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Channel Input Adaptation via
Natural Type Selection

Sergey Tridenski

Abstract— We propose an algorithm for computation of the
optimal correct-decoding exponent, and its corresponding opti-
mal input. The computation algorithm translates into a stochastic
iterative algorithm for adaptation of the codebook distribution to
an unknown discrete memoryless channel in the limit of a large
block length. The adaptation scheme uses i.i.d. random block
codes, and it relies on one bit of feedback per transmitted block.
Throughout the adaptation process, the communication itself is
assumed reliable at a constant rate R below the channel capacity
C. In the end of the iterations, the resulting codebook distribution
guarantees reliable communication for all rates below R + A,
where 0 < A < C — R is a predetermined reliability parameter
affecting the speed of adaptation.

Index Terms— Correct-decoding exponent, Arimoto algorithm,
Blahut algorithm, unknown channels, input distribution.

I. INTRODUCTION

ONSIDER a standard information theoretic scenario of

communication through a discrete memoryless channel
(DMC), with transition probability P (y | x), using block codes.
For this case information theory provides optimal solutions in
the form of the channel input distribution Q*(x), achieving the
Shannon capacity C or the Gallager error exponent E(R) for a
given communication rate R. Suppose, however, that the chan-
nel stochastic matrix P(y|x) is slowly, or rarely, changing
with time and we would like to sustain reliable communication
at a constant rate R. For this purpose, we assume the use of
a single bit of feedback, from the receiver to the transmitter,
per transmitted block (Figure 1). This bit of feedback should
tell the transmitter whether to update the codebook or not.
In our model, we further assume that the feedback bit and
the new codebook are determined using the last pair of the
transmitted and received blocks only, i.e. without memory
from the previous blocks involved. In this way, potentially,
the system will follow the changes in the channel more closely.
Our goal of sustaining reliable communication at a constant
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Fig. 1. DMC with a 1-bit feedback per block. Each symbol in the random
block code is generated i.i.d. according to Q(x).
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Fig. 2. The i.i.d. random-coding error and correct-decoding exponents for

a given Q. Both exponents meet zero at the same point which is the mutual
information 7(Q, P) associated with the codebook distribution Q(x) and the
conditional channel distribution P(y|x). The correct-decoding exponent is
zero at R + A.

rate R is legitimate and feasible, of course, only for as long
as the capacity of the channel C as a function of P(y|x)
stays above the rate R. While the channel capacity may stay
well above the rate, the optimal solution Q*(x) may drift
significantly, as a result of the drift in P(y|x), and render
the initial code unreliable.

In this work the block code is modeled as a random code
generated i.i.d. with a distribution Q. The reason for modeling
the code as an i.i.d. random code is twofold. Firstly, random
codes achieve capacity. We consider the maximum-likelihood
correct-decoding random coding exponent for a given Q
[1, eq. 31], [2], as a function of the rate (see Figure 2,
which illustrates both the correct-decoding exponent and
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the error exponent for a given Q). The idea is to choose
some positive constant A > 0 and to change Q, so that
the correct-decoding exponent will be “pinned” to zero at
arate R = R + A, provided that R + A < C. This
would mean that the corresponding error exponent for that O
[3, eq. 5.6.28] is strictly positive for all rates below R+ A, thus
ensuring, in particular, reliable communication at the rate R
(Figure 2).

Secondly, an i.id. distribution in a random code, unlike
a distribution over a single type in a constant composition
code, results in a certain diversity of codeword types, which
allows us to invoke a mechanism of natural type selection for
update of the parameter Q. Using this mechanism iteratively,
we successively update the codebook distribution Q, so that
eventually the correct-decoding exponent associated with Q
decreases to zero at R + A, as desired.

Although our motivation comes from tracking a slowly-
varying channel, in our analysis we assume that the channel
P(y | x) remains the same during the iterations.

The mechanism of natural type selection (NTS) has been
originally observed and studied in the lossy source-coding
setting [4], [5]. In that setting an unknown discrete memoryless
source is mapped into a reproduction codebook, generated
i.i.d. according to a distribution Q. In the encoding process a
linear search is performed through the codebook until the first
reproduction sequence is found, which satisfies a distortion
constraint D with respect to the source sequence. Since
various types are inherently present in the i.i.d. codebook, the
empirical distribution of the winning reproduction sequence is
in general different from Q and is used for generation of the
next codebook. This results in a decrease in the compression
rate, which after repeated iterations converges to the optimum
given by the rate-distortion function R(D). This last prop-
erty is guaranteed by the fact that the type of the winning
sequence and its conditional type given the source sequence
with high probability evolve along the two corresponding
steps of the Blahut algorithm for the rate-distortion function
computation [6], [7].

We propose an analogous scheme for noisy-channel coding,
equipped with its own computation algorithm for channels
which is reminiscent of the Blahut algorithm for sources.
There is a certain analogy between the distortion constraint
D in lossy source-coding and the parameter A of the present
scheme. The higher is D — the poorer is the reproduction
fidelity, but the smaller is the communication penalty R(D).
In our case, the higher is A — the wider is the gap to
capacity C — R > A, but the higher is the communication
reliability E(R).

In a preliminary work [1], we introduced an expression
[1, eq. 31] for the correct-decoding exponent for a given
O, which is an alternative to the Dueck-Korner expression
in [8]. In particular, the minimization of both expressions over
the channel input distribution Q gives the optimal correct-
decoding exponent — corresponding to the best sequence of
codes for a given rate. The expression for a given Q has the
form of a minimum itself, and in the present paper we use it
as a vehicle for iterative minimization of the correct-decoding
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exponent over Q at a fixed rate. The minimization procedure
at a fixed rate is comparable to the fixed-distortion version
of the Blahut algorithm for computation of R(D) [7] and
it converges to the optimal exponent and some achieving
channel input distribution for the given rate. We translate this
iterative minimization procedure at a fixed rate (R’ = R + A)
to a stochastic adaptation scheme, making the assumption
that the channel P(y|x) itself does not change during the
iterations.

In [9], we present also a fixed-slope version of the same
computation. This, in turn, is comparable to the fixed-
slope version of the Blahut algorithm for R(D) [6], [10],
but also presents an alternative to the Arimoto algorithm
for computation of the correct-decoding exponent func-
tion [2], as well as an alternative to a similar recent
algorithm [11].

In Section II we analyze the expression for the correct-
decoding exponent presented in [1, eq. 31]. In Section III
we introduce our procedure for iterative minimization of the
correct-decoding exponent at a fixed rate, and in Section IV we
compare it to the fixed-distortion version of the Blahut algo-
rithm [7]. In Section V we present our stochastic adaptation
scheme based on the fixed-rate minimization of Section III.
Section VI summarizes the paper. Some technical details are
deferred to the Appendix.

Notation

The notation P(y|x) denotes transition probability in a
discrete memoryless channel with letters from finite input and
output alphabets, x € X and y € ), respectively. Given a
positive real rate R and a blocklength n, a codebook consists
of ’7 enR—‘ enR
generated independently with an i.i.d. distribution Q. The
index m represents a message. With a slight abuse of notation,
sometimes we also use Q(x) to denote a distribution in
the text and in minimization conditions under min, as well
as to denote the probability of a symbol x under Q9 —
inside the expressions. We use the same convention for other
distributions and empirical distributions as well.

The notation D(T o V || T x Q) stands for the Kullback-
Leibler divergence from the product distribution 7(y)Q(x),
denoted as T x Q, to the joint distribution 7 (y)V(x|y),
denoted as T o V. By I(Q, W) we mean the mutual infor-
mation between a pair of random variables with a joint
distribution Q(x)W(y | x).

