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ABSTRACT

Many images on the Web, including photographs and artistic
images, feature spatial relationships between objects that are
inaccessible to someone who is blind or visually impaired
even when a text description is provided. While some tools
exist to manually create accessible image descriptions, this
work is time consuming and requires specialized tools. We
introduce an approach that automatically creates spatially
registered image labels based on how a sighted person
naturally interacts with the image. Our system collects
behavioral data from sighted viewers of an image,
specifically eye gaze data and spoken descriptions, and uses
them to generate a spatially indexed accessible image that
can then be explored using an audio-based touch screen
application. We describe our approach to assigning text
labels to locations in an image based on eye gaze. We then
report on two formative studies with blind users testing
EyeDescribe. Our approach resulted in correct labels for all
objects in our image set. Participants were able to better
recall the location of objects when given both object labels
and spatial locations. This approach provides a new method
for creating accessible images with minimum required effort.
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INTRODUCTION

Over the last two decades, the number of digital images on
the Web has increased at an incredible pace. There are more
than 4 billion total pages on the Web [24]. Approximately 1.8
billion images are added to social media pages each day
[10,28], and this figure only accounts for a subset of the Web
(Facebook, Twitter, Instagram, LinkedIn, etc.).

Many of the images on the Web represent items of cultural
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Figure 1. Using eye gaze and speech data, EyeDescribe
identifies regions of interest in an image, which can then be
presented interactively to blind and visually impaired end
users via a talking touch screen application.
Image Copyright Rob Maclnnis.

significance which are shared freely so that everyone can
access them. These images include works of art from
museum collections such as the Museum of Modern Art, The
Smithsonian Institution, and The Metropolitan Museum of
Art. The Metropolitan Museum of Art alone has catalogued
up to 5,000 years’ worth of artwork as digital images.
Knowing about popular art is a part of participating in shared
culture. Often, however, these images are not accessible to
someone who is blind or visually impaired.

When a visually impaired person encounters an image on the
Web, their experience is strongly affected by whether the
image authors have done the work to include accessibility
features. In particular, making an image accessible online
involves creating an alternative text description (or “alt text”)
that describes the image [29]. However, even when text
descriptions are provided, they do not always capture what a
user might wish to know about the image.

In the case of artwork, text descriptions are often designed
for the sighted audience, providing historical details rather
than describing the image itself [30]. Some online art exhibits
use audio description (AD) [33] to provide verbal
descriptions of media to enhance a blind viewer’s experience,
but many online image sources do not put in the extra effort
to do so [36]. Furthermore, most text or spoken descriptions
lack spatial information describing the positions of elements
within the image [20,21,28]. Thus, while a description of
abstract art may describe the image elements present, most



descriptions do not detail information about the layout of the
image that is available to sighted people.

Our work is motivated by these three concerns: the lack of
available image descriptions, the effort needed to create new
image descriptions, and the lack of spatial information in
descriptions. In an ideal world, image descriptions should be
easy to create and should contain the same information that is
available to a sighted viewer. While manually generating
these types of descriptions requires effort, we were motivated
by the belief that descriptive information about an image is
implicitly created when a sighted person views an image. For
example, tracking a viewer’s eye gaze may identify
important areas in an image, and capturing the viewer’s
discussion of an image may provide a usable description.
This approach, which we call use-driven accessibility, offers
the potential to create rich descriptions of images with
minimal effort from the image creator.

In this paper, we explore the application of use-driven
accessibility to artistic images. We developed a prototype
system called EyeDescribe, which captures gaze and speech
data as a sighted person views an image and automatically
generates a rich, spatialized description of that image (Figure
1). We describe the iterative design, development, and testing
of EyeDescribe with blind users. Our user studies explore the
following research questions:

RQ1. How can we best use everyday gaze and speech
data to generate spatial captions?

RQ2. How do spatial captions generated by EyeDescribe
compare to traditional text descriptions?

RQ3. How do spatial captions affect a user’s ability to
reconstruct scenes in an image?

The contributions of this paper are: 1) introducing a use-
driven accessibility approach to generate accessible images,
2) introducing EyeDescribe, an application to create image
descriptions from eye gaze and speech data; 3) documenting
two rounds of user studies in which blind participants
evaluated image descriptions created using EyeDescribe.

RELATED WORK

Accessible Image Representations

A common way to represent spatial information is with a
tactile graphic [9]. Most tactile graphics are produced via
embossed Braille or tactile swell paper, although they may
also be fabricated using 3D printers [5,37]. Tactile graphics
provide a spatial overview of an image and may include
Braille labels. More technically advanced tactile graphics
may include interactive audio labels [4,31,35].

