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Introduction

Let X be a normal complex projective variety of dimension n with at worst klt sin-
gularities, and let L a big line bundle on X. We shall consider two natural “thresholds”
of L, both involving the asymptotics of the singularities of the linear system |mlL| as
m — 00.

First, the log canonical threshold of L, measuring the worst singularities, is defined by

a(L) = inf{lct(D) | D effective Q-divisor, D ~q L},

where lct(D) is the log canonical threshold of D; see e.g. [23]. It is an algebraic version
of the a-invariant defined analytically by Tian [84] when X is Fano and L = —Kx.

The second invariant measures the “average” singularities and was introduced by
Fujita and Odaka in the Fano case, where it is relevant for K-stability, see [49,75].
Following [49] we say that an effective Q-divisor D ~q L on X is of m-basis type, where
m > 1, if there exists a basis s1,...,sy,, of H*(X,mL) such that

{51 =0} +{s2 =0} +--- 4+ {sn,, =0}
B mN,,

D

i

where N,,, = h%(X, mL). Define
Om (L) = inf{lct(D) | D ~q L of m-basis type}.
Our first main result is
Theorem A. For any big line bundle L, the limit §(L) = lim, 00 O (L) exists, and
a(L) <6(L) < (n+1)a(L).

Further, the numbers a(L) and 6(L) are strictly positive and only depend on the numer-
ical equivalence class of L. When L is ample, the stronger inequality 6(L) > ”THQ(L)
holds.

We call (L) the stability threshold" of L (in the literature it is now also commonly
referred to as the d-invariant). It can also be defined for Q-line bundles L by (L) :=
rd(rL) for any r > 1 such that rL is a line bundle; see Remark 4.5.

! The idea of the stability threshold §(L), with a slightly different definition, was suggested to the second
author by R. Berman [5].
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The following result, which verifies Conjecture 0.4 and strengthens Theorem 0.3 of [49],
relates the stability threshold to the K-stability of a Q-Fano variety:

Theorem B. Let X be a Q-Fano variety.

(i) X is K-semistable iff 6(—Kx) > 1;
(ii) X s uniformly K-stable iff §(—Kx) > 1.

More precisely, the reverse implications are due to Fujita and Odaka [49]; what is new
are the direct implications.

The notion of uniform K-stability was introduced in [22,37]. As a special case of the
Yau-Tian-Donaldson conjecture, it was proved in [7] that a Fano manifold X without
nontrivial vector fields is uniformly K-stable iff X admits a Kéhler-Einstein metric. The
latter equivalence was extended to (possibly) singular Q-Fano varieties without nontrivial
vector field in [67], and general singular Q-Fano varieties in [64]. The result in [64] says
that a Q-Fano variety admits a Kdhler-Einstein metric iff X is uniformly K-polystable.
For smooth X, this result was proved earlier (using different methods, and with uniform
K-polystability replaced by K-polystability) in [27,87].

For a general ample line bundle L on a smooth complex projective variety, the stability
threshold 6(L) detects Ding stability in the sense of [18] and has the following analytic
interpretation.” Let B(L) be the greatest Ricci lower bound, i.e. the supremum of all
B > 0 such that there exists a Kéahler form w € ¢; (L) with Ricw > pw, see [85,76,77,81].
Then S(L) = min{d(L),s(L)}, where s(L) = sup{s € R | —Kx — sL nef} is the nef
threshold if L, see [8, Theorem D] and also [25, Appendix].

Theorems A and B imply that if X is a Q-Fano variety and a(—Kx) > -2 (resp.

— n—+1

> f5), then X is K-semistable (resp. uniformly K-stable), thus recovering results in [74,
22,37,49], that can be viewed as algebraic versions of Tian’s theorem in [86]. See also [47]

for the case a(—Kx) = and [36] for more general polarizations.

n_
nt1

Our approach to the two thresholds (L) and (L) is through valuations. Let Valx
be the set of (real) valuations on the function field on X that are trivial on the ground
field C, and equip Valx with the topology of pointwise convergence. To any v € Valx
we can associate several invariants.

First, we have the log discrepancy A(v) = Ax(v). Here we only describe it when v
is divisorial; see [20] for the general case. Let E be a prime divisor over X, i.e. E CY
is a prime divisor, where Y is a normal variety with a proper birational morphism
m:Y — X. In this case, the log discrepancy of the divisorial valuation ordg is given by
A(ordg) = 14 ordg(Ky,x), where Ky, x is the relative canonical divisor.

Second, following [21], we have asymptotic invariants of valuations that depend on
a big line bundle L. For simplicity assume H°(X,L) # 0. To any v € Valx and any

2 However, §(L) is not expected to be directly related to the K-stability of the pair (X, L).
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nonzero section s € H°(X, L) we can associate a positive real number v(s) € R4. This
induces a decreasing real filtration F, on H°(X, L), given by

FIHY(X,L) = {s € H'(X,L) | v(s) >t}
for t > 0. Define the vanishing sequence or sequence of jumping numbers
0=a1(L,v) <az(L,v) < <an(L,v) = amax(L,v)
of (the filtration associated to) v on L by
a;(L,v) = inf{t € R | codim FLH"(X, L) > j}.

Thus the set of jumping numbers equals the set of all values v(s), s € H*(X, L) \ {0}.
For m > 1, consider the rescaled maximum and average jumping numbers of v on
mL:

N,
1 1 =

Tm(v) = Eamax(mL,v) and Sp,(v) = e E a;(mL,v),
m

where N,,, = h%(X,mL). Using Okounkov bodies one shows that the limits

S(w)= lim S,,(v) and T(v)= lim T,,(v)

m—0o0 m—roo

exist. The resulting functions S,T: Valx — Ry U {400} are lower semicontinuous.
They are finite on the locus A(v) < co. For a divisorial valuation v = ordg as above, the
invariant T'(ordg) can be viewed as a pseudoeffective threshold:

T(ordg) = sup{t > 0 | "L — tE is pseudoeffective}

whereas S(ordg) is an “integrated volume”.

S(ordg) = vol(L)™! / vol(n*L — tE) dt.
0

The invariants S(ordg) and T'(ordg) play an important role in the work of K. Fujita [46],
C. Li [62], and Y. Liu [69], see Remark 3.10.

The next result shows that log canonical and stability thresholds can be computed
using the invariants of valuations above:

Theorem C. For any big line bundle L on X, we have

oL) = inf 20 _ ¢ Alordp)

Av) inf A(ordg)
v T(v) E T(ordg) B

S(v) E S(ordg)’

and (L) = inf
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where v ranges over nontrivial valuations with A(v) < oo, and E over prime divisors
over X.

While the formulas for «(L) follow quite easily from the definitions (see also [2, §3.2]),
the ones for 6(L) (as well as the fact that the limit §(L) = lim,, §,,(L) exists) are more
subtle and use the concavity of the function on the Okounkov body of L defined by the
filtration associated to the valuation v as in [16,21]; see also [89].

Theorem B follows from the second formula for §(L) above and results in [46] and [62].

As for Theorem A, the estimates between (L) and 6(L) in Theorem A follow from
estimates %HT(’U) < S(v) < T(v) that are proved along the way. When L is ample
and v is divisorial, the stronger inequality S(v) < 257'(v) was proved by Fujita [48].
We deduce from results in [21] that the invariants S(v) and T'(v) only depend on the
numerical equivalence class of L. By Theorem C, the same is therefore true for the
thresholds a(L) and 6(L). The proof that a(L) > 0 can be reduced to the case when
L is ample, where it is known [84,22]. By the estimates in Theorem A, it follows that
d(L) > 0.

We can also bound the volume of a line bundle in terms of the stability threshold:
Theorem D. Let L be a big line bundle. Then we have

n+1
n

vol(L) < ( )n §(L)""vol(v)

for any valuation v on X centered at a closed point.

Here \70\1(1}) is the normalized volume of v, introduced by C. Li [63]. When X is a
Q-Fano variety and L = —Kx, Theorem D generalizes the volume bounds found in [45]
and [69], in which X is assumed K-semistable, so that 6(L) > 1. These volume bounds
were explored in [79] and [70].

Next we investigate whether the infima in Theorem C are attained. We say that a

Aw) _
T(v)

valuation v € Valx computes the log canonical threshold if a(L). Similarly, v

computes the stability threshold if ’;gz; =4(L).

Theorem E. If L is ample, then there exist valuations with finite log discrepancy com-
puting the log-canonical threshold and the stability threshold, respectively.

This theorem can be viewed as a global analogue of the main result in [10], where
the existence of a valuation minimizing the normalized volume is established. It is also
reminiscent of results in [55] on the existence of valuations computing log canonical
thresholds of graded sequence of ideals, and related to a recent result by Birkar [9] on
the existence of Q-divisors achieving the infimum in the definition of lct(L) in the Q-Fano
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case (see also [1]), and to the existence of optimal destabilizing test configurations [39,
80,73,38].

Unlike the case in [55], Theorem E does not seem to directly follow from an argument
involving compactness and semicontinuity. Instead we use a “generic limit” construc-
tion as in [10]. For example, given a sequence of (v;); of valuations on X such that
lim; A(v;)/S(v;) = §(L), we want to find a valuation v* with A(v*)/S(v*) = §(L).
Roughly speaking, we do this by first extracting a limit filtration F* on the section ring
of L from the filtrations F,,; then v* is chosen, using [55], so as to compute the log
canonical threshold of the graded sequence of base ideals associated to F*. To make all
of this work, we need uniform versions of the Fujita approximation results from [16];
these are proved using multiplier ideals.

As a global analogue to conjectures in [55] we conjecture that any valuation comput-
ing one of the thresholds a(L) or §(L) must be quasimonomial. While this conjecture
seems difficult in general, we establish it when X is a surface with at worst canonical
singularities, see Proposition 4.10. Using results in [12,48], we prove in Proposition 4.12
that any divisorial valuation computing (L) or §(L) is associated to a log canonical
type divisor over X. When L is ample, any divisorial valuation computing 6(L) is in fact
associated to a plt type divisor over X.

Finally we treat the case when X is a toric variety, associated to a complete fan A, and
L is ample. We can embed Nr C Valx as the set of toric (or monomial) valuations. The
primitive lattice points v;, 1 < ¢ < d, of the 1-dimensional cones of A then correspond to
the divisorial valuations ordp,, where D; are the corresponding torus invariant divisors.

Let P C Mg be the polytope associated to L. To each u € PN Mq is associated an
effective torus invariant Q-divisor D,, ~q L on X.

Theorem F. The log-canonical and stability thresholds of L are given by

a(L) = ue\rgirrtl(P) let(D,,) and §(L) =lct(Dg),

where u € Mq denotes the barycenter of P, and Vert(P) C Mq the set of vertices of P.
Furthermore, a(L) (resp. 6(L)) is computed by one of the valuations vy, ..., vq.

The main difficulty in the proof is to show that the two thresholds are computed
by toric valuations. For «(L), this is not so hard, and the formula in the theorem is
in fact already known; see [78,68] and also [23,34,2]. In the case of §(L), we use initial
degenerations, a global adaptation of methods utilized in [72,10].

When X is a toric Q-Fano variety and L = —Kx, Theorem F implies that X is
K-semistable iff the barycenter of P is the origin. This result was previously proven
by analytic methods in [6,3] and also follows from [66, Theorem 1.4], which was proven
algebraically.
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Additionally, we give a formula for §(—Kx) in terms of the polytope P. When X is a
smooth toric Fano variety, 0(—Kx) agrees with the formula in [61] for the greatest Ricci
lower bound (see [85,81]).

We expect the results in this paper admit equivariant versions, relative to a subgroup
G C Aut(X, L). It should also be possible to bound the stability threshold §(L) from
below in terms of a “Berman-Gibbs” invariant, as in [19]; see also [4,44].

Since the first version of this paper, there have been many developments related to
the topics in this paper.

o The stability threshold has played an important role in a number of papers. For
instance, see [13,14,26,25,24,29,52].

o It was recently shown in [90] that a weak version of [55, Conjecture B] holds. This
result implies that any valuation computing 6(L) is quasimonomial; see Remark 4.11.

e In the thesis of the first author, the results in this paper were extended to the setting
of kit pairs (X, B) [11] (see also [29]). The arguments from this paper go through to
the more general setting with little to no substantive changes.

The paper is organized as follows. After some general background in §1, we study
filtrations in §2 and global invariants of valuations in §3, mainly following [16,21].
We are then ready to prove the first main results on thresholds, Theorems A-D,
in §4. The uniform Fujita approximation results appear in §5 and Theorem E is

proved in §6 using the generic limit construction. Finally, the toric case is analyzed
in §7.

Acknowledgment. We thank R. Berman, K. Fujita, C. Li and Y. Odaka for comments
on a preliminary version of the paper. The first author wishes to thank Y. Liu for fruit-
ful discussions, and his advisor, M. Mustata, for teaching him many of the tools that
went into this project. The second author has benefited from countless discussions with
R. Berman and S. Boucksom. This research was supported by NSF grants DMS-0943832
and DMS-1600011, and by BSF grant 2014268.

1. Background
1.1. Conventions

We work over C. A wvariety is an irreducible, reduced, separated scheme of finite type.
An ideal on a variety X is a coherent ideal sheaf a C Ox. We frequently use additive
notation for line bundles, e.g. mL := L®™,

We use the convention N = {0,1,2,...}, N* = N\ {0}, Ry = [0,+00), R} =
R, \ {0}. In an inclusion A C B between sets, the case of equality is allowed.