The notation |a — b | preserves the difference if a — b > 0,
and nullifies it otherwise.

By C(Z) we denote the capacity of the channel P if the
input is restricted to a subset Z C X.

In Section V, where the stochastic scheme is described,
we consider empirical distributions (types). In that particular
section, if not stated otherwise, T (y) denotes the type of a
received block y € V", and V(x| y), or V,,(x|y), represent
the conditional type of a channel input block x, or a codeword
X,,, respectively, given the received block y. The type of x,,
is denoted as T, (x).

bl

codewords of length n, x,, € X", m =1, ..., [
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II. CORRECT-DECODING EXPONENT

The results of this section will allow us to formulate and
characterize the computation algorithm in Section III, and the
stochastic adaptation scheme in Section V.

A. Implicit Expressions

We will use the following expression for the correct-
decoding exponent for a given codebook distribution Q and a
communication rate R [1, eq. 32]:

EML(R, Q) £ min {D(ToVHQoP)

T(y),V(x|y)
+
+[R=DToVITx 0"},
(1)

where the minimization is over the joint distribution
T(y)V(x|y), with y € Y and x € X. It can be shown
[1, eq. 32], [9], that the expression (1) has the meaning of
the maximum-likelihood (ML) correct-decoding exponent of
a random code ensemble of rate R generated i.i.d. with a
distribution Q. This expression can be easily compared to and
shown to be lower (better) than the corresponding constant-
composition correct-decoding exponent for a given Q:

EML(R - i {DT % P
e (R, 0) roin A PTeVIQeP) +
\R—D(T0V||T><Q)|+}
= 1(U, W)+ DW | Q)
= min DU oW o P)+
U(x>,W(y\x>{( Q0P
[R—1W.w)-DW )"}
U=0
< min {D(QoW||QoP)+
Wy |x)

[R=100.W)|"}. 2)

After minimization over the codebook distribution Q,
the expression (2) can be recognized as the correct-decoding
exponent of Dueck and Ko6rner [8], which is optimal. Since
the optimal expression cannot be decreased, the minimum of
the achievable lower bound (1) over Q is also optimal.

As a stepping stone towards our adaptation scheme, we will
use also a closely related expression, which is in general an
upper bound on (1) and coincides with it for low R:

E.R, Q) 2 min {D(Tovn Qop)}. 3)
T(y),V(xly):

D(ToV|TxQ)=>R

The expression (3) can also be compared to its constant-
composition counterpart:

E(R.Q) = {pTevigen]

min
T(y), V(x|y):
D(ToV|TxQ)>R

IA

{D(U0W|| QoP)}

min
Ux), W(ylx):
I(U,W) >R

IA N

min {D(QoWHQoP)}. 4)
W |x):

1(Q, W)= R
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As we shall see, the minimum of (3) over Q, just like the
minimum of (1) and (2) over Q, also achieves the optimum for
all R. This is not the case with its constant-composition upper
bound (4). For sufficiently large R the minimum (4) inevitably
becomes 400, because the mutual information 7(Q, W) is
upper-bounded by the entropy of Q.

The computation algorithm described in Section III com-
putes iteratively the minimum of (1) or (3) over Q for a
given R.

Both minima (1) and (3) represent monotonic functions of
R. In what follows, we characterize the minimizing distribu-
tions of (1) and (3) with the help of supporting lines (of slopes
—p > 0) to the graphs of these functions. Using the supporting
lines of slopes 0 < —p < 1, we also solve the minima (1)
and (3) where possible, and express them and their minimizing
distributions explicitly with the system ingredients R, Q(x),
P(y | x), and the slope parameter p. Both the characterization
with the supporting lines and the explicit solutions will be
used in the analysis of the computation algorithm in the
later sections. The minimizing distributions will represent
(asymptotically) the selected types in our stochastic adaptation
scheme of Section V.

B. Explicit Expressions

The next two lemmas (Lemmas 1 and 2) relate the graphs
of the two functions of R, (3) and (1), respectively, to their
lower supporting lines of slopes —p > 0, and with their
help characterize the minimizing distributions of (3) and (1)
at the points where these supporting lines touch the graphs.
The expressions for the supporting lines then allow an explicit
solution (Lemma 3). The lower supporting lines form a lower
convex envelope for each of the two graphs of (3) and (1).
Afterwards we examine the relationship between the graphs
of (3) and (1) and their lower convex envelopes and state the
results in a final lemma (Lemma 4). Lemma 4 will replace,
where possible, the minima (3) and (1) with a “Gallager
type” expression — a maximization of Ey(p, Q) — pR
over a slope parameter p, and will describe the minimizing
solutions.

Lemma 1 (Supporting lines for E.(R, Q) ): For any p <0,
the minimum (3) is lower-bounded as

min
T(y), V(x|y):
supp(V) < supp(Q)

p[R = D(ToV|T x Q)]}. (5)

E(R.Q) = {pTovigoer) -

In case of equality in (5), any minimizing solution Ty o Vi of
the LHS is also a minimizing solution T, oV, of the RHS such
that R = D(T,0V, || T, x Q), or R<D(TyoVy | Ty x Q)
Jor p = 0. Conversely, if there exists a solution T, oV,
minimizing the RHS, such that R = D(Tp oV, IT, x Q),
or R < D(Togo VollTy x Q) for p = 0, then it
is also a minimizing solution of the LHS and there is
equality in (5).

Proof: The proof is given in Appendix A. 0
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Lemma 2 (Supporting lines for ECML(R, Q)): Forany p €

[—1,0], the minimum (1) is lower-bounded as
EML(R, Q) > min {D(ToVHQoP)—
T(y), Vx]y):

supp(V) < supp(Q)
p[R = D(ToV|T x Q)]}. 6)

In case of equality in (6), any minimizing solution Tg o Vi of
the LHS is also a minimizing solution T, oV, of the RHS such
that R = D(T,0V, | T, x Q), or R< D(TooVy| Ty x Q)
for p =0, 0r R>D(T_joV_{|T_; x Q) for p = —1.
Conversely, if there exists such a solution T, o'V, minimizing
the RHS, then it is also a minimizing solution of the LHS and
there is equality in (6).
Proof: The proof is given in Appendix B. (]
Explicit solution of the RHS of (6) gives
Lemma 3 (Explicit solution): Fort p=>—1

min {D(TOV”QOP)+pD(ToV||TXQ)}
T(y), V(x|y):
supp(V) < supp(Q)

= EO(p’ Q)’ (7)

where?

| I+p
Eo(p, 0) & —logy" [Z Q(x)Pm(ym] o,
y X

®

Eg(=1,0) & 1im Eg(p, Q) = —log)  max P(y|x).
PN y Q(x)>0

©

If p > —1, then the unique minimizing solution of (7) is given
by T, oV, with

| I+p
Tp(y>o<{ZQ(a>Pm(y|a)} . (10)

1
Vo(xly) o« Q)P T2 (y|x). (1)
If p = —1, then all minimizing solutions of (7) are given by
any T_y o V_; such that
T_(y) max P(yla), (12)
a:Q(a)>0
_1(xly) = 0, Vx ¢arg max P(yla). (13)
a: Q(a)>0
Proof: The proof is given in Appendix C. (]
Since the minimizing distribution V_;(x |y) of (7) with
p = —1 is allowed to be arbitrary inside its support which

is restricted according to (13), for convenience let us define

R7(Q) & min D(T_joV_ [Ty xQ), (14
Voi(xly)

RT(Q) £ max D(T_joV_ [Ty xQ), (I5)
Voi(xly)

where the min and max are over all V_;(x|y) as in (13).