While tactile graphics provide rich information, they require
expensive hardware to produce [18]. Designing tactile
graphics also requires significant training and skill [37]. As
tactile graphics are physical items that must be printed, they
are not especially portable and require time and advance
planning to produce.

Another approach for creating accessible image
representations is through sonification, in which content in
the image is represented through speech and non-speech
audio. Sonified images can be made interactive by placing
them on a touch screen [20]. While sonified images can
provide both spatial and descriptive data, exploring large or
complex images can become overwhelming [7]. This
complexity can sometimes be mitigated by adding new
gestures, such as in work by Rector et al. [30] that leveraged
a proxemic spatial interface in which the user could move
closer to or further from an image to hear different
information about the image. In each of the previous
examples, image labels were generated by humans. Our
approach builds on prior work in spatialized and sonified
images, but explores new ways to create spatial image
captions.

Creating Image Captions

Even though many images on the Web are not accessible, the
Web offers the largest collection of labeled images. Web
page creators can add a description to their images by adding
alternative text tags to their HTML document [40]. One
notable limitation of Web-based image captions is that they
typically include only a text string describing the image,
which may overlook important spatial or visual
characteristics of the image [28].

Even the simple task of describing Web images presents
several barriers. First, as labeling an image is sometimes
considered extra work (or even unnecessary work), many
authors do not take the time to label their images. If an author
chooses to add an image, he or she may not know how to
write an effective caption [2].

Some tools exist to suggest image descriptions or even to
generate descriptions for non-captioned images. WebInSight
[3] used optical character recognition to automatically
recognize text in Web images. Caption Crawler [15] is a
browser plugin that identifies non-captioned images and
searches the Web for other instances of that image that are
captioned, bringing the caption from another site (with better
accessibility) to the user’s current site. In addition to these
techniques, crowdsourcing can also be used to recruit human
image labelers [19]. YouDescribe' provides a platform that
allows users to create and request audio descriptions of
online videos. Finally, recent advances in machine learning
have led to automated systems such as Microsoft’s
CaptionBot, Facebook’s Automated Alt-Text, and Google’s
Vision API, which can automatically generate an image
description. These automated approaches are helpful, but can
sometimes fail in frustrating ways [26,38]. Furthermore,
these approaches mostly focus on listing the types of objects
in an image, and do not currently provide information about
the spatial layout of the image, nor do they provide the type
of subjective information that may be useful when viewing
artistic images. Our proposed work complements these
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approaches and introduces a new resource for creating image
descriptions.

Eye Gaze Input

Most eye tracking technology uses infrared imaging to track
movement of the user’s gaze over time [8]. Eye trackers can
detect the rapid, unconscious movements of the eyes (called
saccades); however, it is the longer periods without
movement (called fixations) that typically correspond to the
user’s conscious visual attention [14,32].

For more than a century, researchers in the social sciences
have observed eye gaze as a way to better understand human
cognition and behavior [16]. The first eye tracking device
was used by Huey in 1908. In 1932, another, less intrusive,
eye tracker was introduced and was used to collect data about
how people viewed photographs [6]. For most of its history,
eye gaze has been used as another form of behavioral data.
For example, eye tracking has been used to detect tired
drivers [12], track attention during educational activities [17],
and for biometric authentication [23].

Much eye gaze research has focused on tracking a user’s
gaze as they observe an image, and some of this work has
explored how eye gaze data can help provide information
about the image itself. Eye gaze data has been used to crop
images [34] and as auxiliary input to a computer vision-based
object recognizer [22].

While most of this research has focused on using eye gaze
data alone, Yun et al. studied the relationship between a
participant’s gaze points and their simultaneous description
of an image [39], comparing the descriptive text to a set of
previously annotated images [11]. This work examined both
whether people fixate on objects as they describe them as
well as whether they describe the objects that they fixate
upon. This study showed that people fixated on what they
described 87% of the time and described what they fixated on
95% of the time [39]. This research confirms that gaze and
speech together provide a useful signal for both locating and
identifying objects in an image. In this work, we leverage the
signal generated by users who view an image, with the goal
of creating accessible images with minimal effort from the
labeler.

USE-DRIVEN ACCESSIBILITY

In most cases, creating image descriptions requires conscious
effort from a human labeler. The labeler must examine the
image and generate an appropriate description. This work
often requires that the labeler predict the future use of the
image. For example, a person who labels a family portrait
must decide which information to include or exclude from
the description, including both objects in the image as well as
seemingly incidental details about the position of people in
the image, clothing, facial expressions, and so on.
Furthermore, as most current image description tools
generate a plain text description, the labeler must decide
whether to describe the locations of objects or the spatial
relationships between them. For complex images, such as

those found in collections of visual art, creating a
comprehensive description may require extensive work from
the labeler.

