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Abstract

Motivation: Detecting cancer gene expression and transcriptome changes with mRNA-sequencing or array-based
data are important for understanding the molecular mechanisms underlying carcinogenesis and cellular events dur-
ing cancer progression. In previous studies, the differentially expressed genes were detected across patients in one
cancer type. These studies ignored the role of mRNA expression changes in driving tumorigenic mechanisms that
are either universal or specific in different tumor types. To address the problem, we introduce two network-based
multi-task learning frameworks, NetML and NetSML, to discover common differentially expressed genes shared
across different cancer types as well as differentially expressed genes specific to each cancer type. The proposed
frameworks consider the common latent gene co-expression modules and gene–sample biclusters underlying the
multiple cancer datasets to learn the knowledge crossing different tumor types.

Results: Large-scale experiments on simulations and real cancer high-throughput datasets validate that the
proposed network-based multi-task learning frameworks perform better sample classification compared with the
models without the knowledge sharing across different cancer types. The common and cancer-specific molecular
signatures detected by multi-task learning frameworks on The Cancer Genome Atlas ovarian, breast and prostate
cancer datasets are correlated with the known marker genes and enriched in cancer-relevant Kyoto Encyclopedia of
Genes and Genome pathways and gene ontology terms.

Availability and implementation: Source code is available at: https://github.com/compbiolabucf/NetML.

Contact: wzhang.cs@ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Powered by high-throughput genomic technologies, it is now com-
mon practice to perform large-scale experiments for measuring
mRNA expressions for cancer studies. Correlating these high-
dimensional genomic features with cancer phenotype as molecular
signatures (i.e. biomarkers) to detect gene expression changes can
possibly improve cancer diagnosis and treatment over current clinic-
al measures for risk assessment of patients (Van’t Veer et al., 2002;
Weinstein et al., 2013; Zhang et al., 2017). Discovery of biomarkers
is typically modeled as a feature selection problem. Many biomarker
selection techniques have been proposed in the last few decades
(Danaee et al., 2017; Saeys et al., 2007; Way and Greene, 2018).
These techniques can be categorized into three groups: (i) Univariate

biomarker selection techniques (Baldi and Long, 2001; Breitling
et al., 2004; Jafari and Azuaje, 2006; Thomas et al., 2001), this cat-
egory includes parametric methods (e.g. t-test and ANOVA) and
model-free methods (e.g. Rank products and Wilcoxon rank sum).
Both of them do not consider the interaction with the classifiers and
also ignore the feature dependencies. (ii) Multivariate biomarker se-
lection techniques Ding and Peng (2005) and Xing et al. (2001), the
methods in this category also ignore the interactions with the classi-
fier. However, they introduce a number of multivariate filer techni-
ques, which is aiming at the incorporation of feature dependencies
to some degree (Saeys et al., 2007). (iii) Embedded biomarker selec-
tion techniques (Dı́az-Uriarte and De Andres, 2006; Guyon et al.,
2002), the biomarker selection methods in this category search for
an optimal subset of features, which is built into the classifier
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construction. The methods in this category can be seen as a search in
the combined space of a subset of features and sample labels. The re-
cently developed autoencoder-based biomarker selection methods
can also be categorized into this group (Danaee et al., 2017; Way
and Greene, 2018). There are two major limitations of these popular
methods. First, most biomarker selection methods rank the features
by their individual correlation with the label (class) information of
observations, and thus relations among features, e.g. the highly cor-
related features play some functions together. It has been shown
that the signature genes identified by univariate feature selection
technique from high dimension, low-sample-size genomic data are
not consistent and robust due to statistical randomness and high lev-
els of experimental noise. Second, previous studies have shown that
the differentially expressed genes found in one cancer type can also
be found in other cancer types (Cao and Zhang, 2016; Makhijani
et al., 2018). There is no unified mathematical model to simultan-
eously detect the differential expression events common or specific
to multiple cancer types from gene expression datasets.

