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Abstract. We construct examples of Lipschitz continuous functions, with pathological subgra-
dient dynamics both in continuous and discrete time. In both settings, the iterates generate
bounded trajectories, and yet fail to detect any (generalized) critical points of the function.
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1 Introduction

The subgradient method plays a central role in large-scale optimization and its numerous appli-
cations. The primary goal of the method for nonsmooth and nonconvex optimization is to find
generalized critical points. For example, for a locally Lipschitz continuous function f , we may
be interested in finding a point x satisfying the inclusion 0 ∈ ∂f(x), where the symbol ∂f(x)
denotes the Clarke subdifferential.1 The main difficulty in analyzing subgradient-type methods
is that it is unclear how to construct a Lyapunov potential for the iterates when the target
function is merely Lipschitz continuous. One popular strategy to circumvent this difficulty is
to pass to continuous time where a Lyapunov function may be more apparent. Indeed, for
reasonable function classes, the objective itself decreases along the continuous time subgradient
trajectories of the function. For example, this is the path classically followed by Benäım et
al. [3, 4], Borkar [8], Ljung [27], and more recently by Davis et al. [17] and Duchi-Ruan [18].

Setting the formalism, consider the task of minimizing a Lipschitz continuous function f
on Rd by the subgradient method. It is intuitively clear that the asymptotic performance of
the algorithm is dictated by the long term behavior of the absolutely continuous trajectories
γ : [0,∞)→ Rd of the associated subgradient dynamical system

−γ̇(t) ∈ ∂f(γ(t)) for a.e. t ∈ [0,∞). (1)

Asymptotic convergence guarantees for the subgradient method, such as the seminal work of
Nurminskii [31] and Norkin [32], and the more recent works of Duchi-Ruan [18] and Davis et
al. [17], rely either explicitly or implicitly on the following assumption.

- (Lyapunov) For any trajectory γ(·) emanating from a noncritical point of f , the composi-
tion f ◦ γ must strictly decrease on some small interval [0, T ).

For example, it is known that the Lyapunov property holds for any convex [11,12], subdifferen-
tially regular [17,28], semi-smooth, and Whitney stratifiable functions [17]. Since this property
holds for such a wide class of functions, it is natural to ask the following question.

1The subdifferential ∂f(x) is the convex hull of all limits of gradients taken at points approaching x, and at
which the function is differentiable.
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– Is the Lyapunov property simply true for all Lipschitz continuous functions ?

In this work, we show that the answer is negative (c.f. Subsection 3.1). Indeed, we will show that
there exist pathological Lipschitz functions that generate subgradient curves (1) with surprising
behavior. As the first example, we construct (see Proposition 3) a Lipschitz continuous function
f : R2 → R and a subgradient curve γ : [0, T ) → R2 emanating from a non-critical point γ(0),
such that f ◦ γ increases α-linearly (for some α > 0):

f(γ(t))− f(γ(0)) ≥ αt , for all t ∈ [0, T ].

In particular, the Lyapunov property clearly fails. Our second example presents a Lipschitz
function f : R4 → R and a periodic subgradient curve γ : [0,∞) → Rd that contains no critical
points of f . In particular, the limiting set of the trajectory γ(·) is disjoint from the set of critical
points of the function f (see Theorem 5 in Subsection 3.2). Our final example returns to the
discrete subgradient method with the usual nonsummable but square summable stepsize. We
construct a Lipschitz function f : R4 → R, for which the subgradient iterates form a limit cycle
that is disjoint from the critical point set of f (c.f. Subsection 3.3). Thus the method fails to
find any critical points of the constructed function.

The examples we construct are built from so-called “interval splitting sets” (Definition 1).
These are the subsets of the real line, whose restriction to any interval is neither zero- nor full-
measure. Splitting sets have famously been used by Ekeland-Lebourg [20] and Rockafellar [35]
to construct a pathological Lipschitz function, for which the Clarke subdifferential is the unit
interval ∂f = [−1, 1] everywhere. Later, it was shown that functions with such pathologically
large subdifferentials are topologically [10] and algebraically generic [16] (see Section 2). Notice
the function above does not directly furnish a counterexample to the Lyapunov property, since
every point in its domain is critical. Nonetheless, in this work, we borrow the general idea
of using splitting sets to define Lipschitz functions with large Clarke subdifferentials. The
pathological subgradient dynamics then appear by an adequate selection of subgradients that
yields a smooth vector field with simple dynamics. It is worthwhile to note that in contrast
to the aforementioned works, the functions we construct trivially satisfy the conclusion of the
Morse-Sard theorem: the set of the Clarke critical values has zero measure.

