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Let X be a normal complex projective variety with at worst klt 
singularities, and L a big line bundle on X. We use valuations 
to study the log canonical threshold of L, as well as another 
invariant, the stability threshold. The latter generalizes a 
notion by Fujita and Odaka, and can be used to characterize 
when a Q-Fano variety is K-semistable or uniformly K-stable. 
It can also be used to generalize volume bounds due to Fujita 
and Liu. The two thresholds can be written as infima of certain 
functionals on the space of valuations on X. When L is ample, 
we prove that these infima are attained. In the toric case, 
toric valuations achieve these infima, and we obtain simple 
expressions for the two thresholds in terms of the moment 
polytope of L.
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Introduction

Let X be a normal complex projective variety of dimension n with at worst klt sin-
gularities, and let L a big line bundle on X. We shall consider two natural “thresholds” 
of L, both involving the asymptotics of the singularities of the linear system |mL| as 
m → ∞.

First, the log canonical threshold of L, measuring the worst singularities, is defined by

α(L) = inf{lct(D) | D effective Q-divisor, D ∼Q L},

where lct(D) is the log canonical threshold of D; see e.g. [23]. It is an algebraic version 
of the α-invariant defined analytically by Tian [84] when X is Fano and L = −KX .

The second invariant measures the “average” singularities and was introduced by 
Fujita and Odaka in the Fano case, where it is relevant for K-stability, see [49,75]. 
Following [49] we say that an effective Q-divisor D ∼Q L on X is of m-basis type, where 
m ≥ 1, if there exists a basis s1, . . . , sNm

of H0(X, mL) such that

D = {s1 = 0} + {s2 = 0} + · · · + {sNm
= 0}

mNm
,

where Nm = h0(X, mL). Define

δm(L) = inf{lct(D) | D ∼Q L of m-basis type}.

Our first main result is

Theorem A. For any big line bundle L, the limit δ(L) = limm→∞ δm(L) exists, and

α(L) ≤ δ(L) ≤ (n + 1)α(L).

Further, the numbers α(L) and δ(L) are strictly positive and only depend on the numer-
ical equivalence class of L. When L is ample, the stronger inequality δ(L) ≥ n+1

n α(L)
holds.

We call δ(L) the stability threshold1 of L (in the literature it is now also commonly 
referred to as the δ-invariant). It can also be defined for Q-line bundles L by δ(L) :=
rδ(rL) for any r ≥ 1 such that rL is a line bundle; see Remark 4.5.

1 The idea of the stability threshold δ(L), with a slightly different definition, was suggested to the second 
author by R. Berman [5].
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The following result, which verifies Conjecture 0.4 and strengthens Theorem 0.3 of [49], 
relates the stability threshold to the K-stability of a Q-Fano variety:

Theorem B. Let X be a Q-Fano variety.

(i) X is K-semistable iff δ(−KX) ≥ 1;
(ii) X is uniformly K-stable iff δ(−KX) > 1.

More precisely, the reverse implications are due to Fujita and Odaka [49]; what is new 
are the direct implications.

The notion of uniform K-stability was introduced in [22,37]. As a special case of the 
Yau–Tian–Donaldson conjecture, it was proved in [7] that a Fano manifold X without 
nontrivial vector fields is uniformly K-stable iff X admits a Kähler-Einstein metric. The 
latter equivalence was extended to (possibly) singular Q-Fano varieties without nontrivial 
vector field in [67], and general singular Q-Fano varieties in [64]. The result in [64] says 
that a Q-Fano variety admits a Kähler–Einstein metric iff X is uniformly K-polystable. 
For smooth X, this result was proved earlier (using different methods, and with uniform 
K-polystability replaced by K-polystability) in [27,87].

For a general ample line bundle L on a smooth complex projective variety, the stability 
threshold δ(L) detects Ding stability in the sense of [18] and has the following analytic 
interpretation.2 Let β(L) be the greatest Ricci lower bound, i.e. the supremum of all 
β > 0 such that there exists a Kähler form ω ∈ c1(L) with Ric ω ≥ βω, see [85,76,77,81]. 
Then β(L) = min{δ(L), s(L)}, where s(L) = sup{s ∈ R | −KX − sL nef} is the nef 
threshold if L, see [8, Theorem D] and also [25, Appendix].

Theorems A and B imply that if X is a Q-Fano variety and α(−KX) ≥ n
n+1 (resp. 

> n
n+1 ), then X is K-semistable (resp. uniformly K-stable), thus recovering results in [74,

22,37,49], that can be viewed as algebraic versions of Tian’s theorem in [86]. See also [47]
for the case α(−KX) = n

n+1 , and [36] for more general polarizations.

Our approach to the two thresholds α(L) and δ(L) is through valuations. Let ValX
be the set of (real) valuations on the function field on X that are trivial on the ground 
field C, and equip ValX with the topology of pointwise convergence. To any v ∈ ValX
we can associate several invariants.

First, we have the log discrepancy A(v) = AX(v). Here we only describe it when v
is divisorial; see [20] for the general case. Let E be a prime divisor over X, i.e. E ⊂ Y

is a prime divisor, where Y is a normal variety with a proper birational morphism 
π : Y → X. In this case, the log discrepancy of the divisorial valuation ordE is given by 
A(ordE) = 1 + ordE(KY/X), where KY/X is the relative canonical divisor.

Second, following [21], we have asymptotic invariants of valuations that depend on 
a big line bundle L. For simplicity assume H0(X, L) 	= 0. To any v ∈ ValX and any 

2 However, δ(L) is not expected to be directly related to the K-stability of the pair (X, L).
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nonzero section s ∈ H0(X, L) we can associate a positive real number v(s) ∈ R+. This 
induces a decreasing real filtration Fv on H0(X, L), given by

F t
vH0(X, L) = {s ∈ H0(X, L) | v(s) ≥ t}

for t ≥ 0. Define the vanishing sequence or sequence of jumping numbers

0 = a1(L, v) ≤ a2(L, v) ≤ · · · ≤ aN (L, v) = amax(L, v)

of (the filtration associated to) v on L by

aj(L, v) = inf{t ∈ R | codim F t
vH0(X, L) ≥ j}.

Thus the set of jumping numbers equals the set of all values v(s), s ∈ H0(X, L) \ {0}.
For m ≥ 1, consider the rescaled maximum and average jumping numbers of v on 

mL:

Tm(v) = 1
m

amax(mL, v) and Sm(v) = 1
mNm

Nm∑
j=1

aj(mL, v),

where Nm = h0(X, mL). Using Okounkov bodies one shows that the limits

S(v) = lim
m→∞

Sm(v) and T (v) = lim
m→∞

Tm(v)

exist. The resulting functions S, T : ValX → R+ ∪ {+∞} are lower semicontinuous. 
They are finite on the locus A(v) < ∞. For a divisorial valuation v = ordE as above, the 
invariant T (ordE) can be viewed as a pseudoeffective threshold:

T (ordE) = sup{t > 0 | π∗L − tE is pseudoeffective}

whereas S(ordE) is an “integrated volume”.

S(ordE) = vol(L)−1
∞∫

0

vol(π∗L − tE) dt.

The invariants S(ordE) and T (ordE) play an important role in the work of K. Fujita [46], 
C. Li [62], and Y. Liu [69], see Remark 3.10.

The next result shows that log canonical and stability thresholds can be computed 
using the invariants of valuations above:

Theorem C. For any big line bundle L on X, we have

α(L) = inf A(v) = inf A(ordE) and δ(L) = inf A(v) = inf A(ordE)
,

v T (v) E T (ordE) v S(v) E S(ordE)
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where v ranges over nontrivial valuations with A(v) < ∞, and E over prime divisors 
over X.

While the formulas for α(L) follow quite easily from the definitions (see also [2, §3.2]), 
the ones for δ(L) (as well as the fact that the limit δ(L) = limm δm(L) exists) are more 
subtle and use the concavity of the function on the Okounkov body of L defined by the 
filtration associated to the valuation v as in [16,21]; see also [89].

Theorem B follows from the second formula for δ(L) above and results in [46] and [62].
As for Theorem A, the estimates between α(L) and δ(L) in Theorem A follow from 

estimates 1
n+1 T (v) ≤ S(v) ≤ T (v) that are proved along the way. When L is ample 

and v is divisorial, the stronger inequality S(v) ≤ n
n+1 T (v) was proved by Fujita [48]. 

We deduce from results in [21] that the invariants S(v) and T (v) only depend on the 
numerical equivalence class of L. By Theorem C, the same is therefore true for the 
thresholds α(L) and δ(L). The proof that α(L) > 0 can be reduced to the case when 
L is ample, where it is known [84,22]. By the estimates in Theorem A, it follows that 
δ(L) > 0.

We can also bound the volume of a line bundle in terms of the stability threshold:

Theorem D. Let L be a big line bundle. Then we have

vol(L) ≤
(

n + 1
n

)n

δ(L)−nv̂ol(v)

for any valuation v on X centered at a closed point.

Here v̂ol(v) is the normalized volume of v, introduced by C. Li [63]. When X is a 
Q-Fano variety and L = −KX , Theorem D generalizes the volume bounds found in [45]
and [69], in which X is assumed K-semistable, so that δ(L) ≥ 1. These volume bounds 
were explored in [79] and [70].

Next we investigate whether the infima in Theorem C are attained. We say that a 
valuation v ∈ ValX computes the log canonical threshold if A(v)

T (v) = α(L). Similarly, v
computes the stability threshold if A(v)

S(v) = δ(L).

Theorem E. If L is ample, then there exist valuations with finite log discrepancy com-
puting the log-canonical threshold and the stability threshold, respectively.

This theorem can be viewed as a global analogue of the main result in [10], where 
the existence of a valuation minimizing the normalized volume is established. It is also 
reminiscent of results in [55] on the existence of valuations computing log canonical 
thresholds of graded sequence of ideals, and related to a recent result by Birkar [9] on 
the existence of Q-divisors achieving the infimum in the definition of lct(L) in the Q-Fano 
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case (see also [1]), and to the existence of optimal destabilizing test configurations [39,
80,73,38].

Unlike the case in [55], Theorem E does not seem to directly follow from an argument 
involving compactness and semicontinuity. Instead we use a “generic limit” construc-
tion as in [10]. For example, given a sequence of (vi)i of valuations on X such that 
limi A(vi)/S(vi) = δ(L), we want to find a valuation v∗ with A(v∗)/S(v∗) = δ(L). 
Roughly speaking, we do this by first extracting a limit filtration F∗ on the section ring 
of L from the filtrations Fvi

; then v∗ is chosen, using [55], so as to compute the log 
canonical threshold of the graded sequence of base ideals associated to F∗. To make all 
of this work, we need uniform versions of the Fujita approximation results from [16]; 
these are proved using multiplier ideals.

As a global analogue to conjectures in [55] we conjecture that any valuation comput-
ing one of the thresholds α(L) or δ(L) must be quasimonomial. While this conjecture 
seems difficult in general, we establish it when X is a surface with at worst canonical 
singularities, see Proposition 4.10. Using results in [12,48], we prove in Proposition 4.12
that any divisorial valuation computing α(L) or δ(L) is associated to a log canonical 
type divisor over X. When L is ample, any divisorial valuation computing δ(L) is in fact 
associated to a plt type divisor over X.

Finally we treat the case when X is a toric variety, associated to a complete fan Δ, and 
L is ample. We can embed NR ⊂ ValX as the set of toric (or monomial) valuations. The 
primitive lattice points vi, 1 ≤ i ≤ d, of the 1-dimensional cones of Δ then correspond to 
the divisorial valuations ordDi

, where Di are the corresponding torus invariant divisors.
Let P ⊂ MR be the polytope associated to L. To each u ∈ P ∩ MQ is associated an 

effective torus invariant Q-divisor Du ∼Q L on X.

Theorem F. The log-canonical and stability thresholds of L are given by

α(L) = min
u∈Vert(P )

lct(Du) and δ(L) = lct(Dū),

where ū ∈ MQ denotes the barycenter of P , and Vert(P ) ⊂ MQ the set of vertices of P . 
Furthermore, α(L) (resp. δ(L)) is computed by one of the valuations v1, . . . , vd.

The main difficulty in the proof is to show that the two thresholds are computed 
by toric valuations. For α(L), this is not so hard, and the formula in the theorem is 
in fact already known; see [78,68] and also [23,34,2]. In the case of δ(L), we use initial 
degenerations, a global adaptation of methods utilized in [72,10].

When X is a toric Q-Fano variety and L = −KX , Theorem F implies that X is 
K-semistable iff the barycenter of P is the origin. This result was previously proven 
by analytic methods in [6,3] and also follows from [66, Theorem 1.4], which was proven 
algebraically.



H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062 7
Additionally, we give a formula for δ(−KX) in terms of the polytope P . When X is a 
smooth toric Fano variety, δ(−KX) agrees with the formula in [61] for the greatest Ricci 
lower bound (see [85,81]).

We expect the results in this paper admit equivariant versions, relative to a subgroup 
G ⊂ Aut(X, L). It should also be possible to bound the stability threshold δ(L) from 
below in terms of a “Berman-Gibbs” invariant, as in [49]; see also [4,44].

Since the first version of this paper, there have been many developments related to 
the topics in this paper.

• The stability threshold has played an important role in a number of papers. For 
instance, see [13,14,26,25,24,29,52].

• It was recently shown in [90] that a weak version of [55, Conjecture B] holds. This 
result implies that any valuation computing δ(L) is quasimonomial; see Remark 4.11.

• In the thesis of the first author, the results in this paper were extended to the setting 
of klt pairs (X, B) [11] (see also [29]). The arguments from this paper go through to 
the more general setting with little to no substantive changes.

The paper is organized as follows. After some general background in §1, we study 
filtrations in §2 and global invariants of valuations in §3, mainly following [16,21]. 
We are then ready to prove the first main results on thresholds, Theorems A-D, 
in §4. The uniform Fujita approximation results appear in §5 and Theorem E is 
proved in §6 using the generic limit construction. Finally, the toric case is analyzed 
in §7.

Acknowledgment. We thank R. Berman, K. Fujita, C. Li and Y. Odaka for comments 
on a preliminary version of the paper. The first author wishes to thank Y. Liu for fruit-
ful discussions, and his advisor, M. Mustaţă, for teaching him many of the tools that 
went into this project. The second author has benefited from countless discussions with 
R. Berman and S. Boucksom. This research was supported by NSF grants DMS-0943832 
and DMS-1600011, and by BSF grant 2014268.

1. Background

1.1. Conventions

We work over C. A variety is an irreducible, reduced, separated scheme of finite type. 
An ideal on a variety X is a coherent ideal sheaf a ⊂ OX . We frequently use additive 
notation for line bundles, e.g. mL := L⊗m.

We use the convention N = {0, 1, 2, . . . }, N∗ = N \ {0}, R+ = [0, +∞), R∗
+ =

R+ \ {0}. In an inclusion A ⊂ B between sets, the case of equality is allowed.
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1.2. Valuations

Let X be a normal projective variety. A valuation on X will mean a valuation 
v : C(X)∗ → R that is trivial on C. By projectivity, v admits a unique center on X, 
that is, a point ξ := cX(v) ∈ X such that v ≥ 0 on OX,ξ and v > 0 on the maximal ideal 
of OX,ξ. We use the convention that v(0) = ∞.