In this work, we consider how a user’s undirected interaction
with an image (i.e., simply viewing the image), can
automatically provide information about the content of that
image. As an example, imagine a technical presentation in
which the presenter is discussing an on-screen diagram. As
the presenter discusses part of the diagram, they will often
look at that area, and may even point toward that area to
guide the audience’s attention. Combining these information
sources may indicate both what objects are in the diagram as
well as their location within the diagram. The approach
follows a similar motivation to the ESP Game [1], which on
the surface is a fun game to play, but implicitly generates
labeled images for people who are blind or visually impaired.

We call this approach use-driven accessibility, as the image’s
accessible description arises from the sighted user’s
interaction with the image, rather than any conscious work to
create an image description. Our goal in this paper is to
explore whether a sighted user’s recorded interactions with
an image can be used to annotate that image.

Use-Driven Spatial Captioning

As a proof-of-concept of use driven accessibility, we
explored the use of interaction data to create a spatially
annotated image. We define spatial captioning as the
creation of an image description that includes both text
describing the image and metadata describing the location of
objects referenced in the description. As noted previously, an
image that contains both text descriptions and spatial labels
can enhance a blind person’s experience of that image
[20,21,28].

In the general case of spatial captioning, we consider the
input to be a two-dimensional image (and other relevant
metadata), and the output to be a list of labeled spatial
regions. Each spatial region includes a text description of
objects within the region as well as spatial information such
as a bounding box or center point.

EyeDescribe’s Approach to Spatial Captioning
To create spatial captions for an image, EyeDescribe assumes
access to the following data:

1) A two-dimensional image.

2) Eye gaze data from one or more sighted users (“gazers”).
This data consists of a series of (x,y) locations and
associated timestamps.

3) Text or speech data with a corresponding timestamp.
This speech may correspond to a gazer’s comments
about the image or may reflect an audio description
heard while gazing at the image.

The expected output of this approach is a series of spatial
captions that indicate some spatial region in the image, along
with a text label of that region. In this study, we have
primarily focused on captions that describe the objects in the



image, as this information is useful to blind viewers.
However, this approach could also be used to extract other
sorts of descriptive terms. For example, spatial captioning of
an abstract art painting might instead focus on descriptions of
colors, textures, or even emotions felt by the gazer.

In the following sections, we describe our development of the
EyeDescribe system and how it may be used to generate
spatial captions from sighted users’ data. Although there are
many ways to evaluate the quality of image captions, we
generally focus on whether this approach leads to correct
labels at the correct locations.

Once spatial captions have been created, we must still solve
the problem of how to present these captions and how a user
may interact with a spatially captioned image. After
documenting the creation of spatial captions using
EyeDescribe, we then explore how this information may be
presented non-visually to a blind or visually impaired person.

FEASIBILITY STUDY

To demonstrate that simultaneous gaze and speech data can
be used to create spatial captions, we first conducted a
feasibility study in which we collected eye gaze data from 10
sighted users as they each viewed 10 different images
representing paintings and photographs.

While we believed that the combination of eye gaze data and
speech data would be useful, we were unsure about how to
best collect this data. To understand what conditions are
necessary to create spatial captions, we explored three
scenarios for collecting users’ eye gaze data: gazing at an
image in silence, gazing at an image while listening to a
spoken description of that image, and gazing at an image
while the gazer describes the image themselves.

Initial Data Collection

For this study, a set of 10 images was used, containing a mix
of paintings and photographs. Images were chosen from a set
of online art gallery collections and were intended to capture
a range of image types. We originally intended to pair these
images with text descriptions from their source galleries.
However, we soon found that most of the descriptions that
accompanied these images focused on the historical context
of the image and did not describe the visual content of the
image. To create a neutral set of image descriptions, we
elicited a set of text descriptions from crowd workers on
Mechanical Turk using the prompt:

Please write a description for each of the 10 images
below. This description should be somewhere
between 4 and 10 sentences. Your text should
describe all the important items in the image.

After collecting descriptions from 6 Mechanical Turk
workers, we chose an image description randomly from the
set of descriptions collected for each image. The average
number of chosen sentences per image description was 6;
sentences were 12 words long on average.

These descriptions were presented to study participants via
audio. Each description was rendered to audio using the text-
to-speech engine on MacOS.

