 to #tiles_f do

25 for ty = 1 to #tiles_y do

26 t=ty+ (tf — 1) x #tiles_y;
27 if ty=1and tf = 1 then
28 T[t] = max(C,I)

29 else if 1 = #tiles then

30 | Tl7] = max(C, 0)

31 else if ty = #tiles_y then
32 | T[] = max(C,1+W+0)
33 else

34 | Tlf] = max(C,1+ 0)
35 end

36 end

37 end

38 end

ms_ICV = Z?Zlf“ T[f] + ms_Mem

w
-

[e.g., t = 1 in Fig. 4(a)] is only determined by the computation
delay as in Algorithm 1 (line 2).

If the convolution layer has multiple tiles and all its weights
are fully buffered, i.e., Tiy < Niy and Tof = Nof, then the

weights only need to be read from DRAM once and can
be reused by different tiles as illustrated in Fig. 4(b). The
procedure to estimate the delay of this convolution layer is
summarized in Algorithm 1 (lines 3—12). The computation of
the first tile [e.g., r = 1 in Fig. 4(b)] is overlapped with fetch-
ing the input pixels of the next tile, and there is no DMA
transfer of output pixels of the previous layer, thus the delay
of this tile is determined by Algorithm 1 (line 6). The com-
putation of the last tile [e.g., = 3 in Fig. 4(b)] is overlapped
with transferring the output pixels of its previous tile, and its
delay is calculated by Algorithm 1 (line 8). For the other tiles
[e.g., t = 2 in Fig. 4(b)], the communication with DRAM
includes both reading input pixels and writing output pix-
els, and the delay of one tile is expressed by Algorithm 1
(line 10). The overall delay of this convolution layer is the
sum of all the tiles as well as the DRAM access delay before
the first tile and after the last tile, i.e., ms_Mem.

If the convolution layer has multiple tiles and all its pixels
are fully buffered, i.e., Tiy = Niy and Tof < Nof, then the
pixels only need to be read from DRAM once and can be
reused by different tiles as illustrated in Fig. 4(c). Similarly,
the procedure to estimate the delay of this convolution layer
is summarized in Algorithm 1 (lines 13-22).

If neither the weights nor the pixels of the convolution layer
can be fully buffered, i.e., Tiy < Niy and Tof < Nof, its
pipeline schedule is shown in Fig. 4(d) and the associated
delay is estimated in Algorithm 1 (lines 23—-37). In this case,
either the pixels or the weights need to be refetched multiple
times from the DRAM. In our current design, the input pixels
are refetched and the weights only need to be read once. If
the DRAM access requirement of input pixels is more than
weights, we can also refetch weights instead and only read
input pixels once by changing the DMA instructions and asso-
ciated control logic. Before the computation, the first tile of
weights is loaded and reused by the following consecutive
#tiles_y = [Niy/Tiy] tiles of pixels to perform convolution.
Then, the next tile of weights is loaded and reused by the
following #tiles_y tiles of pixels. This process iterates by
#tiles_f = [Nof /Tof7] times to complete the computation with
all the #tiles_f tiles of weights. By this means, the pixels are
refetched by #tiles_f times. A normal tile needs to read input
pixels of the next tile from DRAM and write output pixels of
the previous tile into DRAM, where the required weights are
already loaded during the previous tile and reused. Therefore,
the delay of a normal tile is estimated as in Algorithm 1
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t=1 Tile/Time
#tiles = 1| Input
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(a)
Pot=1 t=2 t=3
#tiles = 3| Input |i[ Input i[Input
i[_Compute ]:[ Compute [ Compute |
(b)
t=1 t=2 t=3
#iles = 3 Wt il Wt Hi Wi ]
i_Compute | il _Compute | Compute
()

Delay of reading one tile of input pixels from DRAM
Delay of reading one tile of weights from DRAM
Delay of writing one tile of output pixels into DRAM

Delay of computing one tile of data

Fig. 5. Tile-by-tile delay of one pooling/FC layer, and the DRAM access
delay is overlapped with the computation delay due to the dual buffering
technique. (a) Max pooling: inputs fully buffered in one tile. (b) Max pooling:
inputs partially buffered in multiple tiles. (c) FC.

(line 34). As the first tile does not have a previous tile, there is
no transfer of output pixels back to DRAM as in Algorithm 1
(line 28). For the last tile, there is no need to read input pixels
for the next tile as in Algorithm 1 (line 30). When #tiles_y tiles
of weights are finished [e.g., fy = 3 and #f = 1 in Fig. 4(d)],
new tile of weights is loaded from DRAM, and DRAM access
also includes transfer of pixels as in Algorithm 1 (line 32).

