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ABSTRACT 

Many images on the Web, including photographs and artistic 

images, feature spatial relationships between objects that are 

inaccessible to someone who is blind or visually impaired 

even when a text description is provided. While some tools 

exist to manually create accessible image descriptions, this 

work is time consuming and requires specialized tools. We 

introduce an approach that automatically creates spatially 

registered image labels based on how a sighted person 

naturally interacts with the image. Our system collects 

behavioral data from sighted viewers of an image, 

specifically eye gaze data and spoken descriptions, and uses 

them to generate a spatially indexed accessible image that 

can then be explored using an audio-based touch screen 

application. We describe our approach to assigning text 

labels to locations in an image based on eye gaze. We then 

report on two formative studies with blind users testing 

EyeDescribe. Our approach resulted in correct labels for all 

objects in our image set. Participants were able to better 

recall the location of objects when given both object labels 

and spatial locations. This approach provides a new method 

for creating accessible images with minimum required effort.  
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INTRODUCTION 
Over the last two decades, the number of digital images on 

the Web has increased at an incredible pace. There are more 

than 4 billion total pages on the Web [24]. Approximately 1.8 

billion images are added to social media pages each day 

[10,28], and this figure only accounts for a subset of the Web 

(Facebook, Twitter, Instagram, LinkedIn, etc.).  

Many of the images on the Web represent items of cultural 

significance which are shared freely so that everyone can 

access them. These images include works of art from 

museum collections such as the Museum of Modern Art, The 

Smithsonian Institution, and The Metropolitan Museum of 

Art. The Metropolitan Museum of Art alone has catalogued 

up to 5,000 years’ worth of artwork as digital images. 

Knowing about popular art is a part of participating in shared 

culture. Often, however, these images are not accessible to 

someone who is blind or visually impaired.  

When a visually impaired person encounters an image on the 

Web, their experience is strongly affected by whether the 

image authors have done the work to include accessibility 

features. In particular, making an image accessible online 

involves creating an alternative text description (or “alt text”) 

that describes the image [29]. However, even when text 

descriptions are provided, they do not always capture what a 

user might wish to know about the image.  

In the case of artwork, text descriptions are often designed 

for the sighted audience, providing historical details rather 

than describing the image itself [30]. Some online art exhibits 

use audio description (AD) [33] to provide verbal 

descriptions of media to enhance a blind viewer’s experience, 

but many online image sources do not put in the extra effort 

to do so [36]. Furthermore, most text or spoken descriptions 

lack spatial information describing the positions of elements 

within the image [20,21,28]. Thus, while a description of 

abstract art may describe the image elements present, most 
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Figure 1. Using eye gaze and speech data, EyeDescribe 

identifies regions of interest in an image, which can then be 

presented interactively to blind and visually impaired end 

users via a talking touch screen application.  

Image Copyright Rob MacInnis. 

 



 

 

descriptions do not detail information about the layout of the 

image that is available to sighted people. 

Our work is motivated by these three concerns: the lack of 

available image descriptions, the effort needed to create new 

image descriptions, and the lack of spatial information in 

descriptions. In an ideal world, image descriptions should be 

easy to create and should contain the same information that is 

available to a sighted viewer. While manually generating 

these types of descriptions requires effort, we were motivated 

by the belief that descriptive information about an image is 

implicitly created when a sighted person views an image. For 

example, tracking a viewer’s eye gaze may identify 

important areas in an image, and capturing the viewer’s 

discussion of an image may provide a usable description. 

This approach, which we call use-driven accessibility, offers 

the potential to create rich descriptions of images with 

minimal effort from the image creator. 

In this paper, we explore the application of use-driven 

accessibility to artistic images. We developed a prototype 

system called EyeDescribe, which captures gaze and speech 

data as a sighted person views an image and automatically 

generates a rich, spatialized description of that image (Figure 

1). We describe the iterative design, development, and testing 

of EyeDescribe with blind users. Our user studies explore the 

following research questions: 

RQ1. How can we best use everyday gaze and speech 

data to generate spatial captions? 

RQ2. How do spatial captions generated by EyeDescribe 

compare to traditional text descriptions? 

RQ3. How do spatial captions affect a user’s ability to 

reconstruct scenes in an image? 

The contributions of this paper are: 1) introducing a use-

driven accessibility approach to generate accessible images; 

2) introducing EyeDescribe, an application to create image 

descriptions from eye gaze and speech data; 3) documenting 

two rounds of user studies in which blind participants 

evaluated image descriptions created using EyeDescribe. 

RELATED WORK 

Accessible Image Representations  

A common way to represent spatial information is with a 

tactile graphic [9]. Most tactile graphics are produced via 

embossed Braille or tactile swell paper, although they may 

also be fabricated using 3D printers [5,37]. Tactile graphics 

provide a spatial overview of an image and may include 

Braille labels. More technically advanced tactile graphics 

may include interactive audio labels [4,31,35].  

While tactile graphics provide rich information, they require 

expensive hardware to produce [18]. Designing tactile 

graphics also requires significant training and skill [37]. As 

tactile graphics are physical items that must be printed, they 

are not especially portable and require time and advance 

planning to produce. 

Another approach for creating accessible image 

representations is through sonification, in which content in 

the image is represented through speech and non-speech 

audio. Sonified images can be made interactive by placing 

them on a touch screen [20]. While sonified images can 

provide both spatial and descriptive data, exploring large or 

complex images can become overwhelming [7]. This 

complexity can sometimes be mitigated by adding new 

gestures, such as in work by Rector et al. [30] that leveraged 

a proxemic spatial interface in which the user could move 

closer to or further from an image to hear different 

information about the image. In each of the previous 

examples, image labels were generated by humans. Our 

approach builds on prior work in spatialized and sonified 

images, but explores new ways to create spatial image 

captions. 

Creating Image Captions 

Even though many images on the Web are not accessible, the 

Web offers the largest collection of labeled images. Web 

page creators can add a description to their images by adding 

alternative text tags to their HTML document [40]. One 

notable limitation of Web-based image captions is that they 

typically include only a text string describing the image, 

which may overlook important spatial or visual 

characteristics of the image [28]. 

Even the simple task of describing Web images presents 

several barriers. First, as labeling an image is sometimes 

considered extra work (or even unnecessary work), many 

authors do not take the time to label their images. If an author 

chooses to add an image, he or she may not know how to 

write an effective caption [2].  

Some tools exist to suggest image descriptions or even to 

generate descriptions for non-captioned images. WebInSight 

[3] used optical character recognition to automatically 

recognize text in Web images. Caption Crawler [15] is a 

browser plugin that identifies non-captioned images and 

searches the Web for other instances of that image that are 

captioned, bringing the caption from another site (with better 

accessibility) to the user’s current site. In addition to these 

techniques, crowdsourcing can also be used to recruit human 

image labelers [19]. YouDescribe
1
 provides a platform that 

allows users to create and request audio descriptions of 

online videos. Finally, recent advances in machine learning 

have led to automated systems such as Microsoft’s 

CaptionBot, Facebook’s Automated Alt-Text, and Google’s 

Vision API, which can automatically generate an image 

description. These automated approaches are helpful, but can 

sometimes fail in frustrating ways [26,38]. Furthermore, 

these approaches mostly focus on listing the types of objects 

in an image, and do not currently provide information about 

the spatial layout of the image, nor do they provide the type 

of subjective information that may be useful when viewing 

artistic images. Our proposed work complements these 
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approaches and introduces a new resource for creating image 

descriptions. 

Eye Gaze Input 

Most eye tracking technology uses infrared imaging to track 

movement of the user’s gaze over time [8]. Eye trackers can 

detect the rapid, unconscious movements of the eyes (called 

saccades); however, it is the longer periods without 

movement (called fixations) that typically correspond to the 

user’s conscious visual attention [14,32]. 

For more than a century, researchers in the social sciences 

have observed eye gaze as a way to better understand human 

cognition and behavior [16]. The first eye tracking device 

was used by Huey in 1908. In 1932, another, less intrusive, 

eye tracker was introduced and was used to collect data about 

how people viewed photographs [6]. For most of its history, 

eye gaze has been used as another form of behavioral data. 

For example, eye tracking has been used to detect tired 

drivers [12], track attention during educational activities [17], 

and for biometric authentication [23]. 

Much eye gaze research has focused on tracking a user’s 

gaze as they observe an image, and some of this work has 

explored how eye gaze data can help provide information 

about the image itself. Eye gaze data has been used to crop 

images [34] and as auxiliary input to a computer vision-based 

object recognizer [22].  

While most of this research has focused on using eye gaze 

data alone, Yun et al. studied the relationship between a 

participant’s gaze points and their simultaneous description 

of an image [39], comparing the descriptive text to a set of 

previously annotated images [11]. This work examined both 

whether people fixate on objects as they describe them as 

well as whether they describe the objects that they fixate 

upon. This study showed that people fixated on what they 

described 87% of the time and described what they fixated on 

95% of the time [39]. This research confirms that gaze and 

speech together provide a useful signal for both locating and 

identifying objects in an image. In this work, we leverage the 

signal generated by users who view an image, with the goal 

of creating accessible images with minimal effort from the 

labeler. 

USE-DRIVEN ACCESSIBILITY 

In most cases, creating image descriptions requires conscious 

effort from a human labeler. The labeler must examine the 

image and generate an appropriate description. This work 

often requires that the labeler predict the future use of the 

image. For example, a person who labels a family portrait 

must decide which information to include or exclude from 

the description, including both objects in the image as well as 

seemingly incidental details about the position of people in 

the image, clothing, facial expressions, and so on. 