Participants

Participants were recruited from a local university. The
inclusion criteria were that the participant had normal (or
corrected-to-normal) vision and that they were 18 years or
older. We recruited 10 participants (3 female) with a mean
age of 29 (range 23-37).

Apparatus

Gaze and speech data were collected using a MacBook Pro
laptop running Windows 10. The laptop displayed images on
a 13-inch screen (2500x1600 resolution). We used the Tobii
4C eye tracker to collect eye gaze data, which ran at 90 Hz.

in a comfortable position that they could maintain for at least
30 minutes. The participant then completed the eye gaze
calibration process provided by the Tobii eye tracker
software, which involves gazing at about 4 on-screen targets.

Following the calibration process, the participant completed
three study activities, each of which involved gazing at the
test images. The order of images was randomized for each
participant, but the order of the three activities was kept the
same for all participants. Between each image, the participant
viewed a blank image to clear their palate and pressed a
button to advance to the next image. Study sessions took
approximately 30 minutes to complete.

Activity 1: Looking in Silence
During this activity, the participant gazed at each image in
silence for 30 seconds.

Activity 2: Looking while Listening

During this activity, the participant gazed at the image while
listening to the text-to-speech version of the image
description.

Activity 3: Looking while Describing
During this activity, participants gazed at the image while
describing the image in their own words.

Analysis

We recorded eye gaze data for all three activities. For
Activity 3, we recorded the participant’s speech and
transcribed their spoken descriptions of the image using IBM
Watson’s  Speech-to-Text” API, which provides the
transcribed word as well as a timestamp. The files were
manually corrected for recognition errors by the research
team. By aligning the eye gaze timestamps and speech
timestamps, we were able to identify the user’s gaze location
while speaking a particular word. We also collected
timestamps from the text-to-speech recordings of the
Mechanical Turk descriptions so that we could identify
where a participant was looking when they heard a particular
word.

? https://www.ibm.com/watson/services/speech-to-text
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Collecting and Aggregating Gaze Data
We explored several methods for analyzing the collected
gaze data:

Raw Gaze Analysis. The raw data stream from the eye
tracker, including both conscious fixations and unconscious
saccades. Each data point included the gaze x-coordinate,
gaze y-coordinate, and a timestamp.

Fixation Analysis. Filtered data that includes only fixations.
For each fixation, we recorded the gaze x-coordinate, gaze
y-coordinate, timestamp, and duration. Fixations were
calculated using the Dispersion Threshold Identification
algorithm [32].

For raw gaze and fixation, we looked at what percentage of
gaze points were within a specified bounding box (e.g., what
percentage of gaze points were within the bounding box of
“oranges” while hearing or saying “oranges”).

Raw Kernel Density Estimation (Raw KDE). We calculated
a kernel density estimation on the raw gaze points to return
one (x,y) coordinate that corresponds to the densest location
in the raw gaze data.

Fixation Kernel Density Estimation (Fixation KDE). We
calculated a kernel density estimation over the collection of
fixations to return one (x,y) coordinate that corresponds to the
densest location among fixations.

For the KDE metrics, we calculate a single central point per
utterance (i.e., what is the center of gaze when listening to or
speaking “oranges”). We then measure how many times that
central point is within the bounding box (e.g., how many
times a participant’s center of gaze was within the bounding
box for “oranges” while hearing or saying “oranges”).

Associating Gaze and Speech Data

Participants’ speech utterances were segmented into separate
sentences for Activity 2 using the sentences generated from
Mechanical Turk descriptions. For Activity 3, only words
were segmented because of sentence ambiguity in spoken
language. Each word and sentence, and their associated
timestamps, were stored in a database. This allowed us to
calculate the densest gaze point at the time an utterance was
heard or spoken using Kernel Density Estimation.

Because speech and gaze can be out of sync [27], we tested
extending the time window in which we collected eye gaze
data relative to the start and end of the word. we aggregated
the data for each activity (across all participants), and
adjusted the window by 50 milliseconds (up to 1 second on
either side) until we found the highest Raw KDE accuracy.
For Activity 2, the Raw KDE accuracy was highest with a
time window starting at the beginning of a word up to 500
milliseconds after the word. For Activity 3, the Raw KDE
accuracy was highest with a time window starting 1 second
before a word up to the end of the word.

Identifying Objects in the Image

To analyze when the user is looking at a particular object, we
generated ground truth data for the objects in the image. Two
colleagues manually annotated objects and features in each of
the test images. These colleagues were familiar with the
general purpose of the research but did not see any data
collected from actual users. These annotators used the web
application Annotorious® to identify regions in the image and
assign labels to them. These annotators chose their own
labels for each region.