8 H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062

1.2. Valuations

Let X be a normal projective variety. A wvaluation on X will mean a valuation
v: C(X)* — R that is trivial on C. By projectivity, v admits a unique center on X,
that is, a point £ := ¢x(v) € X such that v > 0 on Ox ¢ and v > 0 on the maximal ideal
of Ox ¢. We use the convention that v(0) = oco.

Following [55,20] we define Valx as the set of valuations on X and equip it with the
topology of pointwise convergence.” We define a partial ordering on Valx by v < w iff
cx(w) € ex(v) and v(f) < w(f) for f € Ox cx (w)- The unique minimal element is the
trivial valuation on X. We write Valy for the set of nontrivial valuations on X.

If Y — X is a proper birational morphism, with ¥ normal, and F C Y is a prime
divisor (called a prime divisor over X), then E defines a valuation ordg: C(X)* — Z
in Valx given by order of vanishing at the generic point of £. Any valuation of the form
v = cordg with ¢ € R+ will be called divisorial.

To any valuation v € Valx and A € R there is an associated valuation ideal defined
by ax(v) := {f € Ox |v(f) > A}. If v is divisorial, then Izumi’s inequality (see [54])
shows that there exists ¢ > 0 such that ay(v) C mgcﬂ for any A € Ry, where £ = cx(v).

For an ideal a C Ox and v € Valx, we set

v(a) :=min{v(f) | f € a- Ox ey} € [0,400].

We can also make sense of v(s) when L is a line bundle and s € H(X,L). After
trivializing L at c¢x (v), we write v(s) for the value of the local function corresponding to
s under this trivialization; this is independent of the choice of trivialization.

We similarly define v(D) where D is an effective Q-Cartier divisor on X. Pick m > 1
such that mD is Cartier and set v(D) = m~tv(f), where f is a local equation of mD at
the center of v on X. Equivalently, v(D) = m~!v(s), where s is the canonical section of
Ox(mD) defining mD.

1.3. Graded sequences of ideals

A graded sequence of ideals is a sequence a, = (ap)pen+ of ideals on X satisfying
ap - ag C apyq for all p,q € N*. We will always assume a, # (0) for some p € N*. We
write M(a,) := {p € N* | a, # (0)}. By convention, ay := Ox.

Given a valuation v € Valy, it follows from Fekete’s Lemma that the limit

lim v(up)
M(ae)dp—oco0 P

v(a,) :=
exists, and equals inf,cpr(a,) v(ap)/p; see [55].

3 This is the weakest topology such that for each f € C(X)* the evaluation map ¢y : Valx — R defined
by ¢ (v) := v(f) is continuous. See [55, Section 4.1] for further details.
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A graded sequence a, of ideals will be called nontrivial if there exists a divisorial
valuation v such that v(ae) > 0. By Izumi’s inequality, this is equivalent to the existence
of a point £ € X and ¢ > 0 such that a, C mgfczﬂ for all p € N.

If v is a nontrivial valuation on X, then ae(v) := {a,(v)}pen~ is a graded sequence of
ideals. In this case, v(ae(v)) = 1 [10, Lemma 3.5].

1.4. Volume

Let v be a valuation centered at a closed point £ € X. The volume of v is

. UOx¢/ar(v))
l(v) == 1 —nl 2 o
vol) =l == € 04o0)
the existence of the limit being a consequence of [30]. The volume function is homoge-
neous of order —n, i.e. vol(tv) = ¢t " vol(v) for ¢t > 0.

1.5. Log discrepancy

Let X be a normal variety such that the canonical divisor Kx is Q-Cartier. If 7: Y —
X is a projective birational morphism with Y normal, and £ C Y a prime divisor,
then the log discrepancy of ordgp is defined by Ax(ordg) := 1+ ordg(Ky,x), where
Ky,x := Ky — 7" Kx is the relative canonical divisor. We say X has kit singularities if
Ax (ordg) > 0 for all prime divisors E over X.

Now assume X has klt singularities. As explained in [20] (building upon [19,55]),
the log discrepancy can be naturally extended to a lower semicontinuous function A =
Ax: Valx — [0,400] that is homogeneous of order 1, i.e. A(tv) = tA(v) for A € Ry.

We have A(v) = 0 iff v is the trivial valuation. The log-discrepancy Ax depends on
X, but if Y — X is as above, then Ax(v) = Ay (v) 4+ v(Ky,x); hence Ay (v) < oo iff
Ax (v) < 0.

If A(v) < oo, then ae(v) is a nontrivial graded sequence of ideals by the Izumi-Skoda
inequality, see [63, Proposition 2.3].

1.6. Fano varieties and K-stability

A variety X is called Q-Fano if X is projective with klt singularities and —Ky is
ample. See [22] for the definition of K-semistability and uniform K-stability of a Q-Fano
variety in terms of invariants associated to test configurations. In this paper, we will use
a characterization of these notions in terms of invariants of divisorial valuations [62,46]
(see Section 4.3).
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1.7. Normalized volume

In [63], C. Li introduced the normalized volume of a valuation v centered at a closed
point on X as \751(11) := A(v)™ vol(v) when A(v) < oo, and \70\1(1)) := 0o when A(v) = co.
This is a homogeneous function of degree 0 on Valy. The first author proved in [10]
that for any closed point £ € X, the normalized volume function restricted to valuations
centered at £ attains its infimum.

1.8. Log canonical thresholds

Let X be a klt variety. Given a nonzero ideal a C Ox, the log canonical threshold of
a is given by
. AMw) ., A(ordg)

let(a) := 1rv1f e = 1rE1f ordp(a)

where the first infimum runs through all v € Valy and the second through all prime
divisors E over X. In fact, it suffices to consider E on a fixed log resolution of a.

In the above infima we use the convention that if v(a) = 0, then A(v)/v(a) = +o0.
Thus, let(Ox) = +o0. By convention, we set let((0)) = 0.

We say a valuation v* € Valk computes lct(a) if let(a) = A(v*)/v*(a). There always
exists a divisor F over X such that ordg computes lct(a).

Given a graded sequence of ideals a, on X, we set

lct(a,) := lim m - lct(ay,) = sup m - let(ay,).
M(ae)>m—o0 m>1

By [55], we have

A
lct(ae) = inf ) .
vEValk U(a.)
We say v* € Valx computes lct(aq) if lct(as) = A(v*)/v*(as). Such valuations always
exist: see [55, Theorem A] for the smooth case and [10, Theorem B.1] for the klt case.
We now state two elementary lemmas that will be used in future sections.

Lemma 1.1. If v is a nontrivial valuation on X, then lct(ae(v)) < A(v) and equality
holds iff v computes lct(aq(v)).

Proof. The statement is an immediate consequence of the definition of lct(ae(v)) and
the fact that v(ae(v)) =1. O

Lemma 1.2. Let v € Valx and a, a graded sequence of ideals on X. If v(as) > 1, then
a, C a,(v) for allp € N.
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Proof. Since 1 < v(a,) = inf, v(a,)/p, we see that p < v(ap). Therefore, a, C ay(v). O
2. Linear series, filtrations, and Okounkov bodies

In this section we recall facts about linear series, filtrations, and Okounkov bodies,
following [60,56,16,15]. The new results are Lemma 2.2 and Corollary 2.10.

Let X be a normal projective variety of dimension n and L a big line bundle on X.
Set

R, = H°(X,mL) and N, :=dim¢c R,

for m € N, and write M (L) C N for the semigroup of m € N for which N,, > 0. Since
L is big, we have m € M (L) for m > 1. Write

R=R(X,L) = Rn =P H* (X, mL)
for the section ring of L.

2.1. Graded linear series

A graded linear series of L is a graded C-subalgebra
Vo=P Ve cPRn=R

We say V, contains an ample series if V,,, # 0 for m > 0, and there exists a decom-
position L = A + E with A an ample Q-line bundle and E an effective Q-divisor such
that

HY(X,mA) CV,, c H'(X,mL) = R,,
for all sufficiently divisible m.

2.2. Okounkov bodies

Fix a system z = (z1,..., 2, ) of parameters centered at a regular closed point £ of X.
This defines a real rank-n valuation

ord, : Ox’g \ {0} — Nn,

where N" is equipped with the lexicographic ordering. As in §1.2 we also define ord, (s)
for any nonzero section s € R,,.
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Now consider a nonzero graded linear series Vo C R(X, L). For m € N, the subset
Ly =T (Ve) :=ord,(V;, \ {0}) C N"
has cardinality dimc V;,, since ord, has transcendence degree 0. Hence
[:=T(V,) :={(m,a) e N""! |a €T}

is a subsemigroup of N"*1. Let ¥ = %(V,) C R"! be the closed convex cone generated
by I'. The Okounkov body of V, with respect to z is given by

A=A,(Vo)={aeR"|(1,a) € Z}.

This is a compact convex subset of R™. The Okounkov body of (X, L) is defined as the
Okounkov body of R(X, L).
For m > 1, let p,, be the atomic positive measure on A given by

Pm =m " Z Om—1p-

a€el',,

The following result is a special case of [15, Théoréme 1.12].

Theorem 2.1. If V, contains an ample series, then its Okounkov body A C R™ has
nonempty interior, and we have lim,;, o prn = p in the weak topology of measures,
where p denotes Lebesgue measure on A C R™. In particular, the limit

|
vol(Va) = lim —— dime Vi, € (0, vol(L)] (2.1)

m—00 M

exists, and equals n!vol(A).

In fact, the limit in (2.1) always exists, but may be zero in general; see [15,
Théoréme 3.7] for a much more precise result due to Kaveh and Khovanskii [56].
For the proof of Theorem A we will need the following estimate.

Lemma 2.2. For every € > 0 there exists mg = mg(e) > 0 such that

/gdpm S/gdp—ks

A A

for every m > mg and every concave function g: A — R satisfying 0 < g < 1.

The main point here is the uniformity in g.
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Proof. Observe that the sets
A’Y = {CV € R" | o+ [_777]71 - A},

for v > 0, form a decreasing family of relatively compact subsets of A whose union equals
the interior of A. Since OA has zero Lebesgue measure, we can pick v > 0 such that
p(A\ Ag,) < /2. Since lim,, p,, = p weakly on A, we get lim p,,, (A\ A,) < p(A\ Aa,),
so we can pick m, large enough so that p,,(A\ A,) < e for m > my. Now set my =
max{my,y~'}. For m > mg we set

m—{OzE—Z”\Oz—!—[O 1] C A}
and
m={a€lZ"a+[-L L]" C A}

If X denotes Lebesgue measure on the unit cube [0,1]" C R™, we see that

/gdp> Z / gdp=m=" " / gla+m™ w)d\(w)

nL [O _] EA/ [0 1]"
>m " Z 2™n Z gla+m™tw) >m™" Z g(@)
a€cAl, we{0,1}" a€A.,
> /gdpm > /gdpm —pm(AN\Ay) > /gdpm — €.
A, A A

Here the second inequality follows from the concavity of g, the fourth inequality from
the inclusion A4, D> A, N %Z”, and the fifth inequality from g < 1. This completes the
proof. O

2.8. Filtrations

By a filtration F on R(X,L) = @,, Ry we mean the data of a family
F*Ry C Ry,
of C-vector subspaces of R,,, for m € N and A € Ry, satisfying
F1 PR C FNR,, when A > \;
F2 =Nyer F 'R, for A > 0;

(F1)
(F2) F
(F3) ]:OR = R,, and FAR,, =0 for A > 0;
(F4) F Ry, - FN Ry C]:)"MR S,
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The main example for us will be filtrations defined by valuations, see §3.1.
2.4. Induced graded linear series
Any filtration F on R(X, L) defines a family
— VT @ vt
of graded linear series of L, indexed by ¢t € R, and defined by
=F ™R,

for m € N. Set

T = Ty (F) :=sup{t > 0| V!, # 0},

with the convention T,,, = 0 if R,,, = 0. By (F4) above, Tp, 4 > —2-T), + m T

m—+m/’ m—+m’

so Fekete’s Lemma implies that the limit

T(F):= lim T, (F) € [0,+o0]

m—o0

exists, and equals sup,, Ty, (F). By [16, Lemma 1.6], V! contains an ample linear series
for any t < T'(F). It follows that

T(F) = sup{t > 0 | vol(V}) > 0}. (2.2)
We say that the filtration F is linearly bounded if T'(F) < oo.
2.5. Concave transform and limit measure

Let A = A(L) C R™ be the Okounkov body of R(X, L). The filtration F of R(X, L)
induces a concave transform

G=G7:A—>R,

defined as follows. For ¢t > 0, consider the graded linear series V! C R(X,L) and the
associated Okounkov body Af = A(V}) ¢ R™. We have A D A¥ for t </, A = A
and A = () for t > T'(F). The function G is now defined on A by

G(a) =sup{t € Ry | a € A'}. (2.3)

In other words, {G >t} = A! for 0 < ¢t < T(F). Thus G is a concave, upper semicon-
tinuous function on A with values in [0, T'(F)].
As noted in the proof of [21, Lemma 2.22], the Brunn-Minkowski inequality implies
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Proposition 2.3. The function t — vol(V.t)l/" is non-increasing and concave on
[0,T(F)). As a consequence, it is continuous on R, except possibly at t = T(F).