Furthermore, as most current image description tools 

generate a plain text description, the labeler must decide 

whether to describe the locations of objects or the spatial 

relationships between them. For complex images, such as 

those found in collections of visual art, creating a 

comprehensive description may require extensive work from 

the labeler. 

In this work, we consider how a user’s undirected interaction 

with an image (i.e., simply viewing the image), can 

automatically provide information about the content of that 

image. As an example, imagine a technical presentation in 

which the presenter is discussing an on-screen diagram. As 

the presenter discusses part of the diagram, they will often 

look at that area, and may even point toward that area to 

guide the audience’s attention. Combining these information 

sources may indicate both what objects are in the diagram as 

well as their location within the diagram. The approach 

follows a similar motivation to the ESP Game [1], which on 

the surface is a fun game to play, but implicitly generates 

labeled images for people who are blind or visually impaired.  

We call this approach use-driven accessibility, as the image’s 

accessible description arises from the sighted user’s 

interaction with the image, rather than any conscious work to 

create an image description. Our goal in this paper is to 

explore whether a sighted user’s recorded interactions with 

an image can be used to annotate that image. 

Use-Driven Spatial Captioning 

As a proof-of-concept of use driven accessibility, we 

explored the use of interaction data to create a spatially 

annotated image. We define spatial captioning as the 

creation of an image description that includes both text 

describing the image and metadata describing the location of 

objects referenced in the description. As noted previously, an 

image that contains both text descriptions and spatial labels 

can enhance a blind person’s experience of that image 

[20,21,28]. 

In the general case of spatial captioning, we consider the 

input to be a two-dimensional image (and other relevant 

metadata), and the output to be a list of labeled spatial 

regions. Each spatial region includes a text description of 

objects within the region as well as spatial information such 

as a bounding box or center point.  

EyeDescribe’s Approach to Spatial Captioning 

To create spatial captions for an image, EyeDescribe assumes 

access to the following data: 

1) A two-dimensional image. 

2) Eye gaze data from one or more sighted users (“gazers”). 

This data consists of a series of (x,y) locations and 

associated timestamps. 

3) Text or speech data with a corresponding timestamp. 

This speech may correspond to a gazer’s comments 

about the image or may reflect an audio description 

heard while gazing at the image. 

The expected output of this approach is a series of spatial 

captions that indicate some spatial region in the image, along 

with a text label of that region. In this study, we have 

primarily focused on captions that describe the objects in the 



 

 

image, as this information is useful to blind viewers. 

However, this approach could also be used to extract other 

sorts of descriptive terms. For example, spatial captioning of 

an abstract art painting might instead focus on descriptions of 

colors, textures, or even emotions felt by the gazer. 

In the following sections, we describe our development of the 

EyeDescribe system and how it may be used to generate 

spatial captions from sighted users’ data. Although there are 

many ways to evaluate the quality of image captions, we 

generally focus on whether this approach leads to correct 

labels at the correct locations. 

Once spatial captions have been created, we must still solve 

the problem of how to present these captions and how a user 

may interact with a spatially captioned image. After 

documenting the creation of spatial captions using 

EyeDescribe, we then explore how this information may be 

presented non-visually to a blind or visually impaired person. 

FEASIBILITY STUDY 

To demonstrate that simultaneous gaze and speech data can 

be used to create spatial captions, we first conducted a 

feasibility study in which we collected eye gaze data from 10 

sighted users as they each viewed 10 different images 

representing paintings and photographs.  

While we believed that the combination of eye gaze data and 

speech data would be useful, we were unsure about how to 

best collect this data. To understand what conditions are 

necessary to create spatial captions, we explored three 

scenarios for collecting users’ eye gaze data: gazing at an 

image in silence, gazing at an image while listening to a 

spoken description of that image, and gazing at an image 

while the gazer describes the image themselves. 

Initial Data Collection 

For this study, a set of 10 images was used, containing a mix 

of paintings and photographs. Images were chosen from a set 

of online art gallery collections and were intended to capture 

a range of image types. We originally intended to pair these 

images with text descriptions from their source galleries. 

However, we soon found that most of the descriptions that 

accompanied these images focused on the historical context 

of the image and did not describe the visual content of the 

image. To create a neutral set of image descriptions, we 

elicited a set of text descriptions from crowd workers on 

Mechanical Turk using the prompt: 

Please write a description for each of the 10 images 
below. This description should be somewhere 
between 4 and 10 sentences. Your text should 
describe all the important items in the image. 

After collecting descriptions from 6 Mechanical Turk 

workers, we chose an image description randomly from the 

set of descriptions collected for each image. The average 

number of chosen sentences per image description was 6; 

sentences were 12 words long on average.  

These descriptions were presented to study participants via 

audio. Each description was rendered to audio using the text-

to-speech engine on MacOS. 

Participants 

Participants were recruited from a local university. The 

inclusion criteria were that the participant had normal (or 

corrected-to-normal) vision and that they were 18 years or 

older. We recruited 10 participants (3 female) with a mean 

age of 29 (range 23–37).  

Apparatus 

Gaze and speech data were collected using a MacBook Pro 

laptop running Windows 10. The laptop displayed images on 

a 13-inch screen (2500×1600 resolution). We used the Tobii 

4C eye tracker to collect eye gaze data, which ran at 90 Hz. 

in a comfortable position that they could maintain for at least 

30 minutes. The participant then completed the eye gaze 

calibration process provided by the Tobii eye tracker 

software, which involves gazing at about 4 on-screen targets. 

Following the calibration process, the participant completed 

three study activities, each of which involved gazing at the 

test images. The order of images was randomized for each 

participant, but the order of the three activities was kept the 

same for all participants. Between each image, the participant 

viewed a blank image to clear their palate and pressed a 

button to advance to the next image. Study sessions took 

approximately 30 minutes to complete.  

Activity 1: Looking in Silence 

During this activity, the participant gazed at each image in 

silence for 30 seconds.  

Activity 2: Looking while Listening 

During this activity, the participant gazed at the image while 

listening to the text-to-speech version of the image 

description. 

Activity 3: Looking while Describing 

During this activity, participants gazed at the image while 

describing the image in their own words.  

Analysis 

We recorded eye gaze data for all three activities. For 

Activity 3, we recorded the participant’s speech and 

transcribed their spoken descriptions of the image using IBM 

Watson’s Speech-to-Text
2
 API, which provides the 

transcribed word as well as a timestamp. The files were 

manually corrected for recognition errors by the research 

team. By aligning the eye gaze timestamps and speech 

timestamps, we were able to identify the user’s gaze location 

while speaking a particular word. We also collected 

timestamps from the text-to-speech recordings of the 

Mechanical Turk descriptions so that we could identify 

where a participant was looking when they heard a particular 

word. 
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Collecting and Aggregating Gaze Data 

We explored several methods for analyzing the collected 

gaze data: 

Raw Gaze Analysis. The raw data stream from the eye 

tracker, including both conscious fixations and unconscious 

saccades. Each data point included the gaze x-coordinate, 

gaze y-coordinate, and a timestamp.  

Fixation Analysis. Filtered data that includes only fixations. 

For each fixation, we recorded the gaze x-coordinate, gaze  

y-coordinate, timestamp, and duration. Fixations were 

calculated using the Dispersion Threshold Identification 

algorithm [32]. 

For raw gaze and fixation, we looked at what percentage of 

gaze points were within a specified bounding box (e.g., what 

percentage of gaze points were within the bounding box of 

“oranges” while hearing or saying “oranges”). 

Raw Kernel Density Estimation (Raw KDE). We calculated 

a kernel density estimation on the raw gaze points to return 

one (x,y) coordinate that corresponds to the densest location 

in the raw gaze data.  

Fixation Kernel Density Estimation (Fixation KDE). We 

calculated a kernel density estimation over the collection of 

fixations to return one (x,y) coordinate that corresponds to the 

densest location among fixations.  

For the KDE metrics, we calculate a single central point per 

utterance (i.e., what is the center of gaze when listening to or 

speaking “oranges”). We then measure how many times that 

central point is within the bounding box (e.g., how many 

times a participant’s center of gaze was within the bounding 

box for “oranges” while hearing or saying “oranges”). 

Associating Gaze and Speech Data 

Participants’ speech utterances were segmented into separate 

sentences for Activity 2 using the sentences generated from 

Mechanical Turk descriptions. For Activity 3, only words 

were segmented because of sentence ambiguity in spoken 

language. Each word and sentence, and their associated 

timestamps, were stored in a database. This allowed us to 

calculate the densest gaze point at the time an utterance was 

heard or spoken using Kernel Density Estimation. 

Because speech and gaze can be out of sync [27], we tested 

extending the time window in which we collected eye gaze 

data relative to the start and end of the word. we aggregated 

the data for each activity (across all participants), and 

adjusted the window by 50 milliseconds (up to 1 second on 

either side) until we found the highest Raw KDE accuracy. 

For Activity 2, the Raw KDE accuracy was highest with a 

time window starting at the beginning of a word up to 500 

milliseconds after the word. For Activity 3, the Raw KDE 

accuracy was highest with a time window starting 1 second 

before a word up to the end of the word.    

Identifying Objects in the Image 

To analyze when the user is looking at a particular object, we 

generated ground truth data for the objects in the image. Two 

colleagues manually annotated objects and features in each of 

the test images. These colleagues were familiar with the 

general purpose of the research but did not see any data 

collected from actual users. These annotators used the web 

application Annotorious
3
 to identify regions in the image and 

assign labels to them. These annotators chose their own 

labels for each region. 

We chose the ground truth objects for each image by 

combining the data collected by Mechanical Turk crowd 

workers, study participants, and our annotators. We chose 

objects that were mentioned in all three sources (i.e., 

mentioned by at least one crowd worker and one study 

participant, as well as labeled by an annotator). We manually 

merged synonyms such as “jug” and “pitcher.” For objects 

that had been identified by both annotators, we selected a 

bounding box for that object based on the intersection 

between the two bounding boxes. Figure 2 shows the 

bounding boxes generated by our two annotators. Overall, we 

identified 29 ground truth objects with an average of 3 

objects per test image.  

 

Figure 2. To collect ground truth data, two annotators drew 

bounding boxes for each object in an image. The canonical 

bounding box was the intersection of the two annotators’ 

bounding boxes. Image Copyright Phillip Gerrard.  

Findings 

We analyzed the data collected during this activity to 

understand the relationship between eye gaze, speech, and 

objects in the image. In particular, we were interested to 

know when participants were gazing at our chosen ground 

truth objects, and how participants’ behavior differed across 

the three conditions.  

When Did Participants Look at Ground Truth Objects? 

Activity 1. As there was no speech during Activity 1, we 

simply looked at what percentage of participants’ gaze points 

landed on ground truth objects. Of the raw gaze points, 63% 

of these points were within the bounding boxes of the ground 

truth objects. Because this is raw gaze data, this data includes 

unconscious saccades. Looking at fixation data, 72% of 
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fixations fell on a ground truth object. Participants averaged 

137 fixations per image, and each fixation had an average 

duration of 283 milliseconds. 

This data suggests that our labeled ground truth objects 

corresponded to the “interesting” parts of the image, and that 

participants tended to look at these objects without any 

explicit instruction to do so. In manually analyzing the gaze 

data, we found that participants sometimes fixated on other 

objects in the image, such as an artist’s signature, that were 

not included in the set of ground truth objects. Thus, even 

when participants were not looking at the ground truth 

objects, they were sometimes gazing at more minor objects. 

Activity 2. Participants gazed at the image while listening to 

a description of the image. Thus, we were able to examine 

whether participants looked at an object when hearing the 

name of the object (e.g., “oranges”) and when hearing a 

sentence describing the object (e.g., “there are sliced oranges 

on a plate”). We were curious to know whether participants 

gazed at the object when hearing its name, hearing the 

sentence describing it, both, or neither. 

Averaging across all (participant, object) pairs, 22% of raw 

gaze points and 21% of fixation gaze points were within an 

object’s bounding box while hearing the object’s name. 

When looking at the center of gaze, we found that 

participants centered their gaze on an object when hearing its 

name 32% of the time when calculating the center from raw 

data, or 41% when calculating the center from fixation data 

(Figure 3, left). Thus, participants directed much of their 

visual attention at an object when hearing its name, and often 

centered their gaze on that object when hearing its name. 

We also examined how often participants’ gaze matched an 

object while hearing the entire sentence describing that 

object. We found that examining gaze points over the entire 

sentence resulted in a greater overlap between language and 

gaze. Averaging across all (participant, object) pairs, 39% of 

raw gaze points and 42% of fixation gaze points were within 

an object’s bounding box while hearing the object’s sentence. 

When looking at the center of gaze, we found that 

participants centered their gaze on an object when hearing its 

sentence 68% of the time when calculating the center from 

raw data, or 64% when calculating the center from fixation 

data (Figure 3, center). 

Activity 3. Finally, we examined agreement between gaze 

and language when the participant was describing the image 

themselves. We found a high level of agreement here: when 

describing an object and saying its name, 79% of raw gaze 

points (89% of fixation points) were within the object’s 

bounding box. Examining the gaze center, we found that the 

participant’s gaze was almost always centered on the object 

when describing it, 100% of the time when using raw KDE 

and 96% when using fixation KDE. This finding replicates 

prior work that noted that people gaze at an object while they 

are describing it [39]. 

Viability of this Approach (RQ1) 

As in prior work [39], we found that participants tended to 

gaze at objects when hearing about that object or when 

describing it themselves. This was especially true when the 

participant was describing the image. Thus, we should be 

able to collect gaze and speech data as a sighted person 

describes an image and accurately label the objects they are 

describing. We use this approach in the development of our 

prototype system, EyeDescribe. 

EYEDESCRIBE Α 

EyeDescribe is a system that takes data of the form we 

collected in the previous study (i.e., spoken descriptions and 

gaze data) and converts this data to an interactive 

representation. The EyeDescribe prototype runs on a 

Windows 10 laptop with a touch screen. Once an image is 

loaded in EyeDescribe, the user can explore the image using 

touch. As the user touches near the location of an object, 

EyeDescribe reads out a description of that object. 

Activity 2: Listening to Object Name Activity 2: Listening to Object Sentence Activity 3: Describing Object Name 

   

Figure 3. Raw gaze, fixation, raw KDE, and fixation KDE accuracy for the feasibility study. Higher Raw and Fixation % 

indicates that more of the gaze points were within the object during the sampled time window; higher KDE % indicate that the 

center of the gaze points was more often within the object during the time window. Overall, the user’s gaze matched the named 

object most when the participant said the object’s name, not when hearing a description of it. 
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Dataset 

For our initial prototype, we used the images and descriptions 

collected during Activity 2 from the previous study (eye gaze 

while listening to a description). This way we could assign 

sentence descriptions throughout the image rather than single 

words. For each image, we used the same description created 

by a Mechanical Turk crowd worker. We segmented each 

description into sentences and assigned each section to one of 

the ground truth objects used in the previous study. For each 

object, we chose its location by collecting the raw gaze data 

points collected while hearing that sentence, and then 

computing the raw KDE for that data. To ensure that several 

objects would fit on the tablet screen, each object was given a 

bounding box of the same size of 138 pixels by 138 pixels 

(1x1 inch). 

User Interface 

EyeDescribe uses a non-visual touch interface similar to 

Access Overlays [20]. The screen is divided into a series of 

Voronoi regions surrounding each labeled object [13,20]. 

The user can drag their finger around the screen; as they enter 

an object’s Voronoi region, the system plays a unique note 

from the C-Major scale. The user can also perform a “find” 

gesture by double tapping the screen. When the user 

performs this gesture, the system describes the direction in 

which the user should move their finger, for example saying, 

“Move your finger 1 inch to the left and down 2 inches.” 

When the user touches the object’s center, the system reads 

the sentence describing that object. 

To determine whether this spatial interface is useful, we 

compared this spatial user interface to a corresponding linear 

user interface. Both interfaces featured the same text content; 

however, in the linear UI, the image description is stored as a 

set of sentences. The user navigates through the sentences by 

swiping left and right, similar to the Apple VoiceOver screen 

reader on iOS devices. 

USER STUDY 1 

We conducted a study to compare linear and spatial 

descriptions, and the interfaces used to explore these 

descriptions.  

Participants 

We recruited 6 blind adult participants (2 female). Ages 

ranged from 23 to 64 with a mean age of 38. Four of the 

participants were congenitally blind, one has been blind for 

over nine years, and one participant had only light perception 

in one eye. All participants were familiar with accessible 

technologies and utilized screen readers daily.    

Apparatus and Data 

The EyeDescribe α prototype used a Microsoft Surface Pro 4 

tablet, with a 12.3-inch, 3:2 ratio touch screen, running 

Windows 10. To answer RQ2 (How do spatial captions 

generated by EyeDescribe compare to traditional text 

descriptions?), we compared the spatial descriptions and 

linear descriptions as described above. 

Procedure 

The study lasted 30 minutes. This study used the same set of 

images as in the previous study. Half of the images were 

presented using the spatial interface and half were presented 

using the linear interface. The order of images was 

randomized. Interface conditions alternated every other 

image and were counterbalanced based on even or odd 

participant code.  

For each image, participants were given as much time as they 

needed to explore the layout. Once they were done exploring 

the image, they moved on to the next image. After each 

interface condition, participants answered 5 Likert scale 

response questions (1=strongly disagree, 5=strongly agree):  

1. Object Presence: I understand which objects are 

depicted in the image.  

2. Object Locations: I understand where objects in the 

image are located.  

3. Ease of Use: Exploring the image was easy.  

4. Enjoyability: Exploring the image was enjoyable.  

5. Frustration: Exploring the image was frustrating.   

Finally, participants provided general feedback about their 

experience testing the prototype. 

Findings 

Feedback about the system focused on two main areas: 1) 

benefits of the spatialized captions; and 2) evaluation of the 

user interface. Overall, participants tended to agree that the 

spatialized captions contained useful information, but some 

had difficulty using the touch screen interface, which itself 

was an early prototype. 

Table 1 shows the responses to the Likert-scale questions. 

Participants found the spatial user interface to provide a 

marginally better sense of the images’ spatial layout, but also 

found it to be more difficult to use, less enjoyable, and more 

frustrating. Due to the small sample size, we did not conduct 

a statistical analysis of these data. 

Category Spatial UI Linear UI 

Object Presence 4.58 4.33 

Object Locations 3.63 3.19 

Ease of Use 2.75 4.31 

Enjoyability 3.06 3.63 

Frustration 3 1.75 

Table 1. Responses to subjective questions (on a 5-point Likert 

scale, 1=strongly disagree, 5=strongly agree). 

One major limitation of the spatial interface was the need to 

search the entire screen to locate the objects; participants 

needed to directly touch the object to hear its description. 

During the open-ended feedback session, P4 compared the 

spatial interface to playing hide and seek, and P6 said, 

“Spatial mode is very frustrating, it is very frustrating to wait 

for directions.” The linear user interface was also more 

familiar to our participants as it was similar to the VoiceOver 

screen reader. 



 

 

We analyzed participants’ feedback about the spatial user 

interface and found a common set of concerns: 

i1) It was difficult to find object descriptions; 

i2) The sonified regions do not make sense due to their 

irregular shape boundaries; 

i3) It was difficult to find the edges of the image; 

i4) There was no way to toggle between interaction modes; 

i5) The system did not provide enough feedback. 

Despite the usability issues uncovered during the study, some 

participants noted benefits of the spatial user interface. P5 

stated, “Overall I preferred the searching [spatial UI], I know 

the numbers I gave don’t reflect that but I still prefer having 

that interaction instead of just being told. [Spatial UI] would 

be better for getting to engage with artwork instead of being 

lectured at.” P2 said, “I liked the ones[images] in the spatial 

mode the most. You could tell where things were in relation 

to one another … If someone has more vision than I do, then 

it would allow me to communicate better with sighted 

people.”  

EYEDESCRIBE β 

Following our first user study, we updated the EyeDescribe 

prototype to address participants’ usability issues and to 

better support spatial exploration of the image. 

Updated Image Set 

During the first study, some of the images in our image set 

contained multiple instances of similar objects. Specifically, 

some images featured multiple copies of the same object 

(giraffes, squares, and dogs, respectively). Participants were 

able to locate one instance of these objects, but were mostly 

unaware of the additional instances of each object, as 

EyeDescribe attempts to find a single location for each type 

of object. Also, some images in the initial data set had many 

objects in them, while others had very few. To remove 

ambiguous duplicate objects, and to equalize the number of 

findable objects in each image, we selected a new image set, 

and collected descriptions and eye gaze data for each image. 

This set contained 4 images from 3 categories: landscapes, 

portraits, and still-life paintings.  

Once again, we recruited gazers from the local campus with 

normal or corrected-to-normal vision. We recruited 5 

participants (3 female) with a mean age of 25 (range 23–30). 

As we found the image description task to be especially 

accurate, participants in this group only described images in 

their own words and did not complete the other activities.  

User Interface Improvements 

To address the usability issues uncovered in the first study, 

we made several improvements to the touch screen interface. 

First, we added a laser-cut tactile border to the tablet screen 

to make it easier to find the screen and navigate along its 

edges (Figure 6). We also provided an enhanced set of 

gestures partly inspired by the Access Overlays [20], with an 

emphasis on providing users more information about the 

image and its spatial layout. 

Single Tap: Read Image Caption 

The user can perform a single tap to start playing a 

description and another single tap to pause the description. 

The description can be played as many times as the user 

prefers. This was most similar to the linear interface in the 

previous prototype. 

 

Figure 4. Participant interacts with the EyeDescribe prototype. 

Double Tap: List Common Objects 

The user can double tap the screen to hear a list of 10 nouns 

that were most commonly mentioned in our gazers’ image 

descriptions. For example, for a still life image, EyeDescribe 

may read, “Objects associated with image: glass, wine, bowl, 

grapes, table, liquid, apple, cloth, apples, pitcher." We found 

that this set of words described the most important objects in 

our test image set. 

Two-Finger Tap: Search 

The user can tap the screen with two fingers to perform an 

interactive search, as in Access Overlays [20]. The user taps 

the screen and then says the name of the object; the system 

then provides interactive directions to guide the user’s finger 

to the named object. While in the previous prototype the user 

needed to repeatedly tap the screen, here the user can drag 

their finger around until they locate the object. 

Touch and Drag: Scan 

The user can drag a single finger over the screen. As the user 

moves from the region around one object to the region 

around another object, the system will say the name of the 

new object. While in the previous prototype the user needed 

to accurately pinpoint the object to hear its name, here the 

user can drag their finger around to get an overview of the 

image layout. 

USER STUDY 2 

We conducted another user study to evaluate whether the 

improved EyeDescribe β would enable participants to more 

efficiently explore images. 

Participants 

We recruited 7 blind participants (2 female). Four of the 

seven participated in User Study 1. Ages ranged from 29 to 

66 with a mean age of 40. P1 has been blind for over 10 

years. P2 has been blind for over 5 years. The other 

participants were congenitally blind. The participants were 



 

 

familiar with accessible technologies and used screen readers 

daily.    

Procedure 

The study lasted 90 minutes. During the study, participants 

interacted with 10 images from the test set. There were three 

parts to the study:  

Activity 1: Training  

Participants explored a sample image using the touch screen 

interface. Participants were able to use all four of the 

interface modes. 

Activity 2: Explore 

The participant explored images using the EyeDescribe 

interface. For this activity, participants explored three 

images, featuring one example from each category 

(landscape, still-life, and portrait). The order of the images 

was the same in this task across participants. Participants 

were asked to think aloud while exploring the images and to 

take as much time as they wished to explore the images. 

Participants were able to use all four of the interface modes. 

Activity 3: Recall 

Participants explored eight additional images. These images 

were the same for all participants but were presented in 

random order. For four images, participants were able to use 

all four of the interface modes; for the other four images, 

they were only able to use the non-spatial interface modes 

(Read Image Caption and List Common Objects). The order 

of the modes was counterbalanced. 

Once the participant felt they had adequately explored the 

image, they were then asked to recreate the layout of the 

image. The participant was presented with a Lego grid that 

was approximately the size of the tablet screen. For each 

image, the researcher named one object (same object for each 

participant) and asked the participant to place a Lego brick 

on the grid corresponding to that object’s location. The goal 

of this activity was to determine whether the spatial user 

interface helped participants to understand the image layout. 

Findings  

We analyzed the completed Lego grids and measured the 

distance (in inches) between the object’s on-screen location 

and the position that the participant chose. Table 2 shows the 

average distance for images using the spatial interface (all 

four interface modes) and the non-spatial interface (Read 

Image Caption and List Common Objects modes). 

Although the average error distance was less when using the 

spatial interface, a one-way repeated measures ANOVA 

[F(1,27)=3.4694, p=0.0734] did not show this difference to 

be 

 

significant. This may be an artifact of the small sample size. 

Cohen’s d (0.40) was calculated for effect size. 

Qualitative feedback about EyeDescribe β was more positive 

than the feedback about EyeDescribe α. Following the 

improvements to the user interface, participants seemed more 

able to search and understand images. For example, P3 said, 

“The worst was when there was no explore mode [non-

spatial interface] and just going off of people’s description.”  

Participants were asked what they liked most about exploring 

the images. P1 said, “It allowed me to get a mental image 

drawn in my brain … I like the ability to explore and look for 

things.” When asked to compare the various modes of the 

prototype, P2 said “They are all important in terms of 

providing the information we need.”  Despite the potential 

advantages of a spatial user interface, two participants noted 

that their favorite feature was the plain text description, 

although two other participants named that their least favorite 

feature. 

When asked how this system might be useful to them, P2 

said, “Obviously describing art.” Five out of seven 

participants mentioned that the system would be useful for 

maps; four out of seven participants said they might use 

EyeDescribe to look at pictures. Participants also mentioned 

museum exhibits, games, and documents as potential 

applications of this system.  

DISCUSSION & FUTURE WORK 

In this work, we have explored the creation of spatially-

captioned interactive graphics using use-driven accessibility. 

We believe that this work demonstrates that through 

capturing the behavior of consumers as they interact with 

media, we can bootstrap the creation of accessible media. 

EyeDescribe could be extended to adapt its descriptions 

based on behavioral data. For example, EyeDescribe might 

present more detailed descriptions of objects that sighted 

users spend a lot of time looking at. Alternately, the user 

could query an image based on behavioral data, such as 

searching for the most popular objects, or could filter the 

description data so that they can switch between object 

labels, descriptions of color and texture, or subjective 

comments about an image. Future versions of EyeDescribe 

could allow a user to follow along with sighted peers in real-

time, or to switch between different gazers to understand how 

individuals experience a work of art differently. While 

EyeDescribe currently expects users to talk about an image 

   Sum Mean VAR p-value 

Spatial  53.18 1.90 2.26 
0.0734 

Non-Spatial  70.99 2.26 2.78 

      

Table 2. Distance (in inches) between on-screen location 

and the participant’s estimated location. Participants were 

more accurate when using the spatial interface, although 

the difference was not statistically significant.  

 



 

 

as they look at it, future versions could further reduce the 

labeler’s workload by recording and processing the natural 

discussions that occur around a piece of art. 

Use-driven accessibility might be generalizable to other use 

contexts and disabilities. For example, tracking movements 

through a building could be used to identify accessible 

pedestrian paths, and sets of items purchased in a store could 

be used to provide suggestions for people with cognitive 

disabilities while shopping. This approach could even be 

considered a form of social accessibility [25], whereby 

members of the community can contribute to the accessibility 

of some shared resource, albeit one in which no explicit extra 

work is required from the community members. 

CONCLUSION 

In this paper, we introduced the concept of use-driven 

accessibility and show how it can be used to label artistic 

images. This approach attempts to capture what a sighted 

viewer intuitively finds interesting in an image and makes 

this information accessible with little or no work from the 

sighted labeler. Our studies showed that the combination of 

gaze and speech is sufficient for labeling images and that 

automatically generated spatial captions can lead to improved 

understanding over plain text captions. We believe that 

understanding how  people engage with a piece of art can 

provide unique insights into how to make that art more 

accessible to everyone. 
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