I'A solution can be obtained also for p < —1 by maximization of a convex
(U) function.
2For —1 < p =< 0 the Arimoto algorithm [2] computes min g E¢(p, Q).
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The supporting lines, described by Lemmas 1 and 2, form
the lower convex envelopes for the graphs of (3) and (1),
respectively. Next, using Lemma 3, we partially determine —
where these lower convex envelopes coincide with the respec-
tive graphs of (3) and (1), and characterize the minimizing
distributions there. The partial result will be sufficient for the
analysis in the next section.

Lemma 4 (Explicit formula and minimizing solutions):

EC(Ra Q) = Cl=p<0 {EO(pa Q)_PR},
YR < RT(0),
(16)
ML — _
E"(R, Q) = _max {Ey(p, Q) — pR}, (17)

where Ey(p, Q) is defined by (8)-(9), Rirl (Q) defined in (15),
and T_y o V_y is a family of distributions defined by (12)-(13).
If the RHS of (17) is maximized by p = —1, then all
minimizing solutions of the LHS are given by T_yoV_y as in
(12)-(13) such that D(T_1 o V_ || T_; x Q) < R.

If the RHS of (16) is maximized by p = —1, then all
minimizing solutions of the LHS are given by T_joV_y as in
(12)-(13) such that D( oV I T_; x Q) =R

If the RHS of (17) is maximized by p € (—1,0], then the
unique minimizing solution of the LHS is given by (10)-(11).
Same for (16).

Proof: For p € (—1,0] and R = D(T, 0V, || T, x Q),
Lemmas 1, 2 give equalities in (5), (6), respectively, with
the same unique distribution 7, o V,, given by (10)-(11) of
Lemma 3, minimizing both sides of each equality. Observe
that two different slope parameters —1 < a < f < 0
of two lower supporting lines from Lemma 1 or 2 satisfy
necessarlly D( TpoVy | TfE ( ) < D(T oV T, XQ) Since

9Eo(p, O) ﬂ

D(T,oV,|IT, x Q) = is a continuous function of
p > —1 th1s covers all R such that
D(Too Vol Tox Q) < R < hm D( VT, x Q).
£\
Forp—OandR<D(T00V0||TOXQ) %‘;Q) o’

Lemmas 1, 2 give equalities in (5), (6), respectively, w1th the
unique minimizing distribution 7o Vy = Q o P on both sides.
The minimum R —,(Q) defined in (14) is achieved by

Q0x), x € arg max P(yla),
Voxly) o a: 0(a) >0
0, else.
This allows for continuity lim ,~\ 1 D( V, IT, x Q)

R—(0).

For p = —1 and R > R~ ,(Q), Lemma 2 gives equality
in (6) with all possible solutions of the minimum on the LHS
of (6) as given by Lemma 3 in (12)-(13) and such that R >
D(T_l oV_1 1 T_ x Q). Lemma 1 gives equality in (5) with
all possible solutions of the minimum on the LHS of (5) as
given by Lemma 3 in (12)-(13) and such that D(T,l oV_1
T_; x Q) =R. O

In the next sections we will use Lemmas 2, 3, and 4.

It follows from Lemma 4 that the minima (1) and (3)
coincide for R < Rfl(Q). For greater R the ML exponent
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(1) continues to grow with the increase of R with the constant
slope —p = 1, according to (17). The graph of the function
(3), on the other hand, by Lemma 1 has supporting lines also
with slopes greater than 1. Therefore (3) may become higher
than (17), and eventually it always exhibits a jump to infinity
at some R > R“_LI(Q).

Both (3) and (1) have a supporting line Ey(—1, Q) + R =
E(R) of slope 1. This supporting line is invariant in the sense
that it depends only on the support of the distribution Q(x)
according to the expression for Eq(—1, Q) in (9). Since the
rate R = D(T_10V_; || T_; x Q), where both functions meet
this supporting line, can be made arbitrarily large by reducing
Q(x) on some letter x, the minimum over Q of (3) can always
achieve the minimum over Q of (1) for any R:

min E.(R, Q) = min EML(R, Q) £ E.(R), YR. (18)
0 0

Therefore both expressions (3) and (1) achieve the opti-

mum. For comparison, this is not possible with the constant-

composition expression (4) where the mutual information is

bounded by the entropy in the support of Q.

III. ITERATIVE MINIMIZATION OF THE
CORRECT-DECODING EXPONENT

Here we propose a procedure of iterative minimization with
(1) or (3) at fixed rate R, which leads to the optimal correct-
decoding exponent (18). This can be termed also as a fixed-rate
computation of the correct-decoding exponent and is different
than the algorithm of Arimoto [2] for computation of the
exponent function min g E¢(p, Q). The difference is both in
the fact that the Arimoto algorithm is a computation at a
fixed slope p, but also the computation itself is different. The
advantage of the fixed-rate computation over the fixed-slope
is that we know how to translate it to a stochastic adaptation
procedure.

The next lemma presents and characterizes the iterative
minimization procedure for the ML exponent (1).

Lemma 5 (Monotonicity for ECML (R, Q)): An iterative
update of the parameter Q in (1) by its minimizing solution
T(y)V(xly):

TeVeely) € arg | min {D(ToV]Q 0P
+ [R=DToVIT x 00"}, (19)
Qri1(x) < Y Ti(y)Velxly) (20)
y

results in a monotonically non-increasing sequence
{ECML(R, Q[)} ;r:)o of (1). At each step, the sequence
decreases at least by an amount (1 + p,1)D(Qr 11 Qp),
where pp € [—1,0] is a parameter of some supporting
line (6) touching the graph of ECML(R, Qryq) at R

Proof: By Lemma 4 / Lemma 3, the graph of ECML (R, O)
touches at R some supporting line of the form (6) with some
slope parameter p € [—1, 0]. A solution ToV of (1) according
to Lemma 2 is also a solution of (6) with p and we can write:

EM'(R, Q)
LN p(FoVQoP) ~ H[R— DT oVIT x Q)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 4, APRIL 2020

@ ax {D(To\“/nQoP)—
—-1=p=0
p[R = DTV ITx0)]}
®) UV
> max {D(ToVHQoP)—
—1<p=<0
p[R = DA VT x 0)]}
>  max min {D(ToVHQoP)—
—1<p=<0  T(),Vx|y):
supp(V) < supp(Q)
p[R = DToV|Tx0)}
© EML(R, 0),

where Q(x) =3 T(y»)V(x|y), and

(a) holds because for p € (—1,0) Lemma 2 gives R =
D(T oV I T x Q) and the brackets are zero. For p = 0
Lemma 2 gives R < D(T oV I T x 0), so that the brackets
are non-positive and the maximum is at p = 0. In the case
p = —1, Lemma 2 gives R > D(T oV I T x 0), so that the
brackets are non-negative and the maximum is at p = —1.

(b) holds because by replacing Q(x) with Q(x) =
Z}, T(y)\7(x | y) we obtain in the expression

D(ToV|QoP)+ pD(T oV |T x Q)
DT oV|QoP)+ pD(ToV|T x Q)
+ (1+p)D(Q Q)

>0
DT oV|QoP)+ pD(T oV |T x Q).

(c) holds by (17) and (7).
The monotonicity of the sequence of ECM L(R, Q) follows by
viewing Q as Q, and Q(x) as Q¢4 1, and the bound on the
amount of decrease follows from (21). ]

Note that, whenever p, € (—1,0], the computation in
(19) goes along (10)-(11) with p,, which results in a ratio
Q¢4 1(x)/Q¢(x) different than in the Arimoto computation
of Q. from Q, [2, eq. 24-25] for the same j,. Besides,
the slope parameter p, itself is changing here in each iteration.