We chose the ground truth objects for each image by
combining the data collected by Mechanical Turk crowd
workers, study participants, and our annotators. We chose
objects that were mentioned in all three sources (i.e.,
mentioned by at least one crowd worker and one study
participant, as well as labeled by an annotator). We manually
merged synonyms such as “jug” and “pitcher.” For objects
that had been identified by both annotators, we selected a
bounding box for that object based on the intersection
between the two bounding boxes. Figure 2 shows the
bounding boxes generated by our two annotators. Overall, we
identified 29 ground truth objects with an average of 3
objects per test image.

e
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Figure 2. To collect ground truth data, two annotators drew
bounding boxes for each object in an image. The canonical
bounding box was the intersection of the two annotators’
bounding boxes. Image Copyright Phillip Gerrard.

Findings

We analyzed the data collected during this activity to
understand the relationship between eye gaze, speech, and
objects in the image. In particular, we were interested to
know when participants were gazing at our chosen ground
truth objects, and how participants’ behavior differed across
the three conditions.

When Did Participants Look at Ground Truth Objects?

Activity 1. As there was no speech during Activity 1, we
simply looked at what percentage of participants’ gaze points
landed on ground truth objects. Of the raw gaze points, 63%
of these points were within the bounding boxes of the ground
truth objects. Because this is raw gaze data, this data includes
unconscious saccades. Looking at fixation data, 72% of

? https://annotorious.github.io
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Activity 2: Listening to Object Name

Activity 2: Listening to Object Sentence

Activity 3: Describing Object Name
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Figure 3. Raw gaze, fixation, raw KDE, and fixation KDE accuracy for the feasibility study. Higher Raw and Fixation %
indicates that more of the gaze points were within the object during the sampled time window; higher KDE % indicate that the
center of the gaze points was more often within the object during the time window. Overall, the user’s gaze matched the named

object most when the participant said the object’s name, not when hearing a description of it.

fixations fell on a ground truth object. Participants averaged
137 fixations per image, and each fixation had an average
duration of 283 milliseconds.

This data suggests that our labeled ground truth objects
corresponded to the “interesting” parts of the image, and that
participants tended to look at these objects without any
explicit instruction to do so. In manually analyzing the gaze
data, we found that participants sometimes fixated on other
objects in the image, such as an artist’s signature, that were
not included in the set of ground truth objects. Thus, even
when participants were not looking at the ground truth
objects, they were sometimes gazing at more minor objects.

Activity 2. Participants gazed at the image while listening to
a description of the image. Thus, we were able to examine
whether participants looked at an object when hearing the
name of the object (e.g., “oranges”) and when hearing a
sentence describing the object (e.g., “there are sliced oranges
on a plate”). We were curious to know whether participants
gazed at the object when hearing its name, hearing the
sentence describing it, both, or neither.

Averaging across all (participant, object) pairs, 22% of raw
gaze points and 21% of fixation gaze points were within an
object’s bounding box while hearing the object’s name.
When looking at the center of gaze, we found that
participants centered their gaze on an object when hearing its
name 32% of the time when calculating the center from raw
data, or 41% when calculating the center from fixation data
(Figure 3, left). Thus, participants directed much of their
visual attention at an object when hearing its name, and often
centered their gaze on that object when hearing its name.

We also examined how often participants’ gaze matched an
object while hearing the entire sentence describing that
object. We found that examining gaze points over the entire
sentence resulted in a greater overlap between language and
gaze. Averaging across all (participant, object) pairs, 39% of
raw gaze points and 42% of fixation gaze points were within

an object’s bounding box while hearing the object’s sentence.
When looking at the center of gaze, we found that
participants centered their gaze on an object when hearing its
sentence 68% of the time when calculating the center from
raw data, or 64% when calculating the center from fixation
data (Figure 3, center).

Activity 3. Finally, we examined agreement between gaze
and language when the participant was describing the image
themselves. We found a high level of agreement here: when
describing an object and saying its name, 79% of raw gaze
points (89% of fixation points) were within the object’s
bounding box. Examining the gaze center, we found that the
participant’s gaze was almost always centered on the object
when describing it, 100% of the time when using raw KDE
and 96% when using fixation KDE. This finding replicates
prior work that noted that people gaze at an object while they
are describing it [39].

Viability of this Approach (RQ1)

As in prior work [39], we found that participants tended to
gaze at objects when hearing about that object or when
describing it themselves. This was especially true when the
participant was describing the image. Thus, we should be
able to collect gaze and speech data as a sighted person
describes an image and accurately label the objects they are
describing. We use this approach in the development of our
prototype system, EyeDescribe.