C. Delay Estimation of Other Layers

With the dual buffering technique employed, the overall
tile-by-tile process of one max-pooling layer is illustrated in
Fig. 5(a) and (b), which is similar to the convolution layer
except that pooling does not need weights. If the pooling
layer has only one tile, which means the inputs of one pooling
layer can be fully buffered, there is no overlapping between
memory transfer and computation as shown in Fig. 5(a) and (b)
illustrates the dual buffering pipeline of one pooling layer
with multiple tiles. Similar to Algorithm 1, we can com-
pute the overall latency of max-pooling layers according to
the tile-by-tile execution schedule, with the delay of max-
pooling computation and DRAM access calculated similar to
the convolution layer.

Fig. 5(c) shows the pipeline schedule of FC layer, where
weights are fetched before the corresponding computation and
no outputs are transferred back to DRAM. The storage format
of FC weights in the weight buffer allows us to read Pof
weights simultaneously every clock cycle to parallel compute
Pof outputs. Then, the computation cycles of one FC tile equal
to the depth of buffered FC weights. The overall delay of FC
is bounded and determined by the computation delay or the
DRAM access delay of weights.

VI. SiZzE REQUIREMENT OF ON-CHIP MEMORY

With the specific data storage pattern of buffers, we can
more precisely calculate the required on-chip buffer sizes than
the rough estimation in Section III-B.

r(i, y) is y-th row in i-th input feature map, i€ {1, 2, ..., Tif}, y € {1, 2, ..., Tiy - 2xpadding}
c(x) is the x-th column element in one row, x € {1, 2, ..., Tix — 2xpadding}

north zero padding Base Addr, WOrd_TRow =3 qq.

C;{ pad *T [(1,02)| [ r(1,04)| [[r(1.08)1 0" ic(01)c(02)c(03)c(04)10
[/ r(1,01) | {r(1,03) | |r(1,05)| |r(1,07) |3 ic(05)c(06)c(07)c(08) 1
= | r(1,08) | | r(1,10) | | r(1,12) 6\C(09)C(10)0(11)0(12)‘2
r(1,09) | | r(1,11) pad 9
pad r(2,02) | [r(2,04)| | r(2,06) |12 Pox = Pix =4
r2,01) | | r(2,03)| |r(2,05)| |r(2,07)|15 _
c;{ 1(2,08) | |r(2,10)| |r(2,12) 1g ( Hrows_TMap =4
ol r(2,09) | |r(2,11) pad 21 Tix = 14
2 pad | [r(3,02)| |r(3,04)| |r(3,06)]24 Tiy =14
® 1r3,01) | [r(3,03)| |r(3,05)| |r(3,07) |27 Tif=3
r(3,08) | | r(3,10)| |r(3,12) 30 stride = 2
r(3,09) | | r(3,11) pad«| 33 padding = 1
Input Input Input Tnput_
Buffer 1 Buffer 2 Buffer 3 Buffer 4 - south zero padding
Poy = Piy = 4

Fig. 6. Convolution data storage pattern in the input pixel buffers.

A. Size and Storage of Input Buffers

Fig. 6 illustrates the proposed storage pattern of convolu-
tion input pixels, which benefits the dataflow of Pox x Poy
pixels from buffers into MAC units [11]. The width of one
input buffer is determined by Pox to feed data for parallel
computation of Pox pixels in one feature map row. The num-
ber of input buffers is determined by Poy to feed data for
parallel computation of Poy multiple output rows. In Fig. 6,
c(x) denotes one input pixel in the xth column of a certain
row, where x € {1,2, ..., Tix — 2 x padding} and Tix includes
both the east and west zero padding. The east and west zero
paddings are not stored in buffers and instead they are masked
out by control logic before loading into the MAC units. The
number of addresses or words occupied by one row is

word_l1Row = [(Tix — 2 x padding)/Pox]. (18)

In Fig. 6, r(i,y) is the yth row of the ith input feature map,
where i € {1,2,...,Tif} and y € {1,2,...,Tiy}. The Tiy
rows of one input feature map, including north and south zero
paddings if they exist, are distributed across the Poy number
of input buffers. With stride = 2 as in Fig. 6, two adjacent
rows are continuously stored in the same buffer according to
the dataflow requirement. Then, the number of rows of one
feature map, i.e., (i, y), in one buffer is

#rows_1Map = [[Tiy/stride]/Poy] x stride. (19)