We define the limit measure p = p” of the filtration F as the pushforward
nw=Gyp.
Thus 4 is a positive measure on R of mass vol(A) = L vol(L), with support in [0, T'(F)].

Corollary 2.4. The limit measure p satisfies

p=———vol(V}) = —% vol(AY)

and is absolutely continuous with respect to Lebesque measure, except possibly at t =

T(F), where p{T(F)} = lim,_,p(r)— vol(V{).

As a companion to T(F) we now define another invariant of F:

S(F) = voll( o / vol(V) dt = VO?(!L) / tdu(t) = Volt A / G dp.
0 0 A

Note that p7, S(F), and T(F) do not depend on the choice of the auxiliary valuation z.
I

Remark 2.5. The invariant S(F) can also be interpreted as the (suitably normalized)
volume of the filtered Okounkov body associated to F, see [16, Corollary 1.13].

Lemma 2.6. We have %_HT(]:) < S(F) <T(F).

Proof. The second inequality is clear since vol(V}) < vol(L) and vol(V}) = 0 for ¢t >
T(F). The first follows from the concavity of ¢t — vol(V¢)Y/", which yields vol(V}) >
t n

Remark 2.7. At least when L is ample, a filtration on R(X, L) induces a metric on the
Berkovich analytification of L with respect to the trivial absolute value on C. It is shown
in [17] that S and T extend as “energy-like” functionals on the space of such metrics.
7T (F). The case when the
filtration is associated to a test configuration is treated in [22].

As a special case of that analysis, it is shown that S(F) <

2.6. Jumping numbers

Given a filtration F as above, consider the jumping numbers

0 < am,1 <. < am,N,, = me(I)a
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defined for m € M (L) by
Um.j = @ ;(F) = inf{\ € Ry | codim F*R,,, > j}
for 1 < j < N,,. Define a positive measure y,,, = p;, on R by

1 1 d .
Hm = mn : 5m*1am,j = Toandt dim F™R,,,.

The following result is [16, Theorem 1.11].

Theorem 2.8. If F is linearly bounded, i.e. T(F) < +o0o, then we have

lim g, = p

m—»o0

in the weak sense of measures on R.

For m € M(L), consider the rescaled sum of the jumping numbers:

oo

1 m"
Sm(F) = D amj = 1 /td,um(t).

Clearly 0 < Sy, (F) < Thn(F).

Lemma 2.9. For any linearly bounded filtration F on R(X, L) we have

Sy (F) < % / G dpm, (2.4)
A

for any m € M(L). Further, we have limy, oo Sm (F) = S(F).

Proof. The equality lim,, S, (F) = S(F) follows from Theorem 2.8. For the inequality,
pick a basis s1,82,...,5n,, of R, such that a,,; = sup{\ € Ry | s; € F R} for
1 <j < Ny,. Set a;j := ord,(s;). Since ord, has transcendence degree 0, we have I,,, =
{a1,...,an}. Thus the right hand side of (2.4) equals ﬁ Zjvzml G(m™'a;) whereas the
left-hand side is equal to ﬁ Z;v:ml m~ta, ;, so it suffices to prove G(m™'a;) > m™tap, ;
for 1 < j < N,,. But this is clear from (2.3), since a; = ord,(s;) and s; € F*iR,,
imply m~1a; € A™ ami g

Corollary 2.10. For every & > 0 there exists mo = mg(g) > 0 such that
S (F) < (1+¢€)S(F)

for any m > mg and any linearly bounded filtration F on R(X,L).
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Proof. Set V :=vol(A). Pick &’ > 0 with (V=1 +&)(V + (n+1)¢’) < (1 +¢). Note that
0 <G <T(F). Applying Lemma 2.2 to g = G/T(F) we pick mg € M (L) such that

/ G dp, < / Gdp+'T(F) = VS(F) +T(F) < (V + (n + 1)) S(F)
A A

for M(L) 2 m > my, where we have used Lemma 2.6 in the last inequality. By The-

orem 2.1 we may also assume K}—m <Vl 4¢ for M(L) > m > mp. Lemma 2.9 now
yields
)< 3 [ Gdpn < (7 NV 4+ (14 DENS(F) < (1+2)S(F),
A

for M (L) > m > mg, which completes the proof. O
2.7. N-filtrations

A filtration F of R(X, L) is an N-filtration if all its jumping numbers are integers,
that is,

F R, = FMR,

for all A € Ry and m € M(L). Any filtration F induces an N-filtration F by setting
FARm = FMR,,.

Note that F is a filtration of R(X, L). Indeed, conditions (F1)—(F3) in §2.3 are trivially

satisfied and (F4) follows from [A] + [N] > [A+ N].

The jumping numbers of Fiy and F are related by ap, ;(FN) = [am,;(F)]. This implies
Proposition 2.11. If F is a filtration of R(X, L), then
To(Fx) = lm - T (F))fm and S(F) = m=" < Sua(Fx) < SlF)
form € M(L). As a consequence, T(Fn) = T(F), S(Fx) = S(F), and p’™ = p”.

As a consequence, we obtain the following formula for S(F), similar to [49,
Lemma 2.2].

Corollary 2.12. If F is a filtration of R(X, L), then

S(F)=S(Fn) = lim —Zdlm]-']R

m—oo0 MmN,



18 H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062

Proof. Since the jumping numbers of F are integers, we have
1 (1 ; : i1 1 . ;
Sl ) = i D (dim F R — dim B Ry ) = o S A Ry,
j=0 jz1
for any m € M(L). Letting m — oo and using Proposition 2.11 completes the proof. O

3. Global invariants of valuations

As before, X is a normal projective variety of dimension n over C. Whenever we
discuss log discrepancy, X will be assumed to have klt singularities.

Let L be a big line bundle on X. Following [21] we study invariants of valuations on
X defined using the section ring of L. The new results here are Corollary 3.6 and the
results in §3.5.

3.1. Induced filtrations

Any valuation v € Valy induces a filtration F,, on R(X, L) via
FiRy = {s € Ry, | v(s) >t}

for m € N and ¢t € R, where we recall that R,, = H°(X, mL).

We say that v has linear growth if F, is linearly bounded. By Lemma 2.8 in [21] this
notion depends only on v as a valuation, and not on pair (X, L) (ie.if p: X' - X isa
proper birational morphism with X’ normal, the condition can be checked on the pair
(X', L"), where L' = p*L). Theorem 2.16 in [21] states that if v is centered at a closed
point on X, then v has linear growth iff vol(v) > 0.

Lemma 3.1. Any divisorial valuation has linear growth. If X has kit singularities, then
any v € Valx satisfying A(v) < oo has linear growth.

Proof. We may assume X is smooth. By [21, Proposition 2.12], every divisorial valuation
has linear growth. For the second assertion, if A(v) < oo, Izumi’s inequality (see [55,
Proposition 5.10]) implies v < A(v) orde, where { = cx (v). Since ordy is divisorial, it has
linear growth; hence so does v. O

3.2. Global invariants

Consider a valuation v of linear growth. We define invariants of v as the corresponding
invariants of the induced filtration F,,, namely:

(i) the limit measure of v is 1, = p’;
(ii) the exzpected vanishing order of v is S(v) := S(F,) = [~ tdu(t);
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(iii) the maximal vanishing order or pseudo-effective threshold of v is T'(v) := T(F,).

Note that T'(v) is denoted by amax (|| L||,v) in [21]. It follows from Lemma (2.6) (see also
Remark 2.7) that

1
n+1

T(v) < S(v) < T(v). (3.1)

The invariants S and T are homogeneous of order 1: S(tv) = tS(v) and T (tv) = tT'(v)
for t > 0. Similarly, ¢, = tipty, where t: Ry — R, denotes multiplication by ¢. In
particular, if v is the trivial valuation on X, then S(v) = T'(v) = 0 and p, = do.

Remark 3.2. If we think of v as an order of vanishing, then the limit measure p, describes
the asymptotic distribution of the (normalized) orders of vanishing of v on R(X, L). This
explains the chosen name of S(v) and the first name of T'(v).

For an alternative description of S(v) and T'(v), define, for ¢t > 0,

|
vol(L;v > t) :=vol(V}) = lim S dim FI™HY (X, mL).
m—oo MM
Theorem 3.3. Let L be a big line bundle and v € Val a valuation of linear growth. Then
the limit defining vol(L;v > t) exists for every t > 0. Further:

(i) T(v) =sup{t > 0| vol(L;v > t) > 0};
(ii) the function t — vol(L;v > t)*/™ is decreasing and concave on [0,T(v));
(iii) py = —% vol(L;v > t); further, supp p, = [0, T(v)], and p is absolutely continuous
with respect to Lebesgue measure, except for a possible point mass at T'(v);
(iv) S(v)=Vv~! fOT(v) vol(L;v > t) dt;
(v) if L is nef, then the function t — vol(L;v > t) is strictly decreasing on [0,T(v)]
and supp p, = [0,T(v)].

Proof. The assertions (i)—(iv) are special cases of the properties of linearly bounded
filtrations in §2. If L is nef, the discussion after Remark 2.7 in [21] shows that t —
vol(L;v > t) is strictly decreasing on [0, 7 (v)). This implies supp p = [0, T'(v)], so that (v)
holds. O

Remark 3.4. In fact, the measure u, likely has no point mass at 7'(v). This is true when
v is divisorial, or simply quasimonomial, see [21, Proposition 2.25].

We also define S, (v) := Sy, (Fy) and T (v) := Th (Fy) for m € M(L). These invari-
ants can be concretely described as follows. First,

Ty (v) = max{m ™ tv(s) | s € H*(X,mL)}. (3.2)
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A similar description is true for S,,.

Lemma 3.5. For any m € M (L) and any v € Valx we have

N,
1 m
S (v) = D, 3.3
(v) = max ;v(sg) (3.3)
where the mazimum is over all bases si,...,sy, of H'(X,mL).
Proof. First consider any basis s1,...,sy, of H(X,mL). We may assume v(s;) <

m

of F,H°(X,mL). Thus (mN,,)~* > 0(s5) < (mNpy,)™t > j @m,j = Sm(v). On the other

hand, we can pick the basis such that v(s;) = am ;, and then (mN,,)™! > u(s)) =
Sm(v). O

v(s2) < -+ < w(sn,,). Then v(s;) < am j, for all j, where a,, ; is the jth jumping number

Corollary 2.10 immediately implies

Corollary 3.6. For any v € Valx of linear growth, we have lim,, o Sm(v) = S(v).
Further, given € > 0 there exists mo = mg(g) > 0 such that if m > my, then

Sm(v) < S(v)(L+¢)
for all v € Valx of linear growth.
3.3. Behavior of invariants

The invariants S(v), T'(v) and u, depend on L (and X). If we need to emphasize this
dependence, we write S(v; L), T'(v; L) and fu,,r,.

Lemma 3.7. Let v be a valuation of linear growth.

(i) If r € N*, then S(v;rL) = rS(v; L), T(v;rL) = rT(v; L) and py.rr, = Tafbv: L-
(ii) If p: X' — X is a projective birational morphism, with X' normal, and L' = p*L,
then S(v; L) = S(v; L), T(v; L") = T(v; L), and po;n = posr;
(iii) the invariants S(v; L), T(v; L) and iy, only depend on the numerical class of L.

Proof. Properties (i)—(ii) are clear from the definitions. As for (iii), [21, Proposition 3.1]
asserts that the measure (7, only depends on the numerical class of L; hence the same
true for S(v; L) and T'(v; L). O

Remark 3.8. In view of (i) and (iii) we can define S(v; L) for a big class L € NS(X)q by
S(v; L) :=r=1S(v;rL) for r sufficiently divisible. The same holds for T'(v; L) and iy,
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3.4. The case of divisorial valuations

We now interpret the invariants S(v) and T'(v) in the case when v is a divisorial
valuation. By homogeneity in v and by Lemma 3.7 (ii) it suffices to consider the case
when v = ordg for a prime divisor F on X. In this case, vol(L;v > t) = vol(L — tE), so
Theorem 3.3 implies

Corollary 3.9. Let E C X be a prime divisor. Then we have:

(i) T(ordg) = sup{t > 0| L — tE is pseudoeffective};
i) S

ordag
(ii) S(ordg) = vol(L)™! [¥ vol(L — tE) dt.

Statement (i) explains the name pseudoeffective threshold for T'(v).

Remark 3.10. The invariants S(v) and T'(v) for v divisorial have been explored by K. Fu-
jita [46], C. Li [62], and Y. Liu [69]. In the notation of [46],

T(ordg) = 7(E) and S(ordg) = 7(E) — vol(L) 'j(E).

The invariant S(orde), for £ € X a regular closed point, also plays an important role
in [71] and was used in unpublished work of P. Salberger from 2006.

=

n
S n+1"

Proposition 3.11. If L is ample and v € Valy is divisorial, then %H < ;E:j

A

Proof. The first inequality follows from the concavity of ¢ — vol(L;v > t)*/™ and is
a special case of Lemma 2.6. The second inequality is treated in [48, Proposition 2.1].
(In [48] we have L = —Kx, but this assumption is not used in the proof.) O

Remark 3.12. When L is ample, Proposition 3.11 in fact holds for any v € Valx of linear
growth; see Remark 2.7.

3.5. Invariants as functions on valuation space

Proposition 3.13. The invariants S and T define lower semicontinuous functions on
Valx. For any m € M (L), the functions S,, and T,, are also lower semicontinuous.