EYEDESCRIBE A

EyeDescribe is a system that takes data of the form we
collected in the previous study (i.e., spoken descriptions and
gaze data) and converts this data to an interactive
representation. The EyeDescribe prototype runs on a
Windows 10 laptop with a touch screen. Once an image is
loaded in EyeDescribe, the user can explore the image using
touch. As the user touches near the location of an object,
EyeDescribe reads out a description of that object.



Dataset

For our initial prototype, we used the images and descriptions
collected during Activity 2 from the previous study (eye gaze
while listening to a description). This way we could assign
sentence descriptions throughout the image rather than single
words. For each image, we used the same description created
by a Mechanical Turk crowd worker. We segmented each
description into sentences and assigned each section to one of
the ground truth objects used in the previous study. For each
object, we chose its location by collecting the raw gaze data
points collected while hearing that sentence, and then
computing the raw KDE for that data. To ensure that several
objects would fit on the tablet screen, each object was given a
bounding box of the same size of 138 pixels by 138 pixels
(1x1 inch).

User Interface

EyeDescribe uses a non-visual touch interface similar to
Access Overlays [20]. The screen is divided into a series of
Voronoi regions surrounding each labeled object [13,20].
The user can drag their finger around the screen; as they enter
an object’s Voronoi region, the system plays a unique note
from the C-Major scale. The user can also perform a “find”
gesture by double tapping the screen. When the user
performs this gesture, the system describes the direction in
which the user should move their finger, for example saying,
“Move your finger 1 inch to the left and down 2 inches.”
When the user touches the object’s center, the system reads
the sentence describing that object.

To determine whether this spatial interface is useful, we
compared this spatial user interface to a corresponding linear
user interface. Both interfaces featured the same text content;
however, in the linear UI, the image description is stored as a
set of sentences. The user navigates through the sentences by
swiping left and right, similar to the Apple VoiceOver screen
reader on iOS devices.

USER STUDY 1

We conducted a study to compare linear and spatial
descriptions, and the interfaces used to explore these
descriptions.

Participants

We recruited 6 blind adult participants (2 female). Ages
ranged from 23 to 64 with a mean age of 38. Four of the
participants were congenitally blind, one has been blind for
over nine years, and one participant had only light perception
in one eye. All participants were familiar with accessible
technologies and utilized screen readers daily.

Apparatus and Data

The EyeDescribe o prototype used a Microsoft Surface Pro 4
tablet, with a 12.3-inch, 3:2 ratio touch screen, running
Windows 10. To answer RQ2 (How do spatial captions
generated by EyeDescribe compare to traditional text
descriptions?), we compared the spatial descriptions and
linear descriptions as described above.

Procedure

The study lasted 30 minutes. This study used the same set of
images as in the previous study. Half of the images were
presented using the spatial interface and half were presented
using the linear interface. The order of images was
randomized. Interface conditions alternated every other
image and were counterbalanced based on even or odd
participant code.

For each image, participants were given as much time as they
needed to explore the layout. Once they were done exploring
the image, they moved on to the next image. After each
interface condition, participants answered 5 Likert scale
response questions (1=strongly disagree, S5=strongly agree):

I. Object Presence: I understand which objects are
depicted in the image.

2. Object Locations: I understand where objects in the
image are located.

3. Ease of Use: Exploring the image was easy.

4. Enjoyability: Exploring the image was enjoyable.

5. Frustration: Exploring the image was frustrating.

Finally, participants provided general feedback about their
experience testing the prototype.

Findings

Feedback about the system focused on two main areas: 1)
benefits of the spatialized captions; and 2) evaluation of the
user interface. Overall, participants tended to agree that the
spatialized captions contained useful information, but some
had difficulty using the touch screen interface, which itself
was an early prototype.

Table 1 shows the responses to the Likert-scale questions.
Participants found the spatial user interface to provide a
marginally better sense of the images’ spatial layout, but also
found it to be more difficult to use, less enjoyable, and more
frustrating. Due to the small sample size, we did not conduct
a statistical analysis of these data.

Category Spatial Ul Linear Ul
Object Presence | 4.58 4.33
Object Locations | 3.63 3.19
Ease of Use 2.75 4.31
Enjoyability 3.06 3.63
Frustration 3 1.75

Table 1. Responses to subjective questions (on a 5-point Likert
scale, 1=strongly disagree, 5=strongly agree).