The storage location of the subsequent input feature maps
is aligned with the first feature map to simplify the address
generation logic, which causes some overhead due to the non-
continuous storage pattern as shown by the blank spaces in the
buffers in Fig. 6. By this means, the depth or words require-
ment of one input buffer (InBuf’) storing Tif input feature maps
for one convolution layer is expressed as

word_InBuf = word_1Row - #rows_1Map - Tif . (20)

The data width of one input buffer is Pox x bit_Px and the
number of input buffers is Poy x Dual with Dual = 2, where
Dual represents doubling of the number of buffers due to the
dual buffer structure. Therefore, in every clock cycle, Poxx Poy
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w(i,0) is one kernel window of i-th input channel and o-th output channel,
ie{1,2,..., Tif, oe{1, 2, ..., Tof}

k(x,y) is one kernel weight inside the kernel window,
xef{1,2,..., Tk}, ye{1, 2, ..., Tky}

Pof=4 Base Addr. Addr.

o (| W(11) i w(1,2) fw(1,3) LV!(J,,,‘});‘U'T k(1,1) {0
Jl{ w(2,1) i w(2,2) | w(2,3) | w(2,4) [4 i k(2,1)i]1
= | w(31) iw(3,2) i w3,3) i w3.4) |8, | k(1,2) 12
w(1,5) | w(1,6) 12:k2.2) {3
w(2,5) | w(2,6) 16 =3
w(3,5) | w(3,6) 20 Tof=6

Weight Buffer Tkx=Tky =2

Fig. 7. Convolution data storage pattern in the weight buffer.

pixels can be fed into the MAC units. The input buffer size
requirement of one convolution layer is

bit_InBuf = Dual x Poy x Pox x bit_Px x word_InBuf .
2n

The final input buffer size is the maximum bit_InBuf of all
the convolution layers. The actual input buffer size in (21) is
larger than the rough estimation in (5) due to the mismatch
of tile and buffer dimensions caused by the specific storage
pattern.

B. Size and Storage of Weight Buffers

The storage pattern of weight buffer is illustrated in
Fig. 7. The k(x,y) in Fig. 7 denotes one weight inside the
Nkx x Nky kernel window, where x € {1,2,...,Tkx} and
y € {1,2,...,Tky}. In the chosen design, we always have
Tkx = Nkx and Tky = Nky, so that one kernel window is fully
buffered. These Tkx x Tky weights, i.e., k(x, y), are stored in
continuous addresses as we serially compute one kernel win-
dow, e.g., Pkx = Pky = 1. In Fig. 7, w(i, 0) denotes one
kernel window of the ith input channel and oth output chan-
nel, which is comprised of Tkx x Tky weights. Weights from
different input channels (7if) are stacked in different addresses
as we serially compute each input channel. To compute Pof
output channels in parallel, the weights of Pof output channels
are stored at the same address of the weight buffer. Therefore,
the bit width of the weight buffer is Pof x bit_Wt. The words
or depth of the weight buffer (WtBuf) is

word_WtBuf = Tkx x Tky x Tif x [Tof /Pof1. (22)

With dual buffering, the number of weight buffers is two. The
weight buffer size requirement of one convolution layer is

bit_WtBuf = Dual - Pof - bit_Wt - word_WtBuf . 23)

If Tof /Pof is not an integer, some blank spaces in the weight
buffer are wasted as in Fig. 7. The final weight buffer size is
the maximum bit_ WtBuf of all the convolution layers.

C. Size and Storage of Output Buffers

After every Nkx x Nky x Nif clock cycles, there are
Pox x Poy x Pof outputs from MAC units. To reduce the bit
width of data bus and the bandwidth requirement of output

r(o, y) is y-th row in o-th output feature map, o € {1, 2, ..., Tof}, y € {1, 2, ..., Toy}

c(x) is the x-th column element in one row, x € {1, 2, ..., Tox}
Base Addr. Addr.
()| v @) @1 Y0 ic(01) c(02) c(03) c(04)i| 0
r(1,2) r(2,2) r(3,2) c(05) ¢(06) c(07) c(08)i| 1
r(1,3)| [r23)| |r33) ¢(09) ¢(10) (1) c(12)i] 2
r(1,4) r(2,4) r(3,4)
r(5,1) r(6,1) 12 Pox =4
r(5,2) r(6,2) 15
r(5,3) r(6,3) 18 B
(54)| |r(64) 21 Tox =12
Output Output Output Output Toy=4
Buffer 1 Buffer 2 Buffer 3 Buffer 4 Tof=6
Y
#OutBuf = 4
Fig. 8. Convolution data storage pattern in the output pixel buffers.

buffers as in Fig. 8, the parallel outputs are serialized into
Poyx [Pof /#OutBuf clock cycles, where #OutBuf is the num-
ber of output buffers excluding the dual buffer structure with
#OutBuf < Pof. By this means, the data width of one output
buffer is Pox x bit_Px, as shown in Fig. 8, to store the parallel
Pox outputs from the same feature map.

