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CONVERGENCE OF p-ADIC PLURICANONICAL
MEASURES TO LEBESGUE MEASURES ON SKELETA
IN BERKOVICH SPACES

BY MatTtias Jonsson & Joran~NES NICATSE

AsTracT. — Let K be a non-archimedean local field, X a smooth and proper K-scheme, and
fix a pluricanonical form on X. For every finite extension K’ of K, the pluricanonical form
induces a measure on the K’-analytic manifold X (K’). We prove that, when K’ runs through
all finite tame extensions of K, suitable normalizations of the pushforwards of these measures
to the Berkovich analytification of X converge to a Lebesgue-type measure on the temperate
part of the Kontsevich—Soibelman skeleton, assuming the existence of a strict normal crossings
model for X. We also prove a similar result for all finite extensions K’ under the assumption
that X has a log smooth model. This is a non-archimedean counterpart of analogous results
for volume forms on degenerating complex Calabi—Yau manifolds by Boucksom and the first-
named author. Along the way, we develop a general theory of Lebesgue measures on Berkovich
skeleta over discretely valued fields.

Résumi (Convergence des mesures pluricanoniques p-adiques vers des mesures de Lebesgue sur
des squelettes dans les espaces de Berkovich)

Soient K un corps local non-archimédien et X un K-schéma lisse et propre, et fixons une
forme pluricanonique sur X. Pour chaque extension finie K’ de K, la forme pluricanonique
induit une mesure sur la K’-variété analytique X (K’). Nous démontrons que, lorsque K’ par-
court toutes les extensions finies modérément ramifiées de K, les normalisations appropriées
des images directes de ces mesures sur 'analytifié de X au sens de Berkovich convergent vers
une mesure de type Lebesgue sur la partie tempérée du squelette de Kontsevich-Soibelman,
en supposant l'existence d’un modeéle & croisements normaux stricts de X. Nous démontrons
également un résultat similaire pour toutes les extensions finies K’ en supposant que X ad-
met un modele log lisse. Il s’agit d’une version non-archimédienne de résultats analogues pour
les formes de volumes sur les familles dégénérées de variétés complexes de Calabi—Yau dus a
Boucksom et au premier auteur. En cours de route, nous développons une théorie générale des
mesures de Lebesgue sur les squelette de Berkovich sur des corps a valuation discrete.
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1. INnTRODUCTION

In [BJ17], Boucksom and the first-named author proved a convergence result for
volume forms on degenerating families of complex Calabi-Yau varieties to a Lebesgue-
type measure supported on the skeleton of a non-archimedean space associated with
the degeneration. This result was motivated by Kontsevich and Soibelman’s non-
archimedean approach to mirror symmetry and the Strominger-Yau-Zaslow conjec-
ture [KS06]. The main goal of the present paper is to establish a non-archimedean
counterpart of the results in [BJ17], studying the convergence of Haar measures over
non-archimedean local fields under finite extensions of the base field.

Let K be a local field, X a smooth and proper K-scheme of pure dimension, and 6 a
pluricanonical form on X. A case of particular interest is when X has trivial canonical
bundle and 6 is a nonzero global section of the latter. The set of K-points on X has
a natural structure of a K-analytic manifold, and the pluricanonical form 6 induces
a pluricanonical measure on X (K) that we denote by |6| (see Section 6.3).

Now assume that K is non-archimedean, that is, a field of Laurent series over a
finite field, or a finite extension of Q, for some prime p. For every finite extension K’
of K, there is a natural continuous map 7g : X(K') — X from the K’-analytic
manifold X (K’) to the Berkovich analytification X?" of X. The aim of this paper is
to study the asymptotic behavior of the pushforward

mrgr = (ﬂ-K’)*|9 QK Kl|
of the measure |6 @ K'| to X?" as K’ runs through finite extensions of K.
Fix an algebraic closure K of K, and let &% be the set of finite extensions K’
of K in K, ordered by inclusion. Let &3 be the subset of &% consisting of unramified

extensions, and let K" be the union of all extensions in &' (that is, the maximal
unramified extension of K in K%).

Maix Turorem. — Assume X admits a log smooth model over the valuation ring R

in K. Then there exist Lebesque-type measures A* and A" on X", and positive con-

stants ¢, and ¢, for K' in &% and &, respectively, such that

lim c% mg =A% and lim c% mg = A"
K’Géal‘z K ’ K'Gg}f K

in the weak sense of positive Radon measures on X2,
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CONVERGENCE OF P-ADIC PLURICANONICAL MEASURES 989

This result is an amalgam of Theorems 6.4.2 and 6.6.2, where the reader can find
more precise statements. For the sake of this introduction, we only make the following
remarks.

First, the measure A® is supported on the top-dimensional part of the Kontsevich—
Soibelman skeleton Sk(X,0) C X of (X,6) [KS06, MN15], defined as the closure
in X" of the locus where a certain function, the weight function wte attains its
infimum, see Section 2.2. If X has a log smooth (or merely log regular) model, then
Sk(X, ) is nonempty and carries a natural piecewise integral affine structure, and thus
a natural Lebesgue measure (see Section 5.1); the measure A\® equals the Lebesgue
measure on the top dimensional part of Sk(X, 8), suitably weighted to make it well-
behaved under tame finite extensions of the base field K; we call it the stable Lebesgue
measure. The constants c%, in the Main Theorem are given by

w[K'": K
= q*! i ]’
e

where ¢ is the cardinality of the residue field on K, e = ¢(K'/K) is the ramification
index, w = inf wtg, and d is the dimension of Sk(X, ).

Second, the unramified version of the convergence result in the Main Theorem is
of course only interesting when X (K") # &, but it holds without the assumption of
the existence of a log smooth model of X. The measure A" is a finite atomic measure
supported on the Shilov boundary Sh(X,6) of (X, 0), see Section 2.3. We have

ur _  wY[K":K
Cxr =(¢ ! ],

' is the minimum of wty over the points in X" whose residue field is un-

where w"
ramified over K. If X admits a log regular model, then Sh(X, 0) is equal to the set of
integral points of Sk(X,0).

It is generally believed that X admits a log smooth model after base change to a
finite extension of K. Without such a base change, one can only hope for the existence
of a log regular model (this is equivalent to the existence of a strict normal crossings
model, which would follow from embedded resolution of singularities over the excellent
ring R). We establish a variant of our main theorem under this weaker assumption by
considering tame extensions of K. Let &% C &5 be the set of tame finite extensions
of K in K*. Assuming that X admits a log regular model over R, we show that

Klllenéla;( compr = M,
where \! is the restriction of A\* to the closure Sk'(X,6) of the set of Zp)-integral
points of Sk(X,60), and c%, is defined in the same way as c%,, replacing d by the
dimension of Sk’(X,6). When X has semistable reduction, the measures A\* and \*
are both equal to (unweighted) Lebesgue measure on the top-dimensional part of
Sk(X,0), whereas A" is a sum of Dirac masses on the integral points of Sk(X, ).
A variant of our theorem for non-local fields is given in Theorem 7.3.1.

We deduce these results from a general study of Lebesgue measures on skeleta over
arbitrary discretely valued fields, combined with the theory of weak Néron models
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200 M. Jonsson & J. Nicaise

and the Lang—Weil estimates. Our theory of Lebesgue measures on skeleta is of inde-
pendent interest, and generalizes the natural metric on the dual reduction graph of a
smooth and proper curve over K (see Section 5.5).

ExampLE: THE TATE ELLIPTIC CURVE. — Let us illustrate the Main Theorem for the
example of the Tate elliptic curve given by

(%) X ={zyz +2(* +y* +2%) =0} C P},

over K = Q5. This simple example illustrates some of the phenomena in the general
case.

Equation (*) defines a semistable model 2" over R = Z with trivial relative
canonical bundle wg-/r. Let 6 be a generator of wg /. The Kontsevich-Soibelman
skeleton Sk(X,0) coincides with the skeleton Sk(.Z") of 2" and is homeomorphic
to a circle. The Shilov boundary Sh(X,#) consists of the three vertices of Sk(Z"),
corresponding to the irreducible components of the special fiber of 2. See Figure 1.
We have a canonical continuous retraction

pa: X¥™ — Sk(Z") = Sk(X,0).

The measure mg is supported on the Cantor set X (K) C X" which is isomorphic
as a K-analytic manifold to a union of three open unit balls in K (the fibers of the
three smooth k-rational points on 2} under the reduction map X (K) — 2% (k)).
This isomorphism identifies || with the Haar measure with mass 1/2 on each of these
open balls. The pushforward (pg )«mx is an atomic measure on Sh(X, ), giving mass
1/2 to each point.

Figure 1. The picture shows the Berkovich analytification X*" of the
Tate elliptic curve X over Q2 defined by (). The circle is the Kontsevich-
Soibelman skeleton Sk(X, ), and the three vertices on the circle form the
Shilov boundary Sh(X, ). The measure mg induced by || is supported
on the Cantor set formed by the endpoints.

Now consider a finite unramified extension K’/K. The image of X (K') in X" is
a Cantor set that still retracts to Sh(X, ), so r.mg is still a finite atomic measure
supported on Sh(X, ), see Figure 2. However, any connected component of X% ~

JE.P.— M., 2020, tome 7



CONVERGENCE OF P-ADIC PLURICANONICAL MEASURES 2091

Sh(X, ) only carries a small fraction of the total mass of mg-. This explains why the
limit measure A"" in the Main Theorem is a sum of Dirac masses at the three points
in the Shilov boundary of (X, 6).

Ficure 2. The endpoints in the picture is a Cantor set that equals the
support of the measure mgs on X*", where K’ is an unramified extension
of Q2 of degree two.

Finally consider a ramified extension K’/K. The image of X (K') in X" is then a
Cantor set that retracts to a finite but possibly large subset of Sk(X,8), see Figure 3.
Any connected component of X\ Sk(X, 6) carries only a small fraction of the mass
of mg if [K’ : K] is large. This explains why the limit measure A* in the Main
Theorem is equal to Lebesgue measure on the circle Sk(X,0).

Ficure 3. The endpoints in the picture is a Cantor set that equals the
support of the measure mys on X*", where K’ is a ramified extension of
Q2 of degree two.

RELATED RESULTS
The Lang-Weil estimates. — Our convergence results can be viewed as a non-
archimedean analog of the Lang—Weil estimates for varieties over finite fields. Let F'

JE.P.— M., 2020, tome 7



202 M. Jonsson & J. Nicaise

be a finite field, and let X be an integral proper F-scheme, of dimension n. We en-
dow F' with its trivial absolute value and denote by X®" the analytification of X.
Let 1 be the point of X?" corresponding to the trivial absolute value on the function
field of X; this point plays the role of the skeleton of X. We denote by ¢ the
cardinality of F, and we fix an algebraic closure F'* of F. It follows easily from the
Lang-Weil estimates that, as F’ ranges through the finite extensions of F' in F%,
ordered by inclusion, the pushforward to X" of the normalized counting measure

g N g,
TEX(F)
on X (F’) converges to a weighted Dirac measure supported at 1. The mass of this
measure is equal to the number of geometric irreducible components of X. We will
prove this result as a toy example in Section 6.1. In fact, the Lang—Weil estimates
are a crucial ingredient for our convergence results over non-archimedean local fields;
the passage from non-archimedean local measures to point counting over finite fields
occurs through the theory of weak Néron models (see Section 2.3).

Convergence of complex volume forms. — An important motivation for this paper
are analogous results on the convergence of volume forms on degenerating families
X — D* of complex Calabi—Yau manifolds, obtained by Sébastien Boucksom and the
first-named author in [BJ17] (see also [Shil9] for the logarithmic case). They can be
interpreted as a measure-theoretic version of a fundamental conjecture of Kontsevich
and Soibelman [KS06] on the collapse of Ricci-flat metrics in projective maximally de-
generating families, motivated by mirror symmetry. In [BJ17], the limit measure lives
on the Kontsevich-Soibelman skeleton, and the convergence takes place in a suitable
hybrid space obtained from X by inserting a Berkovich space as central fiber. In the
present work, the convergence takes place directly in a Berkovich space.

lgusa zeta functions and motivic measures. — If K is a complete discretely valued field
with infinite residue field, then K is not locally compact and no longer carries a Haar
measure. The natural generalization of Haar measures in this context is the theory of
motivic integration as developed in [LS03]. The behavior of the motivic volume under
finite extensions of K is encoded in Denef and Loeser’s motivic Igusa zeta function via
its interpretation in [NS07]. If K has equal characteristic zero, the leading asymptotic
term of the motivic zeta functions of Calabi-Yau varieties was studied in [HN18], and
the relations with the Kontsevich—Soibelman skeleton are highlighted in [HN18, 3.2.3].
These results should be viewed as a geometric version of our convergence statements
for non-archimedean local fields. Closely related results over p-adic fields had already
appeared in the literature in a somewhat different setting, especially in the work of
Chambert-Loir and Tschinkel [CLT10].

Philippon’s work. — It was pointed out to us by Antoine Chambert-Loir that an
early trace of our main results can already been found in Philippon’s paper [Phi94].
Let K be a p-adic field, and denote by ¢ the cardinality of its residue field. For
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every finite extension K’ of K, denote by ugs the Haar measure on the closed unit
polydisc in (K’)™. Then the formula at the bottom of page 1049 in [Phi94] implies
that, as K’ ranges through the finite extensions of K in a fixed algebraic closure
of K, the pushforward of the measure pxs to AR converges to the Dirac measure
supported at the Gauss point of the closed unit polydisc in A%

STRUCTURE OF THE PAPER. Section 2 contains some preliminary results and facts
about Kontsevich—Soibelman skeleta and weak Néron models. In Section 3, we collect
auxiliary results on logarithmic models to be used in the remainder of the paper. The
technical heart of the paper consists of Sections 4 and 5, where we define Lebesgue
measures on Berkovich skeleta and study their properties under finite extensions of
the base field K. For technical reasons, it is convenient to work not only with strict
normal crossings models, but, more generally, with log regular models, building upon
the theory developed in [MN15] and [BM19]. In Section 6, we prove our convergence
theorem for measures associated with pluricanonical forms over non-archimedean local
fields (Theorems 6.4.2 and 6.6.2). These provide a precise version of the Main Theorem
above. Finally, in Section 7 we prove an equidistribution result for Shilov boundary
points associated with weak Néron models (Theorem 7.3.1), which can be viewed as
a version of our main theorem over discretely valued fields that are not necessarily
locally compact.

Acknowledgements. This article originated in a question by Matt Baker on a p-adic
analog of the convergence results for archimedean measures in [BJ17], and in a discus-
sion between Sébastien Boucksom, the first-named author, and Antoine Chambert-
Loir. We are grateful to Matt Baker and Antoine Chambert-Loir for sharing their
ideas, and to Sébastien Boucksom, Joe Rabinoff and Farbod Shokrieh for further
fruitful discussions. We would also like to thank the referees for carefully reading the
manuscript.

2. PRELIMINARIES

2.1. Norarion AND coNvENnTIONs. — We denote by R a complete discrete valuation
ring, with quotient field K and residue field k. We denote by p the characteristic
exponent of k and we choose a uniformizer w in R. We also fix an algebraic closure K
of K, with valuation ring R*, and we denote by R"" the maximal unramified extension
of R in R*. The residue field of R" is a separable closure of k, which we denote by k*.
We write K" for the quotient field of R". If k is finite, then we will denote its
cardinality by q.

A finite extension K’ of K is called tame (or tamely ramified) if the ramification
degree e(K’'/K) of K’ over K is prime to p, and the residue field of K’ is a separable
extension of k. The union of all tame finite extensions of K in K¢ is called the tame
closure of K in K%, and denoted by K*.