Proof. First consider m € M(L). For any nonzero s € H°(X, mL), the function v — v(s)
is continuous. It therefore follows from (3.2) and (3.3) that S,, and T,, are lower
semicontinuous. Hence T' = sup,,, T, is also lower semicontinuous. The lower semicon-
tinuity of S is slightly more subtle. Pick any ¢ € R,. We must show that the set
V = {v € Valx | S(v) > t} is open in Valx. Pick any v € V and pick £ > 0 such that
S(v) > (1 + ¢)t. By Corollary 3.6, there exists m > 0 such that S,,(v) > (1 + €)t and
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Sm < (14¢)S on Valx. Since S,, is lower semicontinuous, there exists an open neigh-
borhood U of v in Valx such that S,, > (1 +¢)t on U. Then U C V, which completes
the proof. O

Remark 3.14. The functions S and T are not continuous in general. Consider the case
X =P L=0x(1).1If (§5)521 is a sequence of distinct closed points, then v; = ordg,,
j > 1 defines a sequence in Valx converging to the trivial valuation v on X. Then
S(v;) =1/2 and T(v;) = 1 for all j, whereas S(v) = T'(v) = 0.

The next result is a global version of [66, Proposition 2.3].

Proposition 3.15. Let v,w € Valx be valuations of linear growth, such that v < w.

(i) We have S(v) < S(w) and T'(v) < T(w).
(ii) If L is ample and S(v) = S(w), then v = w.

Remark 3.16. The assertion in (ii) is false for T in general. Indeed, let X = P? and
L = Ox(1). Consider an affine toric chart A? C P? with affine coordinates (21, 22).
Let v and w be monomial valuations in these coordinates with v(z1) = w(z1) = 1 and
0 < wv(z2) <w(z2) < 1. Then w < v and T'(v) = T(w) = 1, but w # v.

Proof of Proposition 3.15. The assertion in (i) is trivial. To establish (ii) we follow the
proof of [66, Proposition 2.3]. Note that by Lemma 3.7 we may replace L by a positive
multiple.

Suppose v < w but v # w. We must prove S(v) < S(w). We may assume there exists
s € H%(X, L) with v(s) < w(s). Indeed, there exists A € R% such that ay(v) C ax(w).
Replacing L by a multiple, we may assume L ® a,(w) is globally generated, and then

FOHU(X, L) = HY(X, L@ ax(v)) & HY(X, L@ ax(w)) = FuH'(X, L),
so that there exists s € H°(X, L) with v(s) < w(s) = . After rescaling v and w, we

may assume w(s) =p € N* and v(s) < p—1.
We claim that for m,j € N, we have

dim(FI R,/ FIR,,) > > dim (FJ PRy /FIT PR, ) (3.4)

1<i<min{j/p,m}
To prove the claim, pick, for any ¢ with 1 < i < min{j/p, m}, elements
Sily--sSih € F) PRy

whose images form a basis for 74P R,,,_; /FJ~"PT1R,, ;. As in [66, Proposition 2.3], the

elements
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{s's;; | 1 <i<min{j/p,m},1<1<b;}

are then linearly independent in FJ R,,/FJ R,,. This completes the proof of the claim.
By Corollary 2.12 we have

. 1 I -
S(v) = S(w) = lim N ; (dim FI R,, — dim FJ R,y,)
Now (3.4) gives
> (@mF Ry —dimFRy) =Y > (dimF PRy — dim F PRy, )
j>1 721 1<i<min{Z,m}

= > Y (dimF PRy _; — dim F PR, ;)

1<i<m j>pi

= Z dim Rmfi

1<i<m

We conclude that

1
— > 1i
S S = B

> dim(Rpi) >0,

1<i<m

since dim R,,, = N,,, ~ m™(L™) as m — oo. This completes the proof. O
3.6. Base ideals of filtrations

In this section we assume L is ample. To an arbitrary filtration F of R(X,L) we
associate base ideals as follows. For A € Ry and m € M(L), set

bam(F) := b(|F*H(X, mL)|).

Lemma 3.17. For A € R the sequence (bx m(F))m is stationary (i.e. by = by my1 for
m € M(L) sufficiently large, with limit 3, vrr) 0xm-

Proof. It follows from (F4) that if my,me € M(L) and A1, A2 € Ry, then

b)\l,ml (]:) ’ b)\Q,mz (]:) - b>\1+)\2,m1+m2 (]:) (35)

Since L is ample, there exists mg € N* such that mL is globally generated for m > my.
In particular, bg,, = Ox for m > my. As a consequence of (3.5), if m € M(L) and
m’ > mg, then by mtm (F) D bam(F) - b pm (F) = bxm(F). The lemma follows. 0O

Using the lemma, set by(F) := by, (F) for m > 0. Thus by, (F) C by(F) for
m € M(L).
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Corollary 3.18. We have bo(F) = Ox and bx(F) - by (F) C bayxn (F) for A, N € Ry. In
particular, the sequence (b,(F))pen+ s a graded sequence of ideals.

Lemma 3.19. If v is a valuation on X, then by(F,) = ax(v) for all A € Ry.

Proof. Given A\, mL®a, (v) is globally generated for m >> 0; hence by ,,,(F,) = ax(v). O
Using base ideals, we can relate the invariants of a filtration to those of a valuation.

Lemma 3.20. If v(be(F)) > 1, then FPR,, C FPR,, for all m € M(L) and p € N*.

Proof. We have 1 < v(be(F)) < v(b,(F))/p. Thus v(b,(F)) > p, so that b,(F) C a,(v).
Since we also have by ,,,(F) C by (F) for all m € M (L), this implies

FPR,, C H'(X,mL ® b, ,(F)) C H*(X,mL ® a,(v)) = FP R,
which completes the proof. O
Corollary 3.21. Let F be a linearly bounded filtration of R(X,L). Then
S(©) Z v(be(F))S(F) and T(v) = v(be(F))T(F),
for any valuation v € Valx.
Proof. The assertions are trivial when v(be(F)) = 0, so we may assume v(be(F)) = 1
after scaling v. In this case, Lemma 3.20 shows that FPR,, C FPR,, for p € N* and
m € M(L). Using Proposition 2.11 and Corollary 2.12, this implies
S(F) = S(Fn) < S(Fon) = S(Fo) = S(v),
and similarly T'(F) < T'(v). The proof is complete. O

4. Thresholds

Let X be a normal projective variety with klt singularities, and L a big line bundle
on X. In this section we study the log-canonical threshold of L, and introduce a new
related invariant, the stability threshold of L. Both are defined in terms of the asymptotic
behavior of the singularities of the members of the linear system |mL| as m — co.

4.1. The log canonical threshold

Following [23] the log canonical threshold a(L) of L is the infimum of lct(D) with
D an effective Q-divisor Q-linearly equivalent to L. As explained by Demailly (see [23,
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Theorem A.3]), this can be interpreted analytically as a generalization of the a-invariant
introduced by Tian [86].
For m € M(L), we also set

am (L) := inf{mlct(D) | D € |mL|}.

It is then clear that a(L) = inf,,car(z) am(L). The invariants ., and a can be computed
using invariants of valuations, as follows:

Proposition 4.1. For m € M (L), we have

(L) = inf A _ ¢ Alords)

v Tm(v) B Tp(ordg)’ (4.1)

where v runs through nontrivial valuations on X with A(v) < oo, and E through prime
divisors over X.

Proof. Writing out the definition of lct(D), we see that

om(L) =m - inf (inf A<v>>,

DelmL| \ v v(D)

where the second infimum may be taken over nontrivial valuations with finite log dis-
crepancy, or only divisorial valuations. Switching the order of the two infima and noting
SUPpejmr| V(D) =m - T (v) yields (4.1). O

Corollary 4.2. We have

. JAWw) . Aordg)
oL) = inf T(v) I%f T(ordg)’

(4.2)
where v runs through valuations on X with A(v) < oo and E over prime divisors over X .
Proof. Since T'(v) = sup,,enr(r) Tm(v), (4.2) follows from (4.1). O

4.2. The stability threshold

Given m € M(L), we say, following [49], that an effective Q-divisor D ~q L is of

m-basis type if there exists a basis sy,..., sy, of H*(X,mL) with
1 &
D=—— =0}, 4.3
o 2 =0 (43)

Set
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Om (L) :=1inf{let(D) | D of m-basis type}, (4.4)
and define the stability threshold of L as

0(L) :=limsup d,,(L).

m—r oo

We shall see shortly that this limsup is in fact a limit.

Proposition 4.3. For m € M (L), we have

. Aw) . Alordp)
) =S @) T Sord)

where v runs through nontrivial valuations on X with A(v) < co and E through prime
divisors over X.

Proof. Note that

Om(L) = inf (igf A(v)) |

- D of m-basis type ’U(D)

where the second infimum runs through all valuations with A(v) < oo or only divisorial
valuations of the form v = ordg. Switching the order of the two infima and applying
Lemma 3.5 yields the desired equality. O

Theorem 4.4. We have 6(L) = lim;, 00 0 (L). Further,

where v runs through nontrivial valuations on X with A(v) < co and E through prime
divisors over X.

Proof. We will only prove the first equality; the proof of the second being essentially
identical. Let us use Proposition 4.3 and Corollary 3.6. The fact that lim,, .o Sy = S
pointwise on Valx directly shows that

lim sup 6,,, (L) < inf Aw) (4.5)

v S(v)
On the other hand, given € > 0 there exists mg = mg(e) such that S,,(v) < (14 ¢)S(v)

for all v € Valx and m > mg. Thus

> (1+2) inf ‘ggi

hn}nlnf (L) = hmmlnf 113f @)

Letting € — 0 and combining this inequality with (4.5) completes the proof. O
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Remark 4.5. It is clear that a(rL) = r~'a(L) and §(rL) = r~1§(L) for any r € N*.
This allows us to define a(L) and §(L) for any big Q-line bundle L, by setting a(L) :=
r~Ya(rL) and 6(L) := r~18(rL) for r sufficiently divisible.

4.8. Proof of Theorems A, B and C

We are now ready to prove the first three main results in the introduction.

We start with Theorems A and C. The existence of the limit 6(L) = lim,, §,,(L) was
proved above, so Theorem C follows immediately from Corollary 4.2 and Theorem 4.4.
Let us prove the remaining assertions in Theorem A.

The estimate a(L) < (L) < (n+ 1)a(L) follows from the corresponding inequalities
n (3.1) between T'(v) and S(v) together with Theorem C. When L is ample, we obtain
the stronger inequality 6(L) > “t1q(L) using Proposition 3.11. The fact that (L) and
d(L) only depend on the numerical equivalence class of L follows from the corresponding
properties of the invariants S(v) and T'(v), see Lemma 3.7 (iii). Finally we prove that
a(L) and 6(L) are strictly positive. It suffices to consider a(L). The case when L is ample
is handled in [22, Theorem 9.14] using Seshadri constants, and the general case follows
from Lemma 4.6 below by choosing D effective such that L + D is ample.

Lemma 4.6. If L is a big line bundle and D is an effective divisor, then a(L+ D) < «(L).

The statement is already in the literature [36, Lemma 4.1]. We provide a proof for the
convenience of the reader.

Proof. Given m € M(L), the assignment F — F + mD defines an injective map from
|mL| to |[m(L + D)|. Since lct(F + mD) < lct(F) for all F € |mL|, it follows that
am (L + D) < ap(L). Letting m — oo completes the proof. O

Finally we prove Theorem B, so suppose X is a Q-Fano variety. The argument relies
heavily on the work by K. Fujita and C. Li, who exploited ideas from the Minimal Model
Program, as adapted to K-stability questions by C. Li and C. Xu [65].

First assume Kx is Cartier. By either [62, Theorem 3.7] or [46, Corollary 1.5], X is
K-semistable iff 5(F) > 0 for all prime divisors E over X. In our notation, this reads
A(ordg) > S(ordg) for all E, see [46, Definition 1.3 (4)] and Remark 3.10, and is hence
equivalent to §(—Kx) > 1 in view of Theorem 4.4.

Similarly, by [46, Corollary 1.5], X is uniformly K-stable iff there exists € > 0 such that
B(E) > ej(F) for all divisors E over X. This reads A(ordg) — S(ordg) > e(T(ordg) —
S(ordg)) for all E. Since —Kx is ample, Proposition 3.11 implies n=1S(ordg) <
T(ordg) — S(ordg) < nS(ordg), so X is uniformly K-stable iff there exists ¢/ > 0 such
that A(ordg) — S(ordg) > &'S(ordg) for all E. But this is equivalent to 6(—Kx) > 1 by
Theorem 4.4.