The output buffer storage pattern is illustrated in Fig. 8§,
where c(x) is the xth column element in one row with x €
{1,2,...,Tox} and r(o,y) is the yth row in the oth output
feature map with 0 € {1,2,...,Tof} and y € {1, 2, ..., Toy}.
The outputs of the same feature map are continuously stored
in the same buffer in a row-major order. One row (7(o,y))
is comprised of Tox elements (c(x)) continuously stored in
[Tox/Pox] addresses, and we set Tox = Nox so that one entire
row is processed while maintaining the row-major order. One
feature map has 7oy number of rows stored in one buffer and it
occupies Toy x [Tox/Pox| addresses. One output buffer stores
[Tof /#0utBuf| number of feature maps. Then, the number
of words or the depth of one output buffer (OutBuf) for one
convolution layer is

word_OutBuf = [Tof /#OutBufToy[Tox/Pox]. 24)

The output buffer size requirement of one convolution layer is

bit_OutBuf = (Dual x #OutBuf)
X (Pox x bit_Px) x word_OutBuf. (25)

If Tof /#OutBuf is not an integer, the blank spaces in the output
buffers as in Fig. 8 are wasted.

D. Size and Storage of Pooling Buffers

The max-pooling layers share the input and output buffers
with convolution layers. Due to the different dataflow require-
ment, the max-pooling input storage pattern in the input
buffers is different from convolution inputs, but it is the same
as the output storage pattern of convolution outputs in Fig. 8.
In addtion, the output buffer storage pattern of max-pooling
layers is also the same as the convolution outputs in Fig. 8.
The pixels from the same feature map are stored in the same
buffer, and different feature maps are distributed across dif-
ferent buffers. Therefore, the input and output buffer depth
of one tile of max pooling is similar to (24). The buffer size
requirement of pooling layers is ensured to be smaller than
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that of the convolution layers by using smaller pooling tiling
variables so that there is no overflow of pooling data.

VII. MODELING OF ON-CHIP BUFFER ACCESS

The energy cost of accessing data in the buffers dominates
the on-chip memory energy consumption [18], [19], so it is
essential to reduce the size of buffer accesses for energy-
efficient design. To reduce the buffer access size, data should
be reused as much as possible either by multiple PEs or
by different execution tiles, which will be discussed in this
section.

A. Reading Input and Weight Buffers of Convolution

Based on (9) to estimate the buffer access, we need to
compute #cycles_Access first. In this case, #cycles_Access
is the MAC computation clock cycles of one tile, which is
#cycles_1T in (15). Then, the computation clock cycles of all
the convolution layers are

#CONVs
#eycles_ C = Z #eycles_1T[L] x #tiles[L]
L=1

(26)

where #CONVs is the number of convolution layers and #tiles
is the number of tiles. The size (bit) of data read (Rd) from
input buffers (InBuf) for convolution layers is computed by
multiplying the read clock cycles with the total input buffer
data width as

bit_RdInBuf = #cycles_C - (Pox - Poy - bit_Px) 27

where every Pox x Poy pixels are reused by Pof MAC units
and the number of input buffer accesses is reduced by Pof
times. Similarly, the size (bit) of data read (Rd) from weight
buffers (WtBuf) for all the convolution layers is

bit_RAWtBuf = #cycles_C x (Pof x bit_Wrt) (28)

where every Pof weights are reused by Pox x Poy MAC units
and the number of weight buffer accesses is reduced by Pox x
Poy times.