Although this work is purely of theoretical interest, it does identify a limitation of the
subgradient method and the differential inclusion approach in nonsmooth and nonconvex op-
timization. In particular, this work supports the common practice of focusing on alternative
techniques (e.g. smoothing [23, 30], gradient sampling [13]) or explicitely targeting better be-
haved function classes (e.g. weakly convex [1,31,36], amenable [33], prox-regular [34], generalized
differentiable [22,29,32], semi-algebraic [7, 25]).

2 Notation

Throughout, we let Rd denote the standard d-dimensional Euclidean space with inner product
〈·, ·〉 and the induced norm ‖x‖ =

√
〈x, x〉. The symbol B will stand for the closed unit ball in

Rd. For any set A ⊂ Rd, we let χA denote the function that evaluates to one on A and to zero
elsewhere. Throughout, we let m(·) denote the Lebesgue measure in R.

A function f : U → R, defined on an open set U ⊂ Rd, is called Lipschitz continuous if there
exists a real L > 0 such that the estimate holds:

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ U . (2)
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The infimum of all constants L > 0 satisfying (2) is called the Lipschitz modulus of f and will
be denoted by ‖f‖Lip. For any Lipschitz continuous function f , we let Df ⊂ U denote the set
of points where f is differentiable. The classical Rademacher’s theorem guarantees that Df has
full Lebesgue measure in U . The Clarke subdifferential of f at x is then defined to be the set

∂f(x) := conv

{
lim
k→∞

∇f(xk) : xk → x and {xk} ⊂ Df
}
, (3)

where the symbol, conv, denotes the convex hull operation. It is important to note that in the
definition, the set Df can be replaced by any full-measure subset D ⊂ Df ; see [14, Chapter 2]
for details. It is easily seen that ∂f(x) is a nonempty convex compact set, whose elements are
bounded in norm by ‖f‖Lip. A point x is called (Clarke) critical if the inclusion 0 ∈ ∂f(x) holds.
We will denote the set of all critical points of f by Crit(f). A real number r ∈ R is called a
critical value of f whenever there exists some point x ∈ Crit(f) satisfying f(x) = r.

Though the definition of the Clarke subdifferential is appealingly simple, the behavior of
the (set-valued) map x ⇒ ∂f(x) can be quite pathological; e.g. [9, 15, 19]. For example, there
exists a 1-Lipschitz function f : R→ R having maximal possible subdifferential ∂f(x) = [−1, 1]
at every point on the real line. The first example of such Clarke-saturated functions appears
in [20, Proposition 1.9], and is based on interval splitting sets.

Definition 1 (Splitting set). A measurable set A ⊆ R is said to split intervals if for every
nonempty interval I ⊂ R it holds

0 < m(A ∩ I) < m(I) , (4)

where m denotes the Lebesgue measure.

The first definition and construction of a splitting set goes back to [26], while the first
examples of Clarke saturated functions can be found in [20,35]. The basic construction proceeds
as follows. For any fixed set A ⊆ R that split intervals, define the univariate function

f(t) =

∫ t

0
χA(τ)− χAc(τ) dτ for all t ∈ R.

An easy computation shows the f is Clarke saturated, namely ∂f(t) = [−1, 1] for all t ∈ R.
We will use this observation throughout. Famously, the papers [9, 10] established that, for
the uniform topology, a “generic” Lipschitz function (in the Baire sense) is Clarke saturated.
Although Clarke-saturation is not generic under the ‖·‖Lip-topology, it has been recently proved
in [16] that the set of Clarke-saturated functions contains a nonseparable Banach space.2 We
refer to [2, 5, 6, 21] for recent results on the topic.