The monotonicity of the sequence of EME(R, Q;) implies
convergence, but not necessarily all the way down to the
optimal exponent (18), and in principle the limit may stay
above it. The following theorem tries to characterize the
convergence of the above minimization procedure.

Theorem 1 (Convergence of iterations for ECML(R, 0)):
Let {(Tg, ‘75) } o be a sequence of iterative solutions of
(1) with Q = Q obtained by (20). Then

{— 00

N

21

IV

min
Q: supp(Q) C Z

for some Z C supp(Qy). B
Proof: By Lemma 4 / Lemma 3, the graph of ECML(R, 0r)
touches at R = R some supporting line of the form (6),
not necessarily unique. Let us choose a slope parameter of
one such line p, € [—1,0] for each index ¢. Then we

EML(R, 0)) EM'(R,Q), (22)

+00
have a sequence of pairs {(Qg,ﬁ[)}€ o By Lemma 4,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 26,2020 at 01:08:45 UTC from IEEE Xplore. Restrictions apply.



TRIDENSKI AND ZAMIR: CHANNEL INPUT ADAPTATION VIA NTS

the distribution Q, is updated for the next time ¢ + 1
according to either (10)-(11) with p, € (—1,0] or (12)-(13)
if p, = —1. In both cases the support of the distribution Q,
cannot increase. It can decrease by (13), or the distribution
Q. can approach arbitrarily close to zero for some letters of
the channel input alphabet where the initial value of Q is

positive. Consider a convergent subsequence of adjacent pairs
+00

{<Q5;’ ﬁff’ Qri+15 ﬁff+1)}i:1:

Q, — 0O pe,  —> P €[=1,0]
1 —> 0 1 —> 0

Orv1 — Qo Pe,+1  —> P2 € [-10]
1 —> 0 I —> 00

We have supp(Q;) € supp(Q). j = 1.2.
Let us first examine the limit of the graph of EM*(R, Q)
as a function of R. For any f € (0, 1) arbitrarily close to 1

and a large enough index i we can write according to (17)
and (9):

1 I+p ~
—logZ[Zﬁél(Mmmm} - pR}
{ S —

sup

“heps0 <0/, ()

> EMY(R, Q) = max {Eo(l), Q) —PE}-
—B=p=0

Now it is convenient to take i to +oo in the lower bound.
From which we obtain for any g € (0, 1):

max {Ey(p,0) — (1+p)logp — pR} =
—1=p=0

lim sup ECML (E, le,)

i— 00

v

> liminf EMX(R, Q)
1 —> 00

e (206,30 - oE}
-B=p=0
Then by continuity of Ey(p, ), as a function of p, (9), and
(17), we obtain

lim EMY(R, 0;) = vV R.

. EL{VIL(R’ Ql)’
1 —> 00

In particular, the supporting lines Eo(ﬁgi, Q[[) — ﬁgiﬁ
of EML(R, Q) converge to the supporting line of
ECML(IS, Q,) with slope parameter j;, which is given by
Eo(p1, Q1) — p_lﬁ. At R = R this gives ECML(R, Qg[) —
Ey(p1, Q1) — p1 R. Similarly we obtain EM*(R, Q;. 1) —
Ey(p2, Q2) — paR.

If 5y = 0 or pp =0, then EME(R, Q) \ 0 by the
above result and monotonicity of Lemma 5.

If py = —1, then EME(R, Q;) N\ Eo(—1,0)) + R.
By (17) and (9), we conclude that this is the minimum of
EML(R, Q) over all Q with supp(Q) € supp(Q,). Similarly,
if p, = —1, then EM“(R, Q) \« Eo(—1, Q2) + R, which
is the minimum of ECML(R, Q) over all Q with supp(Q) <
supp(Q>).

Suppose now that pq, p, € (—1,0). Since p; € (—1,0),
then also p,, € (—1,0) for a large enough index i, and the
distribution Q;, is updated for the next time ¢; 4+ 1 according
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to (10)-(11) as:

O 41lx) =
1 he;
Lo, Y P%‘(ym[z Qg,(a)ny(ym)] ,
! y:P(y|x)>0 a
i & (4 pe) (23)
In the limit where Q,(x) is positive, (23) becomes
0,(x) =
1 _ . Pl
A3 PV(yIX)[ZQl(a)PV(yIa)] ,
y: P(y|x)>0 a
y 2+ (24)

Since also p, € (—1, 0), then l—i—p}i 41 converges to a positive
number and by Lemma 5 necessarily D(Qy, 11 Q;,) — O.
In this case also Q1| — Qy, ie. necessarily Q1 = Q5.
Dividing both sides of (24) by Q;(x) where it is positive, for
all such x we obtain:

>

y: P(y|x)>0

P
PV(y|x>[Z Ql(a)Py(yIa)] e

0,(x) > 0. (25)

This can be recognized as a sufficient condition for Q; to
minimize E(5;, Q) over all Q with supp(Q) < supp(Q)),
the same as [2, eq. 22]. By (17), we conclude that the limit
of ECML(R, Qg[), which is given by Ey(py, Q1) — p1 R, is
the minimum of ECML(R, Q) over such Q. ]

Let C(Z2) denote the capacity of the channel with an input
alphabet Z C &'. Observe that for any R > 0 holds

min min ECML (R,0) =
Z: C(Z)<R Q: supp(Q)c Z
min EMLR, Q) > o

Q: C(supp(Q)) < R

This observation conveniently allows us to grasp and write
one sufficient condition for the convergence of the iterative
minimization using (1) described by Lemma 5, and also of
the analogous procedure for (3), all the way to the minimum
over Q (18), when this minimum is zero.
Lemma 6 (Convergence to zero for ECML(R, Q) ): Let
o ) +oo
{(T[, V[)}[ 0 be a sequence of iterative solutions of (1)
with Q = Q, obtained by (20).
If the initial distribution Q) satisfies the strict inequality:

EML(R, Qp) < min EME(R, Q), (26)

Q: C(supp(Q)) < R
then .
— 00
EMY(R, Q) N0 O

Proof: By Theorem 1, the resultant sequence of
ECM L(R, ;) must monotonically converge to a minimum
of ECML(R, Q) over Q with supp(Q) € Z for some sub-
set of the channel input alphabet Z < AX. Suppose that
C(2) < R. Then also for every subset supp(Q) € Z we
have C(supp(Q)) < R. Then the limit of the sequence of
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ECM L(R, Q) must be lower-bounded by the minimum on the
RHS of (26). This is a contradiction, since the monotonically
non-increasing sequence must be upper-bounded by its first
element ECM L(R, Q) on the LHS of the strict inequality (26).
We conclude that necessarily C(Z) > R. In particular, there
exists some Q with supp(Q) € Z such that 71(Q, P) > R.
This gives EML(R, Q) = 0 by (1) for this Q. Consequently
the minimum in (22) is zero. ]

Note that for each 0 < R < C(X) — there exist such
initial input distributions Q that satisfy the condition (26) of
Lemma 6. Therefore (26) guarantees a region of convergence
of (1) to the optimal exponent (18) as a result of the iterative
procedure (19)-(20) for 0 < R < C(X). Next, we extend the
above result from (1) to (3).