B. Writing Input and Weight Buffers of Convolution

Before computation, the input data are written into the input
and weight buffers from DMA. As discussed in Section V-B,
not every tile needs to read both pixels and weights from
DRAM, because some pixels or weights of one tile can be
reused by the following adjacent tiles. The number of tiles
of one convolution layer that write new weights (Wr) to the
weight buffer is

#tiles_Wt = [Nof /Tof 1. (29)

The number of tiles of one convolution layer that write new
input pixels (In) to the input buffers is
(’%1 (’;—3‘1, if Toy < Noy and Tof < Nof

#iles_In = | _noy
{Tyw )

otherwise.
(30)

When neither weights nor pixels are fully buffered, i.e., Toy <
Noy and Tof < Nof, the same pixels are reloaded [Nof/Tof

times into input buffers as shown in Fig. 4(d). Similar to (21),
the size (bit) of one tile (17") of pixels written into the input
buffers is

bit_WrIn_1T = word_InBuf - Poy - Pox - bit_Px.  (31)

The size (bit) of data loaded into the input buffers of all the
convolution layers is

#CONVs
bit_WrInBuf = Z bit_Wrin_1T[L] x #tiles_In[L]. (32)
L=1

Similarly, the size (bit) of one tile of weights written into the
weight buffers is

bit_WrWt_1T = word_WtBuf x Pof x bit_Wt (33)

and the size (bit) of data written into the weight buffers of all
the convolution layers is

#CONVs
bit_WrWiBuf = Z bit_WrWt_1T[L] x #tiles_Wt[L).
L=1
(34

C. Data Access of Output Buffers of Convolution

The number of clock cycles to write outputs into output
buffers during one tile is the same as word_OutBuf, where
one word of data is written into one output buffer in one cycle.
Since every tile of one layer has outputs to be saved, the clock
cycles of writing outputs to output buffers are word_OutBuf x
#tiles. Then, the total cycles to load outputs into output buffers
(OutBuf) are summed up across all the convolution layers as

#CONVs
#eycles_ WrOutBuf = word_OutBuf[L] x #tiles[L.
L=1
(35)
The size (bit) of results written into the output buffers is
bit_WrOutBuf = #cycles_WrOutBuf
X #OutBuf x Pox x bit_Px. (36)

Since each output is written into and read from the output
buffers only once, the size (bit) of data read from output
buffers (bit_RdOutBuf) by DMA equals to bit_WrOutBuf.

VIII. EXPERIMENTS AND ANALYSIS

In this section, the proposed performance model is used to
explore the design space by tuning the key design variables,
e.g., unrolling and tiling sizes, and DRAM bandwidth and
accelerator frequency, to identify the performance bottleneck
and obtain the optimal design configurations.

A. Design Space Exploration of Tilling Variables

The loop tiling strategy determines how much data of each
layer is buffered, which affects the buffer capacity require-
ment, the number of DRAM accesses, and the accelerator
performance. Although we have fixed Tkx = Nkx, Tky = Nky,
Tif = Nif, and Tox = Nox as mentioned in Section II-D, the
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Fig. 9. Tiling variables (Zoy and Tof) are swept to explore the relationship
between the size of DRAM accesses and the total input/weight/output buffer
size requirement, where Pox x Poy x Pof = 7 x 7 x 32 with 16-bit data.
(a) NiN. (b) VGG-16. (c) GoogLeNet. (d) ResNet-50.

remaining two tiling variables Toy and Tof still give us a huge
design space as mentioned in [11]. For example, VGG-16 has
13 convolution layers, and there are 13 x 2 = 26 tiling vari-
ables and each variable can have 4 or more candidate values
determined by Noy/Poy or Nof /Pof, then the total number of
Toy and Tof choices is roughly 4?6 = 4.5 x 10>, which results
in an enormous solution space that cannot be enumerated.
Therefore, we randomly sample 30000 tiling configurations
for different CNN algorithms to explore their impact on the
memory access and performance as in Figs. 9-11, where we
set loop unrolling variables as Pox x Poy x Pof =7 x 7 x 32.

The relationship between tiling variables and the number of
DRAM accesses is investigated in Fig. 9 with 16-bit data. The
total convolution DRAM access size is computed by

#CONVs
byte_DRAM = Z (byte_RdPx - #tiles_In 4 byte_RdAWt
L=1
x #tiles_Wt + byte_WrPx - #tiles)
(37
where the right-hand side variables are computed

by (11), (12), (14), (29), and (30). The DRAM accesses
of other layers are also included in Fig. 9. One circle
in Fig. 9 represents one design point of the tiling vari-
ables Toy and Tof. Since the buffer size is determined
by the layer with the maximum tiling size, there could
be multiple different tiling configurations in other lay-
ers leading to the same buffer size. The buffer size in
Fig. 9 includes input/weight/output buffers, which equals
to max(bit_InBuf) + max(bit_WtBuf) + max(bit_OutBuf)
from (21), (23), and (25). With the increase of tiling and
buffer sizes, the number of DRAM accesses is decreasing
as shown by the dashed line in Fig. 9. After the buffer
size is increased to be large enough, we can achieve the
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Fig. 10. Tiling variables (Toy and Tof) are swept to explore the relationship
between the convolution throughputs and the total input/weight/output buffer
size requirement, where Pox x Poy x Pof =7 x 7 x 32, MHz_Accelerator =
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Fig. 11. Tiling variables (Toy and Tof) are swept to explore the relationship
between the size of on-chip buffer accesses and the size requirement of buffers,
where Pox x Poy x Pof =7 x 7 x 32. (a) NiN. (b) VGG-16. (c) GoogLeNet.
(d) ResNet-50.

minimum DRAM accesses. The red dot in Fig. 9 is our
optimal design choice of 7oy and Tof that balances the buffer
size requirement and the number of DRAM accesses.

Fig. 10 shows the relationship between tiling sizes and
the convolution throughputs, where the accelerator operat-
ing frequency is 240 MHz and the DRAM bandwidth is
14.4 GB/s. The throughput is computed by #operations/delay,
where #operations = 2 Nm including both multiply and addi-
tion, and delay is the sum of ms_1CV over all the convolution

Authorized licensed use limited to: ASU Library. Downloaded on March 29,2020 at 03:54:24 UTC from IEEE Xplore. Restrictions apply.



MA et al.: PERFORMANCE MODELING FOR CNN INFERENCE ACCELERATORS ON FPGA 853

layers. If the tiling or buffer size is too small, the number
of DRAM access and the associated latency is significantly
increased, which degrades the throughput. If the tiling size is
too large or there is only one tile in one layer, the DRAM
access latency cannot be well overlapped with the computa-
tion delay as mentioned in Section V-B, which results in lower
throughput. This trend is shown by the dashed line in Fig. 10.
The dashed lines of GoogLeNet and ResNet-50 are not as
smooth as those of NiN and VGG-16. It is mainly because
GoogLeNet and ResNet-50 have more layers resulting in much
larger design space, which makes it more difficult to cover all
the design choices through random sampling. The red dots in
Fig. 10 are our design choices of Toy and Tof, which are the
same in Fig. 9, to achieve the best throughputs.

Fig. 11 shows the relationship between tiling sizes and
the number of on-chip buffer accesses for different CNN
algorithms, which include both read and write operations of
input/weight/output buffers of all the layers in a given CNN
algorithm. Based on our acceleration strategy [11], the partial
sums are accumulated inside the MAC units, which do not
involve buffer access. The estimation of the number of on-
chip buffer accesses is discussed in Section VII. Our design
choices of Toy and Tof shown by red dots in Fig. 11 can
achieve close to the optimal number of buffer accesses while
having best throughputs and low level of DRAM accesses.

B. Design Space Exploration for Performance

As convolution dominates the CNN operations [2]-[4], [20],
we focus on the design space exploration of convolution
throughputs. The convolution throughput is affected by several
factors, namely the accelerator operating frequency, external
memory bandwidth, and the loop unrolling variables, these
are explored in Fig. 12 using GooglLeNet as an example.
With a small number of MAC units and high DRAM band-
width (BW_DRAM) as shown in Fig. 12(a), the accelerator
throughput is mainly bounded by computation, and thus the
throughput is almost linearly increasing with the frequency
when BW_DRAM > 12.8 GB/s. If the DRAM bandwidth
is too low, e.g., 3.2 GB/s, the design is more likely to be
memory bounded and the throughput stops increasing with
the frequency. With more MAC units and higher frequency,
the throughputs are tend to increase, as shown in Fig. 12,
until the design touches the memory roof which is illustrated
in Fig. 13.

The memory roof throughput [7] in Fig. 13 is the maxi-
mum achievable throughput under a certain external memory
bandwidth and it is defined as

#operations(GOP)
DRAM GOPS) =
100/ (GOPS) = =1 p M delay(s)
# ions(GOP
_ operations( )BW_Memory(GB/s)
#data(GByte)
(33)
where #data is the data size of DRAM accesses.

Since the computation-to-communication (CTC) ratio, i.e.,
#operations [#data, is a constant under a certain tiling set-
ting, DRAM _roof 1is directly proportional to BW_Memory.
With the same setting of BW_Memory for GoogleNet and
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Fig. 12. Convolution throughput is affected by the accelerator operating

frequency, DRAM bandwidth, and the number of MAC units. GoogLeNet
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Fig. 13. External memory roof throughput (DRAM _roof) is the maximum
achievable throughput under a certain memory bandwidth. (a) GoogLeNet.
(b) VGG-16.

VGG-16, the shape of the curves in Fig. 13(a) and (b) is
similar. Since VGG-16 has a higher CTC, its memory roof
throughput is much higher than GoogLeNet in Fig. 13. As dis-
cussed in Section IV-B, the memory bandwidth (BW_Memory)
is bounded by both the DRAM controller (BW_DRAM)
and DMA (BW_DMA). At low frequency, BW_Memory is
limited by BW_DMA, and DRAM _roof 1is linearly increas-
ing with the increase of frequency as in Fig. 13. After
BW_DMA is larger than BW_DRAM, BW_Memory is limited
by BW_DRAM instead, and DRAM _roof stops growing with
the frequency. The saturated throughputs in Fig. 12 are lower
than DRAM_roof in Fig. 13, which is mainly because there
are redundant DRAM transfers and the computation delay is
not fully overlapped with DRAM latency.

C. Performance Model Validation

Fig. 14 shows the comparison of throughput and latency
between the performance model and the on-board test results
on Arria 10 and Stratix 10 with different number of MAC
units, where both pixels and weights are 16-bit fixed point
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Fig. 14. Performance model results are compared with on-board test results
of Arria 10 and Stratix 10 on overall (a) throughput and (b) latency.

data. The differences between the estimation and on-board
results are within 3%, which are mainly due to the DRAM
transfer latency mismatch, minor layers (e.g., average pool-
ing), and some pipeline stages in the real implementation.
The compilation of our FPGA design using Quartus Pro
17.1 on 16-core Intel Xeon CPU E5-2650 v3 normally takes
6-8 h, while the performance model running on Laptop Intel
Core i7-7500U CPU using MATLAB takes about 1-5 s per
design.

D. Related Works

Several related works have used performance model to
optimize the memory access and computation pattern of
their proposed architecture and dataflow. Suda er al. [§]
implemented convolution as matrix multiplication and uses
a performance model to optimize the design. However, the
execution time in [8] only counts computation time without
considering the DRAM transfer latency. If the design becomes
memory bounded, the model in [8] cannot properly predict
the overall latency, which results in the estimation discrep-
ancy of FC layers with high computation parallelism. The
proposed systolic array architecture in [10] is also optimized
through a performance model. The overall throughput is sim-
ply computed by the minimum of the computation throughput
and DRAM transfer throughput, where the overlap efficiency
of computation and data transfer is not considered. The fine-
grained tile-level data accesses of DRAM and buffers are not
explored in [10]. The buffer and DRAM accesses are modeled
in [18] to explore different data reuse patterns by changing
the tiling strategy and computation order. Only coarse-grained
modeling of the convolution memory access is analyzed with-
out considering the DRAM bandwidth utilization and the
detailed data storage patterns in buffers and DRAM. The
proposed hybrid data reuse in [18] is similar to our tiling strat-
egy that different layers can use different tiling sizes to either
reuse weights or pixels to minimize the DRAM access. In this
paper, the relationship between the overall DRAM access and
the total buffer size is also investigated. The power of data
movement in different hierarchy, e.g., DRAM, buffer, and PE

array, is analytically modeled in [19] to compare the energy
efficiency of different dataflow. However, the power is not
quantitatively formulated with the design variables in [19],
and the performance of the accelerator is not modeled.

IX. FURTHER IMPROVEMENT OPPORTUNITIES

In this section, we use the proposed performance model
to evaluate the opportunities that may further enhance the
performance of the accelerator by improving the efficiency
of DRAM transactions and DSP utilization.

A. Improving DRAM Bandwidth Utilization

To simplify the control logic of data bus from DMA to input
buffers, different feature map rows are aligned in different
addresses in our current design. By this means, if the number
of pixels in one row is smaller than |bit_ DMA/bit_Px], the
successive row directly starts from the next address instead of
continuously using the same address resulting in the waste of
DMA datawidth. For example, with bit_Px = 16, one address
can accommodate 512/16 = 32 pixels, if the width of the
feature map is Nix = 14, then the actual number of pixels
of one row read from DRAM in (11) is Tix = 32, where
32 — 14 = 20 data are redundant. Some CNN models, e.g.,
GoogLeNet and ResNet, have a lot of convolution layers with
small Nix, e.g., 7 or 14, then their throughputs are significantly
affected by the inefficient utilization of DMA datawidth.

To improve the DRAM bandwidth utilization, one method
is to store multiple rows in one DMA address, which involves
the modifications of control logic and extra data paths from
DMA to input buffers. The other method is to keep the data
aligned, but narrow the bit width of the data bus between DMA
and input buffers. To attain the same data transfer rate, higher
frequency is needed, and asynchronous FIFO may be used. In
the performance model, we reduce bir_DMA to be 256 and
128 and increase their corresponding frequency of the data
bus to predict the throughput improvements. In Fig. 15, our
current design (DMA 512-bit) serves as the baseline with data
aligned, and bit_DMA is set to be 256 or 128, which has the
same effect as supporting two or four rows in one address
with bit_DMA = 512, respectively. Fig. 15 shows that NiN,
GoogLeNet, and ResNet can benefit a lot from decreasing the
DMA bit width, mainly because they have many layers with
small Nix and the layers with small Nix are memory bounded.
On the contrary, VGG-16 cannot benefit from higher DRAM
bandwidth utilization as the design is still computationally
bounded. Based on the prediction, it is compelling to improve
our design for higher DRAM bandwidth utilization.

B. Merging the First Layers

In GoogleNet and ResNet, there are multiple parallel
branches of layers, and the first layer of each branch reads
input pixels from the same precedent layer. If these convolu-
tion layers also have the same kernel size and stride, they can
be merged into one layer along the output feature map dimen-
sion (Nof). By this means, the input pixels can be shared by
the first layers of different branches and only need to be read
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Fig. 15. Performance model predicts that the throughput will be improved
by increasing the DRAM bandwidth utilization, which is achieved by decreas-
ing the DMA bit width to reduce the redundant DRAM accesses. (a) NiN.
(b) GoogLeNet. (c) VGG-16. (d) ResNet-50.
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Fig. 16. Performance model predicts that the throughput will be improved

by merging the first layers of different parallel branches, which read
from the same precedent layer, to eliminate the repeated DRAM access,
where “Normal” denotes our current design as baseline. (a) GoogLeNet.
(b) ResNet-50.

from DRAM once, as proposed in [13]. We change the corre-
sponding settings of our performance model, e.g., byte_RdPx
in (11), to estimate the effect of eliminating the repeated
DRAM accesses of the precedent layer as shown in Fig. 16.
Since GoogleNet and ResNet are already memory bounded
in our current design, reducing the DRAM access can consid-
erably improve the throughputs. The required modifications
of our current design to merge the first layers involve chang-
ing the control logic and the descriptors of DMA transactions,
and there is no significant overhead of additional hardware
resources.

C. Improving PE Efficiency

Due to the highly varying dimensions of different convo-
lution layers in a given CNN model, it is a challenge task
to efficiently distribute workloads across PEs, or we need to
make loop dimensions (Nx) divisible by their corresponding
unrolling variables (Px). In [21] and [22], an adaptive paral-
lelism scheme is proposed to dynamically adjust the mapping
of operations on different PEs, or the unrolling variables can
be changed for each layer to maximize PE utilization. This
requires the ability to dynamically redirect data flow from
buffers to PEs, which may need complex control logic, incur
penalty of additional resources, and aggravate the burden on
timing closure.
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Fig. 17.  Uniform: our current design as baseline with uniform PE mapping;
Adjustable: dynamically adjust the unrolling variables for different layers
to improve PE utilization; Ideal: force PE utilization to be 100%. (a) NiN.
(b) GoogLeNet. (c) VGG-16. (d) ResNet-50.

Instead of using uniform PE mapping and unrolling vari-
ables in the current design, we adjust unrolling variables
(Pox - Poy - Pof) for different layers to achieve better PE uti-
lization in the performance model as shown by “Adjustable”
in Fig. 17. We also force PE utilization to be 100% by
removing the ceiling functions in (2), which is denoted by
“Ideal” in Fig. 17. However, the throughput improvements
from adjustable unrolling strategy are very limited (<10%) for
our design, mainly because: 1) the Nox - Noy - Nof dimensions
of most layers have already been able to provide large enough
parallelism for our uniform unrolling strategy and 2) most of
our layers are memory bounded and the reduction of compu-
tation latency has little effect on the throughput. Considering
the large amount of necessary design efforts for adjustable PE
mapping and low expected improvements, we surmise it is not
a primary task in our future work to adopt this technique.

X. CONCLUSION

In this paper, a high-level performance model is proposed
to estimate the key specifications, e.g., throughput, of FPGA
accelerators for CNN inference, which enables the design
space exploration to identify performance bottleneck in the
early development phase. The design strategy and resource
costs are formulated using the design variables of loop
unrolling and tiling. The proposed performance model is val-
idated for a specific acceleration strategy across a variety of
CNN algorithms comparing with on-board test results on two
different FPGAs.
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