3 Main results

In this section we construct the three pathological examples announced in the introduction. Our
first example will make use of a splitting set that satisfies an auxiliary property. The construction
is summarized in Lemma 2. The proof is essentially standard, and therefore we have placed it
in the Appendix.

2Consequently, in the notation of [24], the set of Clarke-saturated functions is “spaceable”. Moreover, if we
endow the space of Lipschitz continuous functions with the ‖ · ‖Lip-seminorm, the space of pathological functions
contains an isometric copy of `∞.
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Lemma 2 (Controlled splitting). For every λ ∈ (1
2 , 1), there exists a measurable set A ⊂ R that

splits intervals and satisfies:

m(A ∩ [0, t]) ≥ λt , for every t > 0. (5)

3.1 Nondecreasing subgradient trajectories

The following proposition answers to the negative the first question of the introduction, revealing
that the Lyapunov property for a subgradient trajectory may fail.

Proposition 3 (Linear increase along orbits). Let α > 0 be arbitrary. Then, there exists a
Lipschitz continuous function f : R2 → R and a subgradient orbit γ : [0,+∞) → Rd emanating
from a noncritical point, meaning{

−γ̇(t) ∈ ∂f(γ(t)) for a.e. t ∈ [0,+∞),

γ(0) /∈ Crit(f)
(6)

and satisfying the linear increase guarantee

f(γ(t))− f(γ(0)) ≥ α t , for every t ∈ [0,+∞).

Proof. According to Lemma 2, there exists a constant λ > 1
2 and a set A ⊂ R satisfying (5).

Define the constant µ :=
√

α+1
2λ−1 and define the function f : R2 → R by

f(x, y) := −x+ µ

y∫
0

(χA(τ)− χAc(τ)) dτ.

It is easily seen that f is Lipschitz continuous and the Clarke subdifferential of f is given by

∂f(x, y) = {−1} × [−µ, µ], for every (x, y) ∈ R2.

Notice that ∂f(x, y) contains the direction u = −(1, µ) at every point (x, y). Taking into account
Crit(f) = ∅, we deduce that the curve γ(t) = −tu = (t, µt) satisfies the system (6). Moreover,
we have the estimate

f(γ(t)) = f(t, µt) = −t+ µ (m(A ∩ [0, µt])−m(Ac ∩ [0, µt])) ≥
(
(2λ− 1)µ2 − 1

)
t ≥ α t .

The proof is complete. �

3.2 (Periodic) subgradient orbits without critical points

Next, we present the second example announced in the introduction, namely a Lipschitz con-
tinuous function along with a periodic subgradient curve that contains no critical points of the
function. We begin with the following intermediate construction. Henceforth, the symbol B∞
will denote the closed unit `∞-ball in Rd, and i will denote the imaginary unit.
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Theorem 4. Fix an arbitrary real M > 0 and b ∈ (0, M2 ), and let A ⊂ R be a measurable subset
that splits intervals. Define the function Φ: R2 → R by

Φ(x, y) := xy +M

y∫
0

(χA(τ)− χAc(τ)) dτ.

Then the following are true:

(i). The function Φ is 2M -Lipschitz continuous when restricted to the ball bB∞.

(ii). Equality holds: bB∞ ∩ Crit(Φ) = [−b, b]× {0}.

(iii). For any real r < b and θ ∈ R, the curve γ(t) = rei(t+θ) is a subgradient orbit of Φ, that is
−γ̇(t) ∈ ∂Φ(γ(t)) for all t > 0.

Proof. The standard sum rule yields the expression for the subdifferential

∂Φ(x, y) = {(y, x+ h) : h ∈ [−M,M ] } , for all (x, y) ∈ R2. (7)

The first claim then follows immediately by noting

max
(x,y)∈bB∞

max
v∈∂Φ(x,y)

‖v‖ ≤ 2M.