We denote by vg the discrete valuation on K, normalized such that vg(w) = 1.
We define a non-archimedean absolute value | - | on K by setting |a|x = €% (®) for
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204 M. Jonsson & J. Nicarse

every a € K* where ¢ is a fixed element in (0, 1). If k is finite, we will take £ = 1/q.
Whenever K’ is a finite extension of K, we denote by vk the unique valuation on K’
that extends vg. The value group of vy is equal to (1/e)Z, where e = e(K'/K)
is the ramification index of K’ over K. We also endow K’ with the absolute value
| - |k = Vs’ (); this is the unique absolute value that extends | - |x-.

For every K-scheme X of finite type, we denote by X&" the Berkovich analytifi-
cation of X [Ber90]. For every point x on X", we denote by 5 (z) the residue field
of X" at x. This is a complete valued field extension of K, whose residue field is
denoted by jfi”v(ac)

If X is a separated K-scheme of finite type, then an R-model for X is a flat
separated R-scheme of finite type 2, endowed with an isomorphism of K-schemes
Z RrK - X X. Note that we do not impose any properness co condition on X or Z". We
denote by 2 the formal w-adic completion of 2" and by 3&” its generic fiber; this is
a compact analytic domain in X", and it is equal to X?" 1f and only if 2 is proper
over R (at the other extreme, if 3&”1c is empty then so are Z and 2, ). We denote by

Spg - 32; — 2k
the specialization morphism (also called reduction map) associated with 2.

If X is regular and proper over K, then a proper R-model 2  of X is called
an snc-model if 2 is regular and £ is a divisor with strict normal crossings (not
necessarily reduced). The existence of snc-models is known when & has characteristic
zero (by Hironaka’s resolution of singularities), and in arbitrary characteristic when
the dimension of X is at most 2 [CJS09, CP19].

For the basic theory of piecewise integral affine structures, we refer to [Ber99, §1].
We will use additive, rather than multiplicative, notation; for every integer e > 0,
what we call piecewise integral (1/e)Z-affine spaces are called Rg-piecewise linear
spaces in [Ber99, §1], with R = {/|K*| and S = Z. Thus the piecewise models of
piecewise integral (1/e)Z-affine spaces are rational polytopes P in R" endowed with
the group of functions of the form

P—R:(21,....,25) —> 121+ + apZp + b

where the coefficients a; are integers and the constant term b lies in (1/e)Z. On
any piecewise integral (1/e)Z-affine space, it makes sense to speak of (1/¢’)Z-integral
points whenever €’ is an integer multiple of e: these are the points where every piece-
wise integral (1/e)Z-affine function takes a value in (1/€')Z

Whenever K’ is a finite extension of K of ramification index e, we will also use
the terminology integral K'-affine instead of integral (1/e)Z-affine (in Berkovich’s
notation, this would be |(K’)*|z-affine). This will make it easier to keep track of
the behavior of these structures under extensions of K. Our primary examples of
piecewise integral K'-affine spaces will be skeleta of log regular models of regular
proper K’-schemes (see Section 4).

JE.P.— M., 2020, tome 7
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2.2, Tue KoNTSEVICH SOIBELMAN SKELETON. Let X be a connected smooth and
proper K-scheme, and let # be a non-zero m-canonical form on X, for some positive
integer m. It is explained in [MN15] how one can attach to 6 a canonical subspace
of X2 called the Kontsevich-Soibelman skeleton of the pair (X, ). Such an object
first appeared in the work of Kontsevich and Soibelman on the non-archimedean SYZ
fibration [KS06]. Let us briefly recall the construction. For every normal R-model 2
of X and every irreducible component E of 2}, the fiber of the specialization map sp 4-
over the generic point £ of E contains a unique point x. This point is called the
divisorial point associated with 2" and E. If we denote by N the multiplicity of E
in Z%, then x corresponds to the divisorial valuation (1/N)ordg on the function field
of X.

The weight of 6 at xz is defined in the following way. Locally around &, the
model 2" is regular, so that we can consider the relative canonical line bundle
wg /r- We view 0 as a rational section of the logarithmic relative m-canonical bundle
W /R(Zkred — 25)®™ and we denote the associated Cartier divisor by div g (6).
If we denote by w the multiplicity of divg (0) at £, then the weight of 6 at z is
defined as

w

The minimal weight Wty,in(X,0) of 6 on X is defined as the infimum of the weights
wtg(x) where z runs through the set of divisorial points on X", and the Kontsevich—
Soibelman skeleton Sk(X, ) is the closure in X" of the set of divisorial points = such
that wto(z) = Wtmin (X, 0). The essential skeleton Sk(X) is the union of the skeleta
Sk(X,0) over all non-zero pluricanonical forms ¢ on X.

Remark 2.2.1. — In the definition of the weight function in [MN15], the reference
line bundle was taken to be wg /r( Lk red)®™, rather than wy /r(Lired — i)™,
and the factor m was not included in the denominator. Thus the weight function
in [MN15] is given by the formula wt}!N = m(wty + 1), so that the definition of the
Kontsevich—Soibelman skeleton is not affected. The reason for our different choice
of reference bundle is that it agrees with the relative canonical bundle for smooth
models and behaves better under ramified extensions of R. The extra factor m in
the denominator appears naturally when we consider p-adic measures associated with
m-canonical forms (see Section 6.3). If k has characteristic zero, the weight function
wtg is related to Temkin’s metric ||f]| on X?* by the formula

m-wtyp = 710g5 ||9||7

see Theorem 8.3.3 in [Teml6]. If k& has positive characteristic, an additional term
appears in the comparison statement; this is caused by issues of wild ramification.

Without any assumption on the existence of resolutions of singularities, it is not
known whether wty is bounded below and Sk(X, ) is non-empty. However, Theorem
4.7.5 in [MN15] provides an explicit description of Sk(X,#) if we assume that X
has an snc-model 2~ over R. In that case, we can compute wtnin(X,6) by taking
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the minimum of the weights wtg(z) where x runs through the finite set of divisorial
points associated with the prime components of Z}. We write

Le =Y NiE;, divy ()= wEi+H
il iel
with H an effective Cartier divisor that is horizontal, that is, whose support does not
contain any of the components F; of 2. Then we have

Whmin (X, 0) = min{w;/mN; | i € I'}.

Moreover, we can identify Sk(X, ) with the union of the so-called 8-essential faces of
the Berkovich skeleton Sk(2") of 2. This Berkovich skeleton is a subspace of X"
that is canonically homeomorphic to the dual intersection complex of 2%, and a face o
is called f-essential if it satisfies the following two conditions:

— for every vertex v of o, we have wtg(v) = Wtmin(X, 6) (recall that the vertices
of Sk(Z") are precisely the divisorial points associated with the prime components
of Z1);

— the stratum of £} corresponding to o is not contained in the horizontal part H

of the Cartier divisor divg (9).
In particular, Sk(X,#) is a non-empty compact subspace of X*". Likewise, Sk(X) is
a compact subspace of X", and it is non-empty if and only if X has nonnegative
Kodaira dimension. It is proved in [NX16, 3.3.5] and [KNX18, Th. 24] that Sk(X) is
a strong deformation retract of X" if k has characteristic zero, X is projective, and
the canonical line bundle wy,k of X is semi-ample.

2.3. Weak NERON MODELS AND THE SHILOV BOUNDARY. — Let X be a smooth and
proper K-scheme of pure dimension.

DEeriNrrion 2.3.1. A weak Néron model of X is a smooth R-model % of X such
that the map % (R"™) — X (K") is bijective.

The R-scheme %/ is not necessarily proper, but the definition expresses that it
satisfies the valuative criterion for properness at least for unramified extensions of R.
It is proved in [BLR90] that a weak Néron model always exists, without any restriction
on the characteristic of k; however, it is far from unique. Given any proper R-model 2~
of X, we can always find a morphism % — 2 of R-models that is a composition
of blow-ups at centers supported in the special fiber and such that every R" -valued
point on # factors through the R-smooth locus Sm(#) of %, by [BLR90, 3.4/2].
Then Sm(%) is a weak Néron model of X. Such a morphism # — 2 is called a
Néron smoothening of Z .

Let 8 be an m-canonical form on X, for some positive integer m, and assume
that 6 is not identically zero on any connected component of X. For every weak
Néron model % of X and every connected component C of %, we set

ordg(0) = %,

JE.P.— M., 2020, tome 7



CONVERGENCE OF P-ADIC PLURICANONICAL MEASURES 297

where w is the unique integer such that w="6 extends to a generator of w%’?R at the
generic point of C. If we denote by x the divisorial point on X?" associated with C,
then orde(0) = wtg(z), because C' has multiplicity 1 in %.

Derinition 2.3.2. — Let % be a weak Néron model of X. We set
ordmin(% ,0) = min{ordc(9) | C € mo(%;)}-

The Shilov boundary of (% ,0) is the set of divisorial points in X" associated with
the connected components C' of %, for which orde(0) = ordmin (%, 6). We denote this
set by Sh(%,6).

Note that Sh(%,0) is empty if X (K") is empty; in that case, every weak Néron
model % of X has empty special fiber, and ord,n (%, 0) = —cc.

Prorosition 2.3.3. The value ordmin (% ,0) and the subset Sh(%,60) of X** only
depend on the pair (X, 0), and not on the choice of a weak Néron model % .

Proof. — Let % and %' be weak Néron models for X. Then we can dominate both of
them by a third weak Néron model ¥ by taking the schematic closure of the diagonal
embedding of X in % xr %’, and applying a Néron smoothening. We denote the
morphism ¥ — % by h. By Zariski’s Main Theorem, & is quasi-finite locally around
a point £ of ¥}, if and only if it is an open immersion locally around &, because hy is
an isomorphism, % is normal, and ¥ is R-flat. Thus if C is a connected component
of ¥, then either h is an open immersion around the generic point of C, or h(C') does
not contain any generic point of %j.

For every generic point & of ¥}, we have that (h*w%;’R)g is a submodule of (w;eﬁ’/”R)g,
and they are equal if and only if & is étale at £. Thus if C' is a connected component
of ¥ and C' is the unique connected component of % that contains h(C), then
ordcf > orde/6, and equality holds if and only if A is an open immersion locally
around the generic point of C. We also know that hy : ¥, — % is dominant, because
every k°-rational point on %}, can be lifted to an element of % (R") = ¥ (R") by the
infinitesimal lifting criterion of smoothness, and k*-rational points are dense in %
because % is smooth over k. Therefore, every generic point of %4 lifts to a generic
point of #;. It follows that ordmin (%, ) = ordmin (¥, 0) and Sh(%,0) = Sh(¥,0). O

In view of Proposition 2.3.3, we will henceforth write ordmin (X, #) and Sh(X, 6) in-
stead of ordyin(%,6) and Sh(%, ), and we call Sh(X,60) C X" the Shilov boundary
of the pair (X, 6).

3 I;OCARITH MIC MODELS

We assume that the reader has a basic familiarity with logarithmic geometry. For
a general introduction to log schemes, we refer to [Kat89]. The theory of regular log
schemes is due to Kato [Kat94]; the properties and constructions that will be used
below are summarized in Section 3 of [BN19]. All log structures in this paper are
defined with respect to the Zariski topology.
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3.1. L.oG REGULAR AND LOG SMOOTH MODELS. Let 2" be a separated flat R-scheme
of finite type. We set S = Spec R. The standard log structure on S is the divisorial
log structure induced by the unique closed point of S. Likewise, the standard log
structure on 2" is the divisorial log structure induced by the special fiber 2.

We say that 2" is log regular if the scheme 2  endowed with its standard log
structure is log regular in the sense of [Kat94]. Intuitively, this property expresses
that the pair (2", Zk red) is toroidal, but the notion of log regularity is more flexible
(in particular, it also applies to the case where R has mixed characteristic). A stratum
of %} is a connected component of an intersection of irreducible components of 2.
We say that 2" is log smooth over S if the morphism 2 — S is log smooth if
we endow 2 and S with their standard log structures. If 2" is log smooth over S
then it is log regular [Kat94, 8.2]; if k& has characteristic zero, then both notions are
equivalent [BN19, 3.6.1]. We will repeatedly make use of the fact that log regular
schemes are normal [Kat94, 4.1].

Examrre 3.1.1. — Let X be a smooth proper K-scheme. Every snc-model 2~ of X
is log regular. If, moreover, the multiplicities of the components of 2} are prime to p
and the residue field k is perfect, then 2" is also log smooth over S (but this is not a
necessary condition for log smoothness). In particular, every snc-model is log smooth
if k has characteristic zero.

If a smooth proper K-scheme X has a log regular proper R-model, then we can
also find an snc-model for X, by toroidal resolution of singularities for log regular
schemes [Kat94]. Thus the existence of log regular proper models is known in the
same cases where snc-models are known to exist: when k has characteristic zero, and
when £ has positive characteristic and the dimension of X is at most 2. If X has a log
smooth proper R-model, then the wild inertia acts trivially on the ¢-adic cohomology
of X [Nak98, 0.1.1]. The converse implication holds if X is a curve of genus at least 2
or an abelian variety of arbitrary dimension [Sai04, Sti05, BS17]. No similar criterion
is known in general, but it is expected that there always exists a finite extension K’
of K such that X ® g K’ has a log smooth proper R-model. This is equivalent to the
existence of a semistable snc-model, that is, an snc-model with reduced special fiber,
over some finite extension of R, by [Sai04].

3.2. BEHAVIOR UNDER NORMALIZED BASE CHANGE

Prorosition 3.2.1. — Let 2 be a log reqular separated flat R-scheme of finite type.
Let K’ be a finite extension of K, and let R’ be the integral closure of R in K'. Denote
by &' the normalization of £ Qg R'.

(i) If Z s log smooth over S, then Z" is log smooth over S = Spec(R') (in par-
ticular, it is log regular).

(ii) If K’ is tamely ramified over K and 2 is log regular, then the R'-scheme 2"’
is log regular.
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Proof. — We set S’ = Spec(R') and we endow S, S" and £  with their standard
log structures. The condition that K’ is tamely ramified over K is equivalent to the
property that S’ is log étale over S. Log smoothness is preserved by base change in
the category of fine and saturated (fs) log schemes; thus the fs base change % of 2~
to S’ is log smooth over S” (if 2 is log smooth over S) or over 2" (if K’ is tamely
ramified over K). In both cases, % is log regular, since it is log smooth over a log
regular scheme. Now it follows from the proof of Proposition 3.7.1 in [BN19] that
the underlying scheme of ¢ is the normalization of 2" ®r R’. By [Kat94, 11.6], log
regularity also implies that the locus in % where the log structure is not trivial is a
divisor D, and that the log structure on ¢ is the divisorial log structure with respect
to D. In our case, D = %, so that % = 2" with the standard log structure. ]

The following result describes how the multiplicities of the components in the
special fiber of a log regular model behave under normalized base change.

Prorosition 3.2.2. — Let 2 be a log reqular separated flat R-scheme of finite type.
Let K' be a finite extension of K of ramification degree e. Assume either that 2 is
log smooth over S, or that K' is a tame extension of K. Denote by R’ the integral
closure of R in K', and by 2" the normalization of % g R’.

Let E be an irreducible component of 2y, and denote its multiplicity in 2y, by N.
Then the multiplicity of the special fiber of 2 along each component dominating FE
is equal to N/ ged(e, N).

Proof. We set S’ = Spec R'. We have seen in the proof of Proposition 3.2.1 that
the normalization morphism 2”7 — 2 ®g R’ coincides with the saturation morphism
of the fibered product 2" xg S’ in the category of log schemes, where S, S’ and 2~
are endowed with their standard log structures. We can determine the multiplicities
of the components in the special fiber of the saturation of 2" ® g R’ by means of a
local computation on characteristic monoids.

For every log scheme %', we denote by € = .#u /0, its sheaf of characteristic
monoids. At every point ¢ of Z}, the morphism of log schemes 2~ — S gives rise to
a structural morphism of characteristic monoids ¢ s = N = €2 ¢, where s denotes
the closed point of S. The analogous observation applies to log schemes over S’. The
morphism of characteristic monoids associated with S’ — S is the inclusion map
N — (1/e)N.