To address these limitations, we propose two learning
frameworks, Network-based Multi-task Learning model (NetML)
and Network-based Semi-supervised Multi-task Learning model
(NetSML), to detect differentially expressed genes and classify
unlabeled cancer patient samples from gene expression datasets of
multiple cancer types, in which each cancer type can be regarded as
one domain in multi-task learning. Multi-task learning uses com-
mon knowledge or structures among different domains to enhance
multiple learning tasks (Petegrosso et al., 2016; Zhang et al., 2013).
In the frameworks, we introduce both cancer-specific features and
cancer common features in network-based learning models. The first
multi-task learning model, NetML, runs a network-based algorithm
on several gene graphs, where each graph represents co-expression
information between pair of genes in one cancer type. The frame-
work integrates gene co-expression and common gene modules
across cancer datasets for biomarker selection. To identify the bio-
markers from high-throughput gene expression datasets, Lasso
(Tibshirani, 1996) is applied to both cancer-specific genes and com-
mon latent genes to preserve the sparsity. The second Multi-task
learning framework, NetSML, is a semi-supervised learning model,
which runs a network-based algorithm on sample-feature bipartite
graphs to identify biomarkers and classify cancer samples across dif-
ferent cancer types. It also explores bi-clusters between patients and
features to find biomarkers specific to subsets of patient samples. By
using alternating optimization to solve both models, common mo-
lecular signatures and cancer-specific signatures could be detected
from multiple cancer types. When compared with the baseline meth-
ods without knowledge crossing different domains, the proposed
network-based learning models are more robust and identify more
accurate signatures for cancer outcome prediction.

2 Materials and methods

In this section, we first introduce the mathematical notations and
then a base network-based learning model that is widely used for
biomarker selection from cancer genomic data. We next introduce a
NetML model to discover common molecular signatures shared
across different cancer types and cancer-specific signatures from
high-dimensional gene expression data. Then we further extend the
NetSML model for phenotype predictions and molecular signature
identification.

2.1 Notations
The notations to define the models are summarized in Table 1. Let
m be the number of genes, n be the number of samples in one cancer
study and W 2 R

m�m be the gene correlation network based on the
absolute value of the Pearson’s correlation coefficients between the
pair of genes, where W ij is the correlation between the two vectors
in R

n that represent the ith and the jth genes. Then the gene correl-
ation network W is used to construct a normalized graph Laplacian
L ¼ I � S, where S ¼ D�1

2WD�1
2 and D is a diagonal matrix with the

column-sum of W on the diagonal entries.

2.2 Standard network-based learning model
As a base model, we first introduce a network-based learning model
that was applied successfully to identify molecular signatures in several
variations (Winter et al., 2012; Zhang et al., 2010, 2012). Given a gene
correlation network (e.g. gene co-expression network), the objective of
the network-based learning model is to learn an assignment function
f 2 R

m�1, which represents the importance of each gene in one cancer
study. The initial labeling is f 0 ¼ y, i.e. the Pearson’s correlation coeffi-
cients between gene expressions and the case/control labeling of the
samples. The high absolute value indicates the differentially expressed
gene. The network-based learning model assumes that genes should be
assigned similar importance scores if they are co-expressed, which leads
to the following objective function to be minimized:

Lðf Þ ¼ af TLf þ ð1 � aÞjjf � yjj22; (1)

where a 2 ð0; 1Þ is a parameter to balance the contributions of the
two terms in Equation (1), the first of which is the Laplacian term
encouraging assigning similar importance scores to strongly con-
nected vertices in the gene correlation network and the second term is
the fitting term, which encourages consistency between the import-
ance score and the initial score. The first term can be rewritten as

af T I �D�1
2WD�1

2

� �
f ;

where I �D�1
2WD�1

2 is the normalized graph Laplacian, which is posi-
tive semi-definite. Thus, Equation (1) is a quadratic optimization prob-
lem with a closed-form solution. The corresponding set of the
eigenvalues or spectrum of the L matrix reflects many properties of the
gene correlation graph (Chung and Graham, 1997; Li and Li, 2008).