The second claim also follows immediately from the expression (7). Next, for any (x, y) ∈ bB∞
we can take h = −2x in (7), yielding the selection (−y, x) ∈ −∂Φ(x, y). Thus the inclusion
γ̇ ∈ −∂Φ(γ) holds as long as the curve γ(t) = (x(t), y(t)) satisfies the ODE

ẋ(t) = −y(t), ẏ(t) = x(t) ∀t. (8)

Clearly, the curve γ(t) := rei(t+θ) indeed satisfies (8). �

Thus Theorem 4 provides an example of a periodic subgradient curve γ(·) for a Lipschitz
continuous function Φ: Rd → R. The deficiency of the construction is that γ does pass through
some critical points of f . We will now see that by doubling the dimension, we can ensure that
the periodic curve never passes through the critical point set.

Theorem 5. (Periodic subgradient orbits without critical points) There exists a Lipschitz con-
tinuous function f : U −→ R, defined on an open set U ⊂ R4, and a periodic analytic curve
γ : R→ U , satisfying

γ̇(t) ∈ −∂f(γ(t)) ∀t and Im(γ) ∩ Crit(f) = ∅.

Proof. Let M , b, A, and Φ be as defined in Theorem 4. Set U := bB∞ × bB∞ and define the
function {

f : U → R

f(x1, x2, x3, x4) = Φ(x1, x2) + Φ(x3, x4)
. (9)

It follows easily from Theorem 4 that the critical point set is given by

Crit(f) = {(x1, 0, x3, 0) : max{|x1|, |x3|} ≤ b } . (10)
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Figure 1: Subgradient curve γ(·) generated by f is depicted in the figure with an arrow; the
set of critical points of f is the product of the x1 and x3 axes. The picture on the left shows
the projection of γ onto the coordinate X = (x1, x2), while the picture on the right shows the
projection of γ onto the coordinates Y = (x3, x4).

Define the curve γ : R → U by γ(t) = b
2

(
eit, ei(t+

π
2 )
)
. Theorem 4 immediately guarantees the

inclusion γ̇(t) ∈ −∂f(γ(t)) for all t ∈ R, while the expression (10) implies Im(γ) ∩ Crit(f) = ∅.
See Figure 1 for an illustration. �

It is worthwhile to note that the function f in Theorem 5 trivially satisfies the conclusion of
the Morse-Sard theorem, since f(Crit(f)) = {0}.

3.3 Subgradient sequences without reaching critical points

We next present the final example announced in the introduction. We exhibit a Lipschitz
continuous function f such that the subgradient method, which can access f only by querying
sugradients, fails to detect critical points in any sense, under any choice of (nonsummable, square
summable) steps {tn}n≥1. As the initial attempt at the construction, one may try applying the
subgradient method to the function f constructed in Theorem 5, since it has periodic subgradient
orbits in continuous time. The difficulty is that when applied to this function, the subgradient
iterates (in discrete time) quickly grow unbounded. Therefore, as part of the construction, we
will modify the function f from Theorem 5 by exponentially damping its slope.

Theorem 6 (Subgradient method does not detect critical points). There exists a Lipschitz
continuous function f : R4 → R, a subgradient selection G(X) ∈ ∂f(X), and initial condition
X̄ ∈ R4 such that

for every sequence {tn}n ⊂ (0,+∞) with
∑
n≥1

tn = +∞ and
∑
n≥1

t2n < +∞ (11)

the subgradient algorithm {
Xn+1 = Xn − tnG(Xn)

X1 = X̄

}
(12)

generates a bounded sequence {Xn}n≥1 whose accumulation points do not meet Crit(f).

Proof. Let us first define the function ρ : R2 → R by

ρ(x, y) = exp(−y2)

x∫
0

exp(−τ2) dτ,
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and notice that
∇ρ(x, y) =

(
e−(x2+y2), −2y · ρ(x, y)

)
.

Then for δ > 0 and M ≥ δ
2(
√
π + 1), define the function φ : R2 → R by

φ(x, y) := δ y ρ(x, y) +M

y∫
0

(χA(τ)− χAc(τ)) dτ. (13)

An easy calculation shows that φ is Lipschitz continuous and its subdifferential is given by

∂φ(x, y) =
{
δ y e−(x2+y2)

}
×


δ (1− 2y2) e−y

2

x∫
0

e−τ
2
dτ

+ [−M,M ]

 . (14)

It follows from (14) that a point (x, y) ∈ R2 is Clarke critical for φ if and only if y = 0, that is

Crit(φ) = R× {0}.