Following [55,20] we define ValX as the set of valuations on X and equip it with the 
topology of pointwise convergence.3 We define a partial ordering on ValX by v ≤ w iff 
cX(w) ∈ cX(v) and v(f) ≤ w(f) for f ∈ OX,cX (w). The unique minimal element is the 
trivial valuation on X. We write Val∗X for the set of nontrivial valuations on X.

If Y → X is a proper birational morphism, with Y normal, and E ⊂ Y is a prime 
divisor (called a prime divisor over X), then E defines a valuation ordE : C(X)∗ → Z
in ValX given by order of vanishing at the generic point of E. Any valuation of the form 
v = c ordE with c ∈ R>0 will be called divisorial.

To any valuation v ∈ ValX and λ ∈ R+ there is an associated valuation ideal defined 
by aλ(v) := {f ∈ OX | v(f) ≥ λ}. If v is divisorial, then Izumi’s inequality (see [54]) 
shows that there exists c > 0 such that aλ(v) ⊂ m

�cλ�
ξ for any λ ∈ R+, where ξ = cX(v).

For an ideal a ⊂ OX and v ∈ ValX , we set

v(a) := min{v(f) | f ∈ a · OX,cX (v)} ∈ [0, +∞].

We can also make sense of v(s) when L is a line bundle and s ∈ H0(X, L). After 
trivializing L at cX(v), we write v(s) for the value of the local function corresponding to 
s under this trivialization; this is independent of the choice of trivialization.

We similarly define v(D) where D is an effective Q-Cartier divisor on X. Pick m ≥ 1
such that mD is Cartier and set v(D) = m−1v(f), where f is a local equation of mD at 
the center of v on X. Equivalently, v(D) = m−1v(s), where s is the canonical section of 
OX(mD) defining mD.

1.3. Graded sequences of ideals

A graded sequence of ideals is a sequence a• = (ap)p∈N∗ of ideals on X satisfying 
ap · aq ⊂ ap+q for all p, q ∈ N∗. We will always assume ap 	= (0) for some p ∈ N∗. We 
write M(a•) := {p ∈ N∗ | ap 	= (0)}. By convention, a0 := OX .

Given a valuation v ∈ ValX , it follows from Fekete’s Lemma that the limit

v(a•) := lim
M(a•)	p→∞

v(ap)
p

exists, and equals infp∈M(a•) v(ap)/p; see [55].

3 This is the weakest topology such that for each f ∈ C(X)∗ the evaluation map ϕf : ValX → R defined 
by ϕf (v) := v(f) is continuous. See [55, Section 4.1] for further details.
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A graded sequence a• of ideals will be called nontrivial if there exists a divisorial 
valuation v such that v(a•) > 0. By Izumi’s inequality, this is equivalent to the existence 
of a point ξ ∈ X and c > 0 such that ap ⊂ m

�cp�
ξ for all p ∈ N.

If v is a nontrivial valuation on X, then a•(v) := {ap(v)}p∈N∗ is a graded sequence of 
ideals. In this case, v(a•(v)) = 1 [10, Lemma 3.5].

1.4. Volume

Let v be a valuation centered at a closed point ξ ∈ X. The volume of v is

vol(v) := lim
λ→+∞

	(OX,ξ/aλ(v))
λn/n! ∈ [0, +∞),

the existence of the limit being a consequence of [30]. The volume function is homoge-
neous of order −n, i.e. vol(tv) = t−n vol(v) for t > 0.

1.5. Log discrepancy

Let X be a normal variety such that the canonical divisor KX is Q-Cartier. If π : Y →
X is a projective birational morphism with Y normal, and E ⊂ Y a prime divisor, 
then the log discrepancy of ordE is defined by AX(ordE) := 1 + ordE(KY/X), where 
KY/X := KY − π∗KX is the relative canonical divisor. We say X has klt singularities if 
AX(ordE) > 0 for all prime divisors E over X.

Now assume X has klt singularities. As explained in [20] (building upon [19,55]), 
the log discrepancy can be naturally extended to a lower semicontinuous function A =
AX : ValX → [0, +∞] that is homogeneous of order 1, i.e. A(tv) = tA(v) for λ ∈ R+.

We have A(v) = 0 iff v is the trivial valuation. The log-discrepancy AX depends on 
X, but if Y → X is as above, then AX(v) = AY (v) + v(KY/X); hence AY (v) < ∞ iff 
AX(v) < ∞.

If A(v) < ∞, then a•(v) is a nontrivial graded sequence of ideals by the Izumi-Skoda 
inequality, see [63, Proposition 2.3].

1.6. Fano varieties and K-stability

A variety X is called Q-Fano if X is projective with klt singularities and −KX is 
ample. See [22] for the definition of K-semistability and uniform K-stability of a Q-Fano 
variety in terms of invariants associated to test configurations. In this paper, we will use 
a characterization of these notions in terms of invariants of divisorial valuations [62,46]
(see Section 4.3).



10 H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062
1.7. Normalized volume

In [63], C. Li introduced the normalized volume of a valuation v centered at a closed 
point on X as v̂ol(v) := A(v)n vol(v) when A(v) < ∞, and v̂ol(v) := ∞ when A(v) = ∞. 
This is a homogeneous function of degree 0 on ValX . The first author proved in [10]
that for any closed point ξ ∈ X, the normalized volume function restricted to valuations 
centered at ξ attains its infimum.

1.8. Log canonical thresholds

Let X be a klt variety. Given a nonzero ideal a ⊂ OX , the log canonical threshold of 
a is given by

lct(a) := inf
v

A(v)
v(a) = inf

E

A(ordE)
ordE(a)

where the first infimum runs through all v ∈ Val∗X and the second through all prime 
divisors E over X. In fact, it suffices to consider E on a fixed log resolution of a.

In the above infima we use the convention that if v(a) = 0, then A(v)/v(a) = +∞. 
Thus, lct(OX) = +∞. By convention, we set lct((0)) = 0.

We say a valuation v∗ ∈ Val∗X computes lct(a) if lct(a) = A(v∗)/v∗(a). There always 
exists a divisor E over X such that ordE computes lct(a).

Given a graded sequence of ideals a• on X, we set

lct(a•) := lim
M(a•)	m→∞

m · lct(am) = sup
m≥1

m · lct(am).

By [55], we have

lct(a•) = inf
v∈Val∗

X

A(v)
v(a•) .

We say v∗ ∈ ValX computes lct(a•) if lct(a•) = A(v∗)/v∗(a•). Such valuations always 
exist: see [55, Theorem A] for the smooth case and [10, Theorem B.1] for the klt case.

We now state two elementary lemmas that will be used in future sections.

Lemma 1.1. If v is a nontrivial valuation on X, then lct(a•(v)) ≤ A(v) and equality 
holds iff v computes lct(a•(v)).

Proof. The statement is an immediate consequence of the definition of lct(a•(v)) and 
the fact that v(a•(v)) = 1. �
Lemma 1.2. Let v ∈ ValX and a• a graded sequence of ideals on X. If v(a•) ≥ 1, then 
ap ⊂ ap(v) for all p ∈ N.
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Proof. Since 1 ≤ v(a•) = infp v(ap)/p, we see that p ≤ v(ap). Therefore, ap ⊂ ap(v). �
2. Linear series, filtrations, and Okounkov bodies

In this section we recall facts about linear series, filtrations, and Okounkov bodies, 
following [60,56,16,15]. The new results are Lemma 2.2 and Corollary 2.10.

Let X be a normal projective variety of dimension n and L a big line bundle on X. 
Set

Rm := H0(X, mL) and Nm := dimC Rm

for m ∈ N, and write M(L) ⊂ N for the semigroup of m ∈ N for which Nm > 0. Since 
L is big, we have m ∈ M(L) for m � 1. Write

R = R(X, L) =
⊕

m

Rm =
⊕

m

H0(X, mL)

for the section ring of L.

2.1. Graded linear series

A graded linear series of L is a graded C-subalgebra

V• =
⊕

m

Vm ⊂
⊕

m

Rm = R.

We say V• contains an ample series if Vm 	= 0 for m � 0, and there exists a decom-
position L = A + E with A an ample Q-line bundle and E an effective Q-divisor such 
that

H0(X, mA) ⊂ Vm ⊂ H0(X, mL) = Rm

for all sufficiently divisible m.

2.2. Okounkov bodies

Fix a system z = (z1, . . . , zn) of parameters centered at a regular closed point ξ of X. 
This defines a real rank-n valuation

ordz : OX,ξ \ {0} → Nn,

where Nn is equipped with the lexicographic ordering. As in §1.2 we also define ordz(s)
for any nonzero section s ∈ Rm.
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Now consider a nonzero graded linear series V• ⊂ R(X, L). For m ∈ N, the subset

Γm := Γm(V•) := ordz(Vm \ {0}) ⊂ Nn

has cardinality dimC Vm, since ordz has transcendence degree 0. Hence

Γ := Γ(V•) := {(m, α) ∈ Nn+1 | α ∈ Γm}

is a subsemigroup of Nn+1. Let Σ = Σ(V•) ⊂ Rn+1 be the closed convex cone generated 
by Γ. The Okounkov body of V• with respect to z is given by

Δ = Δz(V•) = {α ∈ Rn | (1, α) ∈ Σ}.

This is a compact convex subset of Rn. The Okounkov body of (X, L) is defined as the 
Okounkov body of R(X, L).

For m ≥ 1, let ρm be the atomic positive measure on Δ given by

ρm = m−n
∑

α∈Γm

δm−1α.

The following result is a special case of [15, Théorème 1.12].

Theorem 2.1. If V• contains an ample series, then its Okounkov body Δ ⊂ Rn has 
nonempty interior, and we have limm→∞ ρm = ρ in the weak topology of measures, 
where ρ denotes Lebesgue measure on Δ ⊂ Rn. In particular, the limit

vol(V•) = lim
m→∞

n!
mn

dimC Vm ∈ (0, vol(L)] (2.1)

exists, and equals n! vol(Δ).

In fact, the limit in (2.1) always exists, but may be zero in general; see [15, 
Théorème 3.7] for a much more precise result due to Kaveh and Khovanskii [56].

For the proof of Theorem A we will need the following estimate.

Lemma 2.2. For every ε > 0 there exists m0 = m0(ε) > 0 such that∫
Δ

g dρm ≤
∫
Δ

g dρ + ε

for every m ≥ m0 and every concave function g : Δ → R satisfying 0 ≤ g ≤ 1.

The main point here is the uniformity in g.
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Proof. Observe that the sets

Δγ := {α ∈ Rn | α + [−γ, γ]n ⊂ Δ},

for γ > 0, form a decreasing family of relatively compact subsets of Δ whose union equals 
the interior of Δ. Since ∂Δ has zero Lebesgue measure, we can pick γ > 0 such that 
ρ(Δ \ Δ2γ) ≤ ε/2. Since limm ρm = ρ weakly on Δ, we get lim ρm(Δ \ Δγ) ≤ ρ(Δ \ Δ2γ), 
so we can pick m1 large enough so that ρm(Δ \ Δγ) ≤ ε for m ≥ m1. Now set m0 =
max{m1, γ−1}. For m ≥ m0 we set

A′
m = {α ∈ 1

m Zn | α + [0, 1
m ]n ⊂ Δ}

and

Am = {α ∈ 1
m Zn | α + [− 1

m , 1
m ]n ⊂ Δ}.

If λ denotes Lebesgue measure on the unit cube [0, 1]n ⊂ Rn, we see that

∫
Δ

g dρ ≥
∑

α∈A′
m

∫
α+[0,

1
m ]n

g dρ = m−n
∑

α∈A′
m

∫
[0,1]n

g(α + m−1w)dλ(w)

≥ m−n
∑

α∈A′
m

2−n
∑

w∈{0,1}n

g(α + m−1w) ≥ m−n
∑

α∈Am

g(α)

≥
∫

Δγ

g dρm ≥
∫
Δ

g dρm − ρm(Δ \ Δγ) ≥
∫
Δ

g dρm − ε.

Here the second inequality follows from the concavity of g, the fourth inequality from 
the inclusion Am ⊃ Δγ ∩ 1

mZn, and the fifth inequality from g ≤ 1. This completes the 
proof. �
2.3. Filtrations

By a filtration F on R(X, L) =
⊕

m Rm we mean the data of a family

FλRm ⊂ Rm

of C-vector subspaces of Rm for m ∈ N and λ ∈ R+, satisfying

(F1) FλRm ⊂ Fλ′
Rm when λ ≥ λ′;

(F2) FλRm =
⋂

λ′<λ Fλ′
Rm for λ > 0;

(F3) F0Rm = Rm and FλRm = 0 for λ � 0;
(F4) FλRm · Fλ′

Rm′ ⊂ Fλ+λ′
Rm+m′ .
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The main example for us will be filtrations defined by valuations, see §3.1.

2.4. Induced graded linear series

Any filtration F on R(X, L) defines a family

V t
• = V F,t

• =
⊕

m

V t
m

of graded linear series of L, indexed by t ∈ R+, and defined by

V t
m := FmtRm

for m ∈ N. Set

Tm := Tm(F) := sup{t ≥ 0 | V t
m 	= 0},

with the convention Tm = 0 if Rm = 0. By (F4) above, Tm+m′ ≥ m
m+m′ Tm + m′

m+m′ Tm′ , 
so Fekete’s Lemma implies that the limit

T (F) := lim
m→∞

Tm(F) ∈ [0, +∞]

exists, and equals supm Tm(F). By [16, Lemma 1.6], V t
• contains an ample linear series 

for any t < T (F). It follows that

T (F) = sup{t ≥ 0 | vol(V t
• ) > 0}. (2.2)

We say that the filtration F is linearly bounded if T (F) < ∞.

2.5. Concave transform and limit measure

Let Δ = Δ(L) ⊂ Rn be the Okounkov body of R(X, L). The filtration F of R(X, L)
induces a concave transform

G = GF : Δ → R+

defined as follows. For t ≥ 0, consider the graded linear series V t
• ⊂ R(X, L) and the 

associated Okounkov body Δt = Δ(V t
• ) ⊂ Rn. We have Δt ⊃ Δt′ for t < t′, Δ0 = Δ

and Δt = ∅ for t > T (F). The function G is now defined on Δ by

G(α) = sup{t ∈ R+ | α ∈ Δt}. (2.3)

In other words, {G ≥ t} = Δt for 0 ≤ t ≤ T (F). Thus G is a concave, upper semicon-
tinuous function on Δ with values in [0, T (F)].

As noted in the proof of [21, Lemma 2.22], the Brunn-Minkowski inequality implies
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Proposition 2.3. The function t → vol(V t
• )1/n is non-increasing and concave on 

[0, T (F)). As a consequence, it is continuous on R+, except possibly at t = T (F).

We define the limit measure μ = μF of the filtration F as the pushforward

μ = G∗ρ.

Thus μ is a positive measure on R+ of mass vol(Δ) = 1
n! vol(L), with support in [0, T (F)].

Corollary 2.4. The limit measure μ satisfies

μ = − 1
n!

d

dt
vol(V t

• ) = − d

dt
vol(Δt)

and is absolutely continuous with respect to Lebesgue measure, except possibly at t =
T (F), where μ{T (F)} = limt→T (F)− vol(V t

• ).