Lemma 7: Ey(—1, Q) + C(supp(Q)) <0

Proof: Suppose on the contrary that
Eo(—1, Q) 4+ C(supp(Q)) > 0. Then

(17)
min EME(C(supp(Q)), O >
supp(Q) Csupp(Q) (C(supp(0)). 0)

(SN

)
min {Eo(—1,§)+C(Supp(Q))} 2
: supp(Q) < supp(Q) a
(

5 min Eo(—1, Q) + C(supp(Q > 0.
0: supp(Q)gsupp(Q){ 0 ) PP ))}

|}

The minimal correct-decoding exponent min g ECML (R, é)
of the channel with the input alphabet supp(Q) appears to be
positive at R = C (supp(Q)), which is a contradiction. (]
Lemma 8: C(supp(Q)) < RZ,(Q), as defined in (14).
Proof: According to Lemma 7, Eo(—1, Q)+C (supp(Q))
< 0. This means that, by Lemmas 2, 3, and definition (14),
the supporting line E(R) = E¢(—1, Q)+R of slope 1 touches
the graph of EME(R, Q) at R = RZ,(Q) = C(supp(Q)). T
Lemma 9 (One iteration):
If C(supp(Q)) > R then the following holds:
a) E.(R, Q) = ECML(R, Q), as defined in (3) and (1), sharing
the same solution (YV",V\V/), 5
b) 0(x) =X, TGV (x| y) satisfies supp(Q) = supp(Q).
Proof: Lemma 8 together with Lemma 4 imply that two
things hold ((i) and (ii)):
i) the graphs of EML(R Q) and E (R Q) coincide for all

R < C(supp(Q)) and
ii) the corresponding minima (1) and (3) share the same
minimizing solutions there.
In particular, this holds at R = R < C(supp(Q)). Then
EML(R 0) = E.(R, Q), sharmg the same solutions (7, V)
Since C (supp(Q)) > R, Lemmas 7 and 4 imply also that the
graph of EM L(R Q) touches at R = R some supporting
line with slope parameter p € (—1,0]. Then, by Lemma 4,
the unique solution V(T, V) is determined according to
(10)-(11). Then supp(Q) = supp(Q). O
Lemma 10 (Convergence of iterations for E.(R, Q) ):

¢ o ) oo
Let {(T[, V[)} be a sequence of iterative solutions

of (3) with Q = Qy at each iteration obtained from the
previous solution as in (20). If the initial distribution satisfies
(supp(QO)) > R, then for each € holds E.(R,Q;) =
EML(R Qy), (1), sharing the same solution (T[, V[)
Proof: Follows from Lemma 9 by induction. ]
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Now we can state the parallel of Lemma 6 for the upper
bound (3) on the ML correct-decoding exponent.
Theorem 2 (Convergence to zero for E.(R, Q) ):

.. 400
Let {(T0.V0)}
(3) with Q = Qy at each iteration obtained from the previous
solution as in (20). If the initial distribution Q satisfies the

strict inequality (26) for (1) then

be a sequence of iterative solutions of

ML £ — 00
E(R, Q) = E (R, Q) v 0.
Proof:  From (26) follows C(supp(Qp)) > R. Then
Lemma 10 applies and the claim follows by Lemma 6. 0

IV. COMPARISON TO THE BLAHUT ALGORITHM

The fixed-rate iterative computation of the optimal correct-
decoding exponent (18) according to (3) and (20) can be
compared to the fixed-distortion version of the Blahut algo-
rithm [6], [7] for the rate-distortion function computation. As
we have seen from (3), (1), and (18), the optimal correct-
decoding exponent can be written as a double minimum, quite
similarly to the rate-distortion function:

0 = min min D(ToV|QoP),
Q(x) T(y), V(x|y):
S, TOVE ) log Yyl > R
(27)
R(D) = min min D(ToV|QxT),
Q(x) Vix|y):

2y TV y)d(y, x) < D
(28)

where in (27) the optimal correct-decoding exponent E,(R) =
0 (implying R < C). The rate-distortion function R(D) in (28)
has also a meaning of an optimal probability exponent [4]. In
(28), the discrete memoryless source is denoted as 7'(y). The
i.i.d. source reproduction distribution is denoted as Q(x). The
additive distortion measure is d(y, x).

The iterative computation in the two algorithms is,
respectively,

Qrp1(x) = > Tr(Vilx|y), (29)
>
Qrp1(x) = Y T Velx|y), (30)

y

The algorithm for R(D) is an alternating minimization pro-
cedure of Csiszar and Tusnddy [7]. That is, in (28), Vg(x [y)
solves the inner minimum of D(T o V || Q, x T), and then
Q¢4 1(x) of (30) in turn minimizes D(7T o \75 | @ xT).On the
other hand, the proposed algorithm for the correct-decoding
exponent is not exactly an alternating minimization procedure.
Specifically, observe that, in (27), Tg(y)Vg(x | y) solves the
inner minimum of D(T o V || Oy o P), but then O/ ((x)
of (29) minimizes simultaneously both D(T; o V|| Q o P)
and D(Tg o \75 I f[ X Q), thus violating the condition under
the inner minimum with the same T[ ) \75. Nonetheless, this
results in a monotonically non-increasing sequence of the inner
minima over 7 o V at least given the condition on Qg of
Lemma 10. The sequence converges all the way down to
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zero at least under the initial condition (26) according to
Theorem 2.

In the iterative minimization procedure at fixed rate R
described above, the minimization itself is implicit and the
slope parameter p is different in each iteration. In [9] we
present also a fixed-slope version of the iterative update (20),
which is similar to the fixed-slope version of the Blahut
algorithm for R(D) computation [6], [10], and presents an
alternative for the Arimoto algorithm [2] for computation of
ming Eg(p, Q), p € (—1,0). There, the slope parameter p
is fixed and the computations acquire an explicit form, going
iteratively along (10)-(11) and (20). Similarly as the Blahut
and the Arimoto algorithms, it does not require any special
conditions for convergence.

V. CHANNEL INPUT ADAPTATION

As we have seen, the correct-decoding exponent for chan-
nels exhibits properties reminiscent of the rate-distortion func-
tion for sources. In [4], the phenomenon of natural type
selection in lossy source-encoding was found to be a stochastic
counterpart of the Blahut algorithm. In this section we describe
an analogous phenomenon in noisy-channel decoding as a
stochastic counterpart of the fixed-rate iterative minimization
of the correct-decoding exponent presented in Section III.

A. Adaptation Scheme

The communication scheme, whose target is to adapt itself
to an unknown DMC channel, can employ any sequence (in the
blocklength n) of decoders operating on random block codes
generated i.i.d. according to @, resulting in an asymptotic
error exponent denoted as E,(R, Q). The communication
occurs at a rate R and we assume it to be reliable:

E,(R, Q) > 0.

The decoder determines its estimate m of the transmitted
message and then sends reliably a bit of feedback, F = 0 or 1,
to the transmitter, according to the following rule (Figure 3):

D(ToV4;||TxQ) > R+A < F=1, (3l

where T'(y) is the type of the received block y, Vz;(x|y)
represents the conditional type of the codeword x;; given the
received block, and A > 0 is some predetermined parameter
of the adaptation. This feedback rule corresponds to a boolean
function F : X" x V" — {0, 1}.

Let (X,Y) denote the random pair of the transmitted and
the received blocks. Define an event:

S 2 {(X,Y) of any type T oV

st. D(ToV|T x Q) > R+A}. (32)

Lemma 11 (Selection exponent):
If R+ A < RZ(Q), as defined in (14), then
. log Pr {S}
lim — =

n— oo —n

E.(R+ A, Q).

Proof: The liminf of the exponent of S is lower-bounded
by E.(R + A, Q) defined by (3). Given that R + A <
R~,(Q), by the explicit expression for E.(R, Q) (16) of

2085
Encoder Decoder
X y
= B E
D(@m) > R+ A
Fig. 3. Channel with a 1-bit feedback per block. The decoder providing

m is not specified. It is assumed that the decoding is correct, i.e. m = m.
D(ﬁq\) S D(T o V7 IT x Q), where T is the type of the received block, Vi
is the conditional type of the codeword for the estimated message m, and Q
is the i.i.d. codebook generating distribution.

Lemma 4 we conclude that E.(R + A, Q) is continuous
at R as a convex (U) function. This fact can be used for
the upper bound. For a small enough ¢ > 0 consider the
minimizing solution 7* o V* of E.(R + A + 2¢, Q). Let
Ty o V) denote a quantized version of 7" o V* with pre-
cision % Then T} o V7 is a joint type with denominator
n. By continuity of the divergence, for sufficiently large n
we obtain D(T} o Vi|Th x Q) = R+ A + € and also
D(T; o Vi || Qo P) < E(R+ A+ 2 Q) +e
Therefore, the lim sup of the exponent of S is upper-bounded
by lim¢oE.(R+A+2¢ Q)+e=E(R+ A, Q). O

The two events {F = 1} and S are of course not the same,
because in case of a decoding error the decoded codeword
X7; is different from the transmitted codeword Xx;. In order to
ensure that the two events are the same with high probability,
we further assume that A is small enough so that

E.(R,Q) > E(R+A, Q).

Under this condition and the condition of Lemma 11 that
R+ A < RZ(Q), given S with high probability holds also
the event {F = 1} and vice versa. Given the condition of
Lemma 11, E.(R+ A, Q) is the same as the correct-decoding
exponent of the ML decoder ECM LR+ A, Q) according to
Lemma 4. This situation is depicted in Figure 4. There, on the
upper graph E,(R, Q) > E.(R+ A, Q) = 0, while on the
lower graph E,(R, Q) > E.(R+ A, Q) > 0.

In the case F = 1, which is a rare event when E.(R+A, Q)
> 0, the system parameter Q is updated. A new codebook is
adopted by both the encoder and the decoder according to the
type of the transmitted codeword x;; :

0'(x) = Tkx) = Tz),

where T, (x) = Zy T(y)V,(x|y). Under the condition (33)
and the condition of Lemma 11, the type of the transmitted
codeword is known at the decoder with high probability
also given the event {FF = 1}. In case of the feedback
F = 0, the codebook distribution Q remains unchanged. To
summarize:

Feedback

(33)

Encoder Decoder
0(x) < Tz(x) | O(x) < T5x)
F=0 — —

F=1

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on June 26,2020 at 01:08:45 UTC from IEEE Xplore. Restrictions apply.



2086

i ©10°3 RANDOM CODING EXPONENTS
R R+A
(L
ERROR
L 08F
=
|
2 06l CORRECT
a DECODING
|
04t
02t
0.98 1 1.02 1.04 1.06 1.08 14
RATE
. ©10° RANDOM CODING EXPONENTS
R R+A
N
CORRECT
osl DECODING
Lo
z
|
% 0.6
a
>
w
04t
02t
. ‘ ‘
0.98 1 1.06 1.08 14

RATE

Fig. 4. The decreasing curve is the error exponent E.(R, Q). The increasing
curve is the correct-decoding exponent E.(R, Q). Both graphs are for the
same Q(x). The channel P(y|x) is different between the upper graph and
the lower graph. In both cases E.(R, Q) > E-(R+ A, Q).

A state-machine description of the above scheme can be
found in Appendix D.

B. Natural Type Selection

The joint type T (y)Viz(x|y) of the transmitted and the
received blocks given the event {F = 1} or S is related to
the probability exponent of this event E.(R + A, Q).

Theorem 3 (Convergence of a type):

If R+ A < RZ,(Q), as defined in (14), then, given the event
S (32), the joint type of the transmitted and the received words
(X,Y) converges in probability, as the blocklength n — o0,
to the minimizing distribution of E.(R+ A, Q) (3).

Proof: By the preceding Lemma 11 the exponent of S is
given by E.(R+ A, Q). Therefore by (16) it is finite. On the
other hand, for some € > 0, the exponent in the probability
of the event

H & {(X,Y) of any type T oV
st. D(ToV|QoP) > EC(R—i—A,Q)—i—e},

is obviously lower-bounded by E.(R+A, Q)-+e¢. Then, given
S with high probability holds also S N H¢.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 4, APRIL 2020

Now consider the joint type T o V of (X, Y) given S N H°.
Since R+ A < RZ;(Q) by Lemma 4 there exists some
p € (—1,0] such that

E(R+ A, Q) = Eo(B, Q) — B(R+ A).
We can use this f to write
E(R+A,Q) +¢ = DToV[QoP)

§ D(ToV|[QoP)—B[R+A—-D(ToV|Tx Q)]

<0
= DT Ty + A+BD(ToVI|ToVs)+
Eo(B, Q) — B(R+ A)

E.(R+ A, Q)
= D(T|Tp) + A+BDToV|ToV)+
E.(R+ A, Q)
€ = D(T|Tp) + A+BDT oV |ToVp), (34)

where Ty o Vp is the minimizing distribution of E.(R+A, Q)
determined according to Lemma 4 by (10)-(11) with £. The
inequality (34) implies that the type 7 o V and the solution
Tg o Vg are close in L1 norm. And all this — given § N H¢,
i.e. with high probability. 0

In the subsequent analysis we assume that the blocklength
n is large and neglect the difference between the random joint
type of the transmitted and the received blocks 7' (y)V; (x| y)
given {F = 1} and the respective solution T(y)f/(x | y) to the
minimization problem (3) E.(R + A, Q) or (1) ECML(R +
A, Q). We also assume that the inequality (33) between the
error exponent and the correct-decoding exponent is never
violated, so that {F = 1} is always exponentially equivalent
in probability to S.

Let Qg be the initial codebook distribution and consider
the consecutive events {Sg}z,rioo, defined by (32). They result
in the sequence of codebook distributions {Qg};riol. Suppose
that initially

C(supp(Qp)) > R+ A.

Then by Lemma 8 it is also true that R + A < R_,(Qy),
which is the condition of both Lemma 11 and Theorem 3.
As a result, given (33) for Q( the events {FF = 1} and
S are equivalent and given these events the joint type of
the transmitted and the received blocks (approximately, with
high probability) achieves the minima E.(R + A, Qg) and
EML(R+A, Qp), with E.(R+A, Qy) = EME(R+A, Q).
Therefore the next distribution Q; is obtained according to
(19)-(20). Finally Lemma 9 gives supp(Q;) = supp(Qo)-
Then, provided that (33) continues to hold for each Q,
by induction we obtain that at each iteration ¢ the codebook
distribution Q, | | evolves according to (19)-(20). This results
in convergence of ECML(R + A, Q). Suppose the initial
distribution Q| satisfies further the strict inequality (26) with
R + A in place of R:
EMER+ A, Qy) < EML(R+ A, Q).

(35)

min
Q: C(supp(Q)) < R+ A
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Fig. 5. The decreasing curves are the error exponents Iie(l?, Q¢). The
increasing curves are the correct-decoding exponents E.(R, Q). All the
curves are for the same channel P(y|x). For each ¢ :~O, 1, 2, ...,
the respective pair of curves meets zero at the same point R = I(Qy, P).
For each ¢ holds E.(R, Q¢) > Ec(R+ A, Q¢) (33). The correct-decoding
exponent E¢(R+ A, Q) converges to zero as { grows. At the same time the
zero point of the error exponent at R = I(Qy, P) moves to the right towards
R+ A.