We claim that for every (x, y) ∈ R2, we have

g(x, y) := δ e−(x2+y2) (y,−x) ∈ ∂φ(x, y). (15)

To see this, denoting by π2 : R2 → R the projection to the second coordinate, we observe:∣∣∣∣∣∣π2(g(x, y))− δ (1− 2y2) e−y
2

x∫
0

e−τ
2
dτ

∣∣∣∣∣∣ = δe−y
2

∣∣∣∣∣∣(1− 2y2)

x∫
0

e−τ
2
dτ − xe−x2

∣∣∣∣∣∣
≤ δe−y2 |1− 2y2| ·

√
π

2
+ |x|e−x2

< δ ·
√
π

2
+

1

2
≤M.

Notice that the integral curves of the above vector field

(ẋ, ẏ) = g(x, y) = δ e−(x2+y2) (y,−x),

are the homocentric cycles x2 + y2 = r2 for any r ≥ 0.

Consider now applying a subgradient method to φ. Namely, let γn := (xn, yn) and consider
the subgradient sequence

γn+1 = γn − tngn, (16)

where we set gn := g(xn, yn) ∈ ∂f(xn, yn). Then the norms rn := ‖γn‖ satisfy

‖gn‖ = δrne
−r2n ≤ δ√

2e
. (17)

Since gn is tangent at γn to the homocentric cycle centered at 0 with radius rn, we deduce easily
from (16) that the sequence {rn}n≥1 is strictly increasing. On the other hand, by Pythagoras
theorem and (17) we deduce:

r2
n+1 = r2

n + t2n ‖gn‖2 ≤ r2
n +

(
δ2

2e

)
t2n,
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and by induction

r2
n+1 ≤ r2

1 +

(
δ2

2e

)∑
n≥1

t2n < +∞.

Therefore, {rn}n≥1 is bounded and the sequence γn := (xn, yn) has accumulation points.
The proof is not yet complete, since in principle, the accumulation points of the sequence

(xn, yn) may be critical. To eliminate this possibility, we proceed as in the proof of Theorem 5
by doubling the dimension. Namely, define the function{

f : R4 → R

f(x, y, z, w) = φ(x, y) + φ(z, w)
, (18)

and observe that f is Lipschitz continuous and equality holds:

Crit(f) = R× {0} × R× {0}.

We shall now prescribe a subgradient selection:

G(x, y, z, w) = (g(x, y), g(z, w)) ∈ ∂f(x, y, z, w), (19)

where g(·, ·) is defined in (15). Let us also prescribe the initial condition

X1 ≡ X̄ = (1, 0, 0, 1) ∈ R4.

Then (12) generates a bounded sequence

Xn := (xn, yn, zn, wn) with Gn := G(Xn) ∈ ∂f(Xn)

which splits in R2 × R2 as follows:

Xn = (γn, γ̃n), Gn = (gn, g̃n) ∈ ∂f(Xn) with γn := (xn, yn) and γ̃n := (zn, wn)

such that {
γn+1 = γn − tngn
gn ∈ ∂φ(γn)

}
and

{
γ̃n+1 = γ̃n − tng̃n
g̃n ∈ ∂φ(γ̃n)

}
, (20)

respectively. Thanks to the initial condition, for every n ≥ 1 the vector γ̃n is a π
2 -rotation of

the vector γn. Taking into account this rotational symmetry we deduce that all limit points of
{Xn}n≥1 lie outside of Crit(f). �

It is worthwhile to note again that the function f in Theorem 6 trivially satisfies the con-
clusion of the Morse-Sard theorem, since f(Crit(f)) = {0}.
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Appendix: Proof of Lemma 2

We will first need the following lemma, outlining a standard construction of a fat Cantor set.
We will impose an extra property, which will play a key role in establishing Lemma 2.

Lemma 7 (α-fat Cantor set with attributes). Fix any α ∈ (0, 1). Then for every interval
I = [a, b] ⊂ R there exists an α-fat Cantor subset Fα(I) ⊂ I, that is, a Cantor-type set of total
measure

m(Fα(I)) = αm(I).