As a companion to T (F) we now define another invariant of F :

S(F) := 1
vol(L)

∞∫
0

vol(V t
• ) dt = n!

vol(L)

∞∫
0

t dμ(t) = 1
vol(Δ)

∫
Δ

G dρ.

Note that μF , S(F), and T (F) do not depend on the choice of the auxiliary valuation z.

Remark 2.5. The invariant S(F) can also be interpreted as the (suitably normalized) 
volume of the filtered Okounkov body associated to F , see [16, Corollary 1.13].

Lemma 2.6. We have 1
n+1T (F) ≤ S(F) ≤ T (F).

Proof. The second inequality is clear since vol(V t
• ) ≤ vol(L) and vol(V t

• ) = 0 for t >
T (F). The first follows from the concavity of t �→ vol(V t

• )1/n, which yields vol(V t
• ) ≥

vol(L)(1 − t
T (F) )n. �

Remark 2.7. At least when L is ample, a filtration on R(X, L) induces a metric on the 
Berkovich analytification of L with respect to the trivial absolute value on C. It is shown 
in [17] that S and T extend as “energy-like” functionals on the space of such metrics. 
As a special case of that analysis, it is shown that S(F) ≤ n

n+1 T (F). The case when the 
filtration is associated to a test configuration is treated in [22].

2.6. Jumping numbers

Given a filtration F as above, consider the jumping numbers

0 ≤ am,1 ≤ · · · ≤ am,Nm
= mTm(F),
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defined for m ∈ M(L) by

am,j = am,j(F) = inf{λ ∈ R+ | codim FλRm ≥ j}

for 1 ≤ j ≤ Nm. Define a positive measure μm = μF
m on R+ by

μm = 1
mn

∑
j

δm−1am,j
= − 1

mn

d

dt
dim FmtRm.

The following result is [16, Theorem 1.11].

Theorem 2.8. If F is linearly bounded, i.e. T (F) < +∞, then we have

lim
m→∞

μm = μ

in the weak sense of measures on R+.

For m ∈ M(L), consider the rescaled sum of the jumping numbers:

Sm(F) = 1
mNm

∑
j

am,j = mn

Nm

∞∫
0

t dμm(t).

Clearly 0 ≤ Sm(F) ≤ Tm(F).

Lemma 2.9. For any linearly bounded filtration F on R(X, L) we have

Sm(F) ≤ mn

Nm

∫
Δ

G dρm, (2.4)

for any m ∈ M(L). Further, we have limm→∞ Sm(F) = S(F).

Proof. The equality limm Sm(F) = S(F) follows from Theorem 2.8. For the inequality, 
pick a basis s1, s2, . . . , sNm

of Rm such that am,j = sup{λ ∈ R+ | sj ∈ FλRm} for 
1 ≤ j ≤ Nm. Set αj := ordz(sj). Since ordz has transcendence degree 0, we have Γm =
{α1, . . . , αm}. Thus the right hand side of (2.4) equals 1

Nm

∑Nm

j=1 G(m−1αj) whereas the 

left-hand side is equal to 1
Nm

∑Nm

j=1 m−1am,j , so it suffices to prove G(m−1αj) ≥ m−1am,j

for 1 ≤ j ≤ Nm. But this is clear from (2.3), since αj = ordz(sj) and sj ∈ Fam,j Rm

imply m−1αj ∈ Δm−1am,j . �
Corollary 2.10. For every ε > 0 there exists m0 = m0(ε) > 0 such that

Sm(F) ≤ (1 + ε)S(F)

for any m ≥ m0 and any linearly bounded filtration F on R(X, L).
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Proof. Set V := vol(Δ). Pick ε′ > 0 with (V −1 + ε′)(V + (n + 1)ε′) ≤ (1 + ε). Note that 
0 ≤ G ≤ T (F). Applying Lemma 2.2 to g = G/T (F) we pick m0 ∈ M(L) such that∫

Δ

G dρm ≤
∫
Δ

G dρ + ε′T (F) = V S(F) + ε′T (F) ≤ (V + (n + 1)ε′)S(F)

for M(L) � m ≥ m0, where we have used Lemma 2.6 in the last inequality. By The-
orem 2.1 we may also assume mn

Nm
≤ V −1 + ε′ for M(L) � m ≥ m0. Lemma 2.9 now 

yields

Sm(F) ≤ mn

Nm

∫
Δ

G dρm ≤ (V −1 + ε′)(V + (n + 1)ε′)S(F) ≤ (1 + ε)S(F),

for M(L) � m ≥ m0, which completes the proof. �
2.7. N-filtrations

A filtration F of R(X, L) is an N-filtration if all its jumping numbers are integers, 
that is,

FλRm = F�λ�Rm

for all λ ∈ R+ and m ∈ M(L). Any filtration F induces an N-filtration FN by setting

Fλ
NRm := F�λ�Rm.

Note that FN is a filtration of R(X, L). Indeed, conditions (F1)–(F3) in §2.3 are trivially 
satisfied and (F4) follows from �λ� + �λ′� ≥ �λ + λ′�.

The jumping numbers of FN and F are related by am,j(FN) = �am,j(F)�. This implies

Proposition 2.11. If F is a filtration of R(X, L), then

Tm(FN) = �m · Tm(F)�/m and Sm(F) − m−1 ≤ Sm(FN) ≤ Sm(F)

for m ∈ M(L). As a consequence, T (FN) = T (F), S(FN) = S(F), and μFN = μF .

As a consequence, we obtain the following formula for S(F), similar to [49, 
Lemma 2.2].

Corollary 2.12. If F is a filtration of R(X, L), then

S(F) = S(FN) = lim
m→∞

1
mNm

∑
dim FjRm.
j≥1
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Proof. Since the jumping numbers of FN are integers, we have

Sm(FN) = 1
mNm

∑
j≥0

j
(

dim Fj
NRm − dim Fj+1

N Rm

)
= 1

mNm

∑
j≥1

dim Fj
NRm

for any m ∈ M(L). Letting m → ∞ and using Proposition 2.11 completes the proof. �
3. Global invariants of valuations

As before, X is a normal projective variety of dimension n over C. Whenever we 
discuss log discrepancy, X will be assumed to have klt singularities.

Let L be a big line bundle on X. Following [21] we study invariants of valuations on 
X defined using the section ring of L. The new results here are Corollary 3.6 and the 
results in §3.5.

3.1. Induced filtrations

Any valuation v ∈ ValX induces a filtration Fv on R(X, L) via

F t
vRm := {s ∈ Rm | v(s) ≥ t}

for m ∈ N and t ∈ R+, where we recall that Rm = H0(X, mL).
We say that v has linear growth if Fv is linearly bounded. By Lemma 2.8 in [21] this 

notion depends only on v as a valuation, and not on pair (X, L) (i.e. if ρ : X ′ → X is a 
proper birational morphism with X ′ normal, the condition can be checked on the pair 
(X ′, L′), where L′ = ρ∗L). Theorem 2.16 in [21] states that if v is centered at a closed 
point on X, then v has linear growth iff vol(v) > 0.

Lemma 3.1. Any divisorial valuation has linear growth. If X has klt singularities, then 
any v ∈ ValX satisfying A(v) < ∞ has linear growth.

Proof. We may assume X is smooth. By [21, Proposition 2.12], every divisorial valuation 
has linear growth. For the second assertion, if A(v) < ∞, Izumi’s inequality (see [55, 
Proposition 5.10]) implies v ≤ A(v) ordξ, where ξ = cX(v). Since ordξ is divisorial, it has 
linear growth; hence so does v. �
3.2. Global invariants

Consider a valuation v of linear growth. We define invariants of v as the corresponding 
invariants of the induced filtration Fv, namely:

(i) the limit measure of v is μv := μFv ;
(ii) the expected vanishing order of v is S(v) := S(Fv) =

∫ ∞
t dμv(t);
0
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(iii) the maximal vanishing order or pseudo-effective threshold of v is T (v) := T (Fv).

Note that T (v) is denoted by amax(‖L‖, v) in [21]. It follows from Lemma (2.6) (see also 
Remark 2.7) that

1
n + 1T (v) ≤ S(v) ≤ T (v). (3.1)

The invariants S and T are homogeneous of order 1: S(tv) = tS(v) and T (tv) = tT (v)
for t > 0. Similarly, μtv = t∗μv, where t : R+ → R+ denotes multiplication by t. In 
particular, if v is the trivial valuation on X, then S(v) = T (v) = 0 and μv = δ0.

Remark 3.2. If we think of v as an order of vanishing, then the limit measure μv describes 
the asymptotic distribution of the (normalized) orders of vanishing of v on R(X, L). This 
explains the chosen name of S(v) and the first name of T (v).

For an alternative description of S(v) and T (v), define, for t ≥ 0,

vol(L; v ≥ t) := vol(V t
• ) = lim

m→∞
n!
mn

dim F tm
v H0(X, mL).

Theorem 3.3. Let L be a big line bundle and v ∈ Val∗X a valuation of linear growth. Then 
the limit defining vol(L; v ≥ t) exists for every t ≥ 0. Further:

(i) T (v) = sup{t ≥ 0 | vol(L; v ≥ t) > 0};
(ii) the function t �→ vol(L; v ≥ t)1/n is decreasing and concave on [0, T (v));
(iii) μv = − d

dt vol(L; v ≥ t); further, supp μv = [0, T (v)], and μ is absolutely continuous 
with respect to Lebesgue measure, except for a possible point mass at T (v);

(iv) S(v) = V −1 ∫ T (v)
0 vol(L; v ≥ t) dt;

(v) if L is nef, then the function t �→ vol(L; v ≥ t) is strictly decreasing on [0, T (v)]
and supp μv = [0, T (v)].

Proof. The assertions (i)–(iv) are special cases of the properties of linearly bounded 
filtrations in §2. If L is nef, the discussion after Remark 2.7 in [21] shows that t �→
vol(L; v ≥ t) is strictly decreasing on [0, T (v)). This implies supp μ = [0, T (v)], so that (v) 
holds. �
Remark 3.4. In fact, the measure μv likely has no point mass at T (v). This is true when 
v is divisorial, or simply quasimonomial, see [21, Proposition 2.25].

We also define Sm(v) := Sm(Fv) and Tm(v) := Tm(Fv) for m ∈ M(L). These invari-
ants can be concretely described as follows. First,

Tm(v) = max{m−1v(s) | s ∈ H0(X, mL)}. (3.2)
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A similar description is true for Sm.

Lemma 3.5. For any m ∈ M(L) and any v ∈ ValX we have

Sm(v) = max
sj

1
mNm

Nm∑
j=1

v(sj), (3.3)

where the maximum is over all bases s1, . . . , sNm
of H0(X, mL).

Proof. First consider any basis s1, . . . , sNm
of H0(X, mL). We may assume v(s1) ≤

v(s2) ≤ · · · ≤ v(sNm
). Then v(sj) ≤ am,j , for all j, where am,j is the jth jumping number 

of FvH0(X, mL). Thus (mNm)−1 ∑
j v(sj) ≤ (mNm)−1 ∑

j am,j = Sm(v). On the other 
hand, we can pick the basis such that v(sj) = am,j , and then (mNm)−1 ∑

j v(sj) =
Sm(v). �

Corollary 2.10 immediately implies

Corollary 3.6. For any v ∈ ValX of linear growth, we have limm→∞ Sm(v) = S(v). 
Further, given ε > 0 there exists m0 = m0(ε) > 0 such that if m ≥ m0, then

Sm(v) ≤ S(v)(1 + ε)

for all v ∈ ValX of linear growth.

3.3. Behavior of invariants

The invariants S(v), T (v) and μv depend on L (and X). If we need to emphasize this 
dependence, we write S(v; L), T (v; L) and μv;L.

Lemma 3.7. Let v be a valuation of linear growth.

(i) If r ∈ N∗, then S(v; rL) = rS(v; L), T (v; rL) = rT (v; L) and μv;rL = r∗μv;L.
(ii) If ρ : X ′ → X is a projective birational morphism, with X ′ normal, and L′ = ρ∗L, 

then S(v; L′) = S(v; L), T (v; L′) = T (v; L), and μv;L′ = μv;L;
(iii) the invariants S(v; L), T (v; L) and μv;L only depend on the numerical class of L.

Proof. Properties (i)–(ii) are clear from the definitions. As for (iii), [21, Proposition 3.1]
asserts that the measure μv;L only depends on the numerical class of L; hence the same 
true for S(v; L) and T (v; L). �
Remark 3.8. In view of (i) and (iii) we can define S(v; L) for a big class L ∈ NS(X)Q by 
S(v; L) := r−1S(v; rL) for r sufficiently divisible. The same holds for T (v; L) and μv;L.
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3.4. The case of divisorial valuations

We now interpret the invariants S(v) and T (v) in the case when v is a divisorial 
valuation. By homogeneity in v and by Lemma 3.7 (ii) it suffices to consider the case 
when v = ordE for a prime divisor E on X. In this case, vol(L; v ≥ t) = vol(L − tE), so 
Theorem 3.3 implies

Corollary 3.9. Let E ⊂ X be a prime divisor. Then we have:

(i) T (ordE) = sup{t > 0 | L − tE is pseudoeffective};
(ii) S(ordE) = vol(L)−1 ∫ ∞

0 vol(L − tE) dt.

Statement (i) explains the name pseudoeffective threshold for T (v).

Remark 3.10. The invariants S(v) and T (v) for v divisorial have been explored by K. Fu-
jita [46], C. Li [62], and Y. Liu [69]. In the notation of [46],

T (ordE) = τ(E) and S(ordE) = τ(E) − vol(L)−1j(E).

The invariant S(ordξ), for ξ ∈ X a regular closed point, also plays an important role 
in [71] and was used in unpublished work of P. Salberger from 2006.

Proposition 3.11. If L is ample and v ∈ ValX is divisorial, then 1
n+1 ≤ S(v)

T (v) ≤ n
n+1 .

Proof. The first inequality follows from the concavity of t → vol(L; v ≥ t)1/n and is 
a special case of Lemma 2.6. The second inequality is treated in [48, Proposition 2.1]. 
(In [48] we have L = −KX , but this assumption is not used in the proof.) �
Remark 3.12. When L is ample, Proposition 3.11 in fact holds for any v ∈ ValX of linear 
growth; see Remark 2.7.

3.5. Invariants as functions on valuation space

Proposition 3.13. The invariants S and T define lower semicontinuous functions on 
ValX . For any m ∈ M(L), the functions Sm and Tm are also lower semicontinuous.

Proof. First consider m ∈ M(L). For any nonzero s ∈ H0(X, mL), the function v �→ v(s)
is continuous. It therefore follows from (3.2) and (3.3) that Sm and Tm are lower 
semicontinuous. Hence T = supm Tm is also lower semicontinuous. The lower semicon-
tinuity of S is slightly more subtle. Pick any t ∈ R+. We must show that the set 
V := {v ∈ ValX | S(v) > t} is open in ValX . Pick any v ∈ V and pick ε > 0 such that 
S(v) > (1 + ε)t. By Corollary 3.6, there exists m � 0 such that Sm(v) > (1 + ε)t and 
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Sm ≤ (1 + ε)S on ValX . Since Sm is lower semicontinuous, there exists an open neigh-
borhood U of v in ValX such that Sm > (1 + ε)t on U . Then U ⊂ V , which completes 
the proof. �
Remark 3.14. The functions S and T are not continuous in general. Consider the case 
X = P1, L = OX(1). If (ξj)∞

j=1 is a sequence of distinct closed points, then vj = ordξj
, 

j ≥ 1 defines a sequence in ValX converging to the trivial valuation v on X. Then 
S(vj) = 1/2 and T (vj) = 1 for all j, whereas S(v) = T (v) = 0.