When Kx is merely Q-Cartier, the argument is similar, using Lemma 3.7; see Re-
mark 4.5.
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4.4. Volume estimates

We now prove Theorem D, giving a lower bound on the volume of L. This theorem is
a consequence of the following proposition, first observed by Liu, and embedded in the
proof of [69, Theorem 21].
Proposition 4.7. If v € Val has linear growth and is centered at a closed point, then

T(v) > YVol(L)/vol(v) and  S(v) > o {/vol(L)/ vol(v).
Proof. We follow Liu’s argument. By the exact sequence
0— H(X,mL @ am(v)) = HO(X,mL) — H*(X,mL @ (Ox /am:(v)),
we see that
dim FH (X, mL) > dim H°(X,mL) — £(Ox ¢ /ami(v)),
where £ € X is the center of v. Diving by m™/n! and taking the limit as m — oo gives
vol(L;v > t) > vol(L) — t" vol(v),

which implies the lower bound for T'(v). Further, integrating with respect to ¢ shows that

. T(v)
= 1 L' >
S(v) vol( D) / vol(L;v > t) dt

0
Y/vol(L)/ vol(v)

> 1(L) — t" vol

Z Sol(D) (vol(L) — t" vol(v)) dt

0
=i vol(L)/ vol(v),

which completes the proof. 0O

Proof of Theorem D. If A(v) = oo, then \751(1}) = oo and the inequality is trivial. If
A(v) < oo, then v has linear growth and the previous proposition gives

vol(L) < (n+1)n5(v)”vol(v) - <“+ 1>n (iig;)nvﬁl(v).

n n

Since 0(L) < A(v)/S(v) by Theorem 4.4, the proof is complete. O



H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062 29

4.5. Valuations computing the thresholds

We say that a valuation v € Valy with A(v) < co computes the log-canonical threshold
(resp. the stability threshold) of L if a(L) = A(v)/T(v) (resp. (L) = A(v)/S(v)). In §6
we will prove that such valuations always exist when L is ample. Here we will describe
some general properties of valuations computing one of the two thresholds.

We start by the following general result.

Proposition 4.8. Let v be a nontrivial valuation on X with A(v) < 0.

(i) if v computes a(L) or 6(L), then v computes lct(aq(v));
(ii) if L is ample and v computes 6(L), then v is the unique valuation, up to scaling,
that computes lct(ae(v)).

Proof. First suppose v € Valy computes «a(L). Recall that lct(ae(v)) = inf,, %7
where it suffices to consider the infimum over w € Valk normalized by w(ae(v)) = 1. The
latter condition implies w(a,(v)) > p for all p, so that w > v. By Proposition 3.15 (i),
this yields T'(w) > T'(v). Since v computes (L), we have A(w)/T(w) > A(v)/T(v).
Thus

A(v)/v(ae(v)) = Av) < A(w) = A(w)/w(as(v)),

so taking the infimum over w shows that v computes lct(ae(v)). The case when v com-
putes §(L) is handled in the same way, and the uniqueness statement in (ii) follows from
Proposition 3.15 (ii). O

Conjecture 4.9. Any valuation computing o(L) or 6(L) must be quasimonomial.
Note that the strong version of Conjecture B in [55] implies Conjecture 4.9 in view of
Proposition 4.8.

While Conjecture 4.9 seems difficult in general, it is trivially true in dimension one
(since all valuations are then quasimonomial). We also have

Proposition 4.10. If X is a projective surface with at worst canonical singularities, then:

(i) any valuation computing (L) or (L) must be quasimonomial;
(ii) if X is smooth, then any valuation computing a(L) or 6(L) must be monomial in
suitable local coordinates at its center.

We expect that the statement in (i) holds for klt surfaces as well.

Proof. Suppose v € Valk computes «(L) or §(L). By Proposition 4.8, v computes
lct(ae(v)). Let Y — X be a resolution of singularities of X. Since X has canonical
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singularities, the relative canonical divisor Ky, x is effective, and v also computes the
jumping number lctfy/x (ae(v)). By [55, §9], v is quasimonomial, proving (i).

The statement in (ii) follows from [43, Lemma 2.11 (i)]. O

Remark 4.11. Since the first version of this paper, it was shown by Xu that a weak
version of [55, Conjecture B] holds; see [90, Theorem 1.1]. Combining the result in [90]
with Proposition 4.8.ii gives that any valuation computing 6(L) is quasimonomial.

Finally we consider the case of divisorial valuations computing one of the two thresh-
olds. In [12], the author studied properties of divisorial valuations that compute log
canonical thresholds of graded sequences of ideals. The following proposition follows
from Proposition 4.8 and results in [12].

Proposition 4.12. Let v be a divisorial valuation on X.

(i) If v computes «(L) or §(L), then there exists a prime divisor E over X of log
canonical type such that v = cordg for some c € R.

(ii) If v computes 6(L) and L is ample, then there exists a prime divisor E over X of
plt type such that v = cordg for some c € R.

We explain some of the above terminology. Let E be a divisor over X such that there
exists a projective birational morphism 7: Y — X such that E is a prime divisor on Y
and —F is Q-Cartier and m-ample. We say that E is of plt (resp., log canonical) type if
the pair (Y, E) is plt (resp., log canonical) [48, Definition 1.1]. K. Fujita considered plt
type divisors in [48]. Note that Proposition 4.12 (ii) is similar to results in [48].

Proof. We may assume v = ordp for a divisor F over X. If v computes a(L) or §(L), then
we may apply Proposition 4.8 (i) to see A(v) = lct(aq(v)). Furthermore, if v computes
§(L) and L is ample, Proposition 4.8 (ii) implies A(v) < A(w)/w(ae(v)) as long as w
is not a scalar multiple of v. The statement now follows from Propositions 1.5 and 4.4
of [12]. O

5. Uniform Fujita approximation

In this section we prove Fujita approximation type statements for filtrations arising
from valuations.* These results play a crucial role in the proof of Theorem E.

Related statements have appeared in the literature. See [60, Theorem D] for the case
of graded linear series and [16, Theorem 1.14] for the case of filtrations. Here we specialize
to filtrations defined by valuations, and the main point is to have uniform estimates in
terms of the log discrepancy of the valuation. To this end we use multiplier ideals.

4 The term Fujita approximation refers to the work of T. Fujita [50].
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Throughout this section, X is a normal projective n-dimensional klt variety.
5.1. Approximation results

Given a valuation v on X and a line bundle L on X, we seek to understand how
well S(v) and T'(v) can be approximated by studying the filtration F, restricted to
H°(X,mL) for m large but fixed.

Recall that the pseudoeffective threshold of v is defined by T(v) := lim,,—c0 T (v).

Theorem 5.1. Let X be a normal projective kit variety and L an ample line bundle on
X. Then there ezists a constant C = C(X,L) > 0 such that

CA(v)

0<T(w)—Tn) < -

for allm € M(L) and all v € Valy with A(v) < cc.
Corollary 5.2. We have 0 < a(L)™! — a,n (L)1 < € for allm € M(L).

We also have a version of Theorem 5.1 for the expected order of vanishing S(v), but
this is in terms of a modification S,,(v) of the invariant S,,(v), which we first need to
introduce.

Let V, be a graded linear series of a line bundle L on X. For m € N*, we write V;, o
for the graded linear series of mL defined by

Vine := HY(X,mlL ® a’) ¢ H*(X, m{L),

where a denotes the base ideal b(|Vm|) and af the integral closure of the ideal a’.

If V,, = 0, then it is clear that V,,, = 0 for all £ € N* and vol(V,,s) = 0. When
Vi # 0, we use the geometric characterization of the integral closure as in [59, Remark
9.6.4] to express Vi, ¢ as follows. Let p: Y, — X be a proper birational morphism such
that Y,, is normal and b(|V,,|) - Oy = Oy (—F,,) for some effective Cartier divisor F,,.
Then

Vm,E =~ HO(Ymvé(m/‘j’*(L) - Fm))
for all £ > 1. Since mu* (L) — F,, is base point free and therefore nef,
vol(Vin,e) = ((mu* (L) — F)")

by [59, Corollary 1.4.41].
In the case when V, contains an ample series, we have

vol(Vine)

vol(Ve) = lim

m—oo mn
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see [53, Proposition 17] and also [82, Appendix].
Now consider a filtration F of R(X, L). As in §2.4, this gives rise to a family V!, = V.7t
of graded linear series of L, indexed by t € R, and defined by

V) = F™ Ry,

Using the previously defined notion, we get an additional family of graded linear series
VT’;’, of mL for each m € N*. Specifically,

Vi = HOX, mlL @ b(|VE|)).

Clearly vol(V}}, ,) is a decreasing function of ¢ that vanishes for ¢ > T'(F). When F is
linearly bounded, we write

T(F)
1

- - t
eei(T) / vol (V2...) dt.
0

S (F) =

Note that by the dominated convergence theorem,

S(F) = lim S (F).

m—»o0

When v is a valuation on X with linear growth, we set Sy, (v) := Sp,(F,).

Theorem 5.3. Let X be a normal projective kit variety and L an ample line bundle on
X. Then there exists a constant C = C(X, L) such that

CA(v)

m

0<Sw)—Sn(v) <

for all m € N* and all v € Valx with Ax(v) < co.

Theorems 5.1 and 5.3 may be viewed as global analogues of [10, Proposition 3.7]. Their
proofs, which appear at the end of this section, use multiplier ideals and take inspiration
from [35] and [40].
5.2. Multiplier ideals

For an excellent reference on multiplier ideals, see [59].

Let a be a nonzero ideal on X. Consider a log resolution px: Y — X of a, and write

a-Oy = Oy(—D). For ¢ € QY, the multiplier ideal J(X,c- a) is defined by

J(X,c-a):=u.Oy ([Ky/X - CD]) C Ox.
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It is a basic fact that the multiplier ideal is independent of the choice of p.

If c € N*, then J (X, c-a) = J (X, a®). We will use the convention that J(X,c-(0)) :=
(0), where (0) C Ox denotes the zero ideal.

Multiplier ideals satisfy the following containment relations. See [59, Proposition
9.2.32] for the case when X is smooth.

Lemma 5.4. Let a,b be nonzero ideals on X.

(1) We have a C J(X,a).
(2) Ifa C b and ¢ > 0 a rational number, then J(X,c-a) C J(X,c-b).
(3) If ¢ > d > 0 are rational numbers, then J(X,c-a) C J(X,d-a).

The following subadditivity theorem was proved by Demailly, Ein, and Lazarsfeld in
the smooth case [35]. The case below was proved by Takagi [83, Theorem 2.3] and, later,
by Eisenstein [42, Theorem 7.3.4].

Theorem 5.5. If a,b are nonzero ideals on X, and c € QY , then
Jacx -J(X,c-(a-b)) C J(X,c-a)- T(X,c-b),
where Jacx denotes the Jacobian ideal as defined in [/1, p. 402].

5.8. Asymptotic multiplier ideals

Let a, be a graded sequence of ideals on X and ¢ > 0 a rational number. By
Lemma 5.4, we have

J (X, (¢/p) - ap) C J(X,c/(pq) - apq)

for all positive integers p, g. This, together with the Noetherianity of X, implies that

{J (X, (¢/p) - ap)}peN

has a unique maximal element that is called the c-th asymptotic multiplier ideal and
denoted by J(X,c- a.). Note that J(X,c-a,) = J (X, (¢/p) - a,) for all p divisible
enough.

Asymptotic multiplier ideals also satisfy a subadditivity property. See [59, Theorem
11.2.3] for the case when X is smooth.

Corollary 5.6. Let a, be a graded sequence of ideals on X. If m € N* and c € Q7 , then

(Jacx)™ " T (X,em - a.) € T(X,c-as)™.
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Next we give a containment relation for the multiplier ideal associated to the graded
sequence of valuation ideals. The result appears in [40] in the case when v is divisorial.

Proposition 5.7. If v € Valx is a valuation with A(v) < oo, and c € Q7_, then
J(X,c-ae(v)) C ae_a()(v).

Proof. It is an immediate consequence of the valuative criterion for membership in the
multiplier ideal [20, Theorem 1.2] that

T(X,c-ae(v)) C aep(as(v))—A@w) (V).
Since v(ae(v)) =1 (see [10, Lemma 3.5]), the proof is complete. O
5.4. Multiplier ideals of linear series
Given a linear series of L, we set
J(X;c-|V]) =T (X, c-b(|V])),
where b(|V]) is the base ideal of V. Similarly, if V, is a graded linear series of L, we set
J(X,c-|Val]) :i= T (X, c-b,)
where b, is the graded sequence of ideals defined by by, := b(|V,|). We conclude
Lemma 5.8. Let L be a line bundle on X.
(i) If V is a linear series of L, then b(|V]) C J(X, |V]).
(i) If Vi is a graded linear series of L and m € N*, then b(|V;,]) € J(X,m - |V4l]).
(ili) If Ve is a graded linear series of L and m € N*, c € Q¥ , then
(Jacx)" ' @ J(X,em - |[Val) € T(X,c-[[Va])™
The following result is a consequence of Nadel Vanishing.
Theorem 5.9. Let L be a big line bundle on X, and V, a graded linear series of L.
(i) Let B be a line bundle on X and m € N*. If B— Kx — mL is big and nef, then
H'(X,B®J(X,m-|Val)) =0

foralli > 1.
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(ii) Let B and H be line bundles on X and m € N*. If H is ample and globally generated,
and B — Kx — mL is big and nef, then

(B+jH)® J(X,m- Vi)
is globally generated for every j > n = dim(X).

Proof. Statement (i) is [59, Theorem 11.2.12 (iii)] in the case when X is smooth. When
X is klt, the statement is a consequence of [59, Theorem 9.4.17 (ii)].

Statement (ii) is a well known consequence of (i) and Castelnuovo-Mumford regularity.
For a similar argument, see [59, Proposition 9.4.26]. O

Corollary 5.10. Let L be an ample line bundle on X. There exists a positive integer
a = a(L) such that if Vo is a graded linear series of L, then

(a+m)L®J(X,m-|Va|)

is globally generated for all m € N*. (Note that a does not depend on m or Vy.) Fur-
thermore, we may choose a so that HY(X,aL ® Jacx) is nonzero.

Proof. Pick b,c € N* such that bL is globally generated and ¢L — Kx is big and nef.
We apply Theorem 5.9 (ii) with B = (¢ +m)L and H = bL. Thus

(c+m+jb)L®J(X,m-|Vill)

is globally generated for all m € N* and j > n. We can now set a := c+ jb, where j > n
is large enough so that H°(X, (¢ + jb)L ® Jacx) # 0. O

5.5. Applications to filtrations defined by valuations

Now let L be an ample line bundle on X and fix a constant a := a(L) that satisfies
the conclusion of Corollary 5.10. For the remainder of this section, a will always refer to
this constant.

Consider a valuation v € Valk with A(v) < co. We proceed to study the graded linear
series VI = Vit of L for t € Ry.
Proposition 5.11. If m € N* and t € Q. satisfies mt > A(v), then

j(X’m' ”VotH) C amth(v)(’U)'

Proof. Pick p € N* such that pt € N* and J(X,m - [[V]||) = T(X, % - b(|V;])). Then

T(X, - b(|Vi)) C T(X,™ - ay(v)) € T(X,mt - 04(0)) C Qg ae) (v),
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where the first inclusion follows from the inclusion b(|V;f[) C ap(v), the second from the
definition of the asymptotic multiplier ideal, and the third from Proposition 5.7. 0O

Proposition 5.12. If m € N* and t € Q7 satisfies mt > A(v), then
j(X’m : ||Vot||) - b(|Vrfm+aD

where t' = (mt — A(v))/(m + a).

Proof. By Proposition 5.11, we have

H(X, (m+a)L @ J(X,m - [Vi[])) € H(X,(m+a)L & i a()(v)) = Viy

m+ta-

Since (m+a) Lo J (X, ||V{]) is globally generated by Corollary 5.10, the desired inclusion
follows by taking base ideals. O

Using the previous proposition, we can now bound VOI(V;;L.) from below.
Proposition 5.13. If m € N* and t € Q7 satisfies mt > A(v), then
vol(V) <m ™" vol(Vh,,.0),
where t' = (mt — A(v))/(a +m).

Proof. It suffices to show that dim V!, < dim V;l/ tal for all positive integers m and
¢. Indeed, diving both sides by (mf)™/n! and letting ¢ — oo then gives the desired
inequality.

. . / . .
We now prove dim V', < dim V!, +a,¢- First, by our assumption on a, we may choose

a nonzero section s € H°(X,aL ® Jacy). Multiplication by s’ gives an injective map
Vi, — HY(X, (a+m)(L ® (Jacx) ' @ b(|Vh4))).

Now, we have

H(X, (a+m)lL® (Jacx) ' @ b(|V%y]))
C HY(X, (a +m)L ® (Jacx)" "' @ J(X,ml- |VL]))
C H(X, (a+m)lL & J(X,m- Vi)
C HOX, (a+m)L® (6(|Viryal)) € Vittyares

where the first inclusion follows from Lemma 5.8, the second from Corollary 5.6 (iii), the

third from Proposition 5.12, and the last one from the definition of %43 O

m+a,e*

As an application of the previous proposition, we give bounds on T}, (v) and S, (v).
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Proposition 5.14. If m € N*, then

aT(v) + A(v)

T() -

< Th(v) < T(v).

Proof. The second inequality is trivial, since T(v) = sup T, (v). To prove the first in-
equality, we may assume m > a + %. Pick t € Q} with t < T'(v) and m > a + @.
Since V' is nontrivial (in fact, it contains an ample series), J (X, m||V{||) is nontrivial
as well. Apply Proposition 5.12, with m instead of m — a, so that ¢’ =t —m™!(at + A).

We get
b(|Vii]) > T(X, (m —a)[VI]]) # 0.

In particular, Vj; # (), which implies ' < T),(v). Letting t — T(v) completes the
proof. O

Proposition 5.15. If m € N* and m > a, then

(m — “)W <S(v) — M) < Sn(v) < S(v). (5.1)

m m—a

Proof. To prove the second inequality, note that for ¢ € R4 and | € N* we have

Vi, = HO(X,m(L @ b(|FptHO(X, mL)|)") € FrHO(X, meL) = V.

Thus vol(V,;, ,) < m" vol(V{) for t € Ry, and integration yields Sm(v) < S(v).
We now prove the first inequality. To this end, we use Proposition 5.13 with m replaced

by m — a to see that

m—a\" 1 /
(V) < — vol(V}! 5.2
(") vl < o vol(v) (5.2
for all t € Q¥ with (m — a)t > A(v), where t' =t —m~!(at + A(v)). By the continuity
statement in Proposition 2.3, the inequality in (5.2) must hold for all t € [m~*A(v), T'(v)],

with at most two exceptions. We can therefore integrate with respect to t from ¢ =
A()/(m —a) to t = (mT(v) + A(v))/(m — a), i.e. from ¢’ =0 tot' =T (v). This yields

T(v) / (mT(v)+A(v))/(m—a)
Spn(v) = VlVie) g s (m=a)"™" vol(Ve) 4,
m mrvol(L) — — m vol(L)
A(v)/(m—a)
T(v)

o n+1 t
_(m—a / VOI(V')dt
m vol(L)
A(v)/(m—a)
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v)/(m—a)

1
m—a\"" vol(V,
m vol(L
0
n+1
m—a Av

> sy - 22,

m m—a

where the second equality follows from a simple substitution and the last inequality
follows since vol(V}) < vol(L) for all t. This completes the proof. O

Proof of Theorem 5.1. Consider any v € Valy with A(v) < co. By Corollary 4.2, we
have T'(v) < A(v)/a(L). Proposition 5.14 now yields

T(v) — T (v) < (ﬁ N 1) Av)

m

for any m € N*, so the theorem holds with C =1+ a(L)/a(L). O

Proof of Theorem 5.3. Consider any v € Valy with A(v) < co. Proposition 5.15 gives

0< 8(v) = S(v) < S(v) — (m - “)M (S(U) _ M)

m m—a

— (1— <mn;a>n+l> S(v) + (mn;Cl)nAS) a S+~

for m > a, where the last inequality uses that 1 — "1 < (n 4+ 1)(1 —¢t) for t € [0,1].
Since S(v) < A(v)/d(L) by Theorem 4.4, we can take C =1+ (n+ 1)a(L)/a(L). O

IN

6. Valuations computing the thresholds

In this section we prove Theorem E, on the existence of valuations computing the log
canonical and stability thresholds. We assume that X is a normal projective klt variety
and that L is ample.
6.1. Linear series in families

We consider the following setup, which will arise in §6.3. Fix m € N* and a family
of subspaces of H(X,mL) parameterized by a variety Z. Said family is given by a
submodule

Wcy:= HO(X,mL) ®c Oz.

For z € Z closed, we write W, for the linear series of mL defined by
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W, :=Im (Wlk) = Vige) ~ H (X, mL)) .
Note that W gives rise to an ideal B C Oxxz such that
B-Oxxzy = b(|W.]).
Indeed, B is the image of the map
poW @pi(—=mL) = Oxx2z,

where p; and ps denote the projection maps associated to X x Z.
We need a few results on the behavior of invariants of linear series in families.

Proposition 6.1. There exists a nonempty open set U C Z such that let(b(|W.])) is
constant for all closed points z € U.

Proof. Since lct(b(|Wz D) = let(B-Ox x12}), the proposition follows from the well known
fact that the log canonical threshold of a family of ideals is constant on a nonempty open
set; see e.g. [10, Proposition A.2]. O

Proposition 6.2. If Z is a smooth curve and zg € Z a closed point, then there exists an
open neighborhood U of 2o in Z such that 1ct(b(|W.,])) < let(b(|W.])) for all z € U.

Proof. As in the proof of the previous proposition, we note that lct(b(|Wz|)) =
let(B - Oxxqzy) for z € Z closed. Thus, the proposition is a consequence of the lower
semicontinuity of the log canonical threshold. See [10, Proposition A.3]. O

Denote by W, o the graded linear series of mL defined by

W, = H'(X,m¢L @ b(|W.|)").

Proposition 6.3. There exists a nonempty open set U C Z such that vol(W, o) is constant
for all closed points z € U.

Proof. The idea is to express vol(W, o) as an intersection number. Fix a proper birational
morphism 7: Y — X x Z such that Y is smooth and B-Oy = Oy (—F) for some effective
Cartier divisor on Y. For each z € Z, we restrict 7 to get amap m,: Y, —» X x {z} ~ X.
By generic smoothness, there exists a nonempty open set U C Z such that Y, is smooth
for all z € U. For z € U, we then have

vol(W-.e) = ((pymL — F)[y,).

After shrinking U, we may assume pimL — F is flat over U. Then ((pimL — F)|y.)") is
constant on U, which concludes the proof. 0O
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Proposition 6.4. Let W and G be two submodule of V and for z € Z, let W, and G,
denote the corresponding subspaces of V. If the function z — dim W, is locally constant
on Z, then the set {z € Z|G, C W,} is closed.

Proof. We may assume Z is affine and dim(W,) =: r is constant on Z. Choose a basis
for the free O(Z)-module V(Z) as well as generators for W(Z) and G(Z). Consider the
matrix with entries in O(Z), whose rows are given by the generators of W(Z), followed
by the generators of G(Z), all expressed in the chosen basis of O(Z). By our assumption
on W, the rank of this matrix is at least r for all z € Z. Further, since G, C W, if and
only if dim(G, +W,) = dim(W,), the set {z € Z| G, C W, } is precisely the locus where
this matrix has rank equal to r, and is hence closed. O

6.2. Parameterizing filtrations

We now construct a space that parameterizes filtrations of R(X,L).” To have a
manageable parameter space, we restrict ourselves to N-filtrations F of R satisfying
T(F) < 1. Such a filtration F is given by the choice of a flag

F"R,, C F" 'R, C---C F'R,, C F°R,, = R, (6.1)
for each m € N* such that
fpl le : ]:szmfz - fp1+p2Rm1+m2 (62)

for all integers 0 < p; < m7 and 0 < ps < Mmeo.

Let Fl,, denote the flag variety parameterizing flags of R,, of the form (6.1). In
general, F'l,,, may have several connected components. On each component, the signature
of the flag (that is, the sequence of dimensions of the elements of the flag) is constant.

For each natural number d, we set

Hy:=Flgx Fly x --- x Flg

and, for ¢ > d, let m, 4 : H. — H4 denote the natural projection map. Note that a closed
point z € Hy gives a collection of subspaces

m m—1 1 0 —
(FI"Ryy € FI" "Ry €+ € F2Ryy € FORpy = Rin) oy

Furthermore, this correspondence is given by a universal flag on H;. This means that
for each m < d on Hy there is a flag

F'"Rpy CF IR, C--- CF'Ry € F'Ryy = Roms

5 See [28] for a related, but different, construction that parameterizes limits of test configurations.
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where R, := H°(X,mL) ®c Op,. For z € H;, we have
./_'?Rm :=Im (.FpRm|k(z) — Rm|k(z) ~ Rm)

for 0 < p < m, where k(z) denotes the residue field at z.
Since we are interested in filtrations of R(X, L), consider the subset

Ja:={z € Hy | F, satisfies (6.2) for all 0 < p; < m; < d}.
Lemma 6.5. The subset J; C Hy is closed.

Proof. We consider FP*R,,, - F¥2R,,,,, where z € Hg, m1 +mg < d, and 0 < p; < m;
for ¢ = 1,2. We will realize this subspace as coming from a submodule of R, +m,. Note
that the natural map

H(X,miL) @ H*(X,moL) — H°(X, (my +ma)L)
induces a map Ry, @ Rmy — Rmy+m,- We define
FPRumy - FP Ry, i =Im (FP Ry, @ FP2 Ry = Riny4ma) -
Since
FP' Ry, - FP2 Ry, = Im ((FP Ry, ® FP2Rmy)k(z) — Rmytmalk(z) = Ry +ms) »
the desired statement is a consequence of Proposition 6.4. O

Let J4(C) denote the set of closed points of Jy4, and set J := lim J4(C), with respect to
the inverse system induced by the maps 7. 4. Write 74 for the natural map J — J4(C) By

the previous discussion, there is a bijection between the elements of J and N-filtrations
F of R(X, L) satisfying T'(F) < 1.

The following technical lemma will be useful for us in the next section. Its proof relies
on the fact that every descending sequence of nonempty constructible subsets of a variety
over an uncountable field has nonempty intersection.

Lemma 6.6. For eachd € N, let Wy C Jy be a nonempty constructible subset, and assume
Wi C W;_&Ld(Wd) for all d. Then there exists z € J such that m4(z) € W4(C) for all d.

Proof. Finding such a point z is equivalent to finding a point z; € Wy(C) for each d,
such that w41 q(zq+1) = 24 for all d. We proceed to construct such a sequence (2z4)q4
inductively.

We first look to find a good candidate for z;. By assumption,

Wi D 7T271(W2) D 7T371(W3) Do
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is a descending sequence of nonempty sets. Note that W; is constructible, and so are
7a,1(Wy) for all d by Chevalley’s Theorem. Thus,

W1 071'211(W2) n 7T371(W3) N

is nonempty, and we may choose a closed point z; in this set.
Next, we look at

Wo 071'2_&(2'1) D 71'3,2(W3) N 7T2_&(2’1) D 7T472(W4) N ’/TQ_&(Zl) IDERE
and note that for d > 2 the set mq 2(Wy) ﬂwz_j(zl) is nonempty by our choice of z;. Thus
7T2_i(21) n W2 N 7T372(W3) n 7T4,2(W4) n

is nonempty, and we may choose a closed point z; lying in the set. Continuing in this
manner, we construct a desired sequence. 0O

6.3. Finding limit filtrations

The following proposition, crucial to Theorem E, is a global analogue of [10, Propo-
sition 5.2]. The proofs of both results use extensions of the “generic limit” construction
developed in [58,31-33].

Proposition 6.7. Let (F;);en be a sequence of N-filtrations of R(X,L) with T(F;) < 1
for all i. Furthermore, fit A, S,T € Ry such that

(1) A > limsuplet (be(F3)),

1—00

(2) S < liminfliminf S,,(F;), and

m—r o0 1—00

(3) T < liminfliminf T, (F;).

m—r oo 1—00

Then there exists a filtration F of R(X, L) such that
let (bo(F)) <A, S(F)>S, and T<T(F)<1

Proof. We use the parameter space J from §6.2, parameterizing N-filtrations of R(X, L)
with T' < 1. Each filtration F; corresponds to an element z; € J, and 7, (2;) correspond
to the filtration F; restricted to @] (Rg4.

Claim 1. We may choose infinite subsets
NoIlyDIbDI3D---

such that for each m, the closed set
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T i ={mm(2i) |1 € I} C I

satisfies the property
() If Y € Z,, is a closed set, there are only finitely many i € I, such that mp,(z;) €Y.

Note that, in particular, each Z,, is irreducible.

Indeed, we can construct the sequence (I,,)5° inductively. Set Iy = N. Since Jy =
Fly ~ Spec(C), () is trivially satisfied for m = 0. Having chosen I,,,, pick I,+1 C Iy
such that (f) is satisfied for Z,,1; this is possible since .J,,, is Noetherian.

Claim 2. For each m € N, there exist a nonempty open set U,, C Z,, and constants
apm, 1 <p<m, sm, and t,, such that if z € Up,, the filtration F, satisfies

(1) p-let (bp,m ]:z)) = Qpm for1 <p<my

Furthermore, apm < A for all1 <p <m, liminfs,, > S, and liminft,, > T.
m—r oo m—r oo
To see this, note that there is a nonempty open set U,,, C Z,, on which the left-hand
sides of (1)—(3) are constant. For (1) and (2), this is a consequence of Propositions 6.1
and 6.3. For (3), it follows from dim F? R,,, being constant on the connected components
of Jp,.
Now, we let

I ={iely|mm(z) € Un}.

By (1), the set I, \ I, is finite; hence, I, is infinite. Since

1

apm =p-let(bpm(Fi))s  Sm = Sm(Fi), and tn =T (F)
for all 4 € I}, and 1 < p < m, we see that

(1) apm <limsupp - let(bp.m(F;)) < limsupp - let(by(F)),
11— 00 71— 00

(2) Spm > liminf S,,(F;), and
71— 00

(3) ty > liminf T,, (F;).
1—> 00

The remainder of Claim 2 follows from these three inequalities.

Claim 3. There exists a point z € J such that mp(z) € Uy, for allm € N.



44 H. Blum, M. Jonsson / Advances in Mathematics 365 (2020) 107062

Granted this claim, the filtration F = F, associated to z € J satisfies the conclusion
of our proposition. Indeed, this is a consequence of Claim 2 and the fact that for any
linearly bounded filtration F, we have

(1) let(bo(F)) = limp?Oo SUp, >, P - 1et(by i (F));
(2) S(F) = limyy—00 Sin(F);
(3) T(F) = limy— 00 T (F).

We are left to prove Claim 3. To this end we apply Lemma 6.6. For d € N, set

Wa:=UsNmgg Usa Ny g o(Ua—2) N N7y (Uo).

Clearly W, C Jy is constructible and Wy C W;Jil) 2(Wq). We are left to check that each
Wy is nonempty. But

ma(zi) € Waforallie IgnIg_;---NIg,

and the latter index set is nonempty, since it can be written as I\ U?:o (Ij \I7), where
Iy is infinite and each I; \ I7 is finite.

Applying Lemma 6.6 to the Wy yields a point z € J such that m4(z) € Wy C Uy for all
d € N. This completes the proof of the claim, as well as the proof of the proposition. 0O

6.4. Proof of Theorem E
We begin by proving the following proposition.

Proposition 6.8. Let (v;)ien be a sequence of valuations in Valy such that T'(v;) = 1
and the limits A := lim;_, A(v;) and S := lim; o, S(v;) both exist and are finite. Then
there exists a valuation v* on X such that

A" ) <A, Sw)>8 and T*)>1.
This will follow from Proposition 6.7 and the following lemma.

Lemma 6.9. Keeping the notation and hypotheses of Proposition 6.8, let F; = Fy, N
denote the N-filtration induced by F,, as in §2.7. Then we have

(1) hmsuplct( o(Fi)) <

i—00

(2) lim liminfS,,(F;) = lim limsup S,,(F;) = S, and

m—00 §—00 m—r oo i—00

JT.'
(3) lim liminfT,,(F;) = lim limsupT,,(F;) = 1.

m—0o0 1—00 m—r o0 I—00
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Proof. We first show that (1) holds. Note that b,(F;) = b,(F,,) for all p € N. Indeed,
this follows from the fact that FP'R,, = FP Ry, for all m,p € N. Thus,

let(be (F;)) = let(be (Fy,)) = let(ae(v;)) < A(v;),

where the second equality follows from Lemma 3.19 and the last inequality is Lemma 1.1.
We now show (2) and (3) hold. To this end, we first claim that

~ 1

0 < Trn(v5) — T (Fi) < and  0< S, (v;) — S (F) < —. (6.3)

Indeed, the estimates for T, follow from Proposition 2.11. As for the estimates for
S, note that S, (v;) = fol fim(t) dt, where f; n(t) = Vol(V,i”."’t), whereas S, (F;) is a
right Riemann sum approximation of this integral, obtained by subdividing [0, 1] into m
subintervals of equal length. Thus the estimate for S, in (6.3) follows, since the functions
fi.m(t) are decreasing, with f; ,,(0) =1 and f; (1) > 0.
By the uniform Fujita approximation results in Theorems 5.1 and 5.3, we have
lim sup 15, (v;) — T'(v;)| = n}gnoo sup 1S, (i) — S(v;)| = 0.

m—0o0 i

Together with (6.3), this yields (2) and (3), and hence completes the proof. O

Proof of Proposition 6.8. For i > 1, consider the N-filtrations F; := F,, n associated to
v;. By Lemma 6.9, the assumptions of Proposition 6.7 are satisfied with T" = 1. Hence
we may find a filtration F such that

let(bo(F)) < A, S(F)>S and T(F)=1.

Using [55], we may choose a valuation v* € Valk computing let(be(F)). After rescaling,
we may assume v*(bq(F)) = 1. Therefore,

A(v*)

A = @)

= lct(ba(F) < A.

By Corollary 3.21, S(v*) > S(F) > S and T(v*) > T(F) = 1. This completes the
proof. O

Proof of Theorem E. We first find a valuation computing «(L). Choose a sequence (v;);
in Val% such that

lim A0 _;
1—00 T(UZ) v T(U)

After rescaling, we may assume T'(v;) = 1 for all 4. Hence, the limit A := lim; o, A(v;)
exists and equals «(L). Further, by (3.1), the sequence (S(v;)); is bounded from above
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and below away from zero, so after passing to a subsequence we may assume the limit
S :=lim; o S(v;) exists, and is finite and positive.
By Proposition 6.8, there exists v* € Valy with A(v*) < A and T'(v*) > 1. Therefore,

< A=alL).

Since a(L) = inf,, A(v)/T (v), v* computes a(L).

The argument for §(L) is almost identical. Pick a sequence (v;); in Val% such that

im A(vi) = in A(U)
IS0~ S0

= 5(L).

Again, we rescale our valuations so that T'(v;) = 1 for all ¢ € N. As above, we may
assume that the limit S := lim; o, S(v;) exists, and is finite and positive. Therefore,
A = lim;_,o A(v;) also exists and A/S = §(L).

We apply Proposition 6.8 to find a valuation v* such that A(v*) < A and S(v*) < S.
As argued for a(L), we see that v* computes §(L). O

7. The toric case

In this section we will freely use notation and results found in [51]. Fix a toric variety
X = X(A) given by a fan A in a lattice N ~ Z"™. We assume that X is proper and Kx
is Q-Cartier. Set Nr := N ®z R.

We write M = Hom(N,Z), Mg = M ®zQ, and Mr = M ®zR for the corresponding
dual lattice and vector spaces. The open torus of X is denoted by 7' C X. Let v1,...,vq4
denote the primitive generators of the one-dimensional cones in A and let Dy, ..., Dy be
the corresponding torus invariant divisors on X.

We fix an ample line bundle of the form L = Ox (D), where D = b1 Dy + -+ bgDy
is a Cartier divisor on X. Associated to D is the convex polytope

P="Pp={ue Mgr|{u,v)>-b; for all 1 <i <d}.

We write Vert P for the set of vertices in P.

Recall that there is a correspondence between points in P N Mq and effective torus
invariant Q-divisors Q-linearly equivalent to D, under which v € P N Mq corresponds
to

d d
D,:=D+ Z(u, vi) Dy = Z((u,vi> + b;)D;.

i=1 i=1

Note that if m € N* is chosen so that mu € N, then D,, = D +m~'div(x™").
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Let v = ¥p: Ngr — R be the concave function that is linear on the cones of A and
satisfies ¢ (v;) = —b; for 1 < ¢ < d. On a given cone o € A, the linear function is given
by ¢(v) = —(b(c),v), where b(c) € M is such that x*(“) is a local equation for D on
U, C X. We have ¢(v) = infy,ep(u, v) = mingevert p{u, v) for all v € Ng.

7.1. Toric valuations

Given v € N, let ¢ be the unique cone in A containing v in its interior. The map

CleVNM] = @ C-x"—= Ry

ucoVNM

defined by

Z cux® — min{{u, v) | ¢, # 0} (7.1)

ueoVNM

gives rise to a valuation on X that we slightly abusively also denote by v. Its center on
X is the generic point of V(o). This induces in embedding Ngr — Valx, and we shall
simply view Ngr as a subset of Valx. The valuations in Ngr are called toric valuations.
The valuation associated to the point v; € Ng is ordp, for 1 < ¢ < d, and the valuation
associated to 0 € Ng is the trivial valuation on X.

Lemma 7.1. If u € PN Mg and v € Ng, then v(D,,) = (u,v) — ¥(v).
Proof. Pick m € N* such that mu € M. Since D,, = D + m~1div(x™%), we have
v(Dy) = v(D) +m v(x™") = v(D) + (u,v),

and we are left to show v(D) = —¢(v). Let 0 € A be the unique cone containing v in its
interior. Since x(?) is a local equation for D on U,, we see

v(D) = v(x"7) = (b(0),v) = —(v),
which completes the proof. O
7.2. Log canonical thresholds

The following result is probably well known, but we include a proof for lack of a
suitable reference.

Proposition 7.2. The restriction of the log discrepancy function A = Ax to Ng C Valy is
the unique function that is linear on the cones in A and satisfies A(v;) =1 for 1 <i <d.
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Proof. Consider any cone 0 € A. Let v; € N, 1 < i < r, be the generators of the 1-
dimensional cones contained in o, and D;, 1 < i < r the associated divisors on X. Since
Kx is Q-Cartier, there exists b(c) € Mq such that (b(o),v;) = —1 for 1 <4 < r. Thus
Kx =-=>_, D; =divx(x*®) on U(0).

Pick any refinement A’ of A such that X’ := X(A’) is smooth. Consider a cone
o' € A’ with o/ C 0. Let v;- € N and D;-, 1 < j < s, be the analogues of v; and D;. Now

KX//X = KX/ — diVX/ b(a) ZDI leX’ b(o ))

on U(o’). By the definition of the log discrepancy, this implies
Ax(v)) =1+ vi(Kx/x) =1—=1=(b(o),v}) = —(b(o), ).

Since A’ was an arbitrary regular refinement of A, this implies that the restriction of
Ax to o C Nr C Valx is given by the linear function b(c) € Mq. This concludes the
proof. O

The next proposition follows from [55, Proposition 8.1]. We say that ideal a on X is
T-invariant if it is invariant with respect to the torus action on X. Equivalently, for each
o € A, the ideal a(U,) C k[e¥ N M] is generated by monomials.

Proposition 7.3. If a, is a nontrivial graded sequence of T-invariant ideals on X, then
there exists a nontrivial toric valuation computing let(ae). Further, any valuation that
computes lct(ae) is toric.

Proof. Pick a refinement A’ of A such that X’ := X(A’) is smooth. This induces a
proper birational morphism X’ — X. Let D’ be the sum of the torus invariant divisors
on X'.