Moreover, for any 1
2 < λ < 1, taking α > 3λ

2+λ we ensure that

m(Fα(I) ∩ [a, x]) ≥ λ ·m([a, x]), for all x ∈ [a, b]. (21)

Proof. The construction is standard and is sketched for the reader’s convenience. Fix any
α ∈ (0, 1). Let us denote I0 = (a, b), `0 = m(I0) = b− a and let us set:

δ0 :=

(
1− α

2

)
· `0 > 0. (22)

We shall construct the fat-Cantor set by removing, successively, countably many intervals, in-
dexed by a dyadic tree. To this end, we start by removing from our initial set I0 the interval

∆0 :=

[
b+ a− δ0

2
,
b+ a+ δ0

2

]
,

that is, an interval of length δ0 centered at a+b
2 (the midpoint of I0). Then from each of the two

remaining intervals I1
0 := (a, b+a−δ02 ) and I1

1 := ( b+a+δ0
2 , b) we subtract intervals ∆1

0 and ∆1
1 of

length

δ1 :=
1

2
· δ0

2
(23)

centered at the midpoints of I1
0 and I1

1 respectively. Setting

m(I1
0 ) = m(I1

1 ) := `1 =
`0 − δ0

2

we observe that

m(∆0)

m(I0)
=
δ0

`0
=

1− α
2

and
m(∆1

i )

m(I1
i )

=
δ1

`1
=

(δ0/4)

(`0 − δ0)/2
=

1

2

(
1− α
1 + α

)
, for i ∈ {0, 1},

and consequently

m(∆1
i )

m(I1
i )

=

(
1

1 + α

)
m(∆0)

m(I0)
<

m(∆0)

m(I0)
, for i ∈ {0, 1}. (24)

The above relation reveals that in the second step, we subtract a proportionally smaller part of
each of the intervals I1

i , i ∈ {0, 1}, compared with what we subtract from I0 in the first step.

We continue by induction, subtracting at the step n intervals ∆n
k , k ∈ {0, 1, . . . , 2n−1}, of length

δn =
1

2
· δn−1

2
=

1

2n
· δ0

22
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centered at the midpoints of the intervals Ink , where m(Ink ) = `n = (`n−1 − δn−1)/2, so that for
all k′ ∈ {0, 1, . . . , 2n−1 − 1} and k ∈ {0, 1, . . . , 2n − 1} we have:

m(∆n
k)

m(Ink )
=
δn
`n

=
(δn−1/4)

(`n−1 − δn−1)/2
<
δn−1

`n−1
=
m(∆n

k′)

m(Ink )
. (25)

The above relation says that at the step n ≥ 2 we remove a proportionally smaller part of each
of the intervals Ink , k ∈ {0, 1, . . . , 2n − 1}, compared to what we did in the previous step to the
intervals Ink′ , k

′ ∈ {0, 1, . . . , 2n−1 − 1}.
Let now Fα(I) be the complement of the union of all extracted intervals. Clearly Fα(I)

cannot contain any interval (i.e. it is a Cantor-type set), and in view of (22) its total length is

m(Fα(I)) = m(I)−
(
δ + 2(

1

2
· δ

2
) + 22(

1

22
· δ

22
) + . . .

)
= m(I)− δ

∑
n≥0

1

2n
= αm(I).

It remains to prove that (21) holds. To this end, we start by treating the case x ∈ [a, b]�Fα(I).
Let us first assume

x ∈ ∆0 :=

[
b+ a− δ0

2
,
b+ a+ δ0

2

]
.

In this case (which is the less favorable case) we have:

m([a, x]) ≤ b− a+ δ0

2
=
`0 + δ0

2
and m(Fα(I) ∩ [a, x]) =

m(Fα(I))

2
=
α`0
2
. (26)

Therefore (21) holds for α > 3λ(2 + λ)−1.
Assume now that x ∈ ∆1

0∪∆1
1. By construction, using (22), (23) and (24), we deduce that for

i ∈ {0, 1}, the set Fα(I0)∩ I1
i is an α1-fat Cantor set in I1

i , denoted Fα1(I1
i ), where α1 satisfies:

1− α1

2
:=

δ1

`1
=

(
1

1 + α

)(
δ0

`0

)
=

(
1

1 + α

)(
1− α

2

)
yielding that α1 =

2α

1 + α
> α.