Now let ¢ be the generic point of E, and let £ be any point of 2" ®r R’ lying
above (. Then the characteristic monoid €o ¢, r ¢ is given by the coproduct

%gg,g DN (1/6)N

modulo its submonoid of units (the proof of [Nak97, 2.1.1] remains valid for log
structures on the Zariski site). The monoid €4 ¢ is equal to (1/N)N, and its structural
morphism is the inclusion map N — (1/N)N. The saturation of the monoid (1/N )Ny
(1/e)N is isomorphic to (1/lem(e, N))N @& (Z/ ged(e, N)Z), so that the characteristic
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monoid at any point £’ of £/ lying above ¢ is given by (1/lcm(e, N))N, with structural
morphism

(1/e)N — (1/lecm(e, N))N: 1/e —> 1/e.
This means that the multiplicity of the special fiber of 2 at &' is equal to
lem(e, N)/e = N/ ged(e, N). O

Cororrary 3.2.3. — Let 2 be a log regqular separated flat R-scheme of finite type.
Then there exists a tame finite extension K' of K, with valuation ring R', such that
the normalization Z' of Z @r R’ has the following properties: the multiplicity of 2,/
along each of its irreducible components is a power of p, and every stratum of 2} is
geometrically connected.

Proof. Let e be the least common multiple of the multiplicities of the irreducible
components in Z%, and let ¢ be its prime-to-p part. Let L be a totally ramified
extension of K of degree €', with valuation ring Ry. Then the normalization % of
Z ®@pr Ry is log regular and the multiplicities of the components of its special fiber are
powers of p, by Proposition 3.2.2. Let £’ be a finite separable extension of k such that
the connected components of U X, k' are geometrically connected for every stratum U
of %, and let K’ be the unique unramified extension of L with residue field %'
We denote by R’ the valuation ring of K'. The scheme % ®p, R’ is normal, because
it is étale over the normal scheme #. Thus # ®p, R’ is canonically isomorphic to 2.
By our choice of K’, the multiplicity of £, along each of its irreducible components
is a power of p, and every stratum of 2 is geometrically connected. |

The same argument also gives

Cororrary 3.2.4. — Let Z be a log smooth separated flat R-scheme of finite type.
Then there exists a finite extension K' of K, with valuation ring R', such that the
normalization 2" of Z @r R' has the following properties: %, is reduced and every
stratum of Z}] is geometrically connected.

Proof. — We can simply copy the proof of Corollary 3.2.3, replacing e’ by e. |

3.3. LOGARITHMIC DIFFERENTIAL FORMS. — Let 2~ be a log regular separated flat
R-scheme of finite type. We denote by Q%%g/ r the sheaf of logarithmic differential
forms on 2 relative to S = Spec(R), where both 2" and S are equipped with their
standard log structures. Since the log structure is trivial on 2" ®g K, the restriction
of Ql%g/ r t0 2 ®r K is canonically isomorphic to the usual sheaf of differentials
QSL’@RK/K-

If 2 is log smooth over S, then Qb%g /R is locally free, and we denote its determinant
line bundle by wld%g/ g If 2 is only log regular, we define wzg/ r in the following way.
Denote by Zieg the regular locus of Z7; this is a dense open subscheme of 2, and
its complement has codimension at least two, because 2~ is normal. Since coherent
sheaves on regular schemes are perfect, we can define the determinant of Q{;,ig /R 88

in [KM76], by locally taking a finite resolution by free coherent sheaves of finite rank,
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and taking the alternating product of their determinants. The result is a line bundle
w%%ig /R ON Zreg, and we define w%%g/ g to be the pushforward of this line bundle
to 2. This is a reflexive sheaf on 2". On the other hand, we can also forget the log
structures and consider the usual relative canonical sheaf w4, (the pushforward of
the determinant of Q4. / r)- The following proposition collects the basic properties
of logarithmic canonical sheaves that we will need; we include detailed proofs because

we have not been able to find them in the literature.

Prorosition 3.3.1. Assume that k is perfect. Let Z~ be a log reqular separated flat
R-scheme of finite type.

(1) Denote by i: Z @r K — % the inclusion map. We have
wlg%g/R = wg/R(ZLkred — k)

as submodules of 1.W o g K /K -

(2) The coherent sheaf w;g;/R is a line bundle on & .

(3) Leth: & — 2 be a morphism of log schemes associated with a (not necessarily
proper) subdivision of the fan of 2 [Kat94, 9.9]. Then

log _ 1% log
Wo )r = h Wa/R

as submodules of j.waygyK/ K, where j denotes the inclusion map
Y QrK —%.

(4) Let K’ be a finite extension of K, and let R’ be the integral closure of R in K'.
Set S = Spec(R') and let X" be the normalization of Z ®r R'. We denote by
g: X' — & the projection morphism. Assume either that Z is log smooth over S or
that K' is tamely ramified over K. Then

lo, %, lo
W =9 Wtk

as submodules of (1 9k K')wwar g, k' /K-

Proof

(1) Since £ is normal and both sheaves are reflexive, it suffices to prove the equality
on the maximal open subscheme % of 2 such that % is regular and %}, is a divisor
with strict normal crossings (note that the complement of % in 2" has codimension
at least two, since % contains the generic fiber 2" ® g K and the generic points of Z%).
On the open %, the equality follows from [KS04, 5.3.4] by taking determinants.

(2) Let S = Spec(R). To avoid ambiguities, we denote by Sy and Sg the scheme
S = Spec(R) endowed with its trivial, resp. standard, log structure. The result
in [KS04, 5.3.4] implies that, on the open %, the determinant of the sheaf of log
differentials qujg/ s, 1s isomorphic to the determinant of the sheaf ngzg/ s.,» Where %
carries the standard log structure in both cases. Thus it suffices to prove that the
former determinant extends to a line bundle on 2.

This property can be checked locally around closed points £ of Z%; it is enough to

prove that the &9 ¢-module Ql%g S has a finite resolution by free modules of finite
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rank. Our proof is similar to that of Corollary 5.3.2 in [KS04]. We fix a section of the
projection morphism
My — Coe=Mye|Oy,

so that we can view the characteristic monoid €4 ¢ as a submonoid of the multiplica-
tive monoid O g ¢. Such a section exists because €o ¢ is integral and its groupifica-
tion ‘Kg?é is a free Z-module. We can extend this section to a surjective morphism
of R-algebras

R[cggj)g][Tl, . ,TT] — ﬁ(ﬂf/),
where ¥ is an affine open neighborhood of £ in 2. We set
W = SpecR[€Cx ¢||Th,...,T)]

and we endow it with the log structure induced by the monoid ¢ ¢. Then # is log
smooth over Si,. Shrinking ¥ around &, we can arrange that ¥ is a strict logarithmic
subscheme of #. Since # and ¥ are both log regular, the immersion ¥ — # is
regular, by [Kat94, 4.2]. If we denote by J the defining ideal of ¥ in &% at the
point &, then we have a short exact sequence
1 1

(3.3.2) 0— J/J> — Q"f(;g/smg Ry Oac — Qg‘}g/su_,g — 0.
Since # is log smooth over S, and J is generated by a regular sequence, this short
exact sequence is a resolution of ij S by free modules of finite rank.

(3) We continue to use the notation from the proof of (2). By [KS04, 5.3.4], we
have

WEE o 2 det(QSE g ) ® O (25)

as subsheaves of i.wao g,k /K, and the analogous statement holds on %'. Thus it

o~

suffices to prove the result for det(Qlc’%% Str)' We have a natural isomorphism Q{;,,g/ S

* (1o
W5 s,
commute with non-flat base change, in general, but here we can make use of the local
free resolution in (3.3.2). The pullback through h of (3.3.2) is still exact, because h
is flat over 2k (even an isomorphism) and ¢ is R-flat. Taking determinants, we get

that

because h is log étale. Taking determinants of perfect complexes does not

det(QL:,’,g/Su_) = h* detm;g/sn_).

(4) We have seen in the proof of Proposition 3.2.1 that 2" with its standard log
structure is the base change of 2" to S’ in the category of fine and saturated log
schemes. Since log differentials are compatible with fine and saturated base change,
the natural morphism

log log
9 Qg — Qg g

is an isomorphism. The scheme 2" is normal and the sheaves we want to compare
are reflexive (even line bundles, by (2)), so that it suffices to check the equality at
the generic points of Z}/. At these points, the morphism g is flat, so that the result
follows from the compatibility of determinants with flat base change. |
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4. SKELETA OF LOG REGULAR MODELS

Let X be a smooth and proper K-scheme. In this section we study the skeleton
Sk(Z") C X" associated to a log regular R-model £ of X, and the Kontsevich—
Soibelman skeleton Sk(X, #) associated to a pluricanonical form on X. In particular,
we analyze the behavior of these skeleta under finite ground field extension.

4.1. SKELETA OF LOG REGULAR MODELS. Let 2" be a log regular R-model of X
(where 2 carries the standard log structure). It is explained in [BM19, §3] how one
can attach to this model a skeleton Sk(%Z") in X", generalizing the construction of
the skeleton of an snc-model in [MN15, §3]. Let us briefly summarize the construction.
Recall that a stratum of 2 is a connected component of an intersection of irreducible
components of 2. The Kato fan of 2 is the subspace F(Z") of 2" consisting of the
generic points of 2  and the generic points of all the strata of %}, endowed with
the restriction of the sheaf of characteristic monoids o = #a /07 of the log
scheme 2°. We will denote this restriction by @p 4. The stalks of this sheaf are
sharp finitely generated saturated integral monoids; equivalently, monoids of integral
points in strictly convex rational polyhedral cones in R™. Since .# 4 is the sheaf of
regular functions on 2" that are invertible on X, we can interpret the stalk € ¢
at a point { of FI(Z") as the monoid of effective Cartier divisors on Spec &g ¢ that
are supported on the special fiber (Spec &2 ¢)i. The morphism £ — S induces for
every point § of F/(27) N 2} a morphism of characteristic monoids N — €4 ¢ that
maps 1 to the residue class @ of the uniformizer @ in €4 (equivalently, we can
think of @ as the Cartier divisor (Spec O g ¢)r on Spec Oz ¢). We call this morphism
the structural morphism of the monoid €p(a-) ¢

When ¢ and 7 are points in F(Z") such that £ lies in the closure of 7, the cospe-
cialization map €p(27),¢ — €p(a),, induces a morphism of dual real cones

Hom(%p(%)m, R)o) — Hom(‘ﬁp(%),g, R}O)

that identifies Hom(%r(4),, Rx0) with a face of Hom(%p(2).¢,R>0). Gluing the dual
real cones according to these face maps, we get a cone complex with integral affine
structure [KKMSD73]. The skeleton Sk(2") is the polyhedral complex consisting of
the elements « in the dual cones Hom(%r(4-),¢, Rx0) such that a(%) = 1 (note that
this set is empty if £ is not contained in 2%, since @ = 0 in that case). The faces of
Sk(Z") carry a canonical integral K-affine structure; the integral K-affine functions
on the face

{a S Hom(‘fF(%)@,R;O) | Oé(ﬁ) = 1}
are the functions of the form

a — afP(u) + v,

where u € ‘Kff(’%) ¢ and v € log, |K*| = Z, and where o8P is the group homomorphism
‘KI%I(’%) e R induced by «. For every integer d > 0, we denote by Sk(d)(%) the d-ske-
leton of Sk(.2"), that is, the union of the faces of dimension at most d.
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Exavere 4.1.1. If & is regular and %) has strict normal crossings, then the
characteristic monoid €p(2),¢ at a point § of F'(2") is isomorphic to N’ where J is
the set of irreducible components of %2}, passing through . If we denote by N; the
multiplicity of the j-th component, for every j in J, then the condition a(75) = 1 on
the dual cone Hom(%r ()¢, Rx0) = RZ, defines the simplex

{ue Réo | >ojes Njuj =1}
In this case, the construction of Sk(Z") is equivalent to the one in [MN15, §3].

There is a canonical embedding of Sk(Z") into é”;, and a canonical continuous

retraction
par: Xy — SK(Z).

The skeleton Sk(Z") is made up of points on X* corresponding to valuations that are
monomial with respect to the model 27; these valuations are constructed explicitly
in [BM19, 3.2.10]. The following proposition provides a convenient criterion for such
points, as well as a characterization of the retraction map pg . We recall that, since
the log structure on 2 is the divisorial log structure induced by the special fiber, the
monoid .# g ¢ is the multiplicative monoid of elements in &g ¢ that are invertible in
Oa ¢ ®r K, for every point £ in 2.

Prorosition 4.1.2. Let Z be a log reqular R-model of X. Then a point x of 3%;
lies in the skeleton Sk(2") if and only if | f(z)| = |f(y)| for every f in Og &, () and
for every y in é”; satisfying the following properties:

(1) the point sp g-(x) lies in the closure of {spa-(y)};

(2) we have |g(x)| = |g(y)| for every g in Mo s, (2)-
If « lies in Sk(Z") and we set & = sp g (x), then the value group |I€(x)*| is the
submonoid of (Rso,-) consisting of the elements |f(x)| with f in Ma ¢, and the
residue field of H(x) is a purely transcendental extension of the residue field k()
of Z até.

Moreover, for every point z of éf;, the point pg (2) is the unique point w in Sk(Z")
such that sp o-(z) lies in the closure of {sp4 (w)} and |g(2)| = |g(w)| for every g in
the monoid M o sp ., (z)-

Proof. — The criterion for z to lie in Sk(Z") is a reformulation of Proposition 3.2.10
in [BM19] (the proof remains valid if the valuation w considered there is replaced
by a semivaluation). The assertions about the value group and residue field of 7 (x)
follow immediately from the definition of monomial valuations. The description of the
retraction map pg follows from the definition of po in §3.3 of [BM19]. O

Prorosition 4.1.3. — Let 2 and % be log regular proper R-models of X such that %
dominates X, i.e., there exists a morphism of R-schemes & — 2 that restricts to
the identity on the generic fiber X. Then Sk(2") CSk(#), and for every integer d >0,
the d-skeleton of Sk(Z") is contained in the d-skeleton of Sk(%).
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Proof. — We first prove the inclusion Sk(2") C Sk(#). Let = be a point in Sk(.Z") and
set y = pa (z); then we need to show that x = y. It is enough to prove that pg (z) = vy,
because z lies in Sk(Z") so that pg (r) = z. By the definition of the retraction
map pa, we know that spg (2) lies in the closure of {spg, (y)} and that |g(z)| = |g(y)]
for every element g in .#u g, (). Thus spy-(x) lies in the closure of {spy-(y)},
because the specialization maps commute with the morphism % — 27, and |g(z)| =
lg(y)| for every element g in Ay g, (2) C My sp, (x)- By the maximality property
in Proposition 4.1.2, it suffices to show that |f(z)| < [f(y)| for every fin Oy g, , (a)-
Since f also lies in Oy g, (1), this inequality follows from Proposition 4.1.2, applied
to the model #'.

Now, we prove the inclusion of d-skeleta. The points in the d-skeleton of Sk(.Z")
are precisely the points z in Sk(Z") such that the closure of sp 4-(x) has codimension
at most d in Z%; the analogous property holds for #. Since the morphism % — 2~
commutes with the specialization maps and Sk(2") C Sk(%/), the d-skeleton of Sk(.Z")
is contained in that of Sk(%/). O

4.2. BEHAVIOR UNDER GROUND FIELD EXTENSION. — Now consider a finite extension K’
of K. Set X' := X ®x K’, and let R’ be the integral closure of R in K’. We shall
study the behavior of skeleta under the canonical surjective map

pr: (X')* — X",

Prorosition 4.2.1. Let 2 be a log reqular proper R-model of X, and let £ be the
normalization of 2 @r R'. Assume that 2" is log smooth over R, or that K' is tamely
ramified over K. Then 2" is a log reqular proper R'-model of X', pr=*(Sk(Z)) =
Sk(Z"), and the restriction of pr to any face of Sk(Z") is a homeomorphism onto a
face of Sk(Z").