The next result is a global version of [66, Proposition 2.3].

Proposition 3.15. Let v, w ∈ ValX be valuations of linear growth, such that v ≤ w.

(i) We have S(v) ≤ S(w) and T (v) ≤ T (w).
(ii) If L is ample and S(v) = S(w), then v = w.

Remark 3.16. The assertion in (ii) is false for T in general. Indeed, let X = P2 and 
L = OX(1). Consider an affine toric chart A2 ⊂ P2 with affine coordinates (z1, z2). 
Let v and w be monomial valuations in these coordinates with v(z1) = w(z1) = 1 and 
0 < v(z2) < w(z2) ≤ 1. Then w ≤ v and T (v) = T (w) = 1, but w 	= v.

Proof of Proposition 3.15. The assertion in (i) is trivial. To establish (ii) we follow the 
proof of [66, Proposition 2.3]. Note that by Lemma 3.7 we may replace L by a positive 
multiple.

Suppose v ≤ w but v 	= w. We must prove S(v) < S(w). We may assume there exists 
s ∈ H0(X, L) with v(s) < w(s). Indeed, there exists λ ∈ R∗

+ such that aλ(v) � aλ(w). 
Replacing L by a multiple, we may assume L ⊗ aλ(w) is globally generated, and then

Fλ
v H0(X, L) = H0(X, L ⊗ aλ(v)) � H0(X, L ⊗ aλ(w)) = Fλ

wH0(X, L),

so that there exists s ∈ H0(X, L) with v(s) < w(s) = λ. After rescaling v and w, we 
may assume w(s) = p ∈ N∗ and v(s) ≤ p − 1.

We claim that for m, j ∈ N, we have

dim(Fj
wRm/Fj

v Rm) ≥
∑

1≤i≤min{j/p,m}
dim

(
Fj−ip

v Rm−i/Fj−ip+1
v Rm−i

)
. (3.4)

To prove the claim, pick, for any i with 1 ≤ i ≤ min{j/p, m}, elements

si,1, . . . , si,bi
∈ Fj−ip

v Rm−i

whose images form a basis for Fj−ip
v Rm−i/Fj−ip+1

v Rm−i. As in [66, Proposition 2.3], the 
elements
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{sisi,l | 1 ≤ i ≤ min{j/p, m}, 1 ≤ l ≤ bi}

are then linearly independent in Fj
wRm/Fj

v Rm. This completes the proof of the claim.
By Corollary 2.12 we have

S(v) − S(w) = lim
m→∞

1
mNm

∑
j≥1

(
dim Fj

wRm − dim Fj
v Rm

)
Now (3.4) gives∑
j≥1

(
dim Fj

wRm − dim Fj
v Rm

)
≥

∑
j≥1

∑
1≤i≤min{ j

p ,m}

(
dim Fj−ip

v Rm−i − dim Fj−ip+1
v Rm−i

)
=

∑
1≤i≤m

∑
j≥pi

(
dim Fj−ip

v Rm−i − dim Fj−ip+1
v Rm−i

)
=

∑
1≤i≤m

dim Rm−i

We conclude that

S(v) − S(w) ≥ lim sup
m→∞

1
mNm

∑
1≤i≤m

dim(Rm−i) > 0,

since dim Rm = Nm ∼ mn(Ln) as m → ∞. This completes the proof. �
3.6. Base ideals of filtrations

In this section we assume L is ample. To an arbitrary filtration F of R(X, L) we 
associate base ideals as follows. For λ ∈ R+ and m ∈ M(L), set

bλ,m(F) := b
(
|FλH0(X, mL)|

)
.

Lemma 3.17. For λ ∈ R+ the sequence (bλ,m(F))m is stationary (i.e. bλ,m = bλ,m+1 for 
m ∈ M(L) sufficiently large, with limit 

∑
m∈M(L) bλ,m.

Proof. It follows from (F4) that if m1, m2 ∈ M(L) and λ1, λ2 ∈ R+, then

bλ1,m1(F) · bλ2,m2(F) ⊂ bλ1+λ2,m1+m2(F) (3.5)

Since L is ample, there exists m0 ∈ N∗ such that mL is globally generated for m ≥ m0. 
In particular, b0,m = OX for m ≥ m0. As a consequence of (3.5), if m ∈ M(L) and 
m′ ≥ m0, then bλ,m+m′(F) ⊃ bλ,m(F) · b0,m′(F) = bλ,m(F). The lemma follows. �

Using the lemma, set bλ(F) := bλ,m(F) for m � 0. Thus bλ,m(F) ⊂ bλ(F) for 
m ∈ M(L).
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Corollary 3.18. We have b0(F) = OX and bλ(F) · bλ′(F) ⊂ bλ+λ′(F) for λ, λ′ ∈ R+. In 
particular, the sequence (bp(F))p∈N∗ is a graded sequence of ideals.

Lemma 3.19. If v is a valuation on X, then bλ(Fv) = aλ(v) for all λ ∈ R+.

Proof. Given λ, mL ⊗aλ(v) is globally generated for m � 0; hence bλ,m(Fv) = aλ(v). �
Using base ideals, we can relate the invariants of a filtration to those of a valuation.

Lemma 3.20. If v(b•(F)) ≥ 1, then FpRm ⊂ Fp
v Rm for all m ∈ M(L) and p ∈ N∗.

Proof. We have 1 ≤ v(b•(F)) ≤ v(bp(F))/p. Thus v(bp(F)) ≥ p, so that bp(F) ⊂ ap(v). 
Since we also have bλ,m(F) ⊂ bλ(F) for all m ∈ M(L), this implies

FpRm ⊂ H0(X, mL ⊗ bp,m(F)) ⊂ H0(X, mL ⊗ ap(v)) = Fp
v Rm,

which completes the proof. �
Corollary 3.21. Let F be a linearly bounded filtration of R(X, L). Then

S(v) ≥ v(b•(F))S(F) and T (v) ≥ v(b•(F))T (F),

for any valuation v ∈ ValX .

Proof. The assertions are trivial when v(b•(F)) = 0, so we may assume v(b•(F)) = 1
after scaling v. In this case, Lemma 3.20 shows that FpRm ⊂ Fp

v Rm for p ∈ N∗ and 
m ∈ M(L). Using Proposition 2.11 and Corollary 2.12, this implies

S(F) = S(FN) ≤ S(Fv,N) = S(Fv) = S(v),

and similarly T (F) ≤ T (v). The proof is complete. �
4. Thresholds

Let X be a normal projective variety with klt singularities, and L a big line bundle 
on X. In this section we study the log-canonical threshold of L, and introduce a new 
related invariant, the stability threshold of L. Both are defined in terms of the asymptotic 
behavior of the singularities of the members of the linear system |mL| as m → ∞.

4.1. The log canonical threshold

Following [23] the log canonical threshold α(L) of L is the infimum of lct(D) with 
D an effective Q-divisor Q-linearly equivalent to L. As explained by Demailly (see [23, 
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Theorem A.3]), this can be interpreted analytically as a generalization of the α-invariant 
introduced by Tian [86].

For m ∈ M(L), we also set

αm(L) := inf{m lct(D) | D ∈ |mL|}.

It is then clear that α(L) = infm∈M(L) αm(L). The invariants αm and α can be computed 
using invariants of valuations, as follows:

Proposition 4.1. For m ∈ M(L), we have

αm(L) = inf
v

A(v)
Tm(v) = inf

E

A(ordE)
Tm(ordE) , (4.1)

where v runs through nontrivial valuations on X with A(v) < ∞, and E through prime 
divisors over X.

Proof. Writing out the definition of lct(D), we see that

αm(L) = m · inf
D∈|mL|

(
inf

v

A(v)
v(D)

)
,

where the second infimum may be taken over nontrivial valuations with finite log dis-
crepancy, or only divisorial valuations. Switching the order of the two infima and noting 
supD∈|mL| v(D) = m · Tm(v) yields (4.1). �
Corollary 4.2. We have

α(L) = inf
v

A(v)
T (v) = inf

E

A(ordE)
T (ordE) , (4.2)

where v runs through valuations on X with A(v) < ∞ and E over prime divisors over X.

Proof. Since T (v) = supm∈M(L) Tm(v), (4.2) follows from (4.1). �
4.2. The stability threshold

Given m ∈ M(L), we say, following [49], that an effective Q-divisor D ∼Q L is of 
m-basis type if there exists a basis s1, . . . , sNm

of H0(X, mL) with

D = 1
mNm

Nm∑
j=1

{sj = 0}. (4.3)

Set
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δm(L) := inf{lct(D) | D of m-basis type}, (4.4)

and define the stability threshold of L as

δ(L) := lim sup
m→∞

δm(L).

We shall see shortly that this limsup is in fact a limit.

Proposition 4.3. For m ∈ M(L), we have

δm(L) = inf
v

A(v)
Sm(v) = inf

E

A(ordE)
Sm(ordE) ,

where v runs through nontrivial valuations on X with A(v) < ∞ and E through prime 
divisors over X.

Proof. Note that

δm(L) = inf
D of m-basis type

(
inf

v

A(v)
v(D)

)
,

where the second infimum runs through all valuations with A(v) < ∞ or only divisorial 
valuations of the form v = ordE . Switching the order of the two infima and applying 
Lemma 3.5 yields the desired equality. �
Theorem 4.4. We have δ(L) = limm→∞ δm(L). Further,

δ(L) = inf
v

A(v)
S(v) = inf

E

A(ordE)
S(ordE) ,

where v runs through nontrivial valuations on X with A(v) < ∞ and E through prime 
divisors over X.

Proof. We will only prove the first equality; the proof of the second being essentially 
identical. Let us use Proposition 4.3 and Corollary 3.6. The fact that limm→∞ Sm = S

pointwise on ValX directly shows that

lim sup
m

δm(L) ≤ inf
v

A(v)
S(v) . (4.5)

On the other hand, given ε > 0 there exists m0 = m0(ε) such that Sm(v) ≤ (1 + ε)S(v)
for all v ∈ ValX and m ≥ m0. Thus

lim inf
m

δm(L) = lim inf
m

inf
v

A(v)
Sm(v) ≥ (1 + ε)−1 inf

v

A(v)
S(v) .

Letting ε → 0 and combining this inequality with (4.5) completes the proof. �
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Remark 4.5. It is clear that α(rL) = r−1α(L) and δ(rL) = r−1δ(L) for any r ∈ N∗. 
This allows us to define α(L) and δ(L) for any big Q-line bundle L, by setting α(L) :=
r−1α(rL) and δ(L) := r−1δ(rL) for r sufficiently divisible.

4.3. Proof of Theorems A, B and C

We are now ready to prove the first three main results in the introduction.
We start with Theorems A and C. The existence of the limit δ(L) = limm δm(L) was 

proved above, so Theorem C follows immediately from Corollary 4.2 and Theorem 4.4. 
Let us prove the remaining assertions in Theorem A.

The estimate α(L) ≤ δ(L) ≤ (n + 1)α(L) follows from the corresponding inequalities 
in (3.1) between T (v) and S(v) together with Theorem C. When L is ample, we obtain 
the stronger inequality δ(L) ≥ n+1

n α(L) using Proposition 3.11. The fact that α(L) and 
δ(L) only depend on the numerical equivalence class of L follows from the corresponding 
properties of the invariants S(v) and T (v), see Lemma 3.7 (iii). Finally we prove that 
α(L) and δ(L) are strictly positive. It suffices to consider α(L). The case when L is ample 
is handled in [22, Theorem 9.14] using Seshadri constants, and the general case follows 
from Lemma 4.6 below by choosing D effective such that L + D is ample.

Lemma 4.6. If L is a big line bundle and D is an effective divisor, then α(L +D) ≤ α(L).

The statement is already in the literature [36, Lemma 4.1]. We provide a proof for the 
convenience of the reader.

Proof. Given m ∈ M(L), the assignment F �→ F + mD defines an injective map from 
|mL| to |m(L + D)|. Since lct(F + mD) ≤ lct(F ) for all F ∈ |mL|, it follows that 
αm(L + D) ≤ αm(L). Letting m → ∞ completes the proof. �

Finally we prove Theorem B, so suppose X is a Q-Fano variety. The argument relies 
heavily on the work by K. Fujita and C. Li, who exploited ideas from the Minimal Model 
Program, as adapted to K-stability questions by C. Li and C. Xu [65].

First assume KX is Cartier. By either [62, Theorem 3.7] or [46, Corollary 1.5], X is 
K-semistable iff β(E) ≥ 0 for all prime divisors E over X. In our notation, this reads 
A(ordE) ≥ S(ordE) for all E, see [46, Definition 1.3 (4)] and Remark 3.10, and is hence 
equivalent to δ(−KX) ≥ 1 in view of Theorem 4.4.

Similarly, by [46, Corollary 1.5], X is uniformly K-stable iff there exists ε > 0 such that 
β(E) ≥ εj(E) for all divisors E over X. This reads A(ordE) − S(ordE) ≥ ε(T (ordE) −
S(ordE)) for all E. Since −KX is ample, Proposition 3.11 implies n−1S(ordE) ≤
T (ordE) − S(ordE) ≤ nS(ordE), so X is uniformly K-stable iff there exists ε′ > 0 such 
that A(ordE) − S(ordE) ≥ ε′S(ordE) for all E. But this is equivalent to δ(−KX) > 1 by 
Theorem 4.4.

When KX is merely Q-Cartier, the argument is similar, using Lemma 3.7; see Re-
mark 4.5.
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4.4. Volume estimates

We now prove Theorem D, giving a lower bound on the volume of L. This theorem is 
a consequence of the following proposition, first observed by Liu, and embedded in the 
proof of [69, Theorem 21].

Proposition 4.7. If v ∈ Val∗X has linear growth and is centered at a closed point, then

T (v) ≥ n
√

vol(L)/ vol(v) and S(v) ≥ n

n + 1
n
√

vol(L)/ vol(v).

Proof. We follow Liu’s argument. By the exact sequence

0 → H0(X, mL ⊗ amt(v)) → H0(X, mL) → H0(X, mL ⊗ (OX/amt(v)),

we see that

dim Fmt
v H0(X, mL) ≥ dim H0(X, mL) − 	(OX,ξ/amt(v)),

where ξ ∈ X is the center of v. Diving by mn/n! and taking the limit as m → ∞ gives

vol(L; v ≥ t) ≥ vol(L) − tn vol(v),

which implies the lower bound for T (v). Further, integrating with respect to t shows that

S(v) = 1
vol(L)

T (v)∫
0

vol(L; v ≥ t) dt

≥ 1
vol(L)

n
√

vol(L)/ vol(v)∫
0

(vol(L) − tn vol(v)) dt

= n

n + 1
n
√

vol(L)/ vol(v),

which completes the proof. �
Proof of Theorem D. If A(v) = ∞, then v̂ol(v) = ∞ and the inequality is trivial. If 
A(v) < ∞, then v has linear growth and the previous proposition gives

vol(L) ≤
(

n + 1
n

)n

S(v)n vol(v) =
(

n + 1
n

)n (
S(v)
A(v)

)n

v̂ol(v).