The above guarantees that for x ∈ ∆1
0 ⊂ I1

0 =
(
a, b+a−δ02

)
we have

m(Fα(I0) ∩ [a, x]) = m(Fα1(I1
i ) ∩ [a, x]) ≥ λ ·m([a, x])

by the previous step. If now

x ∈ ∆1
1 ⊂ I1

1 =

(
b+ a+ δ0

2
, b

)
then by (26) and the fact that Fα1(I1

1 ) := Fα(I0)∩ I1
1 is an α1-fat Cantor set in I1

1 with α1 > α
we deduce:

m(Fα(I0) ∩ [a, x]) =
m(Fα(I))

2
+m

(
Fα1(I1

1 ) ∩
[
b+ a+ δ0

2
, x

])
≥ λ ·

(
m

([
a,
b+ a+ δ0

2

])
+m

([
b+ a+ δ0

2
, x

]))
,

that is (21) holds. Continuing, we deduce that (21) holds for all x ∈ [a, b]�Fα(I).
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Let now x ∈ Fα(I). Then there exists {xn} ⊂ [a, b]�Fα(I) with {xn} → x. Then by (21)
we have

m(Fα(I0) ∩ [a, xn]) ≥ λ ·m([a, xn]) for all n ≥ 1.

The result follows by passing to the limit as n→∞. The proof is complete. �

We are now ready to complete the proof of Lemma 2.

Proof of Lemma 2. Let us fix λ ∈ (1
2 , 1) and choose α, θ < 1 (close to 1) such that

α · θ > λ and α > 3λ(2 + λ)−1.

For any interval I = [a, b], we set

I+ := [a, a+ θ(b− a)] and I− := [a+ θ(b− a), b]

and we define the operators:

• T (I) := Fα(I+) (partial α-fat Cantor subset of I of measure α · θ ·m(I)), and

• N (I) = F 1
2
(I−) (partial 1

2 -fat Cantor subset of I of measure 1
2(1− θ)m(I)).

Notice that it is sufficient to construct A0 ⊂ [0, 1] (splitting the family of intervals of (0, 1))
satisfying (5) for x ∈ [0, 1). Indeed, translating the construction by n we obtain An ⊂ [n, n+ 1)
and we observe that the set A = ∪nAn has the desired property.

To this end, set I0 = [0, 1] and consider an enumeration {In}n≥1 of all strict subintervals
In := [pn, qn] of [0, 1] with rational endpoints pn, qn ∈ Q. Set further T0 := T (I0) and N0 :=
N (I0) and notice that (T0 ∪N0) contains no intervals. Let I1 := (p1, q1) be the first interval
of the above enumeration. Then there exists a subinterval I ′1 = [p′1, q

′
1] of I1 contained in

I0� (T0 ∪N0). We set T1 = T (I ′1) and N1 = N (I ′1) . Similarly, we find a subinterval I ′2 ⊂ I2

contained in
I0� [(T0 ∪ T1) ∪ (N0 ∪N1)]

and set T2 = T (I ′2) and N2 = N (I ′2) and continue by induction. Then set

N =

∞⋃
i=0

Ni and A0 = I0 \N.

It is easily seen that A0 splits the family of intervals of I0 = [0, 1]. Let us show that (5) holds.
Let t ∈ [0, 1] = I0. If t ∈ I+

0 = [0, θ), then since T0 = Fα(I+
0 ) we conclude by Lemma 7 that

m(A ∩ [0, t]) ≥ m(T0 ∩ [0, t]) ≥ λt.

If t ∈ I−0 = [θ, 1], then

m(A ∩ [0, t]) ≥ m(T0 ∩ [0, t]) = m(T0) = α · θ > λ ≥ λt.

Therefore, A0 satisfies (5) for all t ∈ [0, 1] and consequently, so does the set A :=
⋃+∞
n=−∞(A0 +n)

for all t > 0. �
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