One major limitation of the spatial interface was the need to
search the entire screen to locate the objects; participants
needed to directly touch the object to hear its description.
During the open-ended feedback session, P4 compared the
spatial interface to playing hide and seek, and P6 said,
“Spatial mode is very frustrating, it is very frustrating to wait
for directions.” The linear user interface was also more
familiar to our participants as it was similar to the VoiceOver
screen reader.



We analyzed participants’ feedback about the spatial user
interface and found a common set of concerns:

il) It was difficult to find object descriptions;

i2) The sonified regions do not make sense due to their
irregular shape boundaries;

i3) It was difficult to find the edges of the image;

i4) There was no way to toggle between interaction modes;

i5) The system did not provide enough feedback.

Despite the usability issues uncovered during the study, some
participants noted benefits of the spatial user interface. P5
stated, “Overall I preferred the searching [spatial UI], I know
the numbers I gave don’t reflect that but I still prefer having
that interaction instead of just being told. [Spatial UI] would
be better for getting to engage with artwork instead of being
lectured at.” P2 said, “I liked the ones[images] in the spatial
mode the most. You could tell where things were in relation
to one another ... If someone has more vision than I do, then
it would allow me to communicate better with sighted
people.”
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Following our first user study, we updated the EyeDescribe
prototype to address participants’ usability issues and to
better support spatial exploration of the image.

Updated Image Set

During the first study, some of the images in our image set
contained multiple instances of similar objects. Specifically,
some images featured multiple copies of the same object
(giraffes, squares, and dogs, respectively). Participants were
able to locate one instance of these objects, but were mostly
unaware of the additional instances of each object, as
EyeDescribe attempts to find a single location for each type
of object. Also, some images in the initial data set had many
objects in them, while others had very few. To remove
ambiguous duplicate objects, and to equalize the number of
findable objects in each image, we selected a new image set,
and collected descriptions and eye gaze data for each image.
This set contained 4 images from 3 categories: landscapes,
portraits, and still-life paintings.

Once again, we recruited gazers from the local campus with
normal or corrected-to-normal vision. We recruited 5
participants (3 female) with a mean age of 25 (range 23-30).
As we found the image description task to be especially
accurate, participants in this group only described images in
their own words and did not complete the other activities.

User Interface Improvements

To address the usability issues uncovered in the first study,
we made several improvements to the touch screen interface.
First, we added a laser-cut tactile border to the tablet screen
to make it easier to find the screen and navigate along its
edges (Figure 6). We also provided an enhanced set of
gestures partly inspired by the Access Overlays [20], with an
emphasis on providing users more information about the
image and its spatial layout.

Single Tap: Read Image Caption

The user can perform a single tap to start playing a
description and another single tap to pause the description.
The description can be played as many times as the user
prefers. This was most similar to the linear interface in the
previous prototype.

Figure 4. Participant interacts with the EyeDescribe prototype.

Double Tap: List Common Objects

The user can double tap the screen to hear a list of 10 nouns
that were most commonly mentioned in our gazers’ image
descriptions. For example, for a still life image, EyeDescribe
may read, “Objects associated with image: glass, wine, bowl,
grapes, table, liquid, apple, cloth, apples, pitcher." We found
that this set of words described the most important objects in
our test image set.

Two-Finger Tap: Search

The user can tap the screen with two fingers to perform an
interactive search, as in Access Overlays [20]. The user taps
the screen and then says the name of the object; the system
then provides interactive directions to guide the user’s finger
to the named object. While in the previous prototype the user
needed to repeatedly tap the screen, here the user can drag
their finger around until they locate the object.

Touch and Drag: Scan

The user can drag a single finger over the screen. As the user
moves from the region around one object to the region
around another object, the system will say the name of the
new object. While in the previous prototype the user needed
to accurately pinpoint the object to hear its name, here the
user can drag their finger around to get an overview of the
image layout.

USER STUDY 2

We conducted another user study to evaluate whether the
improved EyeDescribe B would enable participants to more
efficiently explore images.

Participants

We recruited 7 blind participants (2 female). Four of the
seven participated in User Study 1. Ages ranged from 29 to
66 with a mean age of 40. P1 has been blind for over 10
years. P2 has been blind for over 5 years. The other
participants were congenitally blind. The participants were



familiar with accessible technologies and used screen readers
daily.

Procedure

The study lasted 90 minutes. During the study, participants
interacted with 10 images from the test set. There were three
parts to the study:

Activity 1: Training

Participants explored a sample image using the touch screen
interface. Participants were able to use all four of the
interface modes.

Activity 2: Explore

The participant explored images using the EyeDescribe
interface. For this activity, participants explored three
images, featuring one example from each category
(landscape, still-life, and portrait). The order of the images
was the same in this task across participants. Participants
were asked to think aloud while exploring the images and to
take as much time as they wished to explore the images.
Participants were able to use all four of the interface modes.

Activity 3: Recall

Participants explored eight additional images. These images
were the same for all participants but were presented in
random order. For four images, participants were able to use
all four of the interface modes; for the other four images,
they were only able to use the non-spatial interface modes
(Read Image Caption and List Common Objects). The order
of the modes was counterbalanced.

Once the participant felt they had adequately explored the
image, they were then asked to recreate the layout of the
image. The participant was presented with a Lego grid that
was approximately the size of the tablet screen. For each
image, the researcher named one object (same object for each
participant) and asked the participant to place a Lego brick
on the grid corresponding to that object’s location. The goal
of this activity was to determine whether the spatial user
interface helped participants to understand the image layout.

Findings

We analyzed the completed Lego grids and measured the
distance (in inches) between the object’s on-screen location
and the position that the participant chose. Table 2 shows the
average distance for images using the spatial interface (all
four interface modes) and the non-spatial interface (Read
Image Caption and List Common Objects modes).

Although the average error distance was less when using the
spatial interface, a one-way repeated measures ANOVA
[F(1,27)=3.4694, p=0.0734] did not show this difference to
be

Sum Mean VAR p-value
Spatial 53.18 1.90 2.26 0.0734
Non-Spatial 70.99 2.26 2.78

Table 2. Distance (in inches) between on-screen location
and the participant’s estimated location. Participants were
more accurate when using the spatial interface, although
the difference was not statistically significant.

significant. This may be an artifact of the small sample size.
Cohen’s d (0.40) was calculated for effect size.

Qualitative feedback about EyeDescribe 8 was more positive
than the feedback about EyeDescribe a. Following the
improvements to the user interface, participants seemed more
able to search and understand images. For example, P3 said,
“The worst was when there was no explore mode [non-
spatial interface] and just going off of people’s description.”

Participants were asked what they liked most about exploring
the images. P1 said, “It allowed me to get a mental image
drawn in my brain ... I like the ability to explore and look for
things.” When asked to compare the various modes of the
prototype, P2 said “They are all important in terms of
providing the information we need.” Despite the potential
advantages of a spatial user interface, two participants noted
that their favorite feature was the plain text description,
although two other participants named that their least favorite
feature.

When asked how this system might be useful to them, P2
said, “Obviously describing art.” Five out of seven
participants mentioned that the system would be useful for
maps; four out of seven participants said they might use
EyeDescribe to look at pictures. Participants also mentioned
museum exhibits, games, and documents as potential
applications of this system.

DISCUSSION & FUTURE WORK

In this work, we have explored the creation of spatially-
captioned interactive graphics using use-driven accessibility.
We believe that this work demonstrates that through
capturing the behavior of consumers as they interact with
media, we can bootstrap the creation of accessible media.

EyeDescribe could be extended to adapt its descriptions
based on behavioral data. For example, EyeDescribe might
present more detailed descriptions of objects that sighted
users spend a lot of time looking at. Alternately, the user
could query an image based on behavioral data, such as
searching for the most popular objects, or could filter the
description data so that they can switch between object
labels, descriptions of color and texture, or subjective
comments about an image. Future versions of EyeDescribe
could allow a user to follow along with sighted peers in real-
time, or to switch between different gazers to understand how
individuals experience a work of art differently. While
EyeDescribe currently expects users to talk about an image



as they look at it, future versions could further reduce the
labeler’s workload by recording and processing the natural
discussions that occur around a piece of art.

Use-driven accessibility might be generalizable to other use
contexts and disabilities. For example, tracking movements
through a building could be used to identify accessible
pedestrian paths, and sets of items purchased in a store could
be used to provide suggestions for people with cognitive
disabilities while shopping. This approach could even be
considered a form of social accessibility [25], whereby
members of the community can contribute to the accessibility
of some shared resource, albeit one in which no explicit extra
work is required from the community members.

CONCLUSION

In this paper, we introduced the concept of use-driven
accessibility and show how it can be used to label artistic
images. This approach attempts to capture what a sighted
viewer intuitively finds interesting in an image and makes
this information accessible with little or no work from the
sighted labeler. Our studies showed that the combination of
gaze and speech is sufficient for labeling images and that
automatically generated spatial captions can lead to improved
understanding over plain text captions. We believe that
understanding how people engage with a piece of art can
provide unique insights into how to make that art more
accessible to everyone.
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