Since δ(L) ≤ A(v)/S(v) by Theorem 4.4, the proof is complete. �
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4.5. Valuations computing the thresholds

We say that a valuation v ∈ Val∗X with A(v) < ∞ computes the log-canonical threshold 
(resp. the stability threshold) of L if α(L) = A(v)/T (v) (resp. δ(L) = A(v)/S(v)). In §6
we will prove that such valuations always exist when L is ample. Here we will describe 
some general properties of valuations computing one of the two thresholds.

We start by the following general result.

Proposition 4.8. Let v be a nontrivial valuation on X with A(v) < ∞.

(i) if v computes α(L) or δ(L), then v computes lct(a•(v));
(ii) if L is ample and v computes δ(L), then v is the unique valuation, up to scaling, 

that computes lct(a•(v)).

Proof. First suppose v ∈ ValX computes α(L). Recall that lct(a•(v)) = infw
A(w)

w(a•(v)) , 
where it suffices to consider the infimum over w ∈ Val∗X normalized by w(a•(v)) = 1. The 
latter condition implies w(ap(v)) ≥ p for all p, so that w ≥ v. By Proposition 3.15 (i), 
this yields T (w) ≥ T (v). Since v computes α(L), we have A(w)/T (w) ≥ A(v)/T (v). 
Thus

A(v)/v(a•(v)) = A(v) ≤ A(w) = A(w)/w(a•(v)),

so taking the infimum over w shows that v computes lct(a•(v)). The case when v com-
putes δ(L) is handled in the same way, and the uniqueness statement in (ii) follows from 
Proposition 3.15 (ii). �
Conjecture 4.9. Any valuation computing α(L) or δ(L) must be quasimonomial.

Note that the strong version of Conjecture B in [55] implies Conjecture 4.9 in view of 
Proposition 4.8.

While Conjecture 4.9 seems difficult in general, it is trivially true in dimension one 
(since all valuations are then quasimonomial). We also have

Proposition 4.10. If X is a projective surface with at worst canonical singularities, then:

(i) any valuation computing α(L) or δ(L) must be quasimonomial;
(ii) if X is smooth, then any valuation computing α(L) or δ(L) must be monomial in 

suitable local coordinates at its center.

We expect that the statement in (i) holds for klt surfaces as well.

Proof. Suppose v ∈ Val∗X computes α(L) or δ(L). By Proposition 4.8, v computes 
lct(a•(v)). Let Y → X be a resolution of singularities of X. Since X has canonical 



30 H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062
singularities, the relative canonical divisor KY/X is effective, and v also computes the 

jumping number lctKY /X

Y (a•(v)). By [55, §9], v is quasimonomial, proving (i).
The statement in (ii) follows from [43, Lemma 2.11 (i)]. �

Remark 4.11. Since the first version of this paper, it was shown by Xu that a weak 
version of [55, Conjecture B] holds; see [90, Theorem 1.1]. Combining the result in [90]
with Proposition 4.8.ii gives that any valuation computing δ(L) is quasimonomial.

Finally we consider the case of divisorial valuations computing one of the two thresh-
olds. In [12], the author studied properties of divisorial valuations that compute log 
canonical thresholds of graded sequences of ideals. The following proposition follows 
from Proposition 4.8 and results in [12].

Proposition 4.12. Let v be a divisorial valuation on X.

(i) If v computes α(L) or δ(L), then there exists a prime divisor E over X of log 
canonical type such that v = c ordE for some c ∈ R+.

(ii) If v computes δ(L) and L is ample, then there exists a prime divisor E over X of 
plt type such that v = c ordE for some c ∈ R+.

We explain some of the above terminology. Let E be a divisor over X such that there 
exists a projective birational morphism π : Y → X such that E is a prime divisor on Y
and −E is Q-Cartier and π-ample. We say that E is of plt (resp., log canonical) type if 
the pair (Y, E) is plt (resp., log canonical) [48, Definition 1.1]. K. Fujita considered plt 
type divisors in [48]. Note that Proposition 4.12 (ii) is similar to results in [48].

Proof. We may assume v = ordF for a divisor F over X. If v computes α(L) or δ(L), then 
we may apply Proposition 4.8 (i) to see A(v) = lct(a•(v)). Furthermore, if v computes 
δ(L) and L is ample, Proposition 4.8 (ii) implies A(v) < A(w)/w(a•(v)) as long as w
is not a scalar multiple of v. The statement now follows from Propositions 1.5 and 4.4 
of [12]. �
5. Uniform Fujita approximation

In this section we prove Fujita approximation type statements for filtrations arising 
from valuations.4 These results play a crucial role in the proof of Theorem E.

Related statements have appeared in the literature. See [60, Theorem D] for the case 
of graded linear series and [16, Theorem 1.14] for the case of filtrations. Here we specialize 
to filtrations defined by valuations, and the main point is to have uniform estimates in 
terms of the log discrepancy of the valuation. To this end we use multiplier ideals.

4 The term Fujita approximation refers to the work of T. Fujita [50].
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Throughout this section, X is a normal projective n-dimensional klt variety.

5.1. Approximation results

Given a valuation v on X and a line bundle L on X, we seek to understand how 
well S(v) and T (v) can be approximated by studying the filtration Fv restricted to 
H0(X, mL) for m large but fixed.

Recall that the pseudoeffective threshold of v is defined by T (v) := limm→∞ Tm(v).

Theorem 5.1. Let X be a normal projective klt variety and L an ample line bundle on 
X. Then there exists a constant C = C(X, L) > 0 such that

0 ≤ T (v) − Tm(v) ≤ CA(v)
m

for all m ∈ M(L) and all v ∈ Val∗X with A(v) < ∞.

Corollary 5.2. We have 0 ≤ α(L)−1 − αm(L)−1 ≤ C
m for all m ∈ M(L).

We also have a version of Theorem 5.1 for the expected order of vanishing S(v), but 
this is in terms of a modification S̃m(v) of the invariant Sm(v), which we first need to 
introduce.

Let V• be a graded linear series of a line bundle L on X. For m ∈ N∗, we write Vm,•
for the graded linear series of mL defined by

Vm,� := H0(X, m	L ⊗ a�) ⊂ H0(X, m	L),

where a denotes the base ideal b
(
|Vm|

)
and a� the integral closure of the ideal a�.

If Vm = 0, then it is clear that Vm,� = 0 for all 	 ∈ N∗ and vol(Vm,•) = 0. When 
Vm 	= 0, we use the geometric characterization of the integral closure as in [59, Remark 
9.6.4] to express Vm,� as follows. Let μ : Ym → X be a proper birational morphism such 
that Ym is normal and b

(
|Vm|

)
· OY = OY (−Fm) for some effective Cartier divisor Fm. 

Then

Vm,� � H0(Ym, 	(mμ∗(L) − Fm))

for all 	 ≥ 1. Since mμ∗(L) − Fm is base point free and therefore nef,

vol(Vm,•) = ((mμ∗(L) − Fm)n)

by [59, Corollary 1.4.41].
In the case when V• contains an ample series, we have

vol(V•) = lim vol(Vm,•) ;

m→∞ mn
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see [53, Proposition 17] and also [82, Appendix].
Now consider a filtration F of R(X, L). As in §2.4, this gives rise to a family V t

m = V F,t
m

of graded linear series of L, indexed by t ∈ R+, and defined by

V t
m := FmtRm.

Using the previously defined notion, we get an additional family of graded linear series 
V t

m,• of mL for each m ∈ N∗. Specifically,

V t
m,� := H0(X, m	L ⊗ b

(
|V t

m|
)�).

Clearly vol(V t
m,•) is a decreasing function of t that vanishes for t > T (F). When F is 

linearly bounded, we write

S̃m(F) := 1
mn vol(L)

T (F)∫
0

vol
(
V t

m,•
)

dt.

Note that by the dominated convergence theorem,

S(F) = lim
m→∞

S̃m(F).

When v is a valuation on X with linear growth, we set S̃m(v) := S̃m(Fv).

Theorem 5.3. Let X be a normal projective klt variety and L an ample line bundle on 
X. Then there exists a constant C = C(X, L) such that

0 ≤ S(v) − S̃m(v) ≤ CA(v)
m

for all m ∈ N∗ and all v ∈ ValX with AX(v) < ∞.

Theorems 5.1 and 5.3 may be viewed as global analogues of [10, Proposition 3.7]. Their 
proofs, which appear at the end of this section, use multiplier ideals and take inspiration 
from [35] and [40].

5.2. Multiplier ideals

For an excellent reference on multiplier ideals, see [59].
Let a be a nonzero ideal on X. Consider a log resolution μ : Y → X of a, and write 

a · OY = OY (−D). For c ∈ Q∗
+, the multiplier ideal J (X, c · a) is defined by

J (X, c · a) := μ∗OY

(
�KY/X − cD�

)
⊂ OX .
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It is a basic fact that the multiplier ideal is independent of the choice of μ.
If c ∈ N∗, then J (X, c ·a) = J (X, ac). We will use the convention that J (X, c ·(0)) :=

(0), where (0) ⊂ OX denotes the zero ideal.
Multiplier ideals satisfy the following containment relations. See [59, Proposition 

9.2.32] for the case when X is smooth.

Lemma 5.4. Let a, b be nonzero ideals on X.

(1) We have a ⊂ J (X, a).
(2) If a ⊂ b and c > 0 a rational number, then J (X, c · a) ⊂ J (X, c · b).
(3) If c ≥ d > 0 are rational numbers, then J (X, c · a) ⊂ J (X, d · a).

The following subadditivity theorem was proved by Demailly, Ein, and Lazarsfeld in 
the smooth case [35]. The case below was proved by Takagi [83, Theorem 2.3] and, later, 
by Eisenstein [42, Theorem 7.3.4].

Theorem 5.5. If a, b are nonzero ideals on X, and c ∈ Q∗
+, then

JacX ·J (X, c · (a · b)) ⊂ J (X, c · a) · J (X, c · b),

where JacX denotes the Jacobian ideal as defined in [41, p. 402].

5.3. Asymptotic multiplier ideals

Let a• be a graded sequence of ideals on X and c > 0 a rational number. By 
Lemma 5.4, we have

J (X, (c/p) · ap) ⊂ J (X, c/(pq) · apq)

for all positive integers p, q. This, together with the Noetherianity of X, implies that

{J (X, (c/p) · ap)}p∈N

has a unique maximal element that is called the c-th asymptotic multiplier ideal and 
denoted by J (X, c · a•). Note that J (X, c · a•) = J (X, (c/p) · ap) for all p divisible 
enough.

Asymptotic multiplier ideals also satisfy a subadditivity property. See [59, Theorem 
11.2.3] for the case when X is smooth.

Corollary 5.6. Let a• be a graded sequence of ideals on X. If m ∈ N∗ and c ∈ Q∗
+, then

(JacX)m−1 J (X, cm · a•) ⊂ J (X, c · a•)m.
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Next we give a containment relation for the multiplier ideal associated to the graded 
sequence of valuation ideals. The result appears in [40] in the case when v is divisorial.

Proposition 5.7. If v ∈ ValX is a valuation with A(v) < ∞, and c ∈ Q∗
+, then

J (X, c · a•(v)) ⊂ ac−A(v)(v).

Proof. It is an immediate consequence of the valuative criterion for membership in the 
multiplier ideal [20, Theorem 1.2] that

J (X, c · a•(v)) ⊂ acv(a•(v))−A(v)(v).

Since v(a•(v)) = 1 (see [10, Lemma 3.5]), the proof is complete. �
5.4. Multiplier ideals of linear series

Given a linear series of L, we set

J (X, c · |V |) := J (X, c · b(|V |)),

where b(|V |) is the base ideal of V . Similarly, if V• is a graded linear series of L, we set

J (X, c · ‖V•‖) := J (X, c · b•)

where b• is the graded sequence of ideals defined by bm := b(|Vm|). We conclude

Lemma 5.8. Let L be a line bundle on X.

(i) If V is a linear series of L, then b(|V |) ⊂ J (X, |V |).
(ii) If V• is a graded linear series of L and m ∈ N∗, then b

(
|Vm|

)
⊂ J (X, m · ‖V•‖).

(iii) If V• is a graded linear series of L and m ∈ N∗, c ∈ Q∗
+, then

(JacX)m−1 ⊗ J (X, cm · ‖V•‖) ⊂ J (X, c · ‖V•‖)m

The following result is a consequence of Nadel Vanishing.

Theorem 5.9. Let L be a big line bundle on X, and V• a graded linear series of L.

(i) Let B be a line bundle on X and m ∈ N∗. If B − KX − mL is big and nef, then

Hi(X, B ⊗ J (X, m · ‖V•‖)) = 0

for all i ≥ 1.
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(ii) Let B and H be line bundles on X and m ∈ N∗. If H is ample and globally generated, 
and B − KX − mL is big and nef, then

(B + jH) ⊗ J (X, m · ‖V•‖)

is globally generated for every j ≥ n = dim(X).

Proof. Statement (i) is [59, Theorem 11.2.12 (iii)] in the case when X is smooth. When 
X is klt, the statement is a consequence of [59, Theorem 9.4.17 (ii)].

Statement (ii) is a well known consequence of (i) and Castelnuovo–Mumford regularity. 
For a similar argument, see [59, Proposition 9.4.26]. �
Corollary 5.10. Let L be an ample line bundle on X. There exists a positive integer 
a = a(L) such that if V• is a graded linear series of L, then

(a + m)L ⊗ J (X, m · ‖V•‖)

is globally generated for all m ∈ N∗. (Note that a does not depend on m or V•.) Fur-
thermore, we may choose a so that H0(X, aL ⊗ JacX) is nonzero.

Proof. Pick b, c ∈ N∗ such that bL is globally generated and cL − KX is big and nef. 
We apply Theorem 5.9 (ii) with B = (c + m)L and H = bL. Thus

(c + m + jb)L ⊗ J (X, m · ‖V•‖)

is globally generated for all m ∈ N∗ and j ≥ n. We can now set a := c + jb, where j ≥ n

is large enough so that H0(X, (c + jb)L ⊗ JacX) 	= 0. �
5.5. Applications to filtrations defined by valuations

Now let L be an ample line bundle on X and fix a constant a := a(L) that satisfies 
the conclusion of Corollary 5.10. For the remainder of this section, a will always refer to 
this constant.

Consider a valuation v ∈ Val∗X with A(v) < ∞. We proceed to study the graded linear 
series V t

• = V Fv,t
• of L for t ∈ R+.

Proposition 5.11. If m ∈ N∗ and t ∈ Q∗
+ satisfies mt ≥ A(v), then

J (X, m · ‖V t
• ‖) ⊂ amt−A(v)(v).

Proof. Pick p ∈ N∗ such that pt ∈ N∗ and J (X, m · ‖V t
• ‖) = J (X, mp · b

(
|V t

p |
)
). Then

J (X, m · b
(
|V t

p |
)
) ⊂ J (X, m · apt(v)) ⊂ J (X, mt · a•(v)) ⊂ amt−A(v)(v),
p p
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where the first inclusion follows from the inclusion b
(
|V t

p |
)

⊂ apt(v), the second from the 
definition of the asymptotic multiplier ideal, and the third from Proposition 5.7. �
Proposition 5.12. If m ∈ N∗ and t ∈ Q∗

+ satisfies mt ≥ A(v), then

J (X, m · ‖V t
• ‖) ⊂ b

(
|V t′

m+a|
)

where t′ = (mt − A(v))/(m + a).