2.3 NetML model
To introduce multi-task learning among different cancer datasets, we
extend the standard model in Equation (1) on multiple cancer types and
present a network-based method NetML to learn the common molecu-
lar signatures f c shared across different cancer types and cancer-specific
signatures f d to each cancer type d. Figure 1 shows a schematic of the
experimental workflow of NetML. The gene correlation network is
built up for each individual cancer type based on the gene expression
generated from RNA-seq or array-based data. The molecular signatures
learned from the model will be used for cancer outcome prediction.
The objective function of NetML is defined as follow:

Lðf c; ff dg
d
d¼1Þ ¼

Pd
d¼1½aðf c þ f dÞ

TLdðf c þ f dÞ
þð1 � aÞjjf c þ f d � ydjj

2
2 þ cdjjf djj1�

þccjjf cjj1;
(2)

where Ld is the normalized graph Laplacian to represent the gene correl-
ation network for cancer type d. yd is the correlation coefficients be-
tween the label of the samples in cancer type d and the expression value

Table 1. Notations for NetML model

Notation Definition

d No. of domains (e.g. cancer types)

nd No. of samples in domain d 2 ½1; d�
m No. of genes

I 2 R
m�m Identity matrix

Wd 2 R
m�m Adjacency matrix of gene correlation network

Dd 2 R
m�m Diagonal matrix: Ddði; iÞ ¼

P
jWdði; jÞ

Sd 2 R
m�m Normalized adjacency matrix Sd ¼ D

�1
2

d WdD
�1

2

d

Ld 2 R
m�m Normalized graph Laplacian: Ld ¼ I � Sd

f d 2 R
m�1 Coefficients of domain-specific genes

f c 2 R
m�1 Coefficients of common genes

yd 2 R
m�1 Correlation coefficients between gene expressions

and labels of samples in domain d

a; cd ; cc 2 Rþ Hyper-parameters
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of each gene. The cancer-specific signatures f d and common signatures
f c are learned together in the model. When compared with Equation
(1), the multi-task learning model is regularized with a Lasso penalty
(L1-norm) on f d and f c, which induces a sparse solution for feature se-
lection (Tibshirani, 1996). cd > 0 and cc > 0 are two regularization
parameters. The hyper-parameter a balances the Laplacian term
ðf c þ f dÞ

TLdðf c þ f dÞ and the fitting term jjf c þ f d � ydjj
2
2 in each

cancer type (domain) introduced in the standard model. The common
gene score vector f c is shared across all the cancer types, and only the
significant molecular signatures in all the domains will be selected (non-
zero elements in f c).

2.3.1 Alternative optimization algorithm

The objective function defined by Equation (2) can be solved by alterna-
tive optimization of f d and f c. The minimization with respect to f d and
f c are equivalent to solving two Lasso-type optimization problems.

Computation of f d
If we fix variable f c, solving Equation (2) with respect to each f d,
where d 2 ½1; d�, can be simplified as:

Lðf dÞ ¼ aðf c þ f dÞ
TLdðf c þ f dÞ

þð1 � aÞjjf c þ f d � yd jj
2
2 þ cdjjf djj1:

(3)

Let Yd ¼ �½af Tc XT
d � ð1 � aÞyTdX

�1
d �T and Xd 2 R

m�m satisfies
XT

dXd ¼ ½aLd þ ð1 � aÞI�. In this implementation, we let the eigen-
value decomposition of ½aLd þ ð1 � aÞI� be UdSdU

T
d and

Xd ¼ S
1
2

dU
T
d . Then Equation (3) can be rewritten as:

Lðf dÞ ¼ jjYd � Xdf d jj
2
2 þ cdjjf djj1 þC1; (4)

where C1 is a constant. Therefore, to minimize the objective function
Lðf dÞ is equivalent to solve the above Lasso problem. The Python pack-
age scikit-learn can be used to solve the problem. The detailed derivation
from Equations (3) to (4) can be found in Supplementary Material.

Computation of f c
Similar to updating f d, solving Equation (2) with respect to each f c
if f d is fixed can be simplified as:

Lðf cÞ ¼
Pd

d¼1½aðf c þ f dÞ
TLdðf c þ f dÞ

þð1 � aÞjjf c þ f d � ydjj
2
2� þ ccjjf cjj1:

(5)

Let Yc ¼ �½
Pd

d¼1½af
T
dLd þ ð1 � aÞðf d � ydÞ

T �X�1
c �T and Xc 2

R
m�m satisfies XT

c Xc ¼
Pd

d¼1½aLd þ ð1 � aÞI�. Then Equation (5)
can be rewritten as:

Lðf cÞ ¼ jjYc � Xcf cjj
2
2 þ ccjjf cjj1 þ C2; (6)

where C2 is a constant. Therefore, to minimize the objective func-
tion Lðf cÞ is also equivalent to solving a Lasso problem. The
detailed derