424 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Automatic Compilation of Diverse CNNs Onto
High-Performance FPGA Accelerators

Yufei Ma

, Student Member, IEEE, Yu Cao, Fellow, IEEE, Sarma Vrudhula

, Fellow, IEEE,

and Jae-Sun Seo, Senior Member, IEEE

Abstract—A broad range of applications are increasingly
benefiting from the rapid and flourishing development of convolu-
tional neural networks (CNNs). The FPGA-based CNN inference
accelerator is gaining popularity due to its high-performance and
low-power as well as FPGA’s conventional advantage of reconfig-
urability and flexibility. Without a general compiler to automate
the implementation, however, significant efforts and expertise are
still required to customize the design for each CNN model. In
this paper, we present an register-transfer level (RTL)-level CNN
compiler that automatically generates customized FPGA hard-
ware for the inference tasks of various CNNs, in order to enable
high-level fast prototyping of CNNs from software to FPGA
and still keep the benefits of low-level hardware optimization.
First, a general-purpose library of RTL modules is developed to
model different operations at each layer. The integration and
dataflow of physical modules are predefined in the top-level
system template and reconfigured during compilation for a given
CNN algorithm. The runtime control of layer-by-layer sequential
computation is managed by the proposed execution schedule so
that even highly irregular and complex network topology, e.g.,
GoogLeNet and ResNet, can be compiled. The proposed method-
ology is demonstrated with various CNN algorithms, e.g., NiN,
VGG, GoogLeNet, and ResNet, on two standalone Intel FPGAs,
Arria 10, and Stratix 10, achieving end-to-end inference through-
puts of 969 GOPS and 1604 GOPS, respectively, with batch size
of one.

Index Terms—Convolutional neural networks (CNNs), FPGA,
neural network hardware.

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) have
become the dominant approach in many computer vision
applications, such as image classification [1]-[6] and object

Manuscript received April 24, 2018; revised July 16, 2018 and
September 27, 2018; accepted November 18, 2018. Date of publication
December 4, 2018; date of current version January 18, 2020. This work was
supported in part by the NSF I/UCRC Center for Embedded Systems through
NSF under Grant 1230401, Grant 1237856, Grant 1701241, Grant 1361926,
and Grant 1535669, in part by NSF under Grant 1652866 and Grant 1715443,
in part by Intel Labs, and in part by C-BRIC, one of six centers in JUMP,
an SRC program sponsored by DARPA. This paper was recommended by
Associate Editor W. Zhang. (Corresponding author: Yufei Ma.)

Y. Ma, Y. Cao, and J.-S. Seo are with the School of Electrical, Computer
and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: yufeima@asu.edu; yu.cao@asu.edu; jaesun.seo@asu.edu).

S. Vrudhula is with the School of Computing, Informatics, Decision
Systems Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: vrudhula@asu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2884972

e Conv, Pooling and FC are
defined as key-layers.

e Layer cluster = one key-layer
+ multiple affiliated-layers

iy
¥

| Conv2 |

v ‘
[conva |@ ||
7 |

| BatchNorm |——>| Concat | | BatchNorm |

Layer cluster and its
computing order:

f ey

Fig. 1. Example of DAG form layer connections in recent CNN algorithms
with multiple parallel branches involving different types of layers.

detection [7], [8]. The large number of operations and param-
eters as well as the highly varying layer dimensions have
challenged the real-time implementation of CNNs on FPGA-
based accelerators. Constrained by the limited computing
resources and costly external memory (e.g., DRAM) access,
the FPGA-based CNN accelerator must fully reuse the hard-
ware resources for different convolution layers and increase
data locality to reduce the data movement and off-chip com-
munication. Therefore, the CNN acceleration strategy, such
as loop unrolling and tiling techniques, must be optimized
to properly manage the parallel computation, data storage
patterns in buffers, and the external memory accesses [9]-[11].

To improve their accuracy for classification and expand their
domain of applications, CNNs with greater depth, new types
of layers and more complex networks have been proposed. For
example, the deep residual networks (ResNets) [4], [6], [12]
can achieve substantially greater accuracy at the cost of having
more than 1000 convolution layers (Conv) with widely differ-
ing dimensions and kernel sizes, as well as many other various
types of layers. Unlike earlier CNNs, such as AlexNet [2] and
VGG [3], in which the layers are strung out in a sequence, the
layers in the more recent CNN algorithms, such as ResNet,
GoogleNet [5], and Inception [6], form a directed acyclic
graph (DAG), as shown in Fig. 1. They have multiple par-
allel branches and include feedforward connections between
nonadjacent layers.

All these trends, which have increased the complexity of
CNN algorithms, have made it more difficult to design a
general-purpose CNN hardware accelerator to efficiently map

0278-0070 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2670-524X
https://orcid.org/0000-0001-9278-2959

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS 425

a diverse range of CNN algorithms. One approach is to under-
take custom hardware design at the register-transfer level
(RTL) for each specific CNN. Experience has shown that such
an approach requires detailed knowledge of both the CNN
algorithm and the FPGA architecture, and many months of
design effort involving numerous design iterations. As the
size and complexity of CNN algorithms continue to increase,
the custom approach becomes increasingly impractical, and
automated approach is essential.

In this paper, the design of a library-based CNN RTL
compiler is described. Its overall structure and process flow
is depicted in Fig. 2. The inputs that need to be supplied
are the abstract description of the CNN model and the set
of design variables that characterize the usage of hardware
resources. The compiler enables fast and automatic mapping
of various deep CNN algorithms from software deep learn-
ing frameworks, e.g., Caffe [13], onto FPGAs. It exploits the
reconfigurability of FPGAs and the fine-grain optimization that
is possible with an RTL description. As CNNs are assem-
bled by composing iterative computing primitives or layers,
scalable RTL building block modules are designed for dif-
ferent types of layers and reused by different CNNs. The
RTL compiler configures these modules with CNN parameters,
and scales the sizes of processing engines (PEs) and on-chip
buffers based on the user-specified hardware design variables.
The result is a resource efficient and high performance FPGA
implementation.

This paper significantly extends the authors’ earlier
work [14] by including: 1) dual buffer structure to further
improve the accelerator performance; 2) scalability demonstra-
tion of the compiler on the latest Stratix 10 FPGA with more
hardware resources; 3) newly added Concat layer to support
GoogLeNet and Inception; and 4) integration of batch nor-
malization layer with its precedent convolution layer during
inference. The main contributions of this paper and of [14]
are as follows.

1) An execution schedule derived from the CNN struc-

ture that maps a wide range of CNN algorithms onto
a system-level reconfigurable FPGA architecture.

2) A user-friendly and high-level compiler that automati-
cally configures the FPGA-based accelerator for various
large-scale CNN algorithms with user-specified hard-
ware resource constraints, such as computing parallelism
and buffer usage, targeting FPGA platforms with differ-
ent amount of hardware resources.

3) An RTL module library that can accommodate different
types of layers with manually coded Verilog templates.
The modules are designed based on the optimized
acceleration strategy in [9], which defines the paral-
lel computation, data movement, and memory access.
This library has been designed to allow incorporation
of new layers or operations for future deep learning
algorithms.

4) Performance analysis based on the roofline model
approach [10] to identify the performance bottleneck
limited by the computation resources and memory band-
width, which leads to potential benefits of changing
various parameters and optimization steps.

(" CNN model
« Topology of layers
= + Number and size of
kernel/feature maps
\° Pre-trained weights

Design Variables)

* Loop unrolling

* Loop tiling

« Constraint by
FPGA resources)

Generated Accelerator
I

* Global control logic

« Conv/Pool/Eltwise/FC
modules

« Parameter
configuration registers

« DRAM read/write

> addresses/length

« Data scatter and gather
RTL Module Library

+ Hand coded Verilog templates built on FPGA design t(r)10|s @
optimized acceleration strategy e .9. Wuartus

+ Uninitialized Verilog parameter registers | FPGA programming file |
» Top-level accelerator system template

->| » Reorganize storage pattern of weights I——>|

Fig. 2. Overall compilation flow of the proposed CNN RTL compiler: the
CNN algorithm information and the hardware design variables are the inputs;
the hardware resource usage and the execution schedule of the FPGA acceler-
ator are configured for the given CNN model; the RTL module library defines
the computation pattern and dataflow of different types of layers with param-
eterized Verilog templates; and the pretrained CNN weights are reorganized
and loaded into the external memory.

RTL

Accelerator Configurations -
compiler

» Hardware resource requirement

« Control logic parameters

« Layer-by-layer execution schedule
* Pipeline schedule of dual buffering
+ DMA read/write descriptors

FPGA DRAM |

The flexibility of the proposed compilation methodology
is validated by implementing the inference task of both con-
ventional CNNs: NiN [15] and VGG-16 [3]; and the more
complex DAG networks: GoogLeNet [5] and ResNets [4] with
50 and 152 convolution layers, respectively. The accelerator is
demonstrated on two standalone Intel FPGAs, Arria-10, and
Stratix-10, achieving end-to-end inference throughputs of 968
GOPS on Arria-10 and 1604 GOPS on Stratix-10 with batch
size of one to minimize the inference latency for real-time
applications.

II. OVERVIEW OF PROPOSED CNN RTL COMPILER

The dimensions and connections of CNN layers and pre-
trained kernel weights are obtained from Caffe [13], and
provided as inputs to the CNN compiler. The various dimen-
sional parameters of the CNN algorithm and the accelerator
design variables, e.g., loop unrolling and tiling sizes as shown
in Fig. 3 (described in detail in Section III), can be tuned
by the user to balance the performance and required hard-
ware resources. Then, a layer-by-layer execution schedule [see
Fig. 4(a) and (b)] is generated from the CNN graph represen-
tation. The execution schedule is translated into the global
control logic on the FPGA, and it also determines the order
of the reads and writes of certain kernel weights or pix-
els from different layers that are stored in external memory.
The associated read and write addresses are generated and
sorted to control the transactions between external and on-chip
memories.

The RTL module library consists of manually coded Verilog
templates describing the computations and dataflow of various
types of layers. The templates are built on the optimized CNN
acceleration strategy described in [9]. That strategy is designed
to minimize the memory access and data movements while
maximizing the resource utilization. The Verilog parameters
that determine the size of PEs and buffers are configured based
on the design variables. The parameters for runtime control are
initialized by compiler and stored in configuration registers.

426 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

In this figure,
Pox x Poy x Pof = 2x2x3 Tky
Input feature maps Output

feature maps

Noy

T’y % Nof
] %~ Tof —
Tl; Nix Kernel Pof l;l_ox
Pi i ox
/-g,); maps % Pox
N* : Conv dimensions T’-f Nkx e
T*: Loop tiling variables Thox 1< P*sT*sN%,
P*: Loop unrolling variables ™% e.g. 1< Pifs Tif < Nif

Fig. 3. Convolution loop dimensions (N*) and accelerator design variables of
loop unrolling (P*) and loop tiliing (7%*). Type: i: input; o: output; k: kernel;
f: feature.

; g R S, o Read DRAM & Write Buffers |+
| Read DRAM | :i[Read DRAM [l
' ii [Read from Weight & Input Buffers |
Execute layer ,| Execute |i 1 No .
cluster D | tile#1of®@ i (s Co$v7 =(__isPool ? 2
H T 1 IYes 0|
[Write DRAM | [Write DRAM J; |-Someue Conv Compute Pool
’ i S il T ® CwithReLU? N° [_sFCc?2)
[Read DRAM |*-, [Read DRAM]t 1Yes
1 Compute ReLU Compute FC
Execute layer Execute] ! - !
cluster é,) | tile # 2 of (D) ‘. [Write to Output Buffers |
} i Cwith Eltwise 2)¢ Com
pute Eltwise |
[Write DRAM | . [[Write DRAM | ; ' T
- . . l No [Write to Output Buffers |
5 : ‘ : y T
® | Write to DRAM from Output Buffers |-
(a) (b) (©)
Fig. 4. Execution schedule is designed to handle different CNN topol-

ogy. (a) Layer-by-layer execution. (b) Intertile execution inside one layer.
(c) Intratile process inside one tile [14].

The intratile execution flow of layers, as shown in Fig. 4(c), is
predefined in the templates and can be customized by the com-
piler to enable execution of certain layers during run time. The
top-level accelerator system template, shown in Fig. 5, inte-
grates these modules with the reconfigurable dataflow, where
only the required computing modules are compiled for a given
CNN model, bypassing the unused modules.

III. ACCELERATION OF CONVOLUTION LOOPS
A. Convolution Loop Optimization and Design Variables

Convolution involves 3-D multiply and accumulate oper-
ations (MAC) of input feature maps and kernel weights as
illustrated in Fig. 3, where the parameters (N*) prefixed with
capital N denote the algorithm-defined dimensions of fea-
ture and kernel maps of one Conv layer. Since convolution
dominates the CNN operations, the acceleration strategy of
convolution loops dramatically impacts the parallel computa-
tion efficiency and memory access requirements. Therefore,
we employ the loop optimization techniques in [9] to cus-
tomize the convolution computation and communication pat-
terns. Loop unrolling design variables (P*) determine the

degree of parallelism of certain convolution loops, and thus
the required size and architecture of PEs. Loop tiling increases
the data locality by dividing the entire data of one layer into
multiple tiles, which can be fit into the on-chip buffers. The
loop tiling design variables (7%*) determine the required min-
imum sizes of the on-chip buffers, and affect the required
external memory accesses.

B. Convolution Acceleration Strategy

The design of the module templates at the RTL is based
on the CNN acceleration strategy described in [9]. It achieves
a uniform mapping of PEs and reduces the accelerator archi-
tecture complexity. Fig. 3 shows the dimensions of the inputs
(input feature maps and kernel maps) and the output feature
maps. The loop unrolling or the parallel computations are only
employed within one input feature map and across multiple
kernel maps. The computations shown in Fig. 3 are as follows.

1) Pix = Pox > 1 and Piy = Poy > 1: In every cycle,
Pix x Piy number of pixels from different (x, y) locations
in the same input feature map are multiplied with one
identical weight.

2) Pof > I: In every cycle, one input pixel is multiplied
by Pof weights from Pof different kernel maps, which
contributes to Pof pixels in Pof output feature maps.

The total number of parallel operations is Pox x Poy X Pof
with Pkx = Pky = Pif = 1. By this means, each PE con-
tributes to one independent output pixel and no adder tree is
needed to total the partial sums of different PEs [9]. Therefore,
a PE is an MAC unit consisting of one multiplier followed
by an accumulator in this paper. Both pixels and weights
are reused by multiple MAC units and high degree of paral-
lelism can be supported with large Nox x Noy x Nof. The data
required to compute one final output pixel are fully buffered
to minimize the partial sum storage, i.e., Tkx = Nkx, Tky =
Nky, and Tif = Nif. We also set Tox = Nox so that an entire
row is buffered to improve the DRAM transactions with data
from continuous addresses. Furthermore, the required buffer
sizes can be changed by tuning 7oy and Tof. Following the
above optimized settings, different P* and T* design variables
can be adjusted by the user to explore the best tradeoff between
performance and hardware resource usage, e.g., DSP blocks
and block RAMs (BRAMEs), for the target FPGA platform.

IV. END-TO-END CNN ACCELERATOR
A. Layer-by-Layer Execution Schedule

In conventional CNN algorithms, different layers are con-
nected in sequence, which allows for a straightforward layer-
by-layer serial computation. The recent CNN algorithms (e.g.,
ResNet [4]) are DAGs, with combinations of serial and parallel
branches. A reconfigurable layer-by-layer execution schedule
is designed to handle the different combinations of stacked
layers and the DAG as shown in Fig. 4. Therefore, the present
mapping of a DAG onto an FPGA still results in a serial
computation of the layers.

There are many types of layers in a CNN algorithm, and the
number and order of these stacked layers could be quite differ-
ent. A CNN layer that reads the DRAM for its input is referred

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS 427

to as a key-layer. Therefore, Conv, Pool, and FC are assigned
as key-layers so that the computation or design variable set-
tings between these layers are relatively independent, while
all other layers are affiliated-layers to the key-layers. The
DRAM access of an affiliated-layer can be eliminated, how-
ever its computing pattern, e.g., unrolling and tiling variables,
must depend on the key-layer configuration, which hampers
its design flexibility. A layer cluster is a subgraph of the DAG
that consists of a key-layer and zero or more affiliated-layers.
The example DAG shown in Fig. 1 has six clusters, numbered
@ through ®. The Conv1((D), Pooling(®), and FC(®) lay-
ers in Fig. 1 are individual key-layers (i.e., clusters with only a
key-layer) whereas cluster G has one key-layer (Conv4) and
three affiliated-layers (Batchnorm, Eltwise, and ReLu). The
layer-by-layer serial computation is essentially the serial exe-
cution of clusters as illustrated in Figs. 1 and 4(a). The order of
computation of the clusters is set before compilation, and the
only rule is to ensure that all the predecessors of any key-layer
is executed prior to that key-layer.

When tiling of loops is performed, each cluster is divided
into multiple tiles to fit into the on-chip buffers. This is illus-
trated in Fig. 4(a) and (b). As clusters may contain different
kinds of layers, (e.g., layer cluster @ in Fig. 1 does not have
BatchNorm and Eltwise), a general intratile execution sched-
ule is designed as shown in Fig. 4(c) to control whether or
not a layer is executed for a specific cluster during runtime.
The select signals, e.g., “is Conv?” in Fig. 4(c), are stored in
the configuration registers and initialized based on the input
CNN topology during compilation. If a layer does not exist
in the given CNN, the select signal becomes constant to be
“No”. This schedule is also flexible as it allows introduction
of new types of layers by the simple addition of new select
signals.

Three levels of control logic, namely global, intertile, and
local control logic, are required to govern the layer-by-layer,
intertile, and intratile sequential execution (Fig. 4). The param-
eters of each layer, e.g., kernel sizes, feature map dimensions,
unrolling and tiling variables, and iteration numbers, are stored
in configuration registers. The global control logic keeps track
of the number of executed clusters, and loads the current
layer’s parameters from the configuration registers into the
local control logic registers. Each type of layer module has
its own local control logic to perform the iterations within the
layer. By this means, we can just use one set of control logic
for layers with varying dimensions by initializing configuration
registers for different layers during compilation.

B. Top-Level Acceleration System and Dataflow

The overall CNN acceleration system and dataflow is shown
in Fig. 5, where different types of layers are modularized to
establish the RTL module library. During compilation, if a
certain type of layer does not exist in the given CNN model,
its corresponding module will not be compiled or synthesized
to save the hardware resources, and the dataflow just bypasses
this module. During runtime, whether or not a layer is executed
is controlled by the global control logic by asserting “start”
signal to the module following the execution schedule. After

[Output Pixel Buffers |
A \

‘Dual Buffer;
| Structure !

r g

[ReLU |« Eltwise (adder) |
A

Pooling
(comparator or—
adder + mult.)

Bias (adder) |

MAC Unit Array w/ <l
Conv & FC control

Data Router |

[Buffer A]

A T
——[Input Pixel Buffers }

 Z P
[Data Gather || Weight Buffers [Data Scatter [*=]
A

[DMA
I ¢ 1 Theoretical
Peak BW:
External Memory 16.9 GB/s

Global Contrpl Logic -

}—{ DMA Manager || |

—— Control signals Computing

Pixel data bus

Weight data bus
Fig. 5. Reconfigurable top-level CNN acceleration system, where the
dataflow is from external memory to input buffers and then into comput-
ing modules, the results are stored in output buffers and finally sent back to
external memory.

receiving a “done” signal from the current layer, global control
logic iterates to the next layer.

The reconfigurable computing modules, as shown by the red
boxes in Fig. 5, are manually coded as maximally parameter-
ized Verilog scripts. Each type of module template is designed
to be reused by any layer of the same type, in any CNN. The
varying layer sizes and loop design variables are handled by
initializing the configuration registers based on the layer prop-
erty. This RTL module library is designed to be easily extended
with new layers for more CNN algorithms and the existing
modules can also be further optimized for performance and
efficiency. The detailed design of the computing modules is
discussed in Section VI.

The direct memory access (DMA) engine is used to transfer
data between external and on-chip memories. The data scatter
module is designed to distribute a data stream from one DMA
write port to multiple input buffers, and the data gather module
is designed to collect data from multiple output buffers into
one DMA read port. The detailed memory system design is
presented in Section V.

V. EXTERNAL AND ON-CHIP MEMORY SYSTEM
A. Storage Pattern in DRAM

Due to the limited capacity of on-chip BRAMs, both kernel
weights and intermediate pixel results are stored in external
memory, i.e., the DRAM, and the on-chip BRAMs are used as
buffers between DRAM and PEs. The proposed storage pattern
of kernel weights and intermediate pixel results in the DRAM
are illustrated in Fig. 6(a). The pretrained kernel weights and
the input images are loaded into DRAM before the accel-
eration. All the intermediate output pixels are organized in
the form from row-by-row, map-by-map to layer-by-layer in
continuous DRAM addresses.

B. DMA Manager

The DMA engine is used to communicate data between
DRAM and on-chip BRAMs. A custom DMA manager mod-
ule is designed to control the DMA operation using preload

428 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Conv weightsf |© Input Pixel Buffers m1r1
C tied=| PR p mir2] = WR = Write, RD = Read Dual Buffer Buffer_A
FC weightsH(2 7| pad m1r | [m1r2 < : Structure
Input imageH |5 8 P m1r3 | ¢ Buf_I/Buf_W/Buf_O = Input/Weight/Output Buffer Buffer B
f g HIS £|m1r3 | | mird m2r1 (O < =
%3 H Bl o Transfer inputs from .DRAM to buffers
a H pad m2r1 m2r2| L o .
g g{ E < mar3 m2rd m7r3 é £ T Tie#1 [Tie#z | Tie#3 | Write Buffer Aor B? Read Buffer A or B?
©| o] 3 { H pad m3r1 | | mar2 mgg 23 WR Buf_I_A WR Buf_I_B WR Buf_I_A
5l 2L oln Sk
%< 8 “'5H m3r3 m3r4 Dat?8r3 Address WR Buf_ W_A The weight buffers fully cover all the weights:of this layer.
= g :ng{ E 1 l Read Transfer outputs from buffers to DRAM [Tile #1 Tie#2l | Tile#3 L
s | Data Gather | Comv. MAG RD Buf_O_A RD Buf_O_B RD Buf_O_A
L 5] { H< Addr ____computation | Compute Tile#1 § Compute Tile#2 |_] Compute Tile #3 |
p He “ DataI lReac-I “ ” RD Buf_I_A RD Buf_| B RD Buf_I_A
H g Data | | Write o RD Buf_W_A RD Buf_W_A RD Buf_W_A
H = m1r1 2 m1r1 m2r1 m3r1 m4r1 WR Buf_O_A WR Buf_O_B WR Buf_O_A
) HS mir2 [= £l mir2 | | m2r2| | m3r2 | | m4r2
52 HE m1r3 |5 < 2|{ m1r3 | | m2r3 | | m3r3 | | m4r3 (a)
= H %’ m1r4 2 z m5r1 | | mér1 | | m7r1 | | m8r1
- E g m3r1 g = mb5r2 mo6r2 m7r2 m8r2 Transfer inputs from DRAM to buffers _ _ _ _
E § mar2 .g %’ m5r3 mér3 m7r3 m8r3 WR Buf_I_A The input buffers fully cover all the input pixels of: this layer.
H® m3r3 | 2 £) Tile #1 Tile #2 Tile #3
. | ==
------ H m3r4 Output Pixel Buffers WRBUf WA | WRBuf_W_B WR Buf_W_A
Transfer outputs from buffers to DRAM [Tie#1 [Tie#t2 |_{Tie#3 |
(a) (b) (©) RD Buf O_A | RD Buf_O_B |RD Buf O_A
Conv. MAC computation i
. : . : : Compute Tile# 1 | Compute Tile # 2 Compute Tile# 3
F1g. 6. (a) Storage pattern of kernel.welghts anq 1nFerrned1ate pixel results RD Buf 1A RD Buf 1A RD Buf 1A
in external DRAM. (b) Data scatter is used to distribute data stream from RD Buf_'W_A RD Buf_W_B RD Buf_W_A
DRAM into multiple input buffers. (c) Data gather is used to collect data WRBU O A {WRBU OB WRBuf_O_A
from multiple output buffers to DRAM, where mXrY denotes the Yth row in (b)

the Xth feature map [14].

descriptors. The descriptor sets the source and destination
addresses and the transaction bytes. Given the CNN param-
eters, loop design variables and the order of computation of
the layers, the descriptors are generated by the compiler and
stored in the on-chip BRAM. As weights are loaded into the
DRAM before acceleration, we have the freedom the reorga-
nize the weight storage pattern during compilation to enable
the continuous DRAM read operations. Therefore, a tile needs
only one descriptor to read the weights. As we compute
multiple output feature maps in parallel, Pof weights from
Pof kernel maps are grouped together and continuously stored
in DRAM. The weight groups are stored in the order along
Nkx, Nky, Nif, and Nof dimensions. To read/write the pixels
from/to the DRAM, one descriptor is responsible to trans-
fer a portion of one input/output feature map, e.g., Tix x Tiy
continuous pixels. If one entire feature map is buffered, e.g.,
Tix = Nix and Tiy = Niy, one descriptor can read/write
multiple feature maps because these pixels across different
maps are also continuously stored.

C. Data Scatter and Gather

The accelerator has two memory mapped slave ports to
receive/send data from/to one DMA, respectively. The data
stream from the DRAM is in continuous form and a data
scatter is designed to distribute and rearrange data to multiple
input pixel buffers as illustrated in Fig. 6(b), where mXrY
denotes the Yth row in the Xth feature map. With different
length of feature map rows, one mXrY may occupy different
number of addresses. The data scatter module counts the num-
ber of received pixels based on the received DMA write signal
and generates the write addresses and write enable signal for
the buffers. Similarly, the data gather module in Fig. 6(c) is
designed to collect data from multiple output pixel buffers into
continuous form to benefit DMA transactions.

D. Dual Buffer Structure

The dual buffer structure (or ping-pong buffer structure) [10]
is employed to overlap the PE computation with external

Fig. 7. Dual buffer structure and its pipeline schedule is used to overlap
computation with memory communication to improve the throughput. (a) All
the weights of this layer are fully buffered and the weights only need to be
read once from DRAM. (b) All the pixels of this layer are fully buffered and
the pixels only need to be read once from DRAM.

memory communication to decrease the overall latency. By
this means, while the DMA is writing/reading one buffer, the
PE array can read/write the other buffer simultaneously, as
illustrated in Fig. 7. With one DRAM bank, the DMA is
designed not to read and write DRAM at the same time to
avoid potential conflict, and the DMA only sequentially writes
input/weight buffers and reads output buffers at different times.

Fig. 7(a) illustrates the pipeline schedule when the weight
buffers fully cover all the weights of this Conv layer, where we
only need to read the weights from DRAM once and different
tiles can reuse the weights without reloading them from the
DRAM again. Similarly, the input buffers fully cover all the
input pixels of this Conv layer in Fig. 7(b), and different tiles
can reuse the pixels. If the buffers cannot fully cover either all
pixels or all weights of one layer, the same pixels or weights
need to be read multiple times from the DRAM [9].

Before the computation of Tile #1, we need to load both
input pixels and weights of Tile #1 into the buffers. While
computing Tile #1, we can start to load the inputs [Fig. 7(a)]
or weights [Fig. 7(b)] of Tile #2 into the other buffer and
write outputs to the output buffer. In Fig. 7(a), the computa-
tion time of Tile #1 is longer than the delay of loading input
buffer, so Tile #2 can only start after the completion of Tile #1
computation, which means its overall delay is bounded by the
computation delay. On the other hand, in Fig. 7(b), the memory
delay is longer than the computation time of Tile #1, so Tile
#2 can only start after the memory transaction is finished,
which makes its delay bounded by the memory communica-
tion delay. Since the DMA can only start reading the output
buffer after the computation of this tile is fully completed,
the outputs of Tile #1 are transferred to DRAM during/after
the computation of Tile #2, while the outputs of Tile #2 are
written into the other output buffer. To simplify the control

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS 429

logic, the pipeline of computation and memory transaction is
currently only within each layer. By this means, the write of
input/weight buffers of the first tile and the read of output
buffer of the last tile are not overlapped with computation,
which limits the efficiency of dual buffer structure to further
improve the throughput.

E. Computation Bounded Versus Memory Bounded

The roofline model is introduced in [10] to analyze the
performance bottleneck of the CNN accelerator, which is
mainly affected by the available computation resources (DSP
or MAC units) and the external memory (DRAM) bandwidth.
When overlapping computations with external memory trans-
actions, if the computation delay exceeds the memory delay,
the design is said to be computation bounded, with the bound
referred to as the computation roof throughput. Otherwise, it
is said to be memory bounded, with the bound referred to as
the memory roof throughput. The computation roof throughput
(DSP_roof) is defined as

#operations(GOP)

DSP_delay(s)
#operations

2 x #MACs

where #operations is the number of operations and #MACs
is the number of MAC units. One MAC unit computes two
operations (one multiplication and one addition) at one clock
cycle. Therefore, the DSP_roof is determined by the number
of MAC units and the operating clock frequency. The memory
roof throughput (DRAM_roof) is defined as

DSP_roof(GOPS) =

DSP_delay(s) = x clock_period(s) (1)

i p
DRAM_roof(GOPS) = operations(GOP)
DRAM_delay(s)
#data(GB
DRAM_delay(s) = ata(GB) o

DRAM_BW(GB/s)

where DRAM_BW is the external memory bandwidth, and
#data is the data size of memory accesses including both
reading inputs/weights from DRAM and writing outputs to
DRAM. The roof throughputs (DSP_roof and DRAM_roof)
are shown in Fig. 8 for each Conv layer of different CNN
algorithms. The DSP_roof of Arria 10/Stratix 10 are computed
with different number of MAC units at 240/300 MHz, respec-
tively. The DRAM_roof is directly proportional to computation
to communication ratio (CTC) [10] by memory bandwidth,
e.g., 12 GB/s in Fig. 8. If DSP_roof is lower than DRAM_roof,
the design is computation bounded, otherwise it is memory
bounded. Obviously, the attainable throughputs are lower than
both roof throughputs. With relatively large intermediate fea-
ture map dimensions and kernel sizes, VGG-16 has a larger
CTC ratio or memory roof throughput than NiN, GooglLeNet,
and ResNet, which makes its implementation easier to be
computation bounded as shown in Fig. 8. By this means,
the increase of hardware resources, e.g., from Arria 10 to
Stratix 10, is expected to benefit the throughput improvements
of VGG-16 more than the other three algorithms, which will be
demonstrated in Section VII. The DSP_roof with 6272 MAC
units on Stratix 10 are already larger than DRAM_roof of most
layers in NiN, GoogLeNet and ResNet as in Fig. 8 that makes

5 03 E
o o}
%gmoo €]
3 83‘000 024
E= o
F 2000 *

0.1

1,000

0

4
5 e
@ o
29 Q
£ <
2 P
e 3
S o
H*

5,000

4,000

3,000

Throughput
(GOPS!
#Op. (GOP)

2,000

1,000

0
1.3 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Throughput

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

(d)

Operations (GOP)
— - - DSP_roof with 784 MAC units on Arria 10
— - -DSP_roof with 3,136 MAC units on Arria 10
= = =DSP_roof with 8,192 MAC units on Stratix 10

—o—DRAM_Roof at 12GB/s
— - -DSP_roof with 1,568 MAC units on Arria 10
DSP_roof with 6,272 MAC units on Stratix 10

Fig. 8. Roof throughputs are limited by computation resources and memory
bandwidth at different layers of diverse CNN algorithms. The computation
roof throughputs [DSP_roof(GOPS)] of Arria 10/Stratix 10 are computed with
different number of MAC units at 240/300 MHz, respectively. The memory
roof throughputs [DRAM_roof(GOPS)] are computed with 12 GB/s band-
width. The attainable peak throughput equals to min(DSP_roof, DRAM_roof).
If DSP_roof is lower than DRAM_roof, the design is computation bounded,
otherwise it is memory bounded.

the design memory bounded, which means the increase of the
number of MAC units to be 8192 will only bring insignifi-
cant performance enhancement. Limited by the utilization of
computation resources and the efficiency of external memory
accesses, the real throughput of one layer may not be able to
achieve the roof throughput of this layer.

VI. RECONFIGURABLE CNN COMPUTING MODULES
A. Convolution Modules (Conv)

Based on our convolution acceleration strategy, the module
template of Conv layer is designed as in Fig. 9, which follows
the computing architecture in [9]. There are Pox x Poy x Pof
independent PEs in Conv module, and each PE is an MAC
unit consisting of one multiplier followed by an accumulator.
With judiciously chosen loop unrolling scheme, both pixels
and weights are reused by multiple MAC units to reduce
buffer read operations. The partial sums are consumed inside
each MAC unit so that the movements of partial sums are
minimized.

430 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

PoxxPoy parallel outputs |—> Poy H —
serialized into Poy cycles __I __l __I
oo i fundh I
Output Pixel Buffers e Pox Pox Pox | &
S 3 oX 5
T QNOTNOTNM(A af X - = = ©
CNOTNRTNR N = = =]
I ‘E‘E‘E‘é‘é‘é‘é?‘éi’?" 2| | fadH fond| |2,
w Bi) Y
R mxry: s ™ N g
— the Y-throwin
8 the X-th feature map # ompii;nap I I MA(i,j
¥ Pox
FN("J\—N(\’)‘—N(V)§ é X Pox N
== BRBBOG e + (e D
I EEEEEEEEE«? 3| adlH uadiH [uadk
¥ Pox Pox Pox EE
Bias]
o of szl [Data Router NE
sl 5 <E A “
S| S
3 S| <B| [Aga—d vi 3|
1 1r2 2
Conv Control Logic mir mr e
m%ré m2r2 S
m2r:
. <<
Input Pixel Buffers nqg% m%ﬁz m3r2

Fig. 9. Convolution computing module (Conv) including buffers, where one
MAC is composed of one multiplier followed by an accumulator.

The local control logic inside the Conv module receives
the start flag signal from global control logic and controls
the sequential computation of the four convolution loops. It
is composed of multiple counters, which iterates from 0 to
the dimensions of the feature and kernel maps, the number
of input and output feature maps, respectively. These parame-
ters are read from configuration registers by the global control
logic during runtime. By this means, for different Conv layers,
the compiler only needs to generate associated parameters for
each layer and maintain the same logic implementation. The
combination of the counter values in local control logic gener-
ates the buffer read and write addresses. Instead of assigning
individual Conv module for each Conv layer as in [16], the
computing module in this paper is reused by all the layers
of the same type, thanks to the uniform mapping of PEs and
shared local control logic.

The data router [9] inside the Conv module is used to
reshape the data form and continuously feed input pixels from
buffers into MAC units. It is comprised of multiple data buses
to handle the dataflow of different configurations of sliding
strides and zero paddings for different Conv layers. The con-
trol logic governs the switch among different data buses for
the corresponding layer. The data router can easily handle dif-
ferent kernel sizes without penalty of idle clock cycles and
additional logic resources, which is realized by sequentially
sliding the kernel window (Pkx = Pky = 1). The compiler
only needs to change the iteration boundary of the counters
inside the control logic for the corresponding kernel size.

There are Pox x Poy x Pof parallel outputs from the MAC
units, and they are serialized into Poy consecutive clock cycles
to reduce the required number of bias adders and the data
width of output buffers. The Pox x Pof outputs are further
serialized to be Poxx #OUTBUF using multiplexers with out-
put feature maps stacked in the output buffer as shown in
Fig. 9.

B. Pooling Modules (Pool)

Pooling layer (Pool) is commonly employed to reduce the
dimensionality of feature maps by replacing pixels within a

Addess, [550L | [POOL}— [POOL—
LT NPy ¥ 3
B|n B B
2= |[Pooui- [Foot|
o POOL POOL POOL
N o ¥ 3 a
XN N o
ojE EE IS
- 2
S — oL |[POOLJq|/[POOL||[POOL o
R v 2 ¥ £3
¥®
© %Eddgress | Pool Data Router | E -:“C—’
o _Write | M " & sz
S [Address LI 1¥ [NEEK: 03 & >--><
S| Read [M r1 | o|| m2r1 m3rl |2 =2
5 m1r2 | 8[| m2r2 m3r2 |5 X*
Slstat | m1r3 | £f| m2r3 m3r3 (X EE
Ole—o m1ird | 3| m2r4 m3r4 |
3 |done m1r5 m2r5 m3r5 | 3
Q| m1r6 m2r6 m3r6 | £
Fig. 10. Max-pooling computing module (Max-Pool) including buffers,

where the POOL blocks are Max-Pool PEs of comparators [14].

pooling sliding window by their maximum or average value.
Pool only needs pixels from its previous layer, so it can be
treated as an affiliated layer to eliminate DRAM accesses as
in [9] and [16]. However, the loop design variables of Pool
must depend on its key layer and this dependency can worsen
the design flexibility. If the key layer has Toy < Noy, the
pixels of one sliding window may be separated into two tiles,
which demands the storage of pixels from the last tile and
causes imbalance of pooling operations across tiles. Therefore,
we treat Pool as a key layer to enable independent design
configurations at the cost of DRAM access delay. Considering
the small number of Pool layers in CNNs, the overhead in the
total latency is insignificant. Since average-pooling (Ave-Pool)
is normally at the end, where Noy is small with Toy = Noy,
it is not affected by the tiling problem. To that end, we still
implement Ave-Pool as an affiliated layer by reading input
data directly from output buffers of its previous layer.

The Max-Pool module is shown in Fig. 10, which consists
of local control logic, register arrays, and PEs. The difference
from the Ave-Pool module is that the input data are from out-
put buffers. The counters inside the local control logic control
the sliding within one feature map and across different fea-
ture maps, and generate the buffer read and write addresses.
The Pool PEs (“POOL” component in Fig. 10) are either com-
parators for Max-Pool or accumulators followed by constant
coefficient multipliers for Ave-Pool. Pixels from one feature
map are stored in one input buffer and processed by one row
of PEs as illustrated in Fig. 10. The different data storage
pattern in the input buffers from that of Conv layer is han-
dled by the data scatter module. The column size of PE array
is constrained by the input buffer output width and the row
size equals to the number of used input buffers, which can
be adjusted before compilation. The data router in Pool is
employed to ensure continuous feeding of pixels into PEs
without idle cycles.

C. Batch Normalization and Scale (Bnorm)

Batch normalization followed by scale has been commonly
used in recent CNN models [4], [6], enabling fast training

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS 431

convergence. Their operations are depicted in

x — bn0
= (3)
YT bt
z=1sc0 x y+ scl. (@)

During the inference process, bn0, bnl, scO, and scl are all
constants for each output feature map along Nof. Therefore,
we can combine batch normalization with scale (Bnorm) to be
a single equation

=Axx+B (5)

where A = sc0/+/bnl and B = scl — sc0 x bn0/+/bnl.
However, (5) still requires multipliers and adders that are
expensive. To further save the computation resources, we con-
tinue to merge Bnorm with its preceding Conv layer. The
convolution operation can be briefly expressed as

Nif x Nky x Nkx

2.

ni=1

x(no) = p(ni) x w(ni, no) + bias(no)

no € [I,Nof] (6)

where p(ni) is the input pixel and w(ni, no) is the kernel
weight, and the Conv output, e.g., x(n0), is the input to Bnorm
in (5). After applying (6) to (5), we have

Nif x Nkyx Nkx

2

ni=1

+ A(no) x bias(no) + B(no), no € [1, Nof]. (7)

z(no) = p(ni) x A(no) x w(ni, no)

By this mean, the Conv layer merged with Bnorm has new
weights as A(no) x w(ni,no) and new biases as A(no) x
bias(no) 4+ B(no), with no € [1, Nof]. Then, we can get rid
of the Bnorm computations during inference, and the new
weights and biases of Conv are precomputed off-line to replace
the original data. Therefore, there is no Bnorm module in
Fig. 5.

D. Element Wise (Eltwise)

The Eltwise layer performs element-wise addition to con-
nect two branches of layers in ResNet CNNs as shown in
Fig. 1. As discussed in Section IV, we serially compute the
two branches. Eltwise is treated as an affiliated layer to the key
Conv layer in one branch and the other branch is computed
first.

Eltwise is performed after its previous layer in the same
branch has stored all the results into the output buffers. Then,
the pixels from the other branch are read from DRAM and
written into the input pixel buffers. Subsequently, the pix-
els from the two branches are element-wise added by the
adders and finally stored back into the output pixel buffers,
as illustrated in Fig. 11. The output buffers are implemented
as dual-port RAMs so that the adder results can be written
back to the output buffers at their addends original locations
without using additional buffers. A few pipeline stages are
introduced in the adders to avoid the conflict of writing and
reading at the same output buffer address.

Output Pixel Buffers

TuoTao
__iYes EEEEEEE Adder
Read pixels of the other| —
branch from DRAM & TR
write input buffers % %‘ % g % g [Adder
! TR YL
Read input and output EEELEEH Adder
pixel buffers Zy
Read Addr. ¥ L2 ¥
[Eitwise additon | eAddil fmart | fm2rt | | m3r |2
Eltwise [Addr m1r2 || m2r2 | [m3r2 | |5
Control m1r3 | | m2r3 | | m3r3 | [
[ComputeReLU | Logic start m4r1 | | m5r1 | | mér1
done m4r2 | | m5r2 | | m6r2
[write to output buffers | - m4r3 | | m5r3 | | mér3

Input Pixel Buffers

(a)

Fig. 11. (a) Eltwise execution schedule. (b) Eltwise module architecture [14].

E. Concat Layer

The Concat layer is used to concatenate the outputs of
multiple layers together as shown in Fig. 1. In this paper,
we assume the concatenation is only along multiple chan-
nels and all the input layers must have the same feature map
sizes (Nix x Niy), which is the case for GooglLeNet [5] and
Inception [6]. If the inputs of one layer is from Concat, the
compiler generates DMA descriptors that control DMA to read
multiple layers of the Concat from different DRAM addresses
as the inputs. Since there is no computation in Concat, it does
not add overhead to the hardware.

F. Fully Connected

The FC layer can be treated as a special form of Conv with
kernel size as Nkx x Nky = 1 x 1 and feature map size as
Nox x Noy =1 x 1. As the kernel weights are not shared by
pixels of one feature map, FC layer normally has a large vol-
ume of weights but with only a few operations, which makes
FC layers memory intensive. Therefore, FC layers reuse the
weight buffers with Conv layers, and the dual buffer technique
is still used to overlap the memory delay with computation,
which improves the FC latency especially for VGG implemen-
tation with heavy FC layers. The parallel computation of FC
matrix-vector multiplication is only employed across different
output feature maps such that only one pixel is multiplied with
multiple weights simultaneously, and the MAC units in Conv
are reused for FC layers.

VII. EXPERIMENTAL RESULTS
A. Experimental Setup

The proposed CNN compilation methodology is demon-
strated by accelerating the inference process of both conven-
tional CNNs, e.g., NiN and VGG, and complex DAG form
CNNs, e.g., GoogleNet and ResNet, on two Intel FPGAs.
The two Intel FPGAs, e.g., Arria 10 GX 1150/Stratix 10 GX
2800 FPGA, consist of 427K/933K adaptive logic modules
(ALMs), 3036/11 520 fixed-point 18-bit x 18-bit DSP blocks,
and 2713/11721 M20K BRAM blocks, where each M20K
BRAM exhibits 20 Kbit storage. The underlying FPGA boards
for Arria 10 and Stratix 10 are Nallatech 385A and Stratix
10 GX FPGA Development Kit, respectively, and both are

432 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

equipped with DDR3 DRAM with theoretical peak memory
bandwidth of 16.9 GB/s. The power consumption of Arria 10
and Stratix 10 boards are about 40 and 100 W, respectively,
based on the datasheet specifications. The compiled Verilog
scripts are synthesized by Quartus Prime. The fixed point
data representation is employed by the compiler with dynamic
quantization, which dynamically adjusts the decimal point
according to the ranges of data values in different layers
to fully utilize the existing data width [9], [17]. The data
precision can be tuned to trade classification accuracy for
hardware utilization and throughput.

B. Parallel Computation Efficiency

Considering that the DSP blocks in Arria 10 and Stratix 10
can implement 3036 and 11520 fixed-point multipliers for
MAC units, respectively, the maximum number of MAC units
on the two FPGAs can be around 3000 and 11000, respec-
tively. To achieve better performance with higher parallelism,
we attempt to maximize the usage of DSP blocks for the MAC
operations. Based on the optimized acceleration strategy, the
parallel or unrolled loop computations are within one feature
map (Pox x Poy) and across multiple output channels (Pof).
Since the feature map sizes (Nox x Noy) and the number of
output channels (Nof) vary significantly across different lay-
ers in different CNN algorithms, the loop unrolling degree
and shape may not perfectly match the feature map size and
dimension, which causes inefficient utilization of DSP blocks
or MAC units. Therefore, the DSP efficiency [18] is defined
to measure how well the parallel computation scheme matches
the convolution loop dimension

#effective ops.

DSP_efficiency = (®)

#actual performed ops.’
The DSP efficiency of different convolution layers is shown
in Fig. 12 using GooglLeNet as an example. Although
Fig. 12(a)—(d) have the same number of parallel MAC units
(Pox x Poy x Pof = 3136) on Arria 10, their loop unrolling
shape is different, which results in significant difference of the
overall DSP efficiency from 0.63 to 0.93. The first several lay-
ers of GoogleNet have large feature map sizes, e.g., 114x 114
and 57 x 57, so that the loop unrolling sizes, e.g., 28 x 7 and
14 x 14, can be easily fit into the feature maps. The layers at the
end have small feature map sizes, e.g., 14x 14 and 7x 7, which
leads to DSP efficiency degradation except for Fig. 12(c) with
small Pox x Poy =7 x 7. However, GoogLeNet still has lay-
ers with small number of output channels, e.g., 16 and 32, in
the middle, which hurts the DSP efficiency of Fig. 12(c) with
large Pof = 64. Finally, Fig. 12(c) and (d) show similar over-
all DSP efficiency, and they are better than the other unrolling
scenarios. Stratix 10 in Fig. 12(e) has larger parallel degrees
(=14 x7 x 64) than Arria 10, which makes it more difficult to
exactly match the loop dimensions of all the layers and results
in lower DSP efficiency.

C. Performance Analysis

The throughput of the CNN accelerator is collectively deter-
mined by the employed computation resources and memory

810 047
308) 038
B 06 Overall DSP Efficiency: 0.63 [}
& o 02~
0.4 VTN \ o1&
a 0.2 T
800 0
183 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
Convolution Layer # Operations (GOP) ——Arria 10 (28x7x16 = 3,136 MACs)
(a)

310 045
508 V V : 03Q
G0 Overall DSP Efficiency: 0.81 Q
S 0.6 0.2
Foa s
902 0.1 °
200 0

135
Convolution Layer

7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
Operations (GOP) —e—Arria 10 (14x14x16 = 3,136 MACs)

(b) vor

1.0
0.8 033
0.6 Qvgrall DSP Bfficiency: 093 0.2
04 q
02 010
0.0

**

DSP Efficiency

1 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

3
Convolution Layer # Operations (GOP) —e—Arria 10 (7x7x64 = 3,136 MACs)

(©) -

| s
. - 03Q
; Overall DSP Efficiency: 0.92 02 [©)

018
*

DSP Efficiency
cococoo~
oNvboO®O

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
Convolution Layer # Operations (GOP) —=—Arria 10 (14x7x32 = 3,136 MACs)

310 g-‘; z
S 3;2 Owfall BSP Eficiency: 0.87 (7 €
Ho4 1
o 02 018
% 00 0

o

13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
Operations (GOP) —+—Stratix 10 (14x7x64 = 6,272 MACs)

(e)

Convolution Layer

Fig. 12. DSP efficiency of different convolution layers in GoogLeNet is
shown to measure the degree of matching between loop dimensions and loop
unrolling (Pox x Poy x Pof), where (a)—(d) have the same size of loop unrolling
(=3136) but with different shapes, and (e) has larger loop unrolling size with
6272 MAC units.

bandwidth as discussed in Section V-E, as well as the DSP
efficiency, the number of external memory accesses, and
the overlapping of computation and memory transactions.
The throughput of each convolution layer in ResNet-50,
GooglLeNet, and VGG-16 is shown in Fig. 13 with different
number of MAC units on Arria 10 (running at 240 MHz) and
Stratix 10 (running at 300 MHz). If the memory bandwidth
is unlimited, the shape of the throughput curve should well
match their corresponding DSP efficiency curve. However,
with limited memory bandwidth, layers with small number of
operations or small CTC ratios tend to be memory bounded,
e.g., Conv #1 in VGG-16, Conv #7 in GoogLeNet, and
Conv #3 in ResNet-50 in Fig. 13. With the increased num-
ber of MAC units, the design is more likely to be memory
bounded with the same memory bandwidth, which limits fur-
ther improvement of throughput by using more MAC units. As
expected in Section V-E, layers in VGG-16 have large CTC
on Arria 10 and Stratix 10, whose throughputs can be sig-
nificantly improved with the increase of MAC units. On the
contrary, a lot of layers in ResNet and GoogLeNet are memory
bounded, especially for Stratix 10, which limits the additional
improvement of throughput on Stratix 10.

As mentioned in Section VII-B, even if the number of MAC
units is the same, the different loop unrolling shapes may con-
siderably impact the DSP efficiency, which will further affect
the performance. The effect of different loop unrolling shapes
on the throughput of different CNNs is shown in Fig. 14 on
Arria 10 with 3136 MAC units. Although the loop unrolling
of 14 x 14 x 16 has worse DSP efficiency than 7 x 7 x 64 for

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS 433

N
o
=3
<3
=3
~

OPS;
o
w

o o <
e N
of Operations (GOP)

0 0.0
1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

o
~

& 5
g ’ 03@
@ 1,500 @
= 0.2%
2 ©
g" 5
3 019
<]
= =
0.0
5,000 40
& 35 g
4,000
& 4,
[} 30 @
9 3,000 25 @
5 2.0 %
£ 2,000 15§
3
° 1.0 O
£ 1,000 b
= 05 &
0 0.0
1 2 3 4 5 6 7 8 9 10 11 12 13
(©

Operations (GOP) Arria 10 (7%7x16 = 784 MACs) ~ —s—Arria 10 (7x7x32 = 1,568 MACs)
—e—Arria 10 (14x7x32 = 3,136 MACs) —+—Stratix 10 (14x7x64 = 6,272 MACs) —+ Stratix 10 (16x8x64 = 8,192 MACs)

Fig. 13. Throughput of each convolution layer in ResNet-50, GoogLeNet,
and VGG-16 with different number of MAC units on Arria 10 (240 MHz)
and Stratix 10 (300 MHz).

1,450

o 1,350
G
Q 1:250 ——NiN
5 1,150
a2 VGG-16
2 1,050
o ——GooglLeNet
£ 950
= ResNet-50
S 850
3
S 750
s
8 50 = L —
550 :
28x7x16 14x14x16 7x7x64 14 %7 x32

=3,136 MACs =3,136 MACs =3,136 MACs = 3,136 MACs

Fig. 14. Convolution throughput of different CNNs on Arria 10 with the
same number of MAC units is affected by the shape of loop unrolling (Pox x
Poy x Pof).

GoogLeNet in Fig. 12 resulting in longer computation latency,
the throughput of 14 x 14 x 16 is higher than that of 7 x 7 x 64
in Fig. 14, which means 14 x 14 x 16 of GoogLeNet allows
better overlapping of computation and memory communica-
tion that overcompensates its longer computation time. The
loop unrolling configuration of 14 x 7 x 32 shows supreme
throughput than other configurations for all the CNNs in
Fig. 14, thus we take it as our optimal choice for the Arria 10
implementation.

The convolution throughputs of different CNNs on Arria 10
and Stratix 10 with different number of MAC units are shown
in Fig. 15(a). As mentioned before, most layers in VGG-16
have large CTC ratios that makes them more likely to be
computation bounded, thus the throughput improvement of
VGG-16 can benefit more from the increase of MAC units

3,500 —e—=NiN

-=-VGG-16 - 8
3,000 —~GooglLeNet Q > =
2 ResNet-50 = Q o8
O 2,50 % 8 = x5
o 8 2 bl od R
5 2,000 g = =N =3 B
E ez 28 g g g
< 1,500 st oo g 33 &
s e <y 3 % -
O 1,000 R = s
% /-/ =
~ X
500 /é/?_—‘
0 # of DSPs/MACs
0 784 1568 2352 3136 3920 4704 5488 6272 7056 7840 8624
(a)
050
05 \/\. _
o 3 (8}
%) g = <
0.40 < -
[a] = —+NiN 5] 2
~ © < o
D 03 2 o8 —=-VGG-16 s eg
S Q @@ —~—GoogLeNet oR £
o 030 = 24 ResNet-50 x o &
> oy 2% %) o <
S 025 R T2 X Eo &
3 st = 2 R
o Ey Eu 3+ X ©
0.20 g g = > <
x % <
> ~ Al
0.15 3
010 # of DSPS/MACs
0 784 1568 2352 3136 3920 4704 5488 6272 7056 7840 8624
Fig. 15. (a) Compiler is scalable to change the number of MAC units

(Pox x Poy x Pof) to trade throughput for resource usage, e.g., DSP blocks.
The increasing of throughputs with more MAC units are saturating due
to lower DSP efficiency and limited memory bandwidth. (b) With the
increased number of DSPs, the convolution throughputs normalized to one
DSP (Conv GOPS/DSP) tend to decrease due to the saturation of throughputs.

than the other three CNNs. The implementations of NiN,
GoogleNet, and ResNet with 6272 MAC units on Stratix 10
are already memory bounded so that more MAC units can only
result in negligible throughput improvement, meanwhile more
hardware resources are needed. If we target at smaller FPGA
devices with less computation resources, e.g., DSP and logic,
the compiler is scalable to decrease the number of MAC units
by assigning smaller loop unrolling size to reduce the resource
requirements at the cost of lower performance. The normal-
ized convolution throughputs (Conv GOPS/DSP) are shown
in Fig. 15(b) to measure the performance provided by a sin-
gle DPS block or MAC unit, which tend to decrease with
more MAC units as the throughputs are saturated due to the
lower DSP efficiency and limited memory bandwidth. VGG-16
exhibits higher normalized throughputs than other algorithms
due to the higher CTC ratio to benefit more from the increase
of DSP blocks.

D. Results of the CNN Inference Accelerator

The specifications and performance of the proposed com-
piler configured CNN FPGA accelerators are compared in
Table 1. As discussed before, although Stratix 10 provides
>3.3x higher computation capability than Arria 10, the over-
all throughput improvements of Stratix 10 over Arria 10
are from 1.06x to 1.66x due to the lower DSP effi-
ciency and limited external memory bandwidth, which con-
siderably reduce the normalized throughputs (GOPS/DSP)
of Stratix 10. Suffered from heavy FC layers, which are
memory bounded, the overall throughput of VGG-16 on
Arria 10/Stratix 10 (968/1604 GOPS) is much lower than

434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

TABLE I
COMPARISON OF THE COMPILED CNN ACCELERATORS ON ARRIA 10 AND STRATIX 10 FPGAS (BATCH SIZE = 1)

CNN NiN VGG-16 GoogLeNet ResNet-50 ResNet-152
of Operations (GOP) 22 30.95 3.18 7.74 22.62
of Parameters 759 M 1383 M 6.07 M 255 M 60.4 M
Weight/Pixel Precision (fixed) 16 bit 8/16 bit 16 bit 16 bit 16 bit
FPGA / Tech. Intel Arria 10 GX 1150 / 20 nm
Clock 240 MHz 240 MHz 240 MHz 240 MHz 240 MHz
Pox x Poy x Pof 14 x 7 x 32 14 X 7 x 32 14 X 7 x 32 14 X 7 x 32 14 x 7 x 32
DSP Blocks 3,036 (100%) 3,036 (100%) 3,036 (100%) 3,036 (100%) 3,036 (100%)

Logic (ALMs)
On-chip RAM (M20K)

256K (60%)
1,605 (59%)

208K (49%)
2,319 (85%)

277K (65%)
1,849 (68%)

286K (67%)
2,356 (87%)

335K (78%)
2,692 (99%)

Latency/Image (ms) 3.01 31.97 6.05 12.87 32.37
Overall Throughput (GOPS) 732.36 968.03 524.98 599.61 697.09
GOPS/DSP 0.24 0.32 0.17 0.20 0.23
FPGA / Tech. Intel Stratix 10 GX 2800 / 14 nm
Clock 300 MHz 300 MHz 300 MHz 300 MHz 300 MHz
Pox x Poy x Pof 14 X 7 x 64 16 X 8 x 64 14 X 7 x 64 14 X 7 x 64 14 X 7 x 64
DSP Blocks 6,304 (55%) 8,216 (71%) 6,304 (55%) 6,304 (55%) 6,304 (55%)

Logic (ALMs)
On-chip RAM (M20K)

487K (52%)
1,915 (16%)

469K (50%)
2,421 (21%)

528K (57%)
1,949 (17%)

559K (60%)
3,014 (26%)

623K (67%)
3,350 (29%)

Latency/Image (ms) 2.56 19.29 5.70 11.85 28.59
Overall Throughput (GOPS) 858.66 1604.57 557.08 651.49 789.44
GOPS/DSP 0.14 0.20 0.09 0.10 0.13
the convolution throughput (1402/3309 GOPS), respectively. “© l
The latency improvements brought by dual buffer structure z” Aria 10
is shown in Fig. 16. Since the computation and the memory g > '
. . o 10 S — __:_—,,‘.:.'- ----
FransacFlon cannot be perfectly fully ove.rlapped as mentioned i o
in Section V-D, the actual total latency is larger than the the- ° NiN VGG-16 GoogLeNet Reset-50 Resnet. 152
oretical minimum latency, which equals to the larger one of w0
computation delay and DRAM delay. As the Stratix 10 FPGA = 2
board has only one DRAM bank, we also keep using one s » I State0
DRAM bank for the Arria 10 implementation for comparison 8 5 rcdl SN ﬁﬂ_,,.ﬂf"‘:"
purposes in this paper. Therefore, the throughput of ResNet on 0 - |
Arria 10 is lower than that in [14] using two DRAM banks, Computation Detey . e RAM ;::;'(:’5) ootz
even though the dual buffer structure iS used iIl thlS paper. - & -Total Delay without Dual Buffer (ms) --e--Total Delay with Dual Buffer (ms)
If the Arria 10 implementations in [14] also use one DRAM Fig. 16. Dual buffer structure is used to overlap computation delay with

bank, the throughputs of ResNet-50 and ResNet-152 could
be decreased to 440 GOPS and 530 GOPS, which are 1.36x
and 1.32x worse than this paper, respectively. Although the
external memory bandwidth in this paper is only half of that
in [14], the throughputs of NiN and VGG-16 are still 1.25x
and 1.34x higher than [14], respectively, mainly due to the
dual buffer structure, higher frequency and lower precision of
weights in VGG-16. Despite of smaller loop tiling sizes used
in this paper, the on-chip memory usage of M20K on Arria 10
is still higher than [14] due to the dual buffer structure, which
directly doubles the M20K consumption of buffers.

Aimed at deep CNNs, our compiler stores all the
weights and intermediate pixel results in DRAM by default.
Considering current trends toward compressed CNNs with dra-
matically reduced data bit-width and small CNNs for simpler
applications, it would be possible to fit the entire CNN model
into FPGA on-chip BRAM. The potential modification of our
compiler is to connect the DMA engine with a large enough
BRAM instead of DRAM serving as the global memory, while
retaining the computing architecture the same. With decreased
data size and precision, more MAC units, higher frequency,
and less memory access delay could be possible to obtain
higher throughput.

DRAM delay to reduce the overall total delay.

E. Comparison With Related Works

GPUs have been widely used to accelerate the training
and inference tasks of CNN algorithms, which are realized
by thousands of parallel processing cores, high operating
clock frequencies at GHz level, and large memory bandwith
of hundreds of GB/s. However, the power consumption of
high performance GPUs is too high (>150 W) for power
constrained applications [17], [20]. Furthermore, GPUs are
best suited to process large batches of images together to
fully utilize all the resources and realize high throughput
(>1TFLOPS) at the cost of longer latency per image,
which does not benefit the latency-critical applications, e.g.,
autonomous drive, that require real-time recognition results.
On the other hand, numerous hardware accelerators based on
application specific integrated circuits (ASICs) are recently
developed achieving impressively high energy efficiency, e.g.,
up to 10 TOPS/W with 4-bit precision in [23] or even higher
for fixed custom accelerators with binary precision [24].
However, CNNs with binary precision often incur accuracy
loss, the ASIC-based accelerators are too specific to efficiently

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS

435

TABLE II
RELATED WORKS ON AUTOMATED FPGA ACCELERATORS

| [19] [17] [20] [20] [21] [21] [14] [18] [22]
FPGA Zynq Zynq Ultrascale Virtex7 Stratix V Stratix V Arria 10 Arria 10 Stratix V
XC7Z045 XC7Z045 KU060 690t GSMDS5 GSMD5 GX 1150 GT 1150 GXA7
Tech. 28 nm 28nm 20 nm 28 nm 28 nm 28 nm 20 nm 20 nm 28 nm
Clock 100 MHz 150 MHz 200 MHz 150 MHz 150 MHz 150 MHz 200 MHz 232 MHz 200 MHz
CNN NiN VGG-16 VGG-16 VGG-16 VGG-16 ResNet-152 VGG-16 VGG-16 VGG-16
Precision fixed 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed 16 bit fixed 8-16 bit fixed 16 bit fixed
DSp? - 780 (87%) 1,058 (38%) 2,833 (78%) 2,072 (65%) 2,072 (65%) 3,036 (100%) 3,000 (99%) 512 (100%)
Logic® 183K (84%) 100K (31%) 300K (81%) 423K (25%) 423K (25%) 132K (30%) 313K (73%) 107K (46%)
RAM® - 486 (89%) - - - - 2,225 (82%) 1,668 (61%) 1,377 (713%)
Memory BW | 12.8 GB/s 12.8 GB/s 12.8 GB/s 14.9 GB/s 2x16.9 GB/s 19 GB/s 5 GB/s
Latency? 52 ms - - - - - 42.98 ms 26.85 ms -
GOPS 43 137 266 354 364.36 226.47 720.15 1,171.3 669.1
GOPS/DSP - 0.18 0.25 0.13 0.18 0.11 0.24 0.39 1.31

4 DSP configured as fixed-point 18-bit x 18-bit for Intel FPGAs and 18-bit x 25-bit for Xilinx FPGAs.

b Logic elements: Xilinx FPGAs in LUTs and Intel FPGAs in ALMs.

¢ On-chip memory: Xilinx FPGAs in BRAMs (36Kb) and Intel FPGAs in M20Ks (20Kb).
d Latency per image with batch size of one. References without latency reported may use batch size more than one to enhance throughput.

handle various CNN algorithms, and the long development
time of ASIC makes it difficult to catch up with the rapid
evolution of CNN algorithms.

Benefited from the high reconfigurability and the free-
dom to customize the architecture, FPGAs have gained
increasing popularity and there have been several works on
automatically generating FPGA accelerators for CNN algo-
rithms [16]-[22], [25], [26]. The performance and hardware
utilization of these related state-of-the-art works are listed in
Table II. Compared with previous works, our RTL compiler
exhibits higher flexibility by handling not only conventional
CNNs but also highly complex and irregular CNNs, e.g.,
GoogleNet and ResNet, through reconfigurable execution
schedule, on two different scale FPGAs, e.g., Arria 10 and
Stratix 10. Our compiled CNN accelerators also significantly
outperform prior works in terms of performance, which is
achieved by hardware level optimization to accelerate convo-
lution loops as in [9] with high hardware utilization and low
data communication.

In [19], AlexNet and NiN are implemented to evaluate their
FPGA accelerator generators. Our NiN implementation on
Arria 10 (20 nm and 3036 DSP) obtains ~17.3x speedup
compared to [19], which needs over 50 ms runtime on Xilinx
Zyng-7045 (28 nm and 900 DSP). Guo et al. [17] presented
a programmable and flexible CNN accelerator architecture,
where the fixed 3 x 3 convolver used to parallel compute
a kernel window could significantly degrade the DSP effi-
ciency and throughput for irregular CNNs with varying kernel
sizes, e.g., GooglLeNet and ResNet. Zhang et al. [20] proposed
an HW/SW co-designed CNN FPGA accelerator based on
high level synthesis (HLS). Our VGG-16 implementation on
Arria 10 provides 2.7x and 3.6x overall throughput enhance-
ment compared to [20] using Virtex7 690t (28 nm and 3600
DSP) and Ultrascale KU060 (20 nm and 2760 DSP) FPGAs,
respectively. Guan et al. [21] proposed FP-DNN framework
to automatically generate FPGA hardware to accelerate DNN
with RTL-HLS hybrid templates. Although the Stratix V
GSMD5 (28 nm and 3180 DSP) used in [21] has more DSP
blocks than our Arria 10, our accelerator on Arria 10 can
achieve 3.1x higher throughput for ResNet-152 by higher

frequency and DSP utilization through the loop optimization
technique [9]. Wei er al. [18] proposed an OpenCL-based
automation flow to generate CNN design from high level C
code to FPGA using systolic array architecture, which reduces
the global PE interconnect fanout to achieve high frequency
and resource utilization. The VGG-16 implementation on
Arria 10 in [18] has 1.19x better latency than ours, probably
because they have more efficient pipeline of dual buffering and
can achieve higher memory bandwidth, e.g., 19 GB/s, which is
especially important for memory bounded FC layers that com-
prise 28% of our Arria 10 VGG-16 total latency. However, [18]
only evaluated two conventional CNNs, e.g., AlexNet and
VGG-16, which have relatively regular data shape and network
structure. The framework proposed in [22] automatically gen-
erates CNN accelerators on a CPU 4 FPGA heterogeneous
computing platform, i.e., Intel HARP, where only the convolu-
tion layers are performed on FPGA except the first convolution
layer in AlexNet. By reducing the convolution operation com-
plexity by about 3x in frequency domain through algorithm
optimization, [22] achieves high normalized throughputs, e.g.,
1.31 GOPS/DSP, with a small number of DSPs, e.g., 512.
In [26], the fpgaConvNet framework for mapping a CNN onto
a Zyng-7000 FPGA platform is designed based on HLS and
evaluated on several relatively small CNN models, e.g., con-
volutional face finder, LeNet-5, and MPCNN. The automatic
CNN accelerator generation framework proposed in [25] is
designed based on proposed instruction set architecture and
accelerator template for both Intel and Xilinx FPGAs. The
absolute performance numbers are not reported in [25] so that
direct comparison cannot be made. Since our compiler gen-
erated accelerator is coded in Verilog, it is not difficult to
implement on FPGAs from other vendors by changing FPGA
board specified components, e.g., external memory controller.