This is always possible with C (supp(Qg)) > R+A. Then the
sequence of ECM L(R+A, Q) converges to zero by Lemma 6,
achieving our goal. In the limit of convergence of the codebook
distribution for a given channel — reliable communication is
possible for all rates below R + A.

An example is shown in Figures 4 and 5.

In Figure 4 on the upper graph the correct-decoding expo-
nent is zero at R 4+ A. The rate of the communication is lower
and equals R. Then the channel P(y|x) changes abruptly
and both the error exponent curve and the correct-decoding
exponent curve for the same Q(x) move to the left, as shown
on the lower graph of Figure 4. Now the correct-decoding
exponent becomes positive at R 4+ A, but is still lower than
the error exponent at R, so that the strict inequality (33) still
holds. The reliable communication continues at R. The new
channel P(y|x) is assumed to remain the same during the
ensuing iterations, shown in Figure 5. During the iterations
the codebook distribution adapts to the new channel. In the
limit of the iterations, the correct-decoding exponent returns to
zero at R+ A with respect to the new channel. In this way the
adaptation scheme will safeguard the reliable communication
mode at R for as long as the DMC capacity of the block does
not deteriorate below R + A.

In the presented example the change in the channel is abrupt
relatively to the number of block transmissions required to
adapt to the change. If we increase A, then R 4+ A will move
to the right in the graphs and the correct-decoding exponent at
R+ A will be accordingly higher. The higher is this exponent
— the more blocks we have to wait in order for a single
iteration to occur.

In practice, the correct-decoding exponent at R + A should
be near zero and the change in the channel should be slow, in
order for the scheme to be able to follow the changes in the
channel successfully. In the tracking scenario, if the parameter
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Encoder Decoder
m > P(y|z) == D(m) > D(m)
X y
Ym # m

0/L | D(@) > D(m) + A

VYm # m

I

Fig. 6. An alternative scheme. D (m) £ D(ToVy || T x Q), where T is the
type of the received block, Vi, is the conditional type of the codeword for
the message m, and Q is the i.i.d. codebook generating distribution.

A is such that the correct-decoding exponent is initially zero at
R-+A, then the higher is A — the greater is the communication
reliability at R. On the other hand, the higher is A — the
higher must be the gap to capacity and the allowed region for
the change of the capacity itself is more restricted from below.
It should be noted, that since the reliable communication never
occurs exactly at the capacity, in the reliable communication
mode there always should exist some A > 0 to work with.

C. Alternative Scheme

The adaptation scheme presented in Figure 6 is embedded
in the structure of a particular channel-decoding procedure
through the parameter of decoding confidence A > 0. Main-
taining or restoring the decoding confidence means adaptation.
In this scheme the decoder itself uses the channel-independent

metric
Vin(x1y)

o) ’
introduced in [12], where V,,(x | y) is the conditional type of
the codeword for message m given the received block. The
decoder searches for the maximal empirical average of this
metric among the codewords in the codebook. If only a single
codeword attains the maximum, the decoder then compares the
difference between the maximal empirical average of (36) and
the second highest one in the codebook to the parameter A.
If the winning codeword wins by more than A, its empirical
distribution is selected as the new codebook distribution.

It can be shown [9] that in this scheme the exponent of the
type selection event is also given by E.(R + A, Q) defined
in (3), so it works equivalently to the scheme in Figure 3.

On the other hand, it can be shown [9] that the exponent
of the complementary non-selection event in this scheme is
given by

log (36)

min
T(y). V(x|y)
ID(T oV | T x Q)—R—A|+}, (37

E(R+A, Q) = {pTovigor +

where the minimization is over arbitrary distributions
T(y)V(x|y), with y € Y and x € X. This is the exponent of
the event when the transmitted codeword does not win by A.
It can be shown [1], [9], that (37) is just the Gallager random
coding error exponent [3, eq. 5.6.28] shifted by A.
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VI. CONCLUSION

In this work we introduce two different expressions (18) for
the optimal correct-decoding exponent:

E.(R) = min min {D(T oV QoP)+
00) TGN V(Y
IR—D(ToV|T x Q)|+} (38)
= min min {D(TovnQoP)},
0() T VG|

D(ToV|TxQ)>R
(39)

as alternatives to the Dueck-Korner expression [8]. The inner
minimum in (38) has a meaning of the correct-decoding expo-
nent of the ML decoder for a given i.i.d. codebook distribution
Q. We propose a minimization procedure over Q at constant
R, which uses the inner minimum in (38) iteratively. It is
shown that this procedure results in a sequence of distributions
O, with a monotonically non-increasing sequence of the
corresponding inner minima in (38). This sequence of minima
converges eventually to the outer minimum in (38) over some
subset of the channel input alphabet, and more precisely
— over some subset of the support supp(Qg) of the initial
distribution Q. In general, it remains unclear whether the
minimization procedure at constant R always achieves the
global minimum (38) over the initial channel input support
supp(Qy) itself. If we knew that it does, we could use
any initial channel input distribution Q, which is positive
everywhere — as in the Arimoto-Blahut algorithms.

From a practical standpoint, it is interesting when the
correct-decoding exponent is zero. This is when reliable
communication becomes possible. For any rate R below the
capacity, we provide a minimal and quite obvious sufficient
condition (26) on the initial distribution Q(, which guarantees
convergence of the minimization procedure to zero. This suf-
ficient condition is always satisfied, for example, for a binary
channel-input alphabet, and for greater alphabets presents an
inner bound on the region of convergence of the fixed-rate
computation algorithm in terms of Q(, for each rate below the
capacity. This “computation of zero” is interesting, of course,
only because of the unknown set of the distributions Q,
achieving zero correct-decoding exponent for a given R.

The inner minima in (38) and (39) coincide, as increasing
functions of R, for slopes less than 1. This coincidence allows
us to give a stochastic interpretation to the fixed-rate minimiza-
tion procedure and to propose a scheme for the channel input
adaptation (Figures 3 and 6). The scheme does not rely on the
knowledge of the channel. In this scheme the communication
occurs at a rate R and is assumed sufficiently reliable from
the beginning of the adaptation. Then, in the limit of a large
blocklength, the adaptation falls exactly into the steps of the
iterative minimization procedure. As a result, under the initial
condition (35) the ML correct-decoding exponent, associated
with the iterated input distribution Q,, gradually descents to
zero at R + A, thereby securing the reliable communication
mode at R.

The adaptation scheme uses a single bit of feedback per
transmitted block. According to this bit the system decides
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whether to replace the codebook distribution Q with the
empirical distribution of the last sent codeword or not. In
practice, a less interesting case would be when the feedback
bit has entropy zero, i.e. when the feedback bit is 1 or 0
with high probability. The first situation occurs when the ML
correct-decoding exponent curve for a given Q leaves zero at
a point on the rate-axis substantially greater than R + A, i.e.,
the system is deep inside the region of reliable communication
(Figure 4, upper graph). Then the feedback bit is 1 with
high probability. In this case there is no clear advantage of
the selected empirical distribution over Q and its constant
replacement is not vital. The second situation happens when
the correct-decoding exponent is substantially positive at R+ A
(Figure 4, lower graph). In this case, the feedback bit is 0 with
high probability, and it naturally takes an exponentially large
number of blocks to obtain a single adaptation step.

Therefore, the promising case seems to be in the transition
zone, when the feedback bit has a non-zero entropy. This is
the situation when the correct-decoding exponent meets zero
at R + A (as in the limit of the iterations in Figure 5) and
fluctuates there, at a finite blocklength, rising up following
the changes in the channel and falling back to zero as a result
of the adaptation process. For such fluctuations, the sufficient
condition (35) is adequate and enough, because it stays sat-
isfied. The choice of A for a given R then amounts to a
trade-off between the communication reliability and allowed
variability of the channel capacity, as discussed earlier, in the
end of Section V-B. The question however remains for future
research — how slow and how large, respectively, the change
in the channel and the size of the block have to be in order for
the adaptation mechanism to follow the channel from block to
block.

APPENDIX
A. Proof of Lemma 1
If the LHS of (5) is 400, then (5) holds with strict

inequality, because the RHS of (5) is always finite. Otherwise
we can write:

() Vx| y): {D(T oViQe P)} = (40)
D(ToV|TxQ)>R
(é)D(TROVR ||QOP) (41)
)
= D(To Ve || Qo P) + p [D(T o Ve Il Tk x Q) — R]
<0
(42)
© .
> min {D(ToV||QoP)_|_
T(y), V(x|y):

supp(V) < supp(Q)
p[D(T oV T x Q)—R]} (43)

@ D(T,0V, Q0 P) + p[D(T, oV, IT, x Q) — ]

@D(TpovanoP)

%) .

= min {D(ToV||QoP)}.
T(y), V(x|y):

D(ToV|TxQ)=>R
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When the minimum (40) is finite, the first equality (a) above
holds, with T o Vg denoting a minimizing solution of (40)
for a given R. The inequality (b) holds because p < 0 and
D(Tro Vi || Tk X Q) > R. The inequality (c) holds because
D(Tro Vi || Qo P) is finite, so that supp(Vz) < supp(Q).
In the second equality (d) above, T, o V, denotes a minimizing
solution of the minimum (43) for a given p.

For the direct part, observe that when the minima (40) and
(43) are equal, then also there is equality between the expres-
sion (42) and the minimum (43). Consequently, the minimizing
distribution of (40) T o V; is also a minimizing distribution
of (43) for a given p in this case. From the equality between
(41) and (42) we conclude that such solution must satisfy
R = D(TR oVp || Ty x Q) for p < 0, or, as a solution
to (40), it can be such that R < D(TR o Vg Il Tp % Q) for
p=0.

Conversely, observe that if R = D(T,0V, | T,xQ),or R <
D(Too Vol Ty x Q) for p =0, then both (e) and (f) hold.
In this case the minimum (40) is finite and (a)-(c) also hold.
By the sandwich, we conclude that there is equality between
(40) and (43). Moreover, since also D(Tp oV, |l Qo P) is equal
to the minimum (40), and since R < D(Tp oV, IT, x Q),
we conclude that 7, o V, is also a minimizing solution
of (40). O

B. Proof of Lemma 2

Similarly to Lemma 1:

min

{D(ToV||QoP)+
T(y),V(xly)

|R—D(ToV||TxQ)\+} (44)

@ D(Tro Vg | Qo P) + |R—D(Tgo Vg I Tg x Q)|

®)
> D(Tro Vg | Qo P) — p[R—=D(Tgo Vg || Tg x Q)]

() .
> min

T(y), V(x|y):
supp(V) < supp(Q)

p[R—D(TovnTxQ)}}

{D(ToV||QoP)—

(45)

=D(T,oV,[QoP) — p[R=D(T,0V,|T, x Q)]
‘+

=D(T,oV,[|QoP) + |R=D(T,0V,|T, x Q)
{D(ToV||QoP)+

> min
T(y), V(x|y)

IR—D(ToV|T x Q)|+}.

In (a) Tg o Vi denotes a minimizing solution of (44) for a
given R, (b) always holds with —1 < p < 0, (c¢) holds
because Ty o Vi has to be such that D(TR oV |l Qo P)
is finite, giving supp(Vz) < supp(Q), in (d) T, o V, denotes
a minimizing solution of the minimum (45) for a given p.
If R=D(T,oV,|T,x Q),or R<D(TyoVy|Tyx Q)
for p =0, 0r R > D(T_l oV_1 |1 T_; x Q) for p = —1, then
(e) holds. The rest of the argument is analogous to the proof
of Lemma 1. O
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C. Proof of Lemma 3

For p > —1:
min {D(ToV||QoP) + pD(ToV|T x Q)}
T(). Vix]y)
=  min {D(T||Tp) +(1+p)D(ToV||Ton)}
T(), Vx[y) N —r
>0 >0
+ Eo(p, Q) (46)
= Ey(p, 0),

where the unique joint distribution minimizing the divergences
in (46) is T,, o V, given by (10)-(11).
For p = —1:
min
T(),Vxly):
supp(V) < supp(Q)

{D(ToV||QoP)—D(ToV||TxQ)}

= min
T(y), V(x|y):
supp(V) < supp(Q)

T(y) }
§ 1
{ 2 T(y)V(x|y)log POy |x)

= min {D(T I T,l)} + Eop(—1,0)
T(y) T
= EO(_la Q)a

where the minimum is achieved with any V(x| y) satisfying
(13) and the unique 7_;(y) given by (12). J

D. A State-Machine Description of the Adaptation System

Assuming the decoding is always correct: m = n, the code-
book distribution Q can be considered as a state of the
whole system, which may change in time, i.e. from block to
block. But strictly speaking, it may be different at the receiver
than at the transmitter. Let + = 1,2,3,... be a time index,
corresponding to the current block. With the help of this index,
let us denote the current codebook distribution, or the state, as
0" at the transmitter and as Q) at the receiver. Using the
same codebook distribution Q(’ ), the codebook itself, however,
is generated independently, i.e. differently, at different times .
This can be assumed to simplify the analysis. We assume that
the codebooks on both sides at time ¢ are exactly the same if
0 = Q. Therefore, the codebooks used by the transmitter
and the receiver can be viewed as functions of the time
index 7 and the current codebook distribution Q) or Q®,
respectively.

On the transmitter side, accordingly, the transmitted code-
word x) € X" at time ¢ can be viewed as a function of the
current transmitted message n~1(’), of the current time 7, and
the current codebook distribution Q®:

x" = enc (m", 1, V). (47)

At time ¢, the encoder also determines its next codebook
distribution QU+ according to the feedback bit F®) € {0, 1}
at that time and the type of the transmitted codeword x(). The
next state Q1) at the encoder can be described alternatively
as a function of F, m® ¢, and its current state Q):

Q(I+1) _ (1—F(’)) . Q(t) + FO. type (n~1(’), ‘, Q(’)), (48)
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where type (m"), t, Q) is a function, which gives the type
of the codeword x.

The decoder uses the current receiveg block y(t) e )y,
the current time ¢, and its current state Q(t) to determine its
estimate of the transmitted message m® and the feedback
bit FO:

mn®

(49)
(50)

= bit (y, 1, ).

The decoder then propagates its own state, using the same
function as (48), with the same feedbac/lf bit input F ®, but
with formally different inputs 71(*) and Q®):

0UtD = 1=F9). 0W 4+ FO. type (fn\(t), t, Q(t)), 51

F®

where type (m, t, Q(’)) is the type of the codeword Xz in
the codebook determined by 7 and Q).

The initial state Q1) = Q(l) can be an arbitrary distribution
over X, generating the same codebook on both sides. After the
first instance of the feedback bit F() = 1, the states on each
side become types (the same type, provided m = m) and after
that point in time the total number of different possible states
0 or Q ) is upper-bounded by the total number of different
types for the blocklength n, and therefore by (n + 1)|X 3
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