Proof. By Proposition 5.11, we have

H0(X, (m + a)L ⊗ J (X, m · ‖V t
• ‖)) ⊂ H0(X, (m + a)L ⊗ amt−A(v)(v)) = V t′

m+a.

Since (m +a)L ⊗J (X, ‖V t
• ‖) is globally generated by Corollary 5.10, the desired inclusion 

follows by taking base ideals. �
Using the previous proposition, we can now bound vol(V t

m,•) from below.

Proposition 5.13. If m ∈ N∗ and t ∈ Q∗
+ satisfies mt ≥ A(v), then

vol(V t
• ) ≤ m−n vol(V t′

m+a,•),

where t′ = (mt − A(v))/(a + m).

Proof. It suffices to show that dim V t
m� ≤ dim V t′

m+a,� for all positive integers m and 
	. Indeed, diving both sides by (m	)n/n! and letting 	 → ∞ then gives the desired 
inequality.

We now prove dim V t
m� ≤ dim V t′

m+a,�. First, by our assumption on a, we may choose 
a nonzero section s ∈ H0(X, aL ⊗ JacX). Multiplication by s� gives an injective map

V t
�m −→ H0(X, (a + m)	L ⊗ (JacX)�−1 ⊗ b

(
|V t

m�|
)
).

Now, we have

H0(X, (a + m)	L ⊗ (JacX)�−1 ⊗ b
(
|V t

m�|
)
)

⊂ H0(X, (a + m)	L ⊗ (JacX)�−1 ⊗ J (X, m	 · ‖V t
• ‖))

⊂ H0(X, (a + m)	L ⊗ J (X, m · ‖V t
• ‖)�)

⊂ H0(X, (a + m)	L ⊗ (b(|V t′

m+a|)�) ⊂ V t′

m+a,�,

where the first inclusion follows from Lemma 5.8, the second from Corollary 5.6 (iii), the 
third from Proposition 5.12, and the last one from the definition of V t′

m+a,•. �
As an application of the previous proposition, we give bounds on Tm(v) and S̃m(v).
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Proposition 5.14. If m ∈ N∗, then

T (v) − aT (v) + A(v)
m

≤ Tm(v) ≤ T (v).

Proof. The second inequality is trivial, since T (v) = sup Tm(v). To prove the first in-
equality, we may assume m > a + A(v)

T (v) . Pick t ∈ Q∗
+ with t < T (v) and m > a + A(v)

t . 
Since V t

• is nontrivial (in fact, it contains an ample series), J (X, m‖V t
• ‖) is nontrivial 

as well. Apply Proposition 5.12, with m instead of m − a, so that t′ = t − m−1(at + A). 
We get

b(|V t′

m |) ⊃ J (X, (m − a)‖V t
• ‖) 	= 0.

In particular, V t′
m 	= ∅, which implies t′ ≤ Tm(v). Letting t → T (v) completes the 

proof. �
Proposition 5.15. If m ∈ N∗ and m > a, then(

m − a

m

)n+1 (
S(v) − A(v)

m − a

)
≤ S̃m(v) ≤ S(v). (5.1)

Proof. To prove the second inequality, note that for t ∈ R+ and l ∈ N∗ we have

V t
m,� = H0(X, m	L ⊗ b

(
|Fmt

v H0(X, mL)|
)�) ⊂ Fm�t

v H0(X, m	L) = V t
m�.

Thus vol(V t
m,•) ≤ mn vol(V t

• ) for t ∈ R+, and integration yields S̃m(v) ≤ S(v).
We now prove the first inequality. To this end, we use Proposition 5.13 with m replaced 

by m − a to see that (
m − a

m

)n

vol(V t
• ) ≤ 1

mn
vol(V t′

m,•) (5.2)

for all t ∈ Q∗
+ with (m − a)t ≥ A(v), where t′ = t − m−1(at + A(v)). By the continuity 

statement in Proposition 2.3, the inequality in (5.2) must hold for all t ∈ [m−1A(v), T (v)], 
with at most two exceptions. We can therefore integrate with respect to t from t =
A(v)/(m − a) to t = (mT (v) + A(v))/(m − a), i.e. from t′ = 0 to t′ = T (v). This yields

S̃m(v) =
T (v)∫
0

vol(V t′
m,•)

mn vol(L) dt′ ≥
(

m − a

m

)n+1 (mT (v)+A(v))/(m−a)∫
A(v)/(m−a)

vol(V t
• )

vol(L) dt

=
(

m − a

m

)n+1 T (v)∫ vol(V t
• )

vol(L) dt
A(v)/(m−a)
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=
(

m − a

m

)n+1
⎛⎜⎝S(v) −

A(v)/(m−a)∫
0

vol(V t
• )

vol(L)
dt

⎞⎟⎠
≥

(
m − a

m

)n+1 (
S(v) − A(v)

m − a

)
,

where the second equality follows from a simple substitution and the last inequality 
follows since vol(V t

• ) ≤ vol(L) for all t. This completes the proof. �
Proof of Theorem 5.1. Consider any v ∈ Val∗X with A(v) < ∞. By Corollary 4.2, we 
have T (v) ≤ A(v)/α(L). Proposition 5.14 now yields

T (v) − Tm(v) ≤
(

a

α(L) + 1
)

A(v)
m

for any m ∈ N∗, so the theorem holds with C = 1 + a(L)/α(L). �
Proof of Theorem 5.3. Consider any v ∈ Val∗X with A(v) < ∞. Proposition 5.15 gives

0 ≤ S(v) − S̃m(v) ≤ S(v) −
(

m − a

m

)n+1 (
S(v) − A(v)

m − a

)

=
(

1 −
(

m − a

m

)n+1
)

S(v) +
(

m − a

m

)n
A(v)

m
≤ a(n + 1)

m
S(v) + A(v)

m

for m > a, where the last inequality uses that 1 − tn+1 ≤ (n + 1)(1 − t) for t ∈ [0, 1]. 
Since S(v) ≤ A(v)/δ(L) by Theorem 4.4, we can take C = 1 + (n + 1)a(L)/α(L). �
6. Valuations computing the thresholds

In this section we prove Theorem E, on the existence of valuations computing the log 
canonical and stability thresholds. We assume that X is a normal projective klt variety 
and that L is ample.

6.1. Linear series in families

We consider the following setup, which will arise in §6.3. Fix m ∈ N∗ and a family 
of subspaces of H0(X, mL) parameterized by a variety Z. Said family is given by a 
submodule

W ⊂ V := H0(X, mL) ⊗C OZ .

For z ∈ Z closed, we write Wz for the linear series of mL defined by
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Wz := Im
(
W|k(z) → V|k(z) � H0(X, mL)

)
.

Note that W gives rise to an ideal B ⊂ OX×Z such that

B · OX×{z} = b
(
|Wz|

)
.

Indeed, B is the image of the map

p∗
2W ⊗ p∗

1(−mL) → OX×Z ,

where p1 and p2 denote the projection maps associated to X × Z.
We need a few results on the behavior of invariants of linear series in families.

Proposition 6.1. There exists a nonempty open set U ⊂ Z such that lct(b
(
|Wz|

)
) is 

constant for all closed points z ∈ U .

Proof. Since lct(b
(
|Wz|

)
) = lct(B·OX×{z}), the proposition follows from the well known 

fact that the log canonical threshold of a family of ideals is constant on a nonempty open 
set; see e.g. [10, Proposition A.2]. �
Proposition 6.2. If Z is a smooth curve and z0 ∈ Z a closed point, then there exists an 
open neighborhood U of z0 in Z such that lct(b

(
|Wz0 |

)
) ≤ lct(b

(
|Wz|

)
) for all z ∈ U .

Proof. As in the proof of the previous proposition, we note that lct(b
(
|Wz|

)
) =

lct(B · OX×{z}) for z ∈ Z closed. Thus, the proposition is a consequence of the lower 
semicontinuity of the log canonical threshold. See [10, Proposition A.3]. �

Denote by Wz,• the graded linear series of mL defined by

Wz,� := H0(X, m	L ⊗ b
(
|Wz|

)�).

Proposition 6.3. There exists a nonempty open set U ⊂ Z such that vol(Wz,•) is constant 
for all closed points z ∈ U .

Proof. The idea is to express vol(Wz,•) as an intersection number. Fix a proper birational 
morphism π : Y → X ×Z such that Y is smooth and B·OY = OY (−F ) for some effective 
Cartier divisor on Y . For each z ∈ Z, we restrict π to get a map πz : Yz → X × {z} � X. 
By generic smoothness, there exists a nonempty open set U ⊂ Z such that Yz is smooth 
for all z ∈ U . For z ∈ U , we then have

vol(Wz,•) = ((p∗
1mL − F )|nYz

).

After shrinking U , we may assume p∗
1mL − F is flat over U . Then ((p∗

1mL − F )|Yz
)n) is 

constant on U , which concludes the proof. �
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Proposition 6.4. Let W and G be two submodule of V and for z ∈ Z, let Wz and Gz

denote the corresponding subspaces of V . If the function z �→ dim Wz is locally constant 
on Z, then the set {z ∈ Z | Gz ⊂ Wz} is closed.

Proof. We may assume Z is affine and dim(Wz) =: r is constant on Z. Choose a basis 
for the free O(Z)-module V(Z) as well as generators for W(Z) and G(Z). Consider the 
matrix with entries in O(Z), whose rows are given by the generators of W(Z), followed 
by the generators of G(Z), all expressed in the chosen basis of O(Z). By our assumption 
on W, the rank of this matrix is at least r for all z ∈ Z. Further, since Gz ⊂ Wz if and 
only if dim(Gz +Wz) = dim(Wz), the set {z ∈ Z | Gz ⊂ Wz} is precisely the locus where 
this matrix has rank equal to r, and is hence closed. �
6.2. Parameterizing filtrations

We now construct a space that parameterizes filtrations of R(X, L).5 To have a 
manageable parameter space, we restrict ourselves to N-filtrations F of R satisfying 
T (F) ≤ 1. Such a filtration F is given by the choice of a flag

FmRm ⊂ Fm−1Rm ⊂ · · · ⊂ F1Rm ⊂ F0Rm = Rm (6.1)

for each m ∈ N∗ such that

Fp1Rm1 · Fp2Rm2 ⊂ Fp1+p2Rm1+m2 (6.2)

for all integers 0 ≤ p1 ≤ m1 and 0 ≤ p2 ≤ m2.
Let Flm denote the flag variety parameterizing flags of Rm of the form (6.1). In 

general, Flm may have several connected components. On each component, the signature 
of the flag (that is, the sequence of dimensions of the elements of the flag) is constant.

For each natural number d, we set

Hd := Fl0 × Fl1 × · · · × Fld

and, for c ≥ d, let πc,d : Hc → Hd denote the natural projection map. Note that a closed 
point z ∈ Hd gives a collection of subspaces(

Fm
z Rm ⊂ Fm−1

z Rm ⊂ · · · ⊂ F1
z Rm ⊂ F0

z Rm = Rm

)
0≤m≤d

.

Furthermore, this correspondence is given by a universal flag on Hd. This means that 
for each m ≤ d on Hd there is a flag

FmRm ⊂ Fm−1Rm ⊂ · · · ⊂ F1Rm ⊂ F0Rm = Rm,

5 See [28] for a related, but different, construction that parameterizes limits of test configurations.
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where Rm := H0(X, mL) ⊗C OHd
. For z ∈ Hd, we have

Fp
z Rm := Im

(
FpRm|k(z) −→ Rm|k(z) � Rm

)
for 0 ≤ p ≤ m, where k(z) denotes the residue field at z.

Since we are interested in filtrations of R(X, L), consider the subset

Jd := {z ∈ Hd | Fz satisfies (6.2) for all 0 ≤ pi ≤ mi ≤ d}.

Lemma 6.5. The subset Jd ⊂ Hd is closed.

Proof. We consider Fp1
z Rm1 · Fp2

z Rm2 , where z ∈ Hd, m1 + m2 ≤ d, and 0 ≤ pi ≤ mi

for i = 1, 2. We will realize this subspace as coming from a submodule of Rm1+m2 . Note 
that the natural map

H0(X, m1L) ⊗k H0(X, m2L) −→ H0(X, (m1 + m2)L)

induces a map Rm1 ⊗ Rm2 → Rm1+m2 . We define

Fp1Rm1 · Fp2Rm2 := Im (Fp1Rm1 ⊗ Fp2Rm2 → Rm1+m2) .

Since

Fp1
z Rm1 · Fp2

z Rm2 = Im
(
(Fp1Rm1 ⊗ Fp2Rm2)|k(z) −→ Rm1+m2 |k(z) � Rm1+m2

)
,

the desired statement is a consequence of Proposition 6.4. �
Let Jd(C) denote the set of closed points of Jd, and set J := lim←−− Jd(C), with respect to 

the inverse system induced by the maps πc,d. Write πd for the natural map J → Jd(C) By 
the previous discussion, there is a bijection between the elements of J and N-filtrations 
F of R(X, L) satisfying T (F) ≤ 1.

The following technical lemma will be useful for us in the next section. Its proof relies 
on the fact that every descending sequence of nonempty constructible subsets of a variety 
over an uncountable field has nonempty intersection.

Lemma 6.6. For each d ∈ N, let Wd ⊂ Jd be a nonempty constructible subset, and assume 
Wd+1 ⊂ π−1

d+1,d(Wd) for all d. Then there exists z ∈ J such that πd(z) ∈ Wd(C) for all d.

Proof. Finding such a point z is equivalent to finding a point zd ∈ Wd(C) for each d, 
such that πd+1,d(zd+1) = zd for all d. We proceed to construct such a sequence (zd)d

inductively.
We first look to find a good candidate for z1. By assumption,

W1 ⊃ π2,1(W2) ⊃ π3,1(W3) ⊃ · · ·
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is a descending sequence of nonempty sets. Note that W1 is constructible, and so are 
πd,1(Wd) for all d by Chevalley’s Theorem. Thus,

W1 ∩ π2,1(W2) ∩ π3,1(W3) ∩ · · ·

is nonempty, and we may choose a closed point z1 in this set.
Next, we look at

W2 ∩ π−1
2,1(z1) ⊃ π3,2(W3) ∩ π−1

2,1(z1) ⊃ π4,2(W4) ∩ π−1
2,1(z1) ⊃ · · ·

and note that for d ≥ 2 the set πd,2(Wd) ∩π−1
2,1(z1) is nonempty by our choice of z1. Thus

π−1
2,1(z1) ∩ W2 ∩ π3,2(W3) ∩ π4,2(W4) ∩ · · ·

is nonempty, and we may choose a closed point z2 lying in the set. Continuing in this 
manner, we construct a desired sequence. �
6.3. Finding limit filtrations

The following proposition, crucial to Theorem E, is a global analogue of [10, Propo-
sition 5.2]. The proofs of both results use extensions of the “generic limit” construction 
developed in [58,31–33].