VIII. CONCLUSION

In this paper, a library-based RTL compiler is proposed
to automatically generate customized FPGA accelerator for
the inference task of a given CNN algorithm, which enables
high-level mapping of CNN from software to FPGA and
keeps the benefit of low-level hardware optimization. An RTL

436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

library is developed to modularize the commonly used layers
in CNNs with hand coded Verilog templates. These building
block modules are built on the optimized acceleration strategy
and configured by the hardware design variables to be scal-
able for different FPGAs. The topology of the given CNN is
transformed into a DAG to configure the proposed execution
schedule that controls runtime layer-by-layer serial processing.
The flexibility of the proposed CNN compilation methodol-
ogy is demonstrated on two Intel FPGAs, e.g., Arria 10 and
Stratix 10, with different computing resources to implement
both traditional CNNs, e.g., NiN and VGG-16, and complex
CNNs, e.g., GoogleNet and ResNets. Our compiled CNN
accelerators on Stratix 10 exhibit superior performance com-
pared to prior automation-based works by >1.4x for various
well-known CNNs algorithms.

REFERENCES

[1] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis. (IJCV), vol. 115, no. 3, pp. 211-252,
2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Conf. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1-9.

[3] K. Simonyan and A. Zisserman. (2014). Very Deep Convolutional
Networks for Large-Scale Image Recognition. [Online]. Available:
http://arxiv.org/abs/1409.1556

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

[51 C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1-9.

[6] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proc. Conf. Artif. Intell. (AAAI), Feb. 2017, pp. 4278-4284.

[71 W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Comput.
Vis. (ECCV), Oct. 2016, pp. 21-37.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Conf.
Neural Inf. Process. Syst. (NIPS), Dec. 2015, pp. 1-9.

[91 Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the convolution

operation to accelerate deep neural networks on FPGA,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354-1367,

Jul. 2018.

C. Zhang et al., “Optimizing FPGA-based accelerator design for deep

convolutional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field

Programm. Gate Arrays (FPGA), 2015, pp. 161-170.

L. Song et al, “C-brain: A deep learning accelerator that tames the

diversity of CNNs through adaptive data-level parallelization,” in Proc.

Design Autom. Conf. (DAC), Jun. 2016, pp. 1-6.

K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual

networks,” in Proc. Comput. Vis. (ECCV), Oct. 2016, pp. 630-645.

Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-

ding,” in Proc. ACM Int. Conf. Multimedia, Nov. 2014, pp. 675-678.

Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “An automatic RTL compiler

for high-throughput FPGA implementation of diverse deep convolu-

tional neural networks,” in Proc. Int. Conf. Field Programm. Logic Appl.

(FPL), Sep. 2017, pp. 1-8.

M. Lin, Q. Chen, and S.

CoRR, vol. abs/1312.4400,

http://arxiv.org/abs/1312.4400

Y. Ma, N. Suda, Y. Cao, S. Vrudhula, and J.-S. Seo, “ALAMO:

FPGA acceleration of deep learning algorithms with a modularized RTL

compiler,” Integr. VLSI J., vol. 62, pp. 14-23, Jun. 2018.

K. Guo et al., “Angel-eye: A complete design flow for mapping CNN

onto embedded FPGA,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 37, no. 1, pp. 3547, Jan. 2018.

X. Wei et al., “Automated systolic array architecture synthesis for high

throughput CNN inference on FPGAs,” in Proc. Design Autom. Conf.

(DAC), 2017, pp. 1-6.

[10]

(11]

(12]

[13]

[14]

[15] Yan,

2013.

“Network in
[Online].

network,”
Available:
[16]

(17]

(18]

[19] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,” in Proc. Design Autom. Conf. (DAC), Jun. 2016, pp. 1-6.

C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neu-
ral networks,” in Proc. Int. Conf. Comput.-Aided Design (ICCAD),
Nov. 2016, pp. 1-8.

Y. Guan et al., “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc.
IEEE Int. Symp. Field Programm. Custom Comput. Mach. (FCCM),
Apr./May 2017, pp. 152-159.

H. Zeng, R. Chen, C. Zhang, and V. K. Prasanna, “A framework
for generating high throughput CNN implementations on FPGAs,” in
Proc. ACM/SIGDA Int. Symp. Field Programm. Gate Arrays (FPGA),
Feb. 2018, pp. 117-126.

B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision:
A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
FDSOL,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2017, pp. 246-247.

D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
always-on 3.8uJ/86% CIFAR-10 mixed-signal binary CNN processor
with all memory on chip in 28nm CMOS,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), Feb. 2018, pp. 222-224.

H. Sharma et al., “From high-level deep neural models to FPGAs,” in
Proc. IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2016, pp. 1-12.
S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,” in Proc. IEEE Int.
Symp. Field Programm. Custom Comput. Mach. (FCCM), May 2016,
pp. 40-47.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Yufei Ma (S’16) received the B.S. degree in
information engineering from the Nanjing University
of Aeronautics and Astronautics, Nanjing, China, in
2011 and the M.S.E. degree in electrical engineering
from the University of Pennsylvania, Philadelphia,
PA, USA, in 2013. He is currently pursuing the
Ph.D. degree with Arizona State University, Tempe,
AZ, USA.

His current research interests include high-
performance hardware acceleration of deep learning
algorithms on digital application-specified integrated
circuit and field-programmable gate array.

Yu Cao (S’99-M’02-SM’09-F’17) received the
B.S. degree in physics from Peking University,
Beijing, China, in 1996 and the M.A. degree in bio-
physics and the Ph.D. degree in electrical engineer-
ing from the University of California at Berkeley,
Berkeley, CA, USA, in 1999 and 2002, respectively.

He was a summer intern with Hewlett-Packard
Labs, Palo Alto, CA, USA, in 2000, and the IBM
Microelectronics Division, East Fishkill, NY, USA,
in 2001. He was a Post-Doctoral Researcher with
the Berkeley Wireless Research Center, Berkeley,
CA, USA. He is currently a Professor of electrical engineering with Arizona
State University, Tempe, AZ, USA. He has published numerous articles
and two books on nano-CMOS modeling and physical design. His current
research interests include physical modeling of nanoscale technologies, design
solutions for variability and reliability, reliable integration of post-silicon tech-
nologies, and hardware design for on-chip learning.

Dr. Cao was a recipient of the 2012 Best Paper Award at IEEE Computer
Society Annual Symposium on VLSI, the 2010, 2012, 2013, 2015, and
2016 Top 5% Teaching Award, Schools of Engineering, Arizona State
University, the 2009 ACM SIGDA Outstanding New Faculty Award, the
2009 Promotion and Tenure Faculty Exemplar, Arizona State University, the
2009 Distinguished Lecturer of IEEE Circuits and Systems Society, the 2008
Chunhui Award for Outstanding Oversea Chinese Scholars, the 2007 Best
Paper Award at International Symposium on Low Power Electronics and
Design, the 2006 NSF CAREER Award, the 2006 and 2007 IBM Faculty
Award, the 2004 Best Paper Award at International Symposium on Quality
Electronic Design, and the 2000 Beatrice Winner Award at International
Solid-State Circuits Conference. He has served as an Associate Editor of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED
CIRCUITS AND SYSTEMS, and on the technical program committee of many
conferences.

MA et al.: AUTOMATIC COMPILATION OF DIVERSE CNNs ONTO HIGH-PERFORMANCE FPGA ACCELERATORS 437

Sarma Vrudhula (M’85-SM’02-F’16) received the
B.Math. degree from the University of Waterloo,
Waterloo, ON, Canada, and the M.S.E.E. and Ph.D.
degrees in electrical and computer engineering from
the University of Southern California, Los Angeles,
CA, USA.

He is a Professor of computer science and engi-
neering with Arizona State University, Tempe, AZ,
USA, and the Director of the NSF I/UCRC Center
for Embedded Systems. He was a Professor with
the ECE Department, University of Arizona, Tucson,
AZ, USA. He was on the Faculty of the EE-Systems Department with the
University of Southern California. He is recently investigating nonconven-
tional methods for implementing logic, including technology mapping with
threshold logic circuits; the implementation of threshold logic using resistive
memory devices; and the design and optimization of nonvolatile logic. He
was also the Founding Director of the NSF Center for Low Power Electronics,
University of Arizona. His current research interests include design automation
and computer-aided design for digital integrated circuit and systems, focus-
ing on low power circuit design, and energy management of circuits and
systems, energy optimization of battery powered computing systems, includ-
ing smartphones, wireless sensor networks, and IoT systems that relies energy
harvesting; system level dynamic power and thermal management of multicore
processors and system-on-chip; statistical methods for the analysis of process
variations; statistical optimization of performance, power and leakage; and
new circuit architectures of threshold logic circuits for the design of ASICs
and FPGAs.

Jae-Sun Seo (S’04-M’10-SM’17) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2001 and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Michigan, Ann Arbor, MI, USA, in
2006 and 2010, respectively.

From 2010 to 2013, he was with IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA,
where he was on cognitive computing chips under
the DARPA SyNAPSE Project and energy-efficient
integrated circuits for high-performance processors.
In 2014, he joined the School of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, AZ, USA, as an Assistant Professor. In
2015, he was with the Intel Circuits Research Lab, Santa Clara, CA, USA,
as a Visiting Faculty. His current research interests include efficient hard-
ware design of machine learning and neuromorphic algorithms and integrated
power management.

Dr. Seo was a recipient of the Samsung Scholarship from 2004 to 2009,
the IBM Outstanding Technical Achievement Award in 2012, and the NSF
CAREER Award in 2017.

\.‘