Proof. — That 2" is log regular follows from Proposition 3.2.1. The underlying set of
the fan F/(Z") is the inverse image of the underlying set of F(.2") under the projection
morphism 2" — 2. Let £ be a point of F(Z”) and denote by ¢ its image in 2. Let
M be the saturation of the coproduct €p(2),¢ ®n (1/€)N, where e = ¢(K'/K) is the
ramification index. Then the characteristic monoid at ¢’ is canonically isomorphic to
the quotient of M by its torsion subgroup M., (the proof of [Nak97, 2.1.1] remains
valid for log structures on the Zariski site). The natural embeddings of the skeleta
Sk(Z") and Sk(Z”) into X** and (X’)*® induce a commutative square

{0/ € Hom(M/Meor, Rso) | o () = €} —— (X')2
prgl Jpr
{Oé S HOm(%p(%))g,R%)) | Oz(ﬁ) = 1} — Xon

where the map pr,, is defined by restricting o' to Cp(a),¢ and dividing the resulting
map by e. The map prg, is a homeomorphism, because every element in the monoid
R>o is uniquely divisible by e. This shows that pr(Sk(Z"”)) = Sk(2"), and that pr
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maps the face of Sk(Z”) corresponding to & homeomorphically onto the face of
Sk(Z") corresponding to &.

It remains to check that pr=*(Sk(Z27)) C Sk(Z”). This is clear when K'/K is
purely inseparable, since pr is then a homeomorphism. Thus we may suppose that K’
is separable over K. Replacing K’ by a finite extension, we can further reduce to the
case where K’ is a Galois extension of K. It follows directly from the definition of the
skeleton Sk(.2”') that it is stable under the action of the Galois group Gal(K’/K) on
(X’)2™. Since this action is transitive on the fibers of pr, the surjectivity of Sk(Z”) —
Sk(Z") implies that pr=!(Sk(27)) C Sk(Z”). O

Prorosition 4.2.2. — In the setting of Proposition 4.2.1, assume that the strata of 2
are geometrically connected over k, and suppose that 2 is log smooth over S and %y,
is reduced, or that K’ is tamely ramified over K and the multiplicity of each component
in Zx is a power of p. Then pr induces a homeomorphism Sk(Z") — Sk(Z").

Proof. By our assumption that the strata of 2} are geometrically connected, the
conclusion holds when K’ is unramified over K; thus we may assume that K’ is totally
ramified over K. It suffices to show that for every stratum E of £}, the normalization
morphism h: 27 — 2 ®r R’ induces an isomorphism h™!(E)..q — E. We have
already argued in the proof of Proposition 3.2.1 that the normalization morphism h
is the saturation morphism for the log scheme 2" ® g R’ with its divisorial log structure
induced by the special fiber. By the same argument as in the proof of Lemma 4.1.2
in [BN19], Proposition 2.2.2(3) in [BN19] implies that this saturation morphism h
is an isomorphism over each stratum, because the multiplicities of the components

in 2} are prime to the ramification degree of K’ over K. O
4.3. THE TEMPERATE PART OF THE SKELETON. — Let X be a smooth and proper
K-scheme.

Derinition 4.3.1. — We say that a divisorial point x € X" is tame if the field 2 (x)
is tamely ramified over K; that is, the ramification index of 5 (x) over K is prime
to p, and the residue field of J#(z) is a separable extension of k. Otherwise, we say
that = is wild. We define the temperate part X* of X to be the closure of the set of
tame divisorial points in X?2".

If x is the divisorial point associated with a normal R-model 2" of X and a prime
component E of 2}, then the ramification index of .7 (z) over K equals the multi-
plicity N of 2} along E, and the residue field of 5#(x) is k-isomorphic to the function
field k(E) of E. Thus z is tame if and only if N is prime to p and k(E) is separable
over k. If k has characteristic zero, then all divisorial points are tame. Since the set
of divisorial points is dense in X®® by [MN15, 2.4.9], we then have X! = X.

We call X! the temperate, rather than tame, part of X®" because it may contain
wild divisorial points; see Example 4.3.9.
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DeriNtrion 4.3.2. If 2 is alog regular R-model of X, then we define the temperate
part of Sk(2Z") as the closure of the set of tame divisorial points in Sk(Z"), and we
denote it by Sk'(2).

Lemva 4.3.3. — Let 2 be a log reqular proper R-model of X. Let x be a point of é”;
such that either x is a tame divisorial point, or € (x) is a tame finite extension of K.
Then ©' = pg(x) is a tame divisorial point on Sk(2Z").

Proof. — By the definition of the retraction pg, we know that & = spg (z) is
the generic point of the unique stratum U of 2}, containing & = sp 4-(z), and that
|f(z)| = |f(«")| for every element f of 44 ¢. Since £ is log regular, the stratum U is
regular, and the residue field x(£) of U at £ is separable over k because it is contained
in the residue field of #(z). Thus U is smooth over k at &, and, therefore, also at
the generic point &', so that k(¢’) is separable over k. The residue field of J#(2') is a
purely transcendental extension of k(¢’) by Proposition 4.1.2, and thus still separable
over k.

A point of Sk(Z") is divisorial if and only if the value group of its residue field
is discrete [MN15, 2.4.8]. Log regularity of 2" implies that the cospecialization map
Ca ¢ — Ca ¢ is an isomorphism [BN19, 3.2.1]. This means that we can write every
element g of .# o ¢ as the product of an element f in .#4 ¢ and a unit in AZg ¢/;
then |g(z')| = |f(2")] = |f(z)|. It follows that the value group of J#(x’) is contained
in that of J#(x), so that ’ is divisorial and tame. O

Proposition 4.3.4. — If 2 is a log regular proper R-model of X, then Sk'(2°) =
Sk(2) N Xt.

Proof. — Tt is obvious that Sk'(.2") C Sk(.2") N X*. To prove the converse inclusion,
we observe that the open subset A = p3,' (Sk(2") \Sk'(2")) of X" contains Sk(2")\
Sk'(2°) and does not contain any tame divisorial points by Lemma 4.3.3. Thus A,
and therefore Sk(:2°) ~ Sk'(.2°), are disjoint from X*. O

Prorosition 4.3.5. Let 2 be a log regular proper R-model of X. Then Sk'(Z) is
non-empty if and only if X has a K*-rational point.

Proof. If X has a K'rational point, then the image of this point under pg is
a tame divisorial point on Sk(.2°) by Lemma 4.3.3, so that Sk’(.2") is non-empty.
Conversely, assume that Sk'(.2") is non-empty. Then X®" contains a tame divisorial
point . We need to prove that X has a K'-rational point. Let N be the ramification
index of . (x) over K. By our assumption that x is tame, we know that N is prime
to p. We can apply a base change to a tamely ramified extension of K of ramification
index N to reduce to the case where N = 1. Then the divisorial point x is associated
with a regular R-model " of X and a prime component E of % of multiplicity one.
Since z is tame, the function field k(F) is separable over k, so E has a smooth k°-
rational point &; then % is smooth over R at &, and Hensel’s lemma implies that &
lifts to a closed point y of X whose residue field is unramified over K. |
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Prorosition 4.3.6. Assume that p > 2. Let 2" be a log regular R-model of X, and
let x be a divisorial point on Sk(Z"). Then x is tame if and only if the residue field
of 2 at spg-(x) is a separable extension of k and x is Zy)-integral with respect to
the canonical integral K-affine structure on the faces of Sk(Z").

Proof. — We set £ = sp 4 (). Then ¢ is a point of F(2"), and the corresponding face
of Sk(Z") is the unique face o that contains x in its relative interior. By the definition
of the integral K-affine structure on o, the point x is Z,-integral if and only if
log |f(x)|/log |w| lies in Z,, for every element f of .#4 ¢. By Proposition 4.1.2,
the value group |7 (x)*| is generated by the submonoid of (R, -) consisting of the
elements of the form |f(z)| with f in .#a ¢. Thus the ramification index of J#(x)
over K, which is by definition the index of the subgroup |w|* of [.#(x)* |, is prime to p
if and only if x is Z,)-integral. The residue field of .7#(x) is a purely transcendental
extension of k() by Proposition 4.1.2, and hence separable over k if and only if k(&)
is separable over k. O

We will use Proposition 4.3.6 to give a more explicit description of the temperate
part of the skeleton of a log regular model. Let 2" be a log regular R-model of X,
and let £ be a point of the fan F(Z2"). Following [BN19], we define the root index
of 2" at £ to be the largest positive integer p such that the residue class @ of w in
the characteristic monoid €z . is divisible by p.

Exavrere 4.3.7. — Let 2 be a regular R-model for X such that 2} has strict normal
crossings, and let ¢ be a point of F(Z"). As we have seen in Example 4.1.1, the
characteristic monoid €4 ¢ is isomorphic to N”, where J is the set of irreducible
components of £}, passing through &. If we denote by N; the multiplicity of the j-th
component, for every j in J, then @ = (N;),;cs. Thus the root index of 2 at ¢ is the
greatest common divisor of the multiplicities N;, j € J.

This description of the root index does not hold for all log regular proper
R-models 2. For instance, assume that 2" contains an open subscheme isomorphic
to

% = Spec R[u,v]/(uv — w?)
and let £ be the origin of %;. Then the characteristic monoid €9 ¢ is isomorphic to the
submonoid of N2 generated by (1,0) and (1,2), and the residue class of @ equals (1, 1).
Thus the root index of 2" at & equals 1, even though the two components of % that
pass through & both have multiplicity 2 (we find these multiplicities by evaluating
the primitive generators of the one-dimensional faces of the dual monoid ‘55\2/75 at the
element 7@ = (1, 1)).

Prorosition 4.3.8. Let Z be a log regular R-model of X. Let & be a point of F(Z),
and let o be the corresponding face of Sk(Z"). We denote by p and k() the root index
and the residue field of 2~ at £, respectively.

If p is prime to p and k(§) is separable over k, then the tame divisorial points are
dense in o. Otherwise, o does not contain any tame divisorial point.
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Proof. We may assume that p > 2, since otherwise the statement is trivial. By Pro-
position 4.3.6, it suffices to prove the following claim: if p divides p, then ¢ does not
contain any Z,-integral points; and if p does not divide p, then the Z,)-integral
points are dense in o.

We denote by d the dimension of o, and by %fg,})’g the groupification of the charac-
teristic monoid of €z ¢. We can find an isomorphism ‘Kfé’)f — Z4*+1 that maps @ to
(p,0,...,0). The induced Z-integral embedding

Hom(%a ¢, Rso) — RO

identifies o with a d-dimensional polytope P in the hyperplane H defined by z; = 1/p.
If p is divisible by p, then P(Z,)) is empty; otherwise, P(Z ) is dense in P because P
has non-empty interior in H and Z,) is dense in R. ]

ExamrLe 4.3.9. — Assume that k is algebraically closed and of characteristic p = 2.
Let E be an elliptic curve over K of Kodaira-Néron reduction type I}, with r > 0, and
let & be its minimal snc-model (see Figure 4). By Proposition 4.3.8, the temperate
part Sk’(&) of Sk(&) is the union of the four closed edges in Sk(&') corresponding to
the four singular points in & that are contained in a component of multiplicity one.
Thus Sk*(&) = Sk(&) when r = 0, and for all 7 > 0, Sk’(&) contains wild vertices of
Sk(&). These examples also illustrate that, in the set-up of Proposition 4.3.8, Sk(.2")
may contain faces of Sk(2") corresponding to strata of 2} where the root index is
not prime to p (in our example, the wild vertices in Sk’(&)).

FiGure 4. The skeleton of the minimal snc-model & of an elliptic curve
of type I, r > 0. The vertices are labeled with the multiplicities of the
corresponding components in &;. The number of vertices of multiplicity
two is r + 1 (if » = 0, then the unique vertex of multiplicity two has four
adjacent edges). The bold part of the graph is the temperate part Sk*(&)
of the skeleton Sk(&) if p = 2.

Prorosrrion 4.3.10. Let n be the dimension of X, and let Z be a log smooth
R-model of X. Then every n-dimensional face of Sk(Z) is contained in Sk'(Z").

Proof. — We endow 2 and S = Spec R with their standard log structures. We may
assume that X is of pure dimension n, since the connected components of lower di-
mension never contribute n-dimensional faces to the skeleton. Then the n-dimensional
faces of Sk(Z") correspond bijectively to the zero-dimensional strata of Z%. Let £ be
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a zero-dimensional stratum of 2. The assertion is local for the étale topology on Z".
Thus by Kato’s criterion for logarithmic smoothness (see [Kat89, 3.5] and [Kat96,
4.1]), we may assume that the morphism of log schemes 2~ — S has a chart of the
form

2 —— Spec Z|P]

|

S — Spec Z|N]

satisfying the following properties:

(1) the chart S — SpecZ|N] is induced by the morphism of monoids N — (.5, )
that maps 1 to w;

(2) the right vertical morphism is induced by an injective morphism of fine and
saturated monoids N — P such that the order of the torsion part of coker(Z — P8P)
is prime to p;

(3) the induced morphism 2~ — S ®zy Z[P] is smooth.

Since £ is a zero-dimensional stratum and %2 is log regular and of dimension n + 1,
the characteristic monoid €4 ¢ has dimension n+ 1. The fact that 2~ — S @z Z[P]
is smooth implies that the dimension of P is at most n + 1. Since 2~ — Spec Z[P] is
a chart, the induced morphism P — €y . is surjective. Therefore, P/Piors = €2
is an isomorphism, where P;.s denotes the monoid of torsion elements in P.

This implies that P has dimension n + 1, so that 2" — S ®z;y Z[P] is étale, and
the residue field k(§) of 2™ at £ is separable over k. It also follows that the torsion
part of the cokernel of the morphism 7Z — %”:z?’m that sends 1 to @ has order prime
to p. This order is precisely the root index of 2" at &, because €z . is saturated.
Thus the result follows from Proposition 4.3.8. ]

Examrere 4.3.11. Assume that k is perfect. Let C' be a geometrically connected,
smooth and proper curve over K, and assume that C has a log smooth proper
R-model €. Proposition 4.3.10 implies that Sk’(%’) contains all the edges of Sk(%).
Thus either Sk’(%) is empty and Sk(%) is a point, or Sk'(%) is equal to Sk(%).
In the former case, ¥ is an snc-model of C, the special fiber %} is irreducible, and
the characteristic of k divides the multiplicity of .

If Sk*(%) is empty, then C(K?) is empty, by Proposition 4.3.5. Theorem 1.1
in [MS17] implies that, in this case, the f-adic Euler characteristic of C vanishes;
in other words, C has genus one. It is shown in in [MS17] that there exists a geo-
metrically connected, smooth and proper curve C over a complete discretely valued
field K of residue characteristic p > 0 with algebraically closed residue field such that
C(K") is empty and C has a log smooth proper R-model €.

Thus there exist curves C' with a proper log smooth R-model % such that Sk'(%)
is empty, but Sk'(%) is non-empty whenever C is a curve of genus g # 1 and ¥ is
a proper log smooth R-model of C. Theorem 1.1 in [MS17] also applies in higher
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dimensions: if X is a geometrically connected smooth proper K-scheme with non-
vanishing f-adic Euler characteristic, and 2 is a log smooth proper R-model of X,
then Sk'(2) is non-empty.

We do not know any example where X is a geometrically connected smooth proper
K-scheme, X (K") is non-empty, and X has a log smooth model 2" for which Sk*(.2")
is different from Sk(Z").

4.4. WEIGHT FUNCTIONS AND LOG REGULAR MODELS. — Let X be a smooth and proper
K-scheme of pure dimension, and let # be an m-canonical form on X, for some m > 0,
such that @ is not identically zero on any connected component of X. We will explain
how the calculation of the weight function wty on skeleta can be extended from snc-
models to log regular models, and deduce some useful properties of the Kontsevich—
Soibelman skeleton Sk(X,#). Whenever 2" is a log regular proper R-model of X, we
view 0 as a rational section of the line bundle (wlu%g/ )€™ defined in Section 3.3, and
we denote by div g () the associated Cartier divisor on 2.

Prorosition 4.4.1. — Assume that k is perfect. Let 2 be a log regular proper R-model
of X, and let x be a divisorial point contained in the skeleton Sk(Z"). Let f be a local
equation at sp g (x) for divg (0). Then
o) — L@

m - log |w]|
where w is any uniformizer in R.

Proof. — We have w}%g/R = wg /R(Zk,red — Zk) by Proposition 3.3.1(1). Thus if .2
is an snc-model, the result follows from [MN15, 4.3.7], modulo the renormalization
explained in Remark 2.2.1. We can reduce to that case by means of a toroidal reso-

lution associated with a regular proper subdivision of the fan of 2", using Proposi-
tion 3.3.1(3). O

Remark 4.4.2. — In [MN15], the definition of the weight function was extended to
all monomial points in X?" (and then further to X®* by means of an approximation
procedure, assuming resolution of singularities). The formula in Proposition 4.4.1 is
valid for all the points in Sk(Z"), by the same proof.

Let 2 be a log regular proper R-model of X. We write
2i =Y _ NiE;,
iel

where the F; are the prime components of 2}, and the N; are their multiplicities.
For every i € I, we denote by w; the multiplicity of E; in divg (0). Let £ be a point
of the fan F(Z") contained in 2%; thus & is the generic point of a stratum of 2%. We
say that £ is 0-essential if the following two properties are satisfied.

(1) For every j € I such that ¢ is contained in E;, we have

wj

Fj = min{w;/N; | i € I}.

JE.P.— M., 2020, tome 7



312 M. Jonsson & J. Nicaise

(2) The point £ is not contained in the Zariski closure of the zero locus of 6 on X.

This definition generalizes the one for snc-models in [MN15, 4.7.4]. We say that a face
of Sk(Z") is #-essential if the corresponding point of F'(:Z") is f-essential.

Prorosition 4.4.3. — Assume that k is perfect. Let 2" be a log reqular proper R-model
for X. The Kontsevich—Soibelman skeleton Sk(X,0) is the union of the 0-essential
faces of Sk(Z"). Moreover, using the notation introduced above, the minimal value of
wtg on the set of divisorial points in X" is equal to

Proof. Let % — 2 be a toroidal resolution of 2", associated with a regular proper
subdivision of the fan F'(:2"). Then Sk(X,#) is the union of the #-essential faces of
Sk(#), by [MN15, 4.7.5]. Thus, it suffices to prove that a face of Sk(%) is f-essential
if and only if it is contained in a f-essential face of Sk(2"). This follows directly
from Propositions 3.3.1(3) and 4.4.1. In particular, wty reaches its minimal value at
a vertex of Sk(Z"); the value of wty at the vertex corresponding to E; is precisely

4.5. BEHAVIOR UNDER GROUND FIELD EXTENSION. — Consider a finite extension K'/K,
of ramification index e = e(K’/K). Denote by R’ the integral closure of R in K'. Set
X'= X @ K, let

pr: (X/)an — Xan
be the canonical projection map, and let 6’ be the pullback of 6 to X.

Prorosition 4.5.1. — We assume that k is perfect.

(1) Assume that K' is tame over K. Let x be a divisorial point of X* and z’
a point in pr=1(x). Then 2’ is divisorial, and wte/(2') = e - wtg(z).

(2) Assume that X has a log smooth proper R-model 2 . Then the normaliza-
tion 27 of 2 ®r R’ is a log smooth proper R'-model, and

wtgr = e - wtg o pr
on Sk(Z").
In both cases, we have Sk(X',0') = pr=1(Sk(X, 9)).

Proof

(1) Let £ be a normal R-model of X and let E be a prime component of 2} such
that x is the divisorial point associated with the pair (2, F). Shrinking 2" around
the generic point of E, we may assume that £ and FE are regular, and that Zj
is irreducible. Then 2 is log regular (with respect to its standard log structure).
Denote by 2 the normalization of 2" ®g R’. Then ' is the divisorial point associated
with 2 and some prime component E’ of 2"’ dominating E. Proposition 3.3.1 implies
that, locally around the generic point of £’, the line bundle wy/r/ (2 — 2} oq) 18
the pullback of wa /r(2k — Zkyrea) to 2. It follows that wte(z') = e - wtg(z).
In particular, wtg, is minimal at z’ if and only if wty is minimal at z. By definition,
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Sk(X, 0) is the closure in X®* of the set of divisorial points where wty is minimal, and
the analogous statement holds for Sk(X’,6"). Since pr is open (see [Ber93, 3.2.7]), it
follows that Sk(X’,0’) is the inverse image of Sk(X,6) in (X')>".

(2) Proposition 3.2.1 shows that 2~ is a proper log smooth R’-model of X’. We
know by Proposition 4.4.3 that Sk(X,#) is a union of faces of Sk(Z"), and Sk(X’,8")
is a union of faces of Sk(Z"). Moreover, Sk(2") is the inverse image of Sk(.2") under
the projection morphism pr, by Proposition 4.2.1. Propositions 3.3.1(4) and 4.4.1
imply that

wtgr = e - wty o pr
on Sk(Z"). Thus the set of divisorial points of minimal weight in Sk(Z") is the
preimage of the set of divisorial points of minimal weight in Sk(2"). It follows that
Sk(X’,0’) is the preimage of Sk(X,8) in (X')>". O

The last assertion of Proposition 4.5.1 is false without the assumption that K’
is tame over K or X has a log smooth model; let us illustrate this by means of an
explicit example.

Exampre 4.5.2. Let k£ be an algebraically closed field of characteristic p = 2, let R
be the ring W (k) of Witt vectors, and let K be the quotient field of R. Let E be an
elliptic curve over K of Kodaira-Néron reduction type I, with » > 0, and let 8 be
a volume form on E. Let & be the minimal snc-model of E. Using the triviality of
we /R, one immediately checks that Sk(F,6) is homeomorphic to [0,1] (see Figure 5;
this also follows from [BN16, 3.3.13]). However, there are examples of such curves E
that acquire good reduction over a quadratic extension K’ of K; they have been
classified in [Lor10, 2.8]. In those cases, Sk(E’,¢’) is a point.

Ficure 5. The skeleton of the minimal snc-model & of an elliptic curve
E of type I, r > 0. The vertices are labeled with the multiplicities of the
corresponding components in &;. The number of vertices of multiplicity
two is r + 1. The bold part of the graph is Sk(E, 6), for any volume form 6
on E.

5. LEBESGUE MEASURES ON SKELETA

In this section we study Lebesgue type measures on the skeleta of log regular
models, induced by the canonical integral affine structures on the faces. Throughout,
X is a smooth and proper K-scheme of pure dimension.
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5.1. DeriNtTIONS. Let 2 be a log regular proper R-model for X, £ the generic
point of a stratum of £}, and 7 the corresponding face of Sk(Z"). Write d for the
dimension of 7. The face 7 carries an integral K-affine structure induced by the
characteristic monoid €p(4)¢ (see Section 4.1). This integral affine structure gives
rise to a measure on 7: the real affine space

{Oé S HOm(%F(%)’g,R) | 04(5) = 1}
spanned by 7 is a torsor under the action of the real vector space
{o € Hom(%p(2)¢,R) | (@) = 0}

by translation, and the latter space carries a canonical translation-invariant measure
|dvy A - A dvg| where vy, ..., v4 is any basis for the lattice

{a € Hom(Cr(a),e, Z) | a(T) = 0}.

This measure induces a measure on 7, which we call the integral Lebesgue measure
(when 7 has dimension d = 0, we interpret this definition as the Dirac measure on 7).
Equivalently, the integral Lebesgue measure on 7 is the limit of the discrete measures

1
D DR
zeT((1/e)Z)
over all positive integers e, ordered by divisibility, where the sum is taken over the
(1/e)Z-integral points in 7 and J, denotes the Dirac measure at x.
For every nonnegative integer d, we denote by )\(g‘? the measure supported on the

union of the d-dimensional faces in Sk(2") whose restriction to each d-dimensional
face is the integral Lebesgue measure.

Prorosition 5.1.1. — Let " and % be log reqular proper R-models of X. Then, for
)

every nonnegative integer d, the measures )\f%l) and /\(5 coincide on the intersection

of the d-skeleta of Sk(Z") and Sk(%/).

Proof. — Tt follows directly from the definitions that the retraction
pa: X — Sk(Z)

is piecewise K-affine on every face of Sk(#) C X?". The analogous property holds
when we swap £ and #. Thus the piecewise K-affine structures on Sk(Z") and
Sk(#/) agree on the intersection Sk(.2") N Sk(#/), so that the measures /\(5? and /\gg)
coincide on Sk¥(27) N Sk@ (#). Alternatively, we can reduce to the case where 2
and & are snc-models by means of regular proper subdivisions of their fans [Kat94,
10.4], and apply [MN15, 3.2.4]. O

ExamrLe 5.1.2. — Let % — 2 be a toroidal modification, corresponding to a proper
subdivision of the fan of 2~ [Kat94, §9]. Then the polyhedral complex Sk(%) is
a subdivision of Sk(Z"), and both skeleta are equal as subsets of X2*. If d is the
dimension of Sk(Z"), then /\E%) = )\(@q). We can always choose our subdivision of the
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fan of 2" in such a way that % is an snc-model of X [Kat94, 10.4]. In that case, we
call  — 2 a toroidal resolution of Z .

5.2. BEHAVIOR UNDER GROUND FIELD EXTENSION. — Now consider a finite extension K’
of K, and set X' := X @ x K’'. We have a canonical surjective map pr: (X')** — X°n,
Let 2 be a log regular proper R-model of X, and let 2" be the normalization of
2 @rR', where R’ is the integral closure of R in K'. Assume that 2 is log smooth over
S = Spec R, or that K’ is tamely ramified over K. By Proposition 3.2.1, £ is a log
regular proper R’-model of X’. Further, Proposition 4.2.1 shows that pr=!(Sk(.2")) =
Sk(Z") and that pr maps any face 7 of Sk(.2”) homeomorphically onto a face 7 of
Sk(Z).

Prorosition 5.2.1. — In the situation above, pr identifies the measures /\(d),|T/ and
et )\fg)h for every d > 0, where e = e(K'/K) is the ramification index.

Proof. — We use the notation of the proof of Proposition 4.2.1. The restriction of pr
to 7/ corresponds to the map pr, on characteristic monoids. The assertion now follows
from the fact that pre, is given by restriction and then multiplication by e L. O

If pr maps Sk(Z”) homeomorphically onto Sk(Z"), we therefore have that
pr*)\(g?, = ed)\%) for every d. This is the case in the setting of Proposition 4.2.2, for
example. In general, we only have the inequality pr*)\f%), > ed)\(g‘?. Below we define a
weighted Lebesgue measure that behaves better under ground field extension.

~

5.3. TaME DEGREE FuNcTiON. — In the setting of Proposition 4.2.2, if 2} is not re-
duced or k is not separably closed, then open faces of the skeleton Sk(.2") may split
into multiple copies by taking the inverse image in (X’)*". In order to encode the
number of copies, we introduce the following invariant.

Derinition 5.3.1. — The tame degree function tdegy : X** — N U {oco} maps each
point & of X to the extension degree of the tame closure of K in 7 (z).

Lemva 5.3.2. — Let Z be log smooth proper R-model for X. Then for every point x
of Sk(Z"), the tame closure of K in J€(x) is separably closed in J€(x).

Proof. — The result is trivial when k has characteristic zero, so we may assume
that k has positive characteristic p. By base change to the completion of the maximal
unramified extension of K, we can reduce to the case where k is separably closed.
Let x be a point of Sk(2") and assume that K has a wild finite separable extension L
inside s (x). We will deduce a contradiction.

Replacing K by a finite tame extension in L, we may assume that [L: K] is a power
of p. Let e be the least common multiple of the multiplicities of the components in the
special fiber 2. We claim that there exists a finite extension K’ of K of ramification
degree divisible by e that is linearly disjoint from L. Let R’ be the integral closure of R
in K’, and let 2"’ be the normalization of 2" ®g R’. By Proposition 3.2.2, 2" is a log
smooth proper R’-model of X’ = X® K’ with reduced special fiber. Proposition 4.2.1
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implies that for each point z’ of (X’)?" that lies above z, the field K’ is separably
closed in 57 (z'), since the point 2’ does not split under further extensions of K’. This
contradicts the fact that the K’-field K’'L embeds into J# ().

It remains to prove our claim. Since we can freely replace K by a finite tame exten-
sion, we may assume that e is a power of p by Proposition 3.2.2, and that K contains
all the p-th roots of unity in K*. We may also assume that K has characteristic zero,
since otherwise, we can simply take K’ = K|[z]/(z° — w) for any uniformizer w in R.
This is a purely inseparable extension of K, and thus certainly linearly disjoint from
the separable extension L.

So assume that K has characteristic zero and contains p,(K?%), and that e is a
power of p. Since L contains only finitely many extensions of K, it is enough to show
that K has infinitely many ramified extensions of degree p, up to K-isomorphism;
the result then follows from induction on e. For every a in R*, we denote by K, the
splitting field of the Eisenstein polynomial T? — w — aw? in K. This is a totally
ramified Galois extension of degree p. We will prove that, for all elements o and g
in R* whose residues @ and J are distinct in k%, the fields K, and K g are linearly
disjoint over K (note that k is infinite because we have reduced to the case where it
is separably closed). Assume that K, = Kg. Then, by Kummer theory, the element

14+ ow
1+ fw
is a p-th power in R. The field K is absolutely ramified because it contains g, (K®).

Thus the ring R/(w?) has characteristic p, and we find that (o — 8)w is a p-th power
in this ring. This is absurd, because (« — 8)w is a uniformizer of R. ]

=1+ (a=p)w+---

Prorosrtion 5.3.3. Let & be a log reqular proper R-model of X.

(1) Let K’ be a finite extension of K. Assume either that Z is log smooth over
S = Spec R or that K’ is a tame extension of K. Let x be a point in Sk(Z") and
denote by F, the fiber of (X @k K')*™ above x. Then we have

tdegy () = Z tdeg /().
' eEF,

(2) Assume that the multiplicity of each component of £}, is a power of p, and that
the strata of 2, are geometrically connected over k. Then tdegy =1 on Sk(Z).

(3) There exists a tame finite extension L of K such that, for every tame finite
extension K' of L and every point x of Sk(Z"), the tame degree tdegy (x) at x equals
the number of points in (X Qx K')*" lying above x.

(4) The tame degree function tdegy is finite and constant on each open face of

Sk(2).

Proof

(1) We may assume that K’ is separable over K, since purely inseparable extensions
of the base field have no effect on the tame degree. Denote by L the tame closure
of K in (z). Then L ® x K’ is a product L} x -+ x L! of tame extensions of K’.
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Moreover, 7 () is linearly disjoint from L} over L, for every i: if K’ is tame over K,
this is a direct consequence of the definition of L; if £  is log smooth, it follows from
the fact that L is separably closed in J#(x), by Lemma 5.3.2. Thus F, consists of
precisely r points, with residue fields L, ®, 77 (x) for i = 1,...,r, and L, is the tame
closure of K" in L, ®p, ¢ (z). Now the result follows from the fact that the degree
of L over K is the sum of the degrees of the fields L, over K'.

(2) Let K’ be a tame finite extension of K, and denote by R’ the integral closure
of Rin K'. Let 2" be the normalization of 2" ®r R’. By Proposition 5.1.1, the pull-
back to Sk(2") of the projection morphism (X ® x K')** — X?" is a homeomorphism
Sk(Z") — Sk(Z"). Thus when x is a point of Sk(Z"), the fiber F, = 4 (K'®Qx I (x))
is a point. It follows that K has no non-trivial tame finite extensions in J#(x).

(3) By Corollary 3.2.3, we can find a tame finite extension L of K such that the
normalized base change of 2" satisfies the conditions of (2). Now the assertion follows
immediately from (1) and (2).

(4) Let L be a field satisfying the properties in point (3). Denote by R’ the integral
closure of R in L. Let 2" be the normalization of 2" ®pg R’. By Proposition 4.2.1,
the preimage under

(X ®g L)* — X

of each open face 7 of Sk(Z") is a disjoint union of homeomorphic copies of 7. In
particular, all the fibers over points in 7 have the same cardinality. By point (3), this
cardinality equals the value of the tame degree function on 7. O

5.4. StasLe LEBESGUE MEASURES. — We now use the tame degree function to define
weighted Lebesgue measures that behave well under base change.

Derinition 5.4.1. — Let 2 be a log regular proper R-model of X. For every non-
negative integer d, we define the stable measure on the d-skeleton of Sk(Z2") to be the
measure
d), d
D — tdegpe - AY,

where tdegy is the tame degree function on X?".

Prorosition 5.4.2. — For every log regular proper R-model " of X and every d > 0,
we have
d d),s
G <A
If % is another log regular proper R-model of X, then )\g)’s and )\gj)’s coincide on the
intersection of the d-skeleta of Sk(Z") and Sk(#). If the strata of 2, are geometrically

connected over k, and the multiplicity of each component in Zy, is a power of p, then
Ads _ y(d)
X X

Proof. — The inequality AD < )\Eﬁ?’s is obvious from the definition of the stable
measure. The compatibility of the stable measure with a change of model imme-
diately follows from Proposition 5.1.1 and the intrinsic nature of the tame degree
function tdegy on X", If the strata of 2} are geometrically connected over k, and
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the multiplicity of each component in %}, is a power of p, then tdeg = 1 on Sk(Z")

" (d),s _ y(d)
by Proposition 5.3.3, so that A,/ = X})-. ]
Prorosition 5.4.3. — Let K' be a finite extension of K of ramification degree e, and

let R’ be the integral closure of R in K'. Denote by 2"’ the normalization of 2 QrR'.
Assume either that Z s log smooth over S = Spec R or that K' is a tame extension
of K. Then )\fg)’s is the pushforward of the measure (1/6)‘1)\5;),’5 on the d-skeleton
of Sk(Z"). If k is separably closed and e is divisible by the prime-to-p parts of the

multiplicities of all the components in 2, then Ag)’s is the pushforward of (1/e)dAF;),.

Proof. — The compatibility of the stable measure with base change follows from
Propositions 5.2.1 and 5.3.3. If e is divisible by the prime-to-p parts of the multiplici-
ties of all the components in %}, then the multiplicities of the components of 2}/ are
powers of p, by Proposition 3.2.2. Thus if we also assume that k is separably closed,

then )\%),’S = )\(3?,, and )\(3?’5 is the pushforward of (1/6)(1)\(3?,. O
5.5. EXAMPLE: FACES OF DIMENSION ONE. — Let X be a smooth and proper K-scheme,

and let 2" be a log regular proper R-model of X. An equivalent way of describing the
integral Lebesgue measure )\(%1) on Sk(Z) is to consider the corresponding metric on
each one-dimensional face 7. Let £ be the point in the fan F(2") corresponding to the
face 7; in other words, £ is the generic point of the stratum of 2}, corresponding to 7.
We denote by @ the image of the uniformizer @w € R in the characteristic monoid
Ca . Let p be the largest positive integer that divides 7o; this is the root index
of & at £ defined in Section 4.3. Let vy, vo be primitive generators of the rays of the

two-dimensional real cone
HOHI(%%@ 5 Rgo) .

They correspond to the irreducible components F; and Fs of 2} that pass through
the point £, and the multiplicity of E; in 2} is equal to N; = (@, v;) for i = 1,2.
Finally, we define the determinant of the monoid €’¢ ¢ to be the absolute value of the
determinant det(vy,vs). A straightforward computation shows that the lattice length
of the face 7 is equal to

_ p-det(Ca o)

o) NN,

If 2 is an snc-model, then €9, = N?, and the formula simplifies to

- ng(Nl,Nz) 1

g(’r) B N1 . N2 - 10111(]\717 Ng) '

If X is a curve, then, as a topological space, Sk(:Z") is nothing but the dual graph
of Zk, and our calculation shows that the metric on Sk(Z") corresponding to the
integral Lebesgue measure )\(5? coincides with the stable metric from [BN16, A.1].
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5.6. Measures oN KONTSEVICH -SOIBELMAN SKELETA. Let X be a smooth and proper
K-scheme of pure dimension. If A is a subset of X" that can be realized as a union of
faces in Sk(Z"), for some log regular proper R-model 2" of X, then the set A carries
two natural measures: if we denote by d the dimension of A, then we can consider the
integral Lebesgue measure Ay = )\;?| 4 and the stable measure A% = /\(g?’s| 4. These
measures are independent of the choice of 2, by Proposition 5.1.1. We apply this

construction in the following cases.

Derinition 5.6.1. — Let 6 be a pluricanonical form on X that is not identically
zero on any connected component of X. Assume that X has a log regular proper
R-model 2.

(1) The Lebesgue measure Agy(x,g) and the stable measure )\%k(xﬁ) are the re-

strictions of the measures )\%) and )\g)’s to Sk(X,0), where d is the dimension of
Sk(X,0).

(2) Likewise, the Lebesgue measure Agi(x) and the stable measure g, y) are the
restrictions of the measures A%) and )\%)’S to Sk(X), where d is the dimension of
Sk(X).

(3) We define the temperate parts Sk’(X) and Sk'(X, ) as the closures of the sets
of tame divisorial points in Sk(X) and Sk'(X,6), respectively. These are unions of
faces of Sk(2"), by Proposition 4.3.8. The Lebesgue measure Agy¢(x) and the stable
measure A, (x) are the restrictions of the measures )\%) and )\;‘Z)’S to Sk(X), where d is

the dimension of Sk’(X). The measures Agkt(x) and )‘Ekf( x,0) BT€ defined analogously.

These definitions are independent of the choice of Z. If k has characteristic zero,
X is a geometrically connected, smooth and projective K-scheme, and the canonical
bundle wx is trivial, then Sk(X) is a connected pseudo-manifold with boundary,
by [NX16, 4.2.4]. In particular, if we set d = dim(Sk(X)) and if 2" is a log regular
proper R-model of X, then Sk(X) is a union of d-dimensional faces of Sk(.Z"). Thus,
in this case, Sk(X) is equal to the support of the measures Agi(x) and )\gk(X). In the
general case, the measures in Definition 5.6.1 only detect the top dimensional parts
of Sk(X, 0) and Sk(X).

Remark 5.6.2. We have shown in Proposition 4.3.4 that Sk'(2°) = Sk(2") N X*
when 2 is a log regular proper R-model of X. However, Sk'(X,6) can be strictly
smaller than Sk(X,0) N X*, and Sk'(X) can be strictly smaller than Sk(X) N X*.
This happens, for instance, when k has characteristic 2 and F is an elliptic curve of
reduction type I, r > 0 (see Examples 4.3.9 and 4.5.2): we have Sk(E) = Sk(E, 0)
for any volume form 6 on E, and Sk(FE) does not contain any tame divisorial points,
so that Sk'(E) = Sk'(E,0) = @. On the other hand, Sk(E)N E* = Sk(FE) when n = 0,
and Sk(FE) N E* consists of the two endpoints of Sk(E) when n > 0.
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6. CONVERGENCE OF NON-ARCHIMEDEAN PLURICANONICAL MEASURES
In this section we prove a precise version of the Main Theorem in the Introduction.

6.1. Tov exampre: THE LANG WEIL ESTIMATES. As a toy model for our results over
non-archimedean local fields, we first explain how the asymptotic Lang—Weil estimates
can be viewed as a version of our convergence results over finite fields. Let F' be a finite
field of cardinality ¢, and let Z be an integral F-scheme of finite type, of dimension n.
We endow F' with its trivial absolute value, and denote by Z*" the F-analytic space
associated with Z. We fix an algebraic closure F'* of F' and we denote by &% the set of
finite field extensions of F' in F'*, ordered by inclusion. By the Lang—Weil estimates,
we know that
|Z(F') = czq""" )| = O (g F171/2)

as F' ranges through &%, where ¢z denotes the number of geometric irreducible com-
ponents of Z. Note that ¢z is equal to the degree of the algebraic closure of F' in the
function field of Z; this invariant plays the role of the tame degree of Z at its generic
point.

Prorosition 6.1.1. Let X be an integral proper F-scheme, of dimension n. Denote
by n the point of X?* corresponding to the trivial absolute value on the function field
of X, and by cx the number of geometric irreducible components of X. As F' ranges
through &%, the pushforward to X*" of the normalized counting measure

g N g,
TEX(F')
on X (F') converges to cxd,. Here 6, and d,, denote the Dirac measures at x and 1,
respectively.

Proof. — In order to prove the convergence of the measures, we first define a suitable
class of test functions. Let h: Y — X be a proper birational morphism and let D be
an effective Cartier divisor on Y such that the restriction of h to Y ~. D is an open
immersion. With such a pair (Y, D) we associate a continuous function

¢Y,D: X SR

that is defined in the following way. If = is a point of the image of D*" under h*", then
¢y, p(x) = 0. Otherwise, the preimage of x under h*" consists of a unique point y in
(YD), and we set ¢y, p(x) = |f(y)| where f is a local equation for D at the point
spy (y) (the center of y on Y).

We call a function of the form ¢y p a model function for X. We denote by 7 (X)
the real sub-vector space of €°(X?* R) generated by the model functions. The set
of model functions is closed under multiplication: if ¢y,p and ¢y pr are two model
functions for X, then ¢y p - ¢y ps is the model function associated with the sum of
the pullbacks of D and D’ to Y x x Y’. Moreover, the constant function 1 on X?" is the
model function associated with the zero divisor on X. Thus .7 (X) is a sub-R-algebra
of €9(Xa* R).
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We will now show that the model functions for X separate points on X?*". Let =
and z’ be distinct points of X", and denote by spy : X** — X the specialization map
that sends a point of X2 to its center on X. If spy () # spx(2’) then, swapping x
and ' if necessary, we may assume that sp y (z") does not lie in the closure of {spx (z)}.
Then we can separate  and z’ by the model function ¢y, p where Y is the blow-up
of X along the closure of {spy(x)} (with its reduced induced structure) and D is the
inverse image of the center of the blow-up. Indeed, ¢y, p(z) < 1 whereas ¢y p(z') = 1.
If spy(xz) = spy(z’) then we can find an open subscheme U of X and a regular
function f on U such that spy(z) lies in U and |f(2’)| # |f(x)|. We denote by Dg
the schematic closure in X of the closed subscheme of U defined by f = 0. Let Y be
the blow-up of X along Dy and denote by D the inverse image of Dy on Y. Then
¢y,p(z) = |f(z)| and ¢y,p(z’) = |f(2')], so that ¢(x p) separates z and z’.

The Stone-Weierstrass theorem now implies that 7 (X) is dense in €°(X*",R) for
the topology of uniform convergence. Thus it suffices to show that for every model
function ¢ = ¢y,p of X, the sum

7n[F F] Z ¢
zEX(F')

converges to cx¢(n) = cx as F’ ranges through &% (here we made a small abuse of
notation by writing ¢(x) for the value of ¢ at the image of x in X?"). By definition,
¢(z) = 0 if = lies in D(F’), and ¢(x) = 1 otherwise. Thus, writing Z =Y ~\ D, we

have
7n[F F) Z d) —n[F': F] |Z(F/)‘
zeX(F’)
and this expression converges to ¢z = cx by the Lang—Weil estimates for Z. O
Remark 6.1.2. — One can also formulate a variant of Proposition 6.1.1 that involves

pluricanonical forms on X, to strengthen the analogy with the local field case that
will be discussed below. Let X be a connected smooth and proper F-scheme, and let 6
be a non-zero pluricanonical form on X . For every finite extension I of F, this form
induces a discrete measure on X (F”) that gives mass zero to every point in the zero
locus div(#) of 6, and mass one to every other point in X (F’). We denote by vy g/
the pushforward to X" of the normalized measure

q—n[F/; F] Z S
ze(X\div(0))(F’)
on X (F’). The same arguments as in the proof of Proposition 6.1.1 shows that this
measure converges to cxd, as F’ ranges through &g.

6.2. MopEL FUNCTTONS. Now we return to our original setting, where K is a com-
plete discretely valued field. Let X be a smooth and proper K-scheme of pure dimen-
sion n.

In order to study convergence of measures on X?*, we again need a suitable class
of test functions. Let 2~ be a normal proper R-model for X and let D be an effective
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Cartier divisor on 2". Then D defines a continuous function on X?2":
d)D XM — [071] HE O |f(x)|a

where f is a local equation for D at the point sp o (2). We call such a function a model
function for X. We call D a wvertical divisor if it is supported on Z%; in that case,
we also say that the model function ¢p is vertical (this is equivalent to the property
that ¢p is nowhere vanishing). Note that ¢p remains invariant under pullback of D to
a proper R-model dominating 2", and that ¢pyp = ¢p - ¢ps for all effective Cartier
divisors supported on Z}. It follows that the class of vertical model functions for X
is closed under multiplication.

Prorosirion 6.2.1. — For every pair of distinct points x, ' on X, we can find a
proper R-model 2 and a vertical effective Cartier divisor D on Z such that ¢p(zx) #
¢D($/).

Proof. — Tt is well-known that we can find a proper R-model # of X such that
SPay () # spgy (2'); see for instance [MN15, 2.3.2]. By symmetry, we may assume
that spg (2’) is not contained in the Zariski-closure of {spg (z)}. Denote by Z the
schematic closure of {spg (z)} in #. Then we can take for 2" the blow-up of #
at Z, and for D the schematic inverse image of Z in 2. Indeed, ¢p(z’) = 1 whereas
ép ((E) < 1. O

Cororrary 6.2.2. — The real sub-vector space of €°(X**,R) generated by the vertical
model functions is dense in the topology of uniform convergence.

Proof. — The class of vertical model functions is closed under multiplication, and it
separates points by Proposition 6.2.1. It also contains the constant function ¢ 2, with
value |w|. Thus the result follows from the Stone-Weierstrass theorem. O

In our calculations below, we will need the following useful property.

Prorosition 6.2.3. Let 2 be a log reqular proper R-model of X. Let ¢ be a vertical
model function on X?". Then there exist a toroidal resolution % — Z and a closed
subset A of %, such that A does not contain any strata of % and ¢ = ¢ o pay on
X\ spy (A).

Proof. — We say that a coherent ideal sheaf .# on 2 is vertical if it contains w* for
some ¢ > 0. We can then define a function

O X — (0,1]
by taking ¢ (z) to be the maximum of the absolute values |f(z)| where f runs
through the stalk of . at sp 4 (x). When .# is the defining ideal sheaf of a vertical
effective divisor D, we have ¢ » = ¢p.

It follows from Proposition 2.2 in [BFJ16] that we can find vertical ideal sheaves .#
and # on 2 such that ¢ = ¢.s/¢ » (the overall assumption in [BFJ16] that & has
characteristic zero was not used in the proof of that proposition). Thus it suffices to
prove the statement for ¢ = ¢ », where .# is any vertical ideal sheaf on 2.
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Replacing 2" by a toroidal resolution, we may assume that 2" is an snc-model
of X. On each face of the skeleton Sk(Z"), the function log(¢) is the maximum of
finitely many piecewise K-affine functions, by [MN15, 3.2.2]. Thus log(¢) is itself
piecewise K-affine. Subdividing the skeleton Sk(.2") and taking the corresponding
toroidal modification of 2", we can reduce to the case where log(¢) is affine on every
face of Sk(Z"). By means of a further subdivision, we can arrange that 2" is still an
snc-model.

Now we decompose .# as ¢ - Og (—D) where D is a vertical effective divisor
on 2" and _Z is a vertical ideal sheaf satisfying #; = 04 ¢ for every generic point £
of Z. Then ¢ = ¢ 4 - ¢p, and it follows directly from the definition of the retraction
map pg that ¢p = ¢p o pa-. Let A be the zero locus of the ideal sheaf # on 2.
Since ¢ 4 =1, and thus ¢ = ¢p, on the complement of sp%1 (A), it is enough to show
that A does not contain any stratum of 2.

The functions log(¢) and log(ép) are affine on every face of Sk(Z"), so that the
same holds for ¢ ;. Since ¢ 4 takes the value 1 at every vertex of Sk(Z"), this implies
that ¢ » = 1 on the whole of Sk(2Z"). This means that at the generic point £ of every
stratum of 2, we have f¢ = Og ¢ (otherwise, ¢ » would be strictly smaller than 1
on the interior of the face of Sk(Z") corresponding to this stratum). Thus A does not
contain any stratum of Z2. |

6.3. THE MEASURE ASSOCIATED WITH A PLURICANONICAL FORM. For the remainder of
this section, we assume that k is finite. We denote its characteristic by p and its
cardinality by ¢ = p®. We normalize the absolute value on K by |w|x = ¢~ !, where
w € R is any uniformizer. The valued field K is either a finite extension of @, or a
Laurent series field over the finite field k. In both cases, K is locally compact, and thus
carries a Haar measure pigaar, which we normalize by requiring that pga.r(R) = 1.
As X is a smooth and proper K-scheme of pure dimension n, the set X(K) of
rational points can be turned into a compact n-dimensional K-analytic manifold in a
canonical way. Moreover, every canonical form 6 on X gives rise to a canonical form
on X (K), which at its turn induces a measure |0 on X (K); see for instance [CLNS18,
§1.1]. This construction can be immediately generalized to pluricanonical forms; we
will briefly review the definitions and basic properties. Let 8 be an m-canonical form
on X, for some positive integer m. We can partition X (K) into finitely many compact
open sets Uy, ..., U, such that, for every 7 in {1,...,7}, there exists a K-analytic open
embedding ¢; : U; — K™ We set V; = ¢;(U;) and we denote by v; : V; — U; the
inverse of ¢;. Then we can write ¥;6 as g;dz®™ for a unique K-analytic function g;
on V;, where dx denotes the standard volume form on K. The measure |6| is now
characterized by the property that, for every continuous function f : X(K) — R, we

fez /fo% gzl/md/”' aar-
/M)' > ], (F o vlodd

The change of variables formula guarantees that this definition does not depend on
the choice of the charts ¢;.

have

JE.P.— M., 2020, tome 7



324 M. Jonsson & J. Nicaise

6.4. CONVERGENCE OF THE MEASURE UNDER UNRAMIFIED EXTENSIONS. Now let 6 be an
m-canonical form on X, for some m > 0. Assume that 6 is not identically zero on any
connected component of X.

For any finite extension K'/K, we have a continuous map

MK’ X(K’) — Xan,

defined as the composition of the injection X (K') — (X’)*® and the projection
pr: (X/)an — Xon,

Recall from Section 2.3 that we denote by orduyin(X,6) the minimum of ord¢(6)
over the connected components C' of some weak Néron model % of X; this value does
not depend on %, by Proposition 2.3.3.

Derinirion 6.4.1. — For every finite unramified extension K’ of K, we set

v, = gt OO Kl(my). 10 @ K
this is a positive Radon measure on (X)*".

Let & be the set of finite extensions K’ of K in K", ordered by inclusion. Our
next result refines the unramified case of the Main Theorem in the introduction.
It is valid unconditionally in all characteristics; in particular, it does not require the
existence of an snc-model of X.

Tueorem 6.4.2. — As K' ranges through &4, the measures v g+ converge to the
discrete measure
px,0 = Z tdeg g (705
z€Sh(X,0)
on X where tdegy is the tame degree function from Section 5.3, and Sh(X,0) is
the Shilov boundary of (X,0) defined in Section 2.3.

If 7 is a smooth R-model of X, C' is a connected component of %, and x € X"
is the divisorial point associated with (%, C), then s (z) is a discretely valued field
of ramification index one over K with residue field k(C). Since C' is smooth over k,
the field k(C) is separable over k. It follows that the tame closure of K in ¢ (x) is
algebraically closed, and that tdeg, (x) is equal to the number of geometric connected
components of C. In particular, it is finite.

The proof of Theorem 6.4.2 relies on the following estimates.

Prorosition 6.4.3. — Let % be a smooth R-model of X, and write

divy () = Y orde(6)C + H,
CG‘I\'U({'&)C)

where H is an effective Cartier divisor on % that is horizontal (i.e., flat over R).
Let D be a vertical effective Cartier divisor on % . For every connected component C
of U, we denote by ordc(D) the multiplicity of C' in D.
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Let K’ be a finite unramified extension of K, with valuation ring R’ and residue

field k'. Then we have

Z q—(ordc(9)+ordc(D))[K': K] |(C N H)(k/)|
Cemo (%)

quim(X)[KliK]/ ¢DO7TK'|9®K,|
U (R')

< Z q—(ordc(9)+ordc(D))[K': K] |C(k/)|
Cemo (%)

In particular, if % is a weak Néron model of X, then

Z qf(ordc(9)+0TdC(D))[KI: K] |(C N H)(k/”

Ceno (%) . /
qulm(X)[K 1K]/ ¢DO7TK/|9®K/|
X(K')
C Y e K )
Cemno (%)
Proof. Since the property of being a weak Néron model is preserved by unramified

base change, and ¢l X1 is the cardinality of the residue field of K/, we may assume
that K = K'. Let C be a connected component of %, and let £ be a point of C'(k).
We set A = X(K) Nsp,(€). Then it suffices to show that

/ ¢D|9| < q— dim(X)—ordc(9)—ordc(D)7
A

and that equality holds when £ is not contained in H. Multiplying 6 with co—°*dc(®)m
we can reduce to the case where orde(6) = 0. Since ¢p is constant on A with value
g—°r4e(P) we may also assume that D = 0, and hence ¢ = 1.

Let h be a local equation for the Cartier divisor H at the point £&. We denote by m
the maximal ideal in R. Locally at &£, we can find an étale morphism of R-schemes
% — A% that maps £ to the origin of A}. This morphism induces a K-analytic
isomorphism ¢ : A — m". Moreover, the form induced by 6 on S can be written as
uh¢*(dx)®™ where dx is the standard volume form on K™ and u is a unit in O ¢.
We have |u| =1 and |h| < 1 on S, and |h| = 1 if £ is not contained in H. Now the

result follows from the fact that the Haar measure of m" is equal to ¢~ 4™(X) O

Proof of Theorem 6.4.2. — By Corollary 6.2.2, it is enough to show that
/ ¢p dvg K :/ ép om0 @ K|
o X(K’)

S degy(@)on (@)

z€Sh(X,0)

converges to

for every proper R-model 2  of X and every effective Cartier divisor D supported
on Zj. Applying a Néron smoothening to 2" and pulling back D, we may assume
that the R-smooth locus = Sm(Z") of £ is a weak Néron model of X. Since the
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property of being a weak Néron model is preserved by unramified base change, the
measures Vg g+ are all supported on the compact analytic domain 52//; in Xa". For
every connected component C' of %, we denote by ordc (D) the multiplicity of D
along C. Then the function ¢p is constant on sp_ggl(C) with value ¢=°'4¢(P), The
result now follows from Proposition 6.4.3 and the Lang—Weil estimates: if we denote
by x € X" the divisorial point associated with (%, C'), then we have

|C(k/)| ~ |7T0(C Rk ks)|qdim(X)[K’: K] _ tdegK((L‘)qdim(X)[K/: K]
as [K' : K] — oo, and the same holds for |(C ~ H)(k')]|. O

6.5. A CONVERGENCE LEMMA. — In order to study convergence of pluricanonical mea-
sures under ramified ground field extension, we will use the following result.

Lemma 6.5.1. Let P be a convexr polytope in R™ with Q-rational vertices. Let
¢: P — R be a continuous function, and let

a:R" — R

be an affine function. Assume that « is positive on the relative interior p of P, and
denote by d the dimension of the mazimal face T of P on which o vanishes; if T is
empty, we set d = —1. We write A for the integral Lebesque measure on the affine
space spanned by T. We fix a real number r > 1. For all positive integers e and f, we
set
Sle.fy=et D dlayrelow,
z€PN(1/e)Zn
(1) The value S(e, f) converges to

1) = [ oax

as e and f run through the positive integers ordered by divisibility. More explicitly,
for every e > 0, there exist positive integers eg and fo such that

|S(67f) _IT(¢)| <e

whenever egle and folf.

(2) Let p be a prime number. Denote by N the set of positive integers that are prime
to p, ordered by divisibility. If T has a Z,)-integral point, then S(e, f) converges to
I.(¢) as e and f run through the directed set N'. If T does not have a Zy,)-integral
point, then S(e, f) converges to 0.

Proof. We can reduce to the case where ¢ is nonnegative. Let M be the maximum
of ¢ on P.If 7 is empty, we can bound r~¢/*(#) from above on P by ¢ for some positive
constant ¢ < 1; thus S(e, f) converges to 0 as e — oo, uniformly in f. Therefore, we
may assume that 7 is non-empty.

For all positive integers e, we set

Sre)=e"t Y o).

TN(1/e)Z™
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Since « vanishes on 7, we have, for all e and f,
Si(e) < S(e, f) < Sele) + M 3 oW,
(P~T1)N(1/e)Z™
The expression S (e) converges to the integral I.(¢) as e runs through the positive
integers ordered by divisibility. If 7 does not have a Z,)-integral point, then S-(e) = 0
for every e in N’. If 7 has a Z,)-rational point, then we can find an element e in N’
and an integral (1/e)Z-affine isomorphism between 7 and a d-dimensional polytope
in RY. Tt follows that S, (e) converges to I, (¢) as e runs through the directed set N'.
Thus it suffices to show that the expression
(6.5.2) e~ > poefol@)
xze(P~T)N(1/e)Z™

lies arbitrarily close to 0 when e and f are sufficiently large. After a Z-linear coordinate
transformation on R™, we may assume that the affine span of 7 is the affine subspace
defined by

Td+1 = qd+15---,Tn = (qn,
where ¢441, - .., ¢, are rational numbers. Subdividing P into finitely many polytopes,
we may also assume that P is contained in the domain of R™ defined by

21 20,...,24 20, 441 2 Qa+1, -+, T = Gn.
Since « vanishes on 7 and is positive on the relative interior of P, it is of the form

Oé(S(}l, cee 733n) = ad+1(xd+1 - Qd+1) +F an(xn - qn)

for some nonnegative real numbers a441, ..., a,, not all zero. In fact, we may assume
that a; > 0 for all j > d. Indeed, we can pick b; > 0, d < j < n, such that if we set
B(x1,...,xpn) = ZZ_H bj(z;—q;), then 8 < o on P (it suffices to verify this inequality
on the vertices of P), and it then suffices to show that the expression in (6.5.2) tends
to zero when « is replaced by .

We choose a positive integer IV such that P \ 7 is contained in

Q= [O’N]d X (([C]d.:,.l,N] Koo X [QHvN]) N {(Qd-‘rl?"'aqn)})'

Then we can bound (6.5.2) from above by
(6.5.3) e d Z prefal@),
zeQN(1l/e)z™

This sum can be computed explicitly. For every i in {d + 1,...,n}, we denote by m;
the smallest integer such that m; > eq;. We set . 4 = 1 if eq; is an integer for every 7
in {d+1,...,n}, and d. ; = 0 otherwise. Then

(1+6N)d< ﬁ Tffai(eNfequl) _Tffai(mifeqi) 5 )
Sl —beq |-

(65.3) = 3 "

i=d+1
By definition, d., = 1 if and only if m; — eq; = 0 for all ¢; otherwise, ., = 0, and
m; —eq; is nonnegative for all ¢ and positive for some i. Moreover, if m; —eq; is positive
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and we write ¢; = w;/v; with u;, v; integers and v; > 0, then m; — eq; is bounded
below by 1/v;, which is independent of e. It follows that
n ,r,ffai(NeJrlfeqi) o ,r,ffai(mifeqi)

—0eqg — 0
H T—fai -1 €4
i=d+1
as [ — oo, uniformly in e. This concludes the proof. O
6.6. CONVERGENCE OF THE MEASURE UNDER RAMIFIED EXTENSIONS. — Let &f% be the set

of finite extensions K’ of K in the algebraic closure K, ordered by inclusion. We
denote by &k the subset of &% consisting of tamely ramified extensions. For every
finite extension K’ of K, we denote by e(K’'/K) its ramification degree over K, and
by f(K'/K) the degree of the residue field of K over the residue field &k of K. Since K
is complete, we have
[K': K] =e(K'/K) - f(K'/K).
As above, X is a smooth and proper K-scheme of pure dimension, and # a non-zero
m-canonical form on X, for some m > 0, such that # is not identically zero on any
connected component of X.
The following definition is a version of Definition 6.4.1 for ramified extensions.

DerintTion 6.6.1. For every finite extension K’ of K, we set

thmin (X,0)[K': K]

—— !
VoK' = e(K'/K)dim(Sk(X,0) (Tx)|0 @K K'|

thmin (X,Q) [K/ : K]

e(K//K)dim(Skt(X,e))
where mx: X(K') — X is the canonical map and Sk’(X, ) is the temperate part
of Sk(X, ) (see Definition 5.6.1). If Sk'(X, ) is empty, we set dim(Sk’(X,6)) = —1.

and ngK/ = (WK’)*W QK K/‘7

Thus vy x+ and v} ;. are positive Radon measures on X"

TueoreMm 6.6.2. Assume that X has an snc-model.

(1) As K' ranges through &, the measure 1/57K, converges to the stable Lebesgue
measure )‘Sékf(x,e) supported on the temperate part of the Kontsevich—Soibelman skele-
ton of the pair (X,0).

(2) If X has a log smooth proper R-model, then as K' ranges through &, the
measure vy g converges to the stable Lebesgue measure )‘%k(X,Q) supported on the
Kontsevich—Soibelman skeleton of the pair (X, 0).

Together with Theorem 6.4.2, this proves the Main Theorem in the introduction.

Proof

(1) Let 2" be a log regular proper R-model of X. For every point z of Sk(Z"),
we denote by E, the unique stratum of 2} with generic point sp 4 (); this is the
stratum corresponding to the unique face of Sk(Z2") whose relative interior contains z.
We denote by E2 the complement in E,, of the intersections with all the strata in 2%
that do not contain E,. As x runs through Sk(2"), the sets E? form a partition of 2}
into locally closed subsets.
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Let ¢ = ¢p be a vertical model function on X?". By Proposition 6.2.3, we may
assume that there exists a closed subset A of %2} that does not contain any stratum
of Zj and such that ¢ = ¢ o pg- on the complement of spf%l(A). Let L be a tame
finite extension of K. It suffices to prove the theorem for the pair (X ®x L,0 @k L)
over L instead of (X, 6): on the one hand,

thin(X QK L, 0 Rk L) = €(L/K)thin(X,9)

and dim(Sk"(X @k L,0 @k L) = dim(Sk'(X,6)), by Proposition 4.5.1 and the def-
inition of the temperate part of the skeleton; on the other hand, )‘gkt( X.0) is the

pushforward of
1 3
(L) K)dim(Sk*(X,0)) “SK' (X@x L,0@x L)

to X" by Propositions 4.5.1 and 5.4.3. Thus, replacing 2~ by its normalized base
change to the valuation ring of a suitable tame finite extension of K, and A by its
inverse image, we can reduce to the case where the multiplicities of the components
of Z, are powers of p, and all the strata of 2} are geometrically connected, by
Corollary 3.2.3.

We denote by H the Zariski closure in 2" of the zero locus of 6 on X (this is the
support of the horizontal part of the divisor divg (0)). Let K’ be a tame finite exten-
sion of K, and set e = e(K'/K) and f = f(K'/K); then [K': K] = ef. We denote
by R’ the integral closure of R in K’, and by k' its residue field. We claim that the
following inequalities hold:

f 1\ dim(X) .
q 1 —wtg(z)ef—dim(E, o
() Do Gla)g T ImEN | (Be (AU H))(K)]
q z€Sk(X,0)((1/e)Z)

</ pomk: |0 @k K'|
X(K")

<Y g e A o)
z€Sk(2)((1/e)Z)

Proposition 4.4.3 implies that E2 \ H, and thus E2 \ (AU H), are non-empty when-
ever x lies in Sk(X, 6). By the Lang-Weil estimates, ¢~ 4™(F=)f| E9(k')| tends to 1 as
f — oo, and the same holds for ¢~ 4™m(E)f|(E9 < (AU H))(K")| if ES ~ H is non-
empty. The weight function wty is piecewise rational affine on Sk(Z"), and achieves
its minimal value wtni, (X, 0) precisely on Sk(X, 6). Now Propositions 4.3.6 and 4.3.8,
together with Lemma 6.5.1, imply that

gWtmin(X.0)ef ,
edim(Skt(X,G)) /};(K/) (bO TK! ‘9 KK K |

lies arbitrarily close to

/ ¢ ANy (x.0)
Sk*(X,0)

when K’ is sufficiently large; this is what we wanted to prove.
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So let us prove our claim. We write X’ = X ® ¢ K’ and we denote by ¢/ = 0 @ K’
the pullback of 6 to X’. Let 2" be the normalization of 2" ®g R’. Then the projection
morphism

pr: (X')* — X"
induces a bijection
Sk(27)(Z) — Sk(Z)((1/e)Z),

by Proposition 4.2.1. For every point 2’ in Sk(2"'), we can define a locally closed
subset E? in the special fiber of 2", in the same way as for the model £". By
the same calculation as in the proof of Proposition 4.1.2 in [BN19], the morphism
Z' — Z maps E?, isomorphically onto B (o) ®k k’. Since the residue field of K’
has cardinality ¢/, and we have wty: = e - wtg o pr by Proposition 4.5.1, it is enough
to prove the inequalities for K’ = K; then e = f = 1.

Let h: & — 2 be a toroidal resolution of 2, associated with a regular proper
subdivision of the fan F(.2"). Then Sk(#) is a subdivision of the polyhedral complex
Sk(Z); both are equal as subspaces of X?* and they have the same piecewise Z-
integral structure (in particular, the same set of Z-integral points). For every y in
Sk(#'), we define a locally closed subset F)) in % in the same way as above (we
use the letter F' to distinguish it from the members of the partition {E2} of 2%).
Since ¢ is a regular proper R-model for X, its R-smooth locus is a weak Néron model
for X, by [BLR90, 3.1/2]; we denote it by % . The connected components of %, are
exactly the sets Fy for Z-integral points y on Sk(%') (note that all the Z-integral
points of Sk(%/) are vertices of Sk(%/), by regularity of the fan F'(#); moreover, a
vertex of Sk(#) is Z-integral if and only if the corresponding component of % has
multiplicity one). The morphism h induces a morphism of k-schemes Fy — Ej, and
it follows from the construction of the morphism h in the proof of [Kat94, 9.9] that
F? is a torsor over EY with translation group ng],lc(x)_dimwz ) In particular, the map
Fo(k) — E9(k) is surjective, and its fibers all have cardinality (q — 1)4m(0)—dim(Eg),

We can use the weak Néron model % to get the bounds we need for the integral
fX(K) ¢|0]. In fact, we will prove a stronger property: for every y in Sk(#)(Z), we
denote by %, the open subscheme of % obtained by deleting all the components in
the special fiber except for Fy. Since % is a weak Néron model for X, the set X (K)
is the union of the compact open subsets %, (R) over all the points y in Sk(#')(Z).
We fix such a point y; then it is enough to prove that

q—1 dim(X) —w —dim o
()™ st (g s (av )Wl < [ ol
q Uy(R)

< p(y)g VoW dmE) | Bo ().

We first deduce the upper bound. It follows easily from the definition of the vertical
model function ¢ = ¢p that, for every y in Sk(%')(Z), the restriction of ¢ to %,(R)
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is bounded above by ¢(y). Thus we may assume that D = 0 and ¢ = 1; then Propo-
sition 6.4.3 tells us that

[l e am O | = gD ),
y(R

Finally, we prove the lower bound. We have constructed the set A in such a way that
d(u) = ¢(y) for all the points u in (%, ~ h~'(A))(R). Thus, we may again assume
that D = 0 and ¢ = 1. Since the horizontal part of divg () is contained in h=1(H),
it follows from Proposition 6.4.3 that

q—wte(y)—dim(X)KF; N h—l(A U H))(k})| < / |9|
‘ Uy(R)

Now it suffices to observe that
(Fy ~ b~ (AU H)) (k)| = (¢ — 1)BCO=dmE) |(Be (AU H)) (k).

The proof of (2) is almost identical: by base change to a finite separable extension
of K, we can reduce to the case where X has a log smooth proper R-model 2~ such
that 2% is reduced and all its strata are geometrically connected, see Corollary 3.2.4.
Then we can use exactly the same argument as before. |

7. CONVERGENCE OF SHILOV MEASURES

We now prove a convergence theorem that is valid also for non-local fields. Let K
be a complete discretely valued field with perfect residue field k. Let X be a smooth
and proper K-scheme of pure dimension, and let 8 be an m-canonical form on X, for
some m > 0, such that 6 is not identically zero on any connected component of X.

7.1. SuiLov measures. — For every z in Sh(X, 6), we denote by tdegy () the tame
degree of X" at x. We have already explained after the statement of Theorem 6.4.2
that tdeg(z) is equal to the degree of the algebraic closure of K in . (x); moreover,
if 7 is a weak Néron model of X and C' is the connected component of %}, correspond-
ing to x, then tdegy (x) is equal to the number of geometric connected components
of C. In particular, it is finite.

The Shilov measure of (X, 0) is now defined as

pxo= . degg(z)ds,
z€Sh(X,0)

in the same way as in Theorem 6.4.2. It only depends on the pair (X, 0). Note that
px,o =0 when Sh(X,0) = @.

7.2. BASE CHANGE OF RAMIFICATION INDEX ONE. Let R’ be a complete discretely val-
ued extension of R, with quotient field K’ and residue field k’. Assume that K’ has
ramification index one over K and that k’ is separable over k. Then the property of
being a weak Néron model is preserved under base change from R to R’, by [BLR90,
3.6/7]. It follows immediately that Sh(X ®x K’',0 @k K') is the inverse image of
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Sh(X, K) under the projection map (X ® g K')* — X", and that px ¢ is the push-
forward of the measure pxg, K’ 00,k The behavior under ramified extensions is
more subtle, and will be discussed next.

7.3. CONVERGENCE THEOREM. — Now assume that X has an snc-model 2 over R. By
Proposition 4.4.3, the Kontsevich—Soibelman skeleton Sk(X, 6) is a union of faces of
Sk(Z"), so that its dimension is well-defined. Let K’ be a finite extension of K. Set
X' = X ®k K’ and denote by 6’ the pullback of 6 to X’. We write pr: (X')2* — X2
for the natural projection morphism. We define a measure A\g x» on X*" by
Aokt = pr*M_X/,eV
’ e(K//K)dlm(Sk(X,Q)) ’

where gy g is the Shilov measure of (X’,6). If the temperate part Sk'(X,) of
Sk(X, ) is non-empty (see Definition 5.6.1), we also define a measure )‘Z,K’ on X" by
Pr.px’ o
e(K//K)dirn(Skt(X,G)) :
Let &% be the set of finite extensions K’ of K in the algebraic closure K¢, or-
dered by inclusion. We denote by &} the subset of &% consisting of tamely ramified

t
Aot =

extensions.

Tarorem 7.3.1. — Assume that k is perfect, and that X has an snc-model over R.

(1) Let K' be a finite tame extension of K of ramification index e = e(K'/K).
Assume that there exists a (1/e)Z-integral point on Sk(X,0). Then the Shilov boundary
Sh(X',0") is the preimage in (X')*™ of the set of (1/e)Z-integral points in Sk(X,6).

(2) Assume that the temperate part Sk'(X,0) of the Kontsevich-Soibelman skeleton
of the pair (X, 0) is non-empty. As K' ranges through &}, the measure )\§7K, converges
to the stable Lebesgue measure )‘gkt(x,e) supported on Sk'(X, 0).

(3) Assume that X has a log smooth proper R-model. As K' ranges through &%,
the measure g g+ converges to the stable Lebesgue measure A%k(X,e) supported on the
Kontsevich—Soibelman skeleton of the pair (X, 0).

Proof

(1) We denote by R’ the valuation ring in K’. Let £ be the normalization of
Z ®gr R’. Then the skeleton Sk(Z") is the inverse image of Sk(Z") in (X')*2, by
Proposition 4.2.1. Moreover, the proof of Proposition 4.2.1 shows that the inverse
image of the set of (1/e)Z-integral points on Sk(.2") is the set of Z-integral points on
Sk(Z"). Let " — 2 be a toroidal resolution of singularities, induced by a regular
proper refinement of the Kato fan of 2" [Kat94, §10]. Then Sk(#”) = Sk(Z"), and the
piecewise integral structure is preserved. By the definition of the integral structure, the
Z-integral points on Sk(#) are precisely the vertices corresponding to components
of multiplicity one of the special fiber, or, equivalently, to the connected components
of the special fiber of the R-smooth locus Sm(#”). Since #” is regular and proper
over R, its R’-smooth locus is a weak Néron model for X', by [BLR90, 3.1/2]. It
follows from Proposition 4.5.1 that wty, reaches its minimal value at a divisorial

JE.P.— M., 2020, tome 7



CONVERGENCE OF P-ADIC PLURICANONICAL MEASURES 333

point 2’ in Sk(#”) if and only if wtg is minimal at the point pr(z’) in Sk(2"). Thus
the Shilov boundary Sh(X’,6") is the preimage in (X')*" of the set of (1/e)Z-integral
points in Sk(X, 6), provided that this set is non-empty.

(2) By Proposition 4.3.6 and our assumption that Sk'(X, 6) is non-empty, we know
that Sk(X, 0) contains a (1/eg)Z-integral point, for some positive integer eg prime to p.
Let K’ be a tame finite extension of K, of ramification index e divisible by eg. Using
point (1) and Proposition 5.3.3(1), we can write

Pr fix,00 = Z tdeg ()0,
2eSk(X,0)((1/e)Z)
where the sum is taken over the (1/e)Z-integral points in Sk(X,0). We set d =
dim Sk*(X, 6). By Proposition 4.3.6, all (1/e)Z-integral points in Sk(X,6) are con-
tained in Sk’(X,6). The proof of Proposition 4.3.8 implies that, when e is sufficiently
divisible, every d-dimensional face of Sk'(X,6) admits an integral (1/e)Z-affine iso-
morphism to a polytope in R%. The Lebesgue measure on R? is the limit of the discrete

1
eid Z 6?55

z€(1/e)Z4
where e runs through the positive integers that are prime to p, ordered by divisibility.
Therefore, the limit of the measures

measures

Pr. Hx’ .6/
e(K'/K)?
over all K’ in &} is precisely A%kt(Xﬂ)'
(3) The proof is entirely similar to that of (2). O

8. FURTHER QUESTIONS

Theorems 6.6.2 and 7.3.1 leave some interesting open questions in the cases where
log smooth proper R-models do not exist. Let us look at an explicit example. Assume
that k is a finite field of characteristic 3, and let E be an elliptic curve of Kodaira-
Néron reduction type I'V. This curve is wildly ramified, so that it does not have a log
smooth proper R-model. Let & be the minimal snc-model of E over R. The skeleton
Sk(&) is depicted in Figure 6. If § is any volume form on E, then Sk(E,#) consists of
the unique vertex of multiplicity 3 in Sk(&"). This vertex is a wild divisorial point, so
that Sk’(E,6) is empty (even though Sk(E,0) N E* = Sk(F, §) by Proposition 4.3.8).
Thus the limit of the measures vj -, in Theorem 6.6.2(1) is zero, and Theorem 7.3.1(2)
says nothing about this example.

It is easy to compute the Shilov measures ppg, K’ 00,k from Section 7.1, for
any tame finite extension K’ of K. We denote by e = e¢(K’/K) the ramification index
of K’ over K. By Proposition 5.3.3(2), the tame degree function tdeg is equal to 1 on
Sk(&). Multiplying 6 with a suitable element in K>, we may assume that it extends
to a generator of the relative canonical bundle on the minimal regular model of FE.
Then wty vanishes at the three vertices of multiplicity 1 in Sk(&), and it takes the
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value —1/3 at the unique vertex of multiplicity 3. Since wty is affine along the edges
of Sk(&), we find that the image in E*" of the Shilov boundary Sh(F®k K',0 @k K')
consists of precisely three points, namely, the three (1/e)Z-integral points on Sk(&)
that lie closest to the unique point in Sk(FE, ) (see Figure 6). Thus, as K’ ranges
through 5}0 the pushforward of prg, K’ .00k’ to E*" converges to the measure
3Ask(E,6), that is, the measure of mass 3 supported at the unique point of Sk(F, ). In
the setting of Theorem 6.6.2(1), we find the same limit measure 3Agx(g,9) by replacing
the exponent Wty (E,0) = —1/3 by
ordpmin (X QK K. 0®k K’) = —@
in the definition of the measure vj 4, (Definition 6.6.1).

1 1 1

Ficure 6. The skeleton of the minimal snc-model & of an elliptic curve E
of type IV over K. The vertices are labeled with the multiplicities of the
corresponding components in &%. The lattice length of each edge is equal
to 1/3. For any volume form 6 on E, the skeleton Sk(F,0) consists of the
unique vertex of multiplicity 3, which is wild if p = 3. The three marked
points in the interiors of the edges form the image of the Shilov boundary
Sh(E®x K',0@k K') where K’ is a tame finite extension of K. If we set e =
e(K'/K), then the lattice distance from each point in Sh(EQx K',0Qk K')
to the vertex of multiplicity 3 equals 1/3 — |e/3]/e.

In view of this example, it is natural to ask if, in the settings of Theorems 6.6.2(1)
and 7.3.1(2), one can recover an interesting limit measure supported on Sk(X,0)NX?¢,
rather than the smaller set Skt(X ,0), by renormalizing the measures u§7 x and by
studying the asymptotic behaviour of the Shilov measures j1xg, k’.00, Kk’ Over tame
finite extensions K’ of K. However, the general picture seems to be more intricate than
this example suggests. It is difficult to construct examples beyond the case of elliptic
curves because it is not well understood which weighted graphs may occur as skeleta of
wildly ramified curves of genus > 2. Nevertheless, basic calculations on abstract graphs
indicate that one can get different limit measures as e(K’/K) ranges over different
residue classes modulo a suitable power of p. We believe that this phenomenon is
related to fundamental ramification invariants introduced by Edixhoven [Edi92] and
Chai and Yu [Cha00, CY01] and further studied in [EHN15].

Another interesting question is whether one can formulate a convergence result
similar to Theorems 6.6.2 and 7.3.1 without assuming the existence of an snc-model
for X, using de Jong’s results on the existence of alterations [dJ96]. We do not know
how to use alterations to prove that the weight function wty is bounded below on
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the set of divisorial points in X®". However, one can hope to retrieve the image of
the skeleton of the pullback of € to a semistable alteration of X by studying the
asymptotic properties of Shilov measures. All of these questions will be investigated
in future work.
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