By [55], there exists a valuation w € Valy computing lct(as). We now follow [55,
§8]. Let rx/ pr : Valx — QM(X’, D) = Ng denote the retraction map defined in [55],
and set v := rx/ p/(w) € Nr. Then v(a,) = w(a,) > 0. In particular, v is nontrivial.
Further, Ax/(v) < Axs(w), with equality iff w = v € Nr. Now recall that Ax(v) =
Axi(v) +v(Kx/x) and Ax (w) = Ax:(w) +w(Kx//x). Since Kx//x is T-invariant, we
have v(Kx//x) = w(Kx//x). This implies Ax(v) < Ax(w), with equality iff w = v.
Thus let(as) < Ax (v)/v(ae) < Ax(w)/w(as) = lct(as), completing the proof. 0O

Corollary 7.4. For any v € PN Mq, we have

A(v) 1
let(D,) =  inf = min e
ot(Du) veNm\ (0} 0(Dy)  i=lond (1, v7) + by

Proof. The first equality follows from Proposition 7.3, applied to the toric graded se-
quence of ideals defined by D,,. The functions v — A(v) and v — v(D,,) on Ngr are both
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linear on the cones of A, so the function v — A(v)/v(D,) on Ngr attains its infimum at
some v;, 1 <4 < d. Since A(v;) = 1 and v;(D;) = (u,v;) — ¥ (v;) = (u,v;) + b;, we are
done. O

7.8. Filtrations by toric valuations

Given v € Ng, we will describe the filtration F, of R(X, L) and compute both S(v)
and T'(v). Recall that for each m € N*,

H'X,mL)= € C-x"
uveEmPNM

where the rational function x* is viewed as a section of Ox(mD).
Proposition 7.5. For A € Ry and m € N* we have

FMH(X,mL) = &P C-x“
uemPNM
(us0)=m-p(v)>X

As a consequence, the set of jumping numbers of F, along H°(X, mL) is equal to the set
{{u,v) = m - ) |uemPnNM}.

Proof. It suffices to prove that s =Y .. ny cux™ € H(X, mL), then
v(s) = min{{u,v) — m - (v) | ¢, # 0}.

To this end, pick o € A such that v € Int(c). Note that x () is a local generator for
Ox(mD) on U,. By the definition of v(s), and by (7.1), we therefore have

v(s) = U(Z caX“ ™Y = min{(u, v) + m(b(o),v) | ¢, # 0},
which completes the proof, since ¥ (v) = —(b(co),v). O
Proposition 7.6. For m € N*, we have

S(v) = (insv) = 9(0) and To(v) = _max | (u,0) = (o),

where Un, = (3 e prm—1a1 W/ #(P Nm~ M) is the barycenter of the set PNm~'M.

Proof. From the description of the jumping numbers of F,,, in Proposition 7.5, we see

ZUEmPﬁM<u’ U> —m- ¢(v) = < ZuEmPﬁM U

Sm(v) = m#(mP N M) N m#(mPﬂM)7U> — ¥,
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and

maXyemPnM <U, U>
m

T (v) = —(v).
Now, multiplication by m~! gives an isomorphism mP N M — P Nm~'M. Applying
said isomorphism yields the desired equalities. 0O

Corollary 7.7. We have

S() = (@.0) = ¥(v) and T(v) = max{u,v) (o) = max(u,v) = %(v).

where w denotes the barycenter of P and Vert(P) denotes the set of vertices of P.

Remark 7.8. One can thus think of T'(v) = maxyecp(u,v) —min,ep(u,v) as the width of
P in the direction v, see also [2, §3.2].

Proof of Corollary 7.7. The formula for S(v) is immediate from Proposition 7.6 since
S(v) = limyy—00 Sm(v) and @ = limyy,— o0 T, Similarly, T'(v) = limy, 00 T (v), and

lim max  (u,v) = max{u,v) = max (u,v),
m—o0 yu€ PNm—1M ueP u€EVert P

where the last equality holds by linearity of u +— (u,v). This completes the proof. O

Remark 7.9. The proof shows that T,,(v) = T'(v) for m sufficiently divisible.
7.4. Deformation to the initial filtration

Given a filtration F of R(X, L), we will construct a degeneration of F to a filtration
whose base ideals are T-invariant. We will use this construction to show «(L) and (L)
may be computed using only toric valuations. Our argument is a global analogue of [10,
§7], which in turns draws on [72].

First write R(X, L) as the coordinate ring of an affine toric variety. Set M’ := M x Z,
N’ :=Hom(M',Z), Mg :== M ®@z R, and N := N ®z R. Let 0y denote the cone over
P x {1} € Mgr x R. Then there is a canonical isomorphism Clog N M'] ~ R(X, L).

We put a Z" order on the monomials of k[og N M’] using an argument in [57, §7].
Choose y1,...,Ynt1 € oy NN’ that are linearly independent in Nj. Let p: M — Zn+!
denote the map defined by

p(u) = (<u7y1>7 ) <u7yn+1>) .

Then p is injective and has image contained in Zﬁ“.
Endowing Zi'H with the lexicographic order gives an order > on the monomials in
Cloo N M’]. Given an element s € C[og N M’] the initial term of s, written ins (s), is the
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greatest monomial in s with respect to the order >. Given a subspace W of H°(X, mL),
we set

ins (W) = span{ins. (s) | s € W},

where W is viewed as a vector subspace of Clog N M’]. Clearly, ins (W) is generated by
monomials in Clog N M’]. Therefore, b(|ins (W)|) is a T-invariant ideal on X.

Proposition 7.10. If W is a subspace of H*(X, mL), then dim W = dim in (W).

Proof. By construction, there exists a basis of ins (W) consisting of monomials

x“, ..., x"%, where u; € o9 N M’, and we may assume x“* > --- > x" . For each
1<i<r, fix s; € W such that ins (s;) = x*i. We claim that sq,...,s, forms a basis for
W.

To show that sq,...,s, are linearly independent, we argue by contradiction, so sup-

pose 0 = >0, ¢85, with ¢ € C”\ {0}, and pick 4y minimal with ¢;, # 0. Then
0 =ins0(>_ ¢:8;) = ¢;x™ 0, a contradiction.

Similarly, if sq,...,s, did not span W, then there would exist an element s € W \
span{si, ..., s,} with minimal initial term. Note that ins (s) = cx™ for some ¢ € C*
and ¢ € {1,...,r}. Now, s — ¢cs; € W \ span{sy,...,s,}, but has initial term strictly
smaller than in(s). This contradicts the minimality assumption on ins (s), and the proof
is complete. O

To understand lct(b(|ins W1)), we construct a l-parameter degeneration of W to
ins, (W) essentially following [41, §15.8]. Choose elements s1, ..., s, € W such that

W =span{si,...,s,} and ins (W) =span{ins(s1),...,in>(s,)}.

Next, we may fix an integral weight p: 0o N M — Z, such that in.  (s;) = ins(s;) for
1 <i <r [41, Exercise 15.12]. Here >, denotes the weight order on Z"+! induced by u.

We write Clog N M'][t] for the polynomial ring in one variable over Clog N M’]. For
s =" Bux™ € Clog N M'], we write d = max{u(u) | B # 0} and set

§i=thY " But Wy,
Next, let W C C[og N M'][t] denote the C[t]-submodule of Clog N M’][t] generated by
51,...,5,. Then W gives a family of subspaces of H(X, mL) over Al. For ¢ € A(C),
write W, for the corresponding subspace of H°(X,mL). Clearly W; = W and W, =

Lemma 7.11. For ¢ € C*, let(b(|W¢])) = let(b(|W])).
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Proof. Consider the automorphism of R(X, L)[t*!] defined by x* + t*(")x* and t + ¢.
Since X ~ Proj(R(X, L)), this automorphism of R(X, L)[t*!] gives an automorphism
X x (A1\{0}) over A1\ {0}. For ¢ € C*, we write ¢,. for the corresponding automorphism
of X. Since ¢} sends W, to W, we see let(b(|We|)) =let(b(|W])). O

Proposition 7.12. If W is a subspace of H*(X,mL), thenlct(b(|ins (W)|)) < let(b(|W])).

Proof. Combining Proposition 6.2 with Lemma 7.11, we see lct(b(|Wo|)) < let(b(|W])).
Since ins (W) = Wy, the proof is complete. O

Let F be a filtration of R(X, L). We write Fi, for the filtration defined by
FoHY(X,mL) :==ins (F*H°(X,mL))

for all A € Ry and m € N. To see that Fj, is indeed a filtration, first note that condi-
tions (F1)—(F3) of §2.3 are trivially satisfied. Condition (F4) follows from the equality
ins (s182) = ins(s1) ins(s2) for s1,s2 € R(X, L).

Proposition 7.13. With the above setup, we have
S(Fin) =S(F), T(Fin)=T(F), and lct(be(Fin)) < lct(be(F)).

Proof. By Proposition 7.10, F and F;, have identical jumping numbers. Thus, S(F) =
S(Fin) and T'(F) = T'(Fin). By Proposition 7.12, Ict(bp, m (Fin)) < let(bpm)(F) for p € N
and m € N. Letting m — oo, we get lct(b,(Fin)) < let,(be(F)) for all p € N, and hence
let(be(Fin)) < lct(be(F)). O

Proposition 7.14. If w is a nontrivial valuation on X with A(w) < oo, then there exists
v € Ngr \ {0} such that

Aw) < A(w), T(v)>T(w), and S(v)>S(w).

Proof. Let F,, in denote the initial filtration of F,,. Then be(Fy,in) is a graded sequence
of T-invariant ideals on X. Further, Proposition 7.13 shows that

lct(be(Fuin)) < lct(be(Fu)) = let(aa(w)) < A(w) < oo,

where the first equality Lemma 3.19, and the second inequality is Lemma 1.1.

Therefore, by (Fup,in) is a nontrivial graded sequence. Proposition 7.3 yields a nontrivial
toric valuation v € Ng that computes lct(be(Fy in)). After rescaling v, we may assume
V(be(Fuw,in)) =1, and, thus, A(v) = lct(be(Fuy,in)). We then have

A(v) = let(be(Fuin)) < let(be(Fu)) = let(ae(w)) < A(w).
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Next,

S(”) > S(Fw,in) = S(}—w) = S(w)7

where the inequality is Corollary 3.21 and the following equality is Proposition 7.13. A
similar argument gives T'(v) > T'(w) and completes the proof. O

Corollary 7.15. We have the following equalities

A(v)

e M an = in
a(L)= inf d §(L) ot S

in
veNr\{0} T'(v)

Proof. This is clear from Theorem C and Proposition 7.14. O
7.5. Proof of Theorem F

We now consider the log canonical and stability thresholds of L. The following result
is slightly more precise than Theorem F in the introduction.

Corollary 7.16. We have

1
L) = i let(Dy,) = i in —— 7.2
OZ( ) ue{/réytl(P) ¢ ( “ uE%/I;gl(P) i=nll,1.?,d <u,vi> + b; ( )
and
. 1
§(L) =lct(Dy) = min — (7.3)

i=1,....d (W,v;) + b;’

where w denotes the barycenter of P and Vert(P) the set of vertices of P. Furthermore,
a(L) (resp. §(L)) is computed by one of the valuations vy, ..., vq.

Proof. Again, we will only prove the half of the corollary that concerns a(L). First, we
combine Lemma 7.1, Corollary 7.7 and Corollary 7.15 to see

A(v) A(v)

L)= inf i = mi inf :
L) = e (D) ey went o) 2D

Applying Corollary 7.4 to the previous expression yields (7.2).
Next, pick u € Vert(P) and i € {1,...,d} such that «(L) = 1/({u, v;) + b;). Then we
have A(v;)/T (v;) = 1/({u,v;) +b;), so v; computes «(L). O

7.6. The Fano case

Finally we consider the case when X is a toric Q-Fano variety, that is, —Kx is an
ample Q-Cartier divisor.
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Corollary 7.17. A toric Q-Fano variety is K-semistable iff the barycenter of the polytope
associated to —Kx 1is equal to the origin.

This result was proved by analytic methods in [6,3], even with K-semistable replaced
by K-polystable, and follows from [88] when X is smooth. It can also be deduced from [66,
Theorem 1.4], which is proven algebraically.

Proof. We apply (7.3) with b; = 1 for all 4. If @ = 0, then 6(—Kx) = 1, which by
Theorem B implies that X is K-semistable. Now suppose @ # 0. Then (u,v;) < 0 for
some 17, or else all the v; would lie in a half-space, which is impossible since A is complete.
It then follows from (7.3) that §(—Kx) < 1, so by Theorem B, X is not K-semistable. 0O

Remark 7.18. The proof shows that if X is K-semistable, any toric valuation computes
0(—Kx)=1.

We now give a simple formula for §(—Kx) in the Q-Fano case. When X is smooth,
the formula for agrees with the formula in [61] for the greatest lower bound on the Ricci
curvature of X, as defined and studied in [85,81].

Corollary 7.19. Let X be a toric Q-Fano variety and w denote the barycenter of the
polytope P_k . :={u € Mg | (u,v;) > —1 for all 1 <i < d}.

(i) If X is K-semistable, then §(—Kx) = 1.
(ii) If X is not K-semistable, then

C

O—Kx) = 1+c¢

where ¢ > 0 is the greatest real number such that —cu lies in P_g .
Proof. Statement (i) follows from (7.3) and Corollary 7.17. For (ii), we claim that
0<(@uv)+1<1/e+1
for all i = 1,...,d and equality holds in the last inequality for some 4. Statement (ii)
follows from the claim and (7.3).

We now prove the claim. Since @ lies in the interior of P_k ., (@, v;) > —1 for all i.
Since —cu lies on the boundary of P_k,,

—c(u,v;) = (—cu,v;) > —1

for all 7 and equality holds in the last inequality for some ¢. This completes the proof. O
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