Proposition 6.7. Let (Fi)i∈N be a sequence of N-filtrations of R(X, L) with T (Fi) ≤ 1
for all i. Furthermore, fix A, S, T ∈ R+ such that

(1) A ≥ lim sup
i→∞

lct (b•(Fi)),

(2) S ≤ lim inf
m→∞

lim inf
i→∞

S̃m(Fi), and
(3) T ≤ lim inf

m→∞
lim inf

i→∞
Tm(Fi).

Then there exists a filtration F of R(X, L) such that

lct (b•(F)) ≤ A, S(F) ≥ S, and T ≤ T (F) ≤ 1.

Proof. We use the parameter space J from §6.2, parameterizing N-filtrations of R(X, L)
with T ≤ 1. Each filtration Fi corresponds to an element zi ∈ J , and πm(zi) correspond 
to the filtration Fi restricted to ⊕m

d=0Rd.

Claim 1. We may choose infinite subsets

N ⊃ I0 ⊃ I2 ⊃ I3 ⊃ · · ·

such that for each m, the closed set
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Zm := {πm(zi) | i ∈ Im} ⊂ Jm

satisfies the property

(†) If Y � Zm is a closed set, there are only finitely many i ∈ Im such that πm(zi) ∈ Y .

Note that, in particular, each Zm is irreducible.

Indeed, we can construct the sequence (Im)∞
0 inductively. Set I0 = N. Since J0 =

Fl0 � Spec(C), (†) is trivially satisfied for m = 0. Having chosen Im, pick Im+1 ⊂ Im

such that (†) is satisfied for Zm+1; this is possible since Jm is Noetherian.

Claim 2. For each m ∈ N, there exist a nonempty open set Um ⊂ Zm and constants 
ap,m, 1 ≤ p ≤ m, sm, and tm such that if z ∈ Um, the filtration Fz satisfies

(1) p · lct (bp,m(Fz)) = ap,m for 1 ≤ p ≤ m;
(2) S̃m(Fz) = sm;
(3) Tm(Fz) = tm.

Furthermore, ap,m ≤ A for all 1 ≤ p ≤ m, lim inf
m→∞

sm ≥ S, and lim inf
m→∞

tm ≥ T .

To see this, note that there is a nonempty open set Um ⊂ Zm on which the left-hand 
sides of (1)–(3) are constant. For (1) and (2), this is a consequence of Propositions 6.1
and 6.3. For (3), it follows from dim Fp

z Rm being constant on the connected components 
of Jm.

Now, we let

I◦
m := {i ∈ Im | πm(zi) ∈ Um}.

By (†), the set Im \ I◦
m is finite; hence, I◦

m is infinite. Since

ap,m = p · lct(bp,m(Fi)), sm = S̃m(Fi), and tm = Tm(Fi)

for all i ∈ I◦
m and 1 ≤ p ≤ m, we see that

(1) ap,m ≤ lim sup
i→∞

p · lct(bp,m(Fi)) ≤ lim sup
i→∞

p · lct(bp(Fi)),

(2) sm ≥ lim inf
i→∞

S̃m(Fi), and
(3) tm ≥ lim inf

i→∞
Tm(Fi).

The remainder of Claim 2 follows from these three inequalities.

Claim 3. There exists a point z ∈ J such that πm(z) ∈ Um for all m ∈ N.
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Granted this claim, the filtration F = Fz associated to z ∈ J satisfies the conclusion 
of our proposition. Indeed, this is a consequence of Claim 2 and the fact that for any 
linearly bounded filtration F , we have

(1) lct(b•(F)) = limp→∞ supm≥p p · lct(bp,m(F));
(2) S(F) = limm→∞ S̃m(F);
(3) T (F) = limm→∞ Tm(F).

We are left to prove Claim 3. To this end we apply Lemma 6.6. For d ∈ N, set

Wd := Ud ∩ π−1
d,d−1Ud−1 ∩ π−1

d,d−2(Ud−2) ∩ · · · ∩ π−1
d,0(U0).

Clearly Wd ⊂ Jd is constructible and Wd+1 ⊂ π−1
d+1,d(Wd). We are left to check that each 

Wd is nonempty. But

πd(zi) ∈ Wd for all i ∈ I◦
d ∩ I◦

d−1 · · · ∩ I◦
0 ,

and the latter index set is nonempty, since it can be written as Id \
⋃d

j=0(Ij \ I◦
j ), where 

Id is infinite and each Ij \ I◦
j is finite.

Applying Lemma 6.6 to the Wd yields a point z ∈ J such that πd(z) ∈ Wd ⊂ Ud for all 
d ∈ N. This completes the proof of the claim, as well as the proof of the proposition. �
6.4. Proof of Theorem E

We begin by proving the following proposition.

Proposition 6.8. Let (vi)i∈N be a sequence of valuations in Val∗X such that T (vi) = 1
and the limits A := limi→∞ A(vi) and S := limi→∞ S(vi) both exist and are finite. Then 
there exists a valuation v∗ on X such that

A(v∗) ≤ A, S(v∗) ≥ S and T (v∗) ≥ 1.

This will follow from Proposition 6.7 and the following lemma.

Lemma 6.9. Keeping the notation and hypotheses of Proposition 6.8, let Fi := Fvi,N

denote the N-filtration induced by Fvi
as in §2.7. Then we have

(1) lim sup
i→∞

lct (b•(Fi)) ≤ A,

(2) lim
m→∞

lim inf
i→∞

S̃m(Fi) = lim
m→∞

lim sup
i→∞

S̃m(Fi) = S, and

(3) lim lim inf Tm(Fi) = lim lim sup Tm(Fi) = 1.

m→∞ i→∞ m→∞ i→∞
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Proof. We first show that (1) holds. Note that bp(Fi) = bp(Fvi
) for all p ∈ N. Indeed, 

this follows from the fact that Fp
i Rm = Fp

vi
Rm for all m, p ∈ N. Thus,

lct(b•(Fi)) = lct(b•(Fvi
)) = lct(a•(vi)) ≤ A(vi),

where the second equality follows from Lemma 3.19 and the last inequality is Lemma 1.1.
We now show (2) and (3) hold. To this end, we first claim that

0 ≤ Tm(vi) − Tm(Fi) ≤ 1
m

and 0 ≤ S̃m(vi) − S̃m(Fi) ≤ 1
m

. (6.3)

Indeed, the estimates for Tm follow from Proposition 2.11. As for the estimates for 
S̃m, note that S̃m(vi) =

∫ 1
0 fi,m(t) dt, where fi,m(t) = vol(V Fvi

,t
m,• ), whereas S̃m(Fi) is a 

right Riemann sum approximation of this integral, obtained by subdividing [0, 1] into m
subintervals of equal length. Thus the estimate for S̃m in (6.3) follows, since the functions 
fi,m(t) are decreasing, with fi,m(0) = 1 and fi,m(1) ≥ 0.

By the uniform Fujita approximation results in Theorems 5.1 and 5.3, we have

lim
m→∞

sup
i

|Tm(vi) − T (vi)| = lim
m→∞

sup
i

|S̃m(vi) − S̃(vi)| = 0.

Together with (6.3), this yields (2) and (3), and hence completes the proof. �
Proof of Proposition 6.8. For i ≥ 1, consider the N-filtrations Fi := Fvi,N associated to 
vi. By Lemma 6.9, the assumptions of Proposition 6.7 are satisfied with T = 1. Hence 
we may find a filtration F such that

lct(b•(F)) ≤ A, S(F) ≥ S and T (F) = 1.

Using [55], we may choose a valuation v∗ ∈ Val∗X computing lct(b•(F)). After rescaling, 
we may assume v∗(b•(F)) = 1. Therefore,

A(v∗) = A(v∗)
v∗(b•(F)) = lct(b•(F) ≤ A.

By Corollary 3.21, S(v∗) ≥ S(F) ≥ S and T (v∗) ≥ T (F) = 1. This completes the 
proof. �
Proof of Theorem E. We first find a valuation computing α(L). Choose a sequence (vi)i

in Val∗X such that

lim
i→∞

A(vi)
T (vi)

= inf
v

A(v)
T (v) = α(L).

After rescaling, we may assume T (vi) = 1 for all i. Hence, the limit A := limi→∞ A(vi)
exists and equals α(L). Further, by (3.1), the sequence (S(vi))i is bounded from above 
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and below away from zero, so after passing to a subsequence we may assume the limit 
S := limi→∞ S(vi) exists, and is finite and positive.

By Proposition 6.8, there exists v∗ ∈ Val∗X with A(v∗) ≤ A and T (v∗) ≥ 1. Therefore,

A(v∗)
T (v∗) ≤ A = α(L).

Since α(L) = infv A(v)/T (v), v∗ computes α(L).
The argument for δ(L) is almost identical. Pick a sequence (vi)i in Val∗X such that

lim
i→∞

A(vi)
S(vi)

= inf
v

A(v)
S(v) = δ(L).

Again, we rescale our valuations so that T (vi) = 1 for all i ∈ N. As above, we may 
assume that the limit S := limi→∞ S(vi) exists, and is finite and positive. Therefore, 
A := limi→∞ A(vi) also exists and A/S = δ(L).

We apply Proposition 6.8 to find a valuation v∗ such that A(v∗) ≤ A and S(v∗) ≤ S. 
As argued for α(L), we see that v∗ computes δ(L). �
7. The toric case

In this section we will freely use notation and results found in [51]. Fix a toric variety 
X = X(Δ) given by a fan Δ in a lattice N � Zn. We assume that X is proper and KX

is Q-Cartier. Set NR := N ⊗Z R.
We write M = Hom(N, Z), MQ = M ⊗Z Q, and MR = M ⊗Z R for the corresponding 

dual lattice and vector spaces. The open torus of X is denoted by T ⊂ X. Let v1, . . . , vd

denote the primitive generators of the one-dimensional cones in Δ and let D1, . . . , Dd be 
the corresponding torus invariant divisors on X.

We fix an ample line bundle of the form L = OX(D), where D = b1D1 + · · · + bdDd

is a Cartier divisor on X. Associated to D is the convex polytope

P = PD = {u ∈ MR | 〈u, vi〉 ≥ −bi for all 1 ≤ i ≤ d}.

We write Vert P for the set of vertices in P .
Recall that there is a correspondence between points in P ∩ MQ and effective torus 

invariant Q-divisors Q-linearly equivalent to D, under which u ∈ P ∩ MQ corresponds 
to

Du := D +
d∑

i=1
〈u, vi〉Di :=

d∑
i=1

(〈u, vi〉 + bi)Di.

Note that if m ∈ N∗ is chosen so that mu ∈ N , then Du = D + m−1div(χmu).
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Let ψ = ψD : NR → R be the concave function that is linear on the cones of Δ and 
satisfies ψ(vi) = −bi for 1 ≤ i ≤ d. On a given cone σ ∈ Δ, the linear function is given 
by ψ(v) = −〈b(σ), v〉, where b(σ) ∈ M is such that χb(σ) is a local equation for D on 
Uσ ⊂ X. We have ψ(v) = infu∈P 〈u, v〉 = minu∈Vert P 〈u, v〉 for all v ∈ NR.

7.1. Toric valuations

Given v ∈ NR, let σ be the unique cone in Δ containing v in its interior. The map

C[σ∨ ∩ M ] =
⊕

u∈σ∨∩M

C · χu → R+

defined by ∑
u∈σ∨∩M

cuχu �→ min{〈u, v〉 | cu 	= 0} (7.1)

gives rise to a valuation on X that we slightly abusively also denote by v. Its center on 
X is the generic point of V (σ). This induces in embedding NR ↪→ ValX , and we shall 
simply view NR as a subset of ValX . The valuations in NR are called toric valuations. 
The valuation associated to the point vi ∈ NR is ordDi

for 1 ≤ i ≤ d, and the valuation 
associated to 0 ∈ NR is the trivial valuation on X.

Lemma 7.1. If u ∈ P ∩ MQ and v ∈ NR, then v(Du) = 〈u, v〉 − ψ(v).

Proof. Pick m ∈ N∗ such that mu ∈ M . Since Du = D + m−1div(χmu), we have

v(Du) = v(D) + m−1v(χmu) = v(D) + 〈u, v〉,

and we are left to show v(D) = −ψ(v). Let σ ∈ Δ be the unique cone containing v in its 
interior. Since χb(σ) is a local equation for D on Uσ, we see

v(D) = v(χb(σ)) = 〈b(σ), v〉 = −ψ(v),

which completes the proof. �
7.2. Log canonical thresholds

The following result is probably well known, but we include a proof for lack of a 
suitable reference.

Proposition 7.2. The restriction of the log discrepancy function A = AX to NR ⊂ ValX is 
the unique function that is linear on the cones in Δ and satisfies A(vi) = 1 for 1 ≤ i ≤ d.
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Proof. Consider any cone σ ∈ Δ. Let vi ∈ N , 1 ≤ i ≤ r, be the generators of the 1-
dimensional cones contained in σ, and Di, 1 ≤ i ≤ r the associated divisors on X. Since 
KX is Q-Cartier, there exists b(σ) ∈ MQ such that 〈b(σ), vi〉 = −1 for 1 ≤ i ≤ r. Thus 
KX = − 

∑r
i=1 Di = divX(χb(σ)) on U(σ).

Pick any refinement Δ′ of Δ such that X ′ := X(Δ′) is smooth. Consider a cone 
σ′ ∈ Δ′ with σ′ ⊂ σ. Let v′

j ∈ N and D′
j , 1 ≤ j ≤ s, be the analogues of vi and Di. Now

KX′/X = KX′ − divX′(χb(σ)) = −
s∑

j=1
D′

j − divX′(χb(σ))

on U(σ′). By the definition of the log discrepancy, this implies

AX(v′
j) = 1 + v′

j(KX′/X) = 1 − 1 − 〈b(σ), v′
j〉 = −〈b(σ), v′

j〉.

Since Δ′ was an arbitrary regular refinement of Δ, this implies that the restriction of 
AX to σ ⊂ NR ⊂ ValX is given by the linear function b(σ) ∈ MQ. This concludes the 
proof. �

The next proposition follows from [55, Proposition 8.1]. We say that ideal a on X is 
T -invariant if it is invariant with respect to the torus action on X. Equivalently, for each 
σ ∈ Δ, the ideal a(Uσ) ⊂ k[σ∨ ∩ M ] is generated by monomials.

Proposition 7.3. If a• is a nontrivial graded sequence of T -invariant ideals on X, then 
there exists a nontrivial toric valuation computing lct(a•). Further, any valuation that 
computes lct(a•) is toric.

Proof. Pick a refinement Δ′ of Δ such that X ′ := X(Δ′) is smooth. This induces a 
proper birational morphism X ′ → X. Let D′ be the sum of the torus invariant divisors 
on X ′.

By [55], there exists a valuation w ∈ ValX computing lct(a•). We now follow [55, 
§8]. Let rX′,D′ : ValX → QM(X ′, D′) = NR denote the retraction map defined in [55], 
and set v := rX′,D′(w) ∈ NR. Then v(a•) = w(a•) > 0. In particular, v is nontrivial. 
Further, AX′(v) ≤ AX′(w), with equality iff w = v ∈ NR. Now recall that AX(v) =
AX′(v) + v(KX′/X) and AX(w) = AX′(w) + w(KX′/X). Since KX′/X is T -invariant, we 
have v(KX′/X) = w(KX′/X). This implies AX(v) ≤ AX(w), with equality iff w = v. 
Thus lct(a•) ≤ AX(v)/v(a•) ≤ AX(w)/w(a•) = lct(a•), completing the proof. �
Corollary 7.4. For any u ∈ P ∩ MQ, we have

lct(Du) = inf
v∈NR\{0}

A(v)
v(Du) = min

i=1,...,d

1
〈u, vi〉 + bi

.

Proof. The first equality follows from Proposition 7.3, applied to the toric graded se-
quence of ideals defined by Du. The functions v → A(v) and v → v(Du) on NR are both 
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linear on the cones of Δ, so the function v → A(v)/v(Du) on NR attains its infimum at 
some vi, 1 ≤ i ≤ d. Since A(vi) = 1 and vi(Di) = 〈u, vi〉 − ψ(vi) = 〈u, vi〉 + bi, we are 
done. �
7.3. Filtrations by toric valuations

Given v ∈ NR, we will describe the filtration Fv of R(X, L) and compute both S(v)
and T (v). Recall that for each m ∈ N∗,

H0(X, mL) =
⊕

u∈mP ∩M

C · χu,

where the rational function χu is viewed as a section of OX(mD).

Proposition 7.5. For λ ∈ R+ and m ∈ N∗ we have

Fλ
v H0(X, mL) =

⊕
u∈mP ∩M

〈u,v〉−m·ψ(v)≥λ

C · χu.

As a consequence, the set of jumping numbers of Fv along H0(X, mL) is equal to the set 
{〈u, v〉 − m · ψ(v) | u ∈ mP ∩ M}.

Proof. It suffices to prove that s =
∑

u∈mP ∩M cuχu ∈ H0(X, mL), then

v(s) = min{〈u, v〉 − m · ψ(v) | cu 	= 0}.

To this end, pick σ ∈ Δ such that v ∈ Int(σ). Note that χ−mb(σ) is a local generator for 
OX(mD) on Uσ. By the definition of v(s), and by (7.1), we therefore have

v(s) = v(
∑

cuχu+mb(σ)) = min{〈u, v〉 + m〈b(σ), v〉 | cu 	= 0},

which completes the proof, since ψ(v) = −〈b(σ), v〉. �
Proposition 7.6. For m ∈ N∗, we have

Sm(v) = 〈um, v〉 − ψ(v) and Tm(v) = max
u∈P ∩m−1M

〈u, v〉 − ψ(v),

where um := (
∑

u∈P ∩m−1M u)/#(P ∩ m−1M) is the barycenter of the set P ∩ m−1M .

Proof. From the description of the jumping numbers of Fvu
in Proposition 7.5, we see

Sm(v) =
∑

u∈mP ∩M 〈u, v〉 − m · ψ(v)
=

〈 ∑
u∈mP ∩M u

, v

〉
− ψ(v),
m#(mP ∩ M) m#(mP ∩ M)
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and

Tm(v) = maxu∈mP ∩M 〈u, v〉
m

− ψ(v).

Now, multiplication by m−1 gives an isomorphism mP ∩ M → P ∩ m−1M . Applying 
said isomorphism yields the desired equalities. �
Corollary 7.7. We have

S(v) = 〈u, v〉 − ψ(v) and T (v) = max
u∈P

〈u, v〉 − ψ(v) = max
u∈Vert(P )

〈u, v〉 − ψ(v),

where u denotes the barycenter of P and Vert(P ) denotes the set of vertices of P .

Remark 7.8. One can thus think of T (v) = maxu∈P 〈u, v〉 − minu∈P 〈u, v〉 as the width of 
P in the direction v, see also [2, §3.2].

Proof of Corollary 7.7. The formula for S(v) is immediate from Proposition 7.6 since 
S(v) = limm→∞ Sm(v) and u = limm→∞ um. Similarly, T (v) = limm→∞ Tm(v), and

lim
m→∞

max
u∈P ∩m−1M

〈u, v〉 = max
u∈P

〈u, v〉 = max
u∈Vert P

〈u, v〉,

where the last equality holds by linearity of u �→ 〈u, v〉. This completes the proof. �
Remark 7.9. The proof shows that Tm(v) = T (v) for m sufficiently divisible.

7.4. Deformation to the initial filtration

Given a filtration F of R(X, L), we will construct a degeneration of F to a filtration 
whose base ideals are T -invariant. We will use this construction to show α(L) and δ(L)
may be computed using only toric valuations. Our argument is a global analogue of [10, 
§7], which in turns draws on [72].

First write R(X, L) as the coordinate ring of an affine toric variety. Set M ′ := M ×Z, 
N ′ := Hom(M ′, Z), M ′

R := M ⊗Z R, and N ′
R := N ⊗Z R. Let σ0 denote the cone over 

P × {1} ⊂ MR × R. Then there is a canonical isomorphism C[σ0 ∩ M ′] � R(X, L).
We put a Zn+1

+ order on the monomials of k[σ0 ∩ M ′] using an argument in [57, §7]. 
Choose y1, . . . , yn+1 ∈ σ∨

0 ∩ N ′ that are linearly independent in N ′
R. Let ρ : M ′ → Zn+1

denote the map defined by

ρ(u) = (〈u, y1〉, . . . , 〈u, yn+1〉) .

Then ρ is injective and has image contained in Zn+1
+ .

Endowing Zn+1
+ with the lexicographic order gives an order > on the monomials in 

C[σ0 ∩ M ′]. Given an element s ∈ C[σ0 ∩ M ′] the initial term of s, written in>(s), is the 
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greatest monomial in s with respect to the order >. Given a subspace W of H0(X, mL), 
we set

in>(W ) = span{in>(s) | s ∈ W},

where W is viewed as a vector subspace of C[σ0 ∩ M ′]. Clearly, in>(W ) is generated by 
monomials in C[σ0 ∩ M ′]. Therefore, b

(
| in>(W )|

)
is a T -invariant ideal on X.

Proposition 7.10. If W is a subspace of H0(X, mL), then dim W = dim in>(W ).

Proof. By construction, there exists a basis of in>(W ) consisting of monomials 
χu1 , . . . , χur , where ui ∈ σ0 ∩ M ′, and we may assume χu1 > · · · > χur . For each 
1 ≤ i ≤ r, fix si ∈ W such that in>(si) = χui . We claim that s1, . . . , sr forms a basis for 
W .

To show that s1, . . . , sr are linearly independent, we argue by contradiction, so sup-
pose 0 =

∑r
i=1 cisi, with c ∈ Cr \ {0}, and pick i0 minimal with ci0 	= 0. Then 

0 = in>0(
∑

cisi) = ci0χui0 , a contradiction.
Similarly, if s1, . . . , sr did not span W , then there would exist an element s ∈ W \

span{s1, . . . , sr} with minimal initial term. Note that in>(s) = cχui for some c ∈ C∗

and i ∈ {1, . . . , r}. Now, s − csi ∈ W \ span{s1, . . . , sr}, but has initial term strictly 
smaller than in(s). This contradicts the minimality assumption on in>(s), and the proof 
is complete. �

To understand lct(b
(
| in> W |

)
), we construct a 1-parameter degeneration of W to 

in>(W ) essentially following [41, §15.8]. Choose elements s1, . . . , sr ∈ W such that

W = span{s1, . . . , sr} and in>(W ) = span{in>(s1), . . . , in>(sr)}.

Next, we may fix an integral weight μ : σ0 ∩ M → Z+ such that in>μ
(si) = in>(si) for 

1 ≤ i ≤ r [41, Exercise 15.12]. Here >μ denotes the weight order on Zn+1 induced by μ.
We write C[σ0 ∩ M ′][t] for the polynomial ring in one variable over C[σ0 ∩ M ′]. For 

s =
∑

βuχu ∈ C[σ0 ∩ M ′], we write d = max{μ(u) | βm 	= 0} and set

s̃ := td
∑

βut−μ(u)χu.

Next, let W̃ ⊂ C[σ0 ∩ M ′][t] denote the C[t]-submodule of C[σ0 ∩ M ′][t] generated by 
s̃1, . . . , ̃sr. Then W̃ gives a family of subspaces of H0(X, mL) over A1. For c ∈ A1(C), 
write Wc for the corresponding subspace of H0(X, mL). Clearly W1 = W and W0 =
in>(W ).

Lemma 7.11. For c ∈ C∗, lct(b
(
|Wc|

)
) = lct(b

(
|W |

)
).
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Proof. Consider the automorphism of R(X, L)[t±1] defined by χu �→ tμ(u)χu and t �→ t. 
Since X � Proj(R(X, L)), this automorphism of R(X, L)[t±1] gives an automorphism 
X×(A1\{0}) over A1\{0}. For c ∈ C∗, we write φc for the corresponding automorphism 
of X. Since φ∗

c sends Wc to W , we see lct(b
(
|Wc|

)
) = lct(b

(
|W |

)
). �

Proposition 7.12. If W is a subspace of H0(X, mL), then lct(b
(
| in>(W )|

)
) ≤ lct(b

(
|W |

)
).

Proof. Combining Proposition 6.2 with Lemma 7.11, we see lct(b
(
|W0|

)
) ≤ lct(b

(
|W |

)
). 

Since in>(W ) = W0, the proof is complete. �
Let F be a filtration of R(X, L). We write Fin for the filtration defined by

Fλ
inH0(X, mL) := in>

(
FλH0(X, mL)

)
for all λ ∈ R+ and m ∈ N. To see that Fin is indeed a filtration, first note that condi-
tions (F1)–(F3) of §2.3 are trivially satisfied. Condition (F4) follows from the equality 
in>(s1s2) = in>(s1) in>(s2) for s1, s2 ∈ R(X, L).

Proposition 7.13. With the above setup, we have

S(Fin) = S(F), T (Fin) = T (F), and lct(b•(Fin)) ≤ lct(b•(F)).

Proof. By Proposition 7.10, F and Fin have identical jumping numbers. Thus, S(F) =
S(Fin) and T (F) = T (Fin). By Proposition 7.12, lct(bp,m(Fin)) ≤ lct(bp,m)(F) for p ∈ N
and m ∈ N. Letting m → ∞, we get lct(bp(Fin)) ≤ lctp(b•(F)) for all p ∈ N, and hence 
lct(b•(Fin)) ≤ lct(b•(F)). �
Proposition 7.14. If w is a nontrivial valuation on X with A(w) < ∞, then there exists 
v ∈ NR \ {0} such that

A(v) ≤ A(w), T (v) ≥ T (w), and S(v) ≥ S(w).

Proof. Let Fw,in denote the initial filtration of Fw. Then b•(Fw,in) is a graded sequence 
of T -invariant ideals on X. Further, Proposition 7.13 shows that

lct(b•(Fw,in)) ≤ lct(b•(Fw)) = lct(a•(w)) ≤ A(w) < ∞,

where the first equality Lemma 3.19, and the second inequality is Lemma 1.1.
Therefore, b•(Fw,in) is a nontrivial graded sequence. Proposition 7.3 yields a nontrivial 

toric valuation v ∈ NR that computes lct(b•(Fw,in)). After rescaling v, we may assume 
v(b•(Fw,in)) = 1, and, thus, A(v) = lct(b•(Fw,in)). We then have

A(v) = lct(b•(Fw,in)) ≤ lct(b•(Fw)) = lct(a•(w)) ≤ A(w).
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Next,

S(v) ≥ S(Fw,in) = S(Fw) = S(w),

where the inequality is Corollary 3.21 and the following equality is Proposition 7.13. A 
similar argument gives T (v) ≥ T (w) and completes the proof. �
Corollary 7.15. We have the following equalities

α(L) = inf
v∈NR\{0}

A(v)
T (v) and δ(L) = inf

v∈NR\{0}

A(v)
S(v)

Proof. This is clear from Theorem C and Proposition 7.14. �
7.5. Proof of Theorem F

We now consider the log canonical and stability thresholds of L. The following result 
is slightly more precise than Theorem F in the introduction.

Corollary 7.16. We have

α(L) = min
u∈Vert(P )

lct(Du) = min
u∈Vert(P )

min
i=1,...,d

1
〈u, vi〉 + bi

(7.2)

and

δ(L) = lct(Du) = min
i=1,...,d

1
〈u, vi〉 + bi

, (7.3)

where u denotes the barycenter of P and Vert(P ) the set of vertices of P . Furthermore, 
α(L) (resp. δ(L)) is computed by one of the valuations v1, . . . , vd.

Proof. Again, we will only prove the half of the corollary that concerns α(L). First, we 
combine Lemma 7.1, Corollary 7.7 and Corollary 7.15 to see

α(L) = inf
v∈NR\{0}

min
u∈Vert(P )

A(v)
v(Du) = min

u∈Vert(P )
inf

v∈NR\{0}

A(v)
v(Du) .

Applying Corollary 7.4 to the previous expression yields (7.2).
Next, pick u ∈ Vert(P ) and i ∈ {1, . . . , d} such that α(L) = 1/(〈u, vi〉 + bi). Then we 

have A(vi)/T (vi) = 1/(〈u, vi〉 + bi), so vi computes α(L). �
7.6. The Fano case

Finally we consider the case when X is a toric Q-Fano variety, that is, −KX is an 
ample Q-Cartier divisor.
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Corollary 7.17. A toric Q-Fano variety is K-semistable iff the barycenter of the polytope 
associated to −KX is equal to the origin.

This result was proved by analytic methods in [6,3], even with K-semistable replaced 
by K-polystable, and follows from [88] when X is smooth. It can also be deduced from [66, 
Theorem 1.4], which is proven algebraically.

Proof. We apply (7.3) with bi = 1 for all i. If u = 0, then δ(−KX) = 1, which by 
Theorem B implies that X is K-semistable. Now suppose u 	= 0. Then 〈u, vi〉 < 0 for 
some i, or else all the vi would lie in a half-space, which is impossible since Δ is complete. 
It then follows from (7.3) that δ(−KX) < 1, so by Theorem B, X is not K-semistable. �
Remark 7.18. The proof shows that if X is K-semistable, any toric valuation computes 
δ(−KX) = 1.

We now give a simple formula for δ(−KX) in the Q-Fano case. When X is smooth, 
the formula for agrees with the formula in [61] for the greatest lower bound on the Ricci 
curvature of X, as defined and studied in [85,81].

Corollary 7.19. Let X be a toric Q-Fano variety and u denote the barycenter of the 
polytope P−KX

:= {u ∈ MR | 〈u, vi〉 ≥ −1 for all 1 ≤ i ≤ d}.

(i) If X is K-semistable, then δ(−KX) = 1.
(ii) If X is not K-semistable, then

δ(−KX) = c

1 + c

where c > 0 is the greatest real number such that −cu lies in P−KX
.

Proof. Statement (i) follows from (7.3) and Corollary 7.17. For (ii), we claim that

0 < 〈u, vi〉 + 1 ≤ 1/c + 1

for all i = 1, . . . , d and equality holds in the last inequality for some i. Statement (ii) 
follows from the claim and (7.3).

We now prove the claim. Since u lies in the interior of P−KX
, 〈u, vi〉 > −1 for all i. 

Since −cu lies on the boundary of P−KX
,

−c〈u, vi〉 = 〈−cu, vi〉 ≥ −1

for all i and equality holds in the last inequality for some i. This completes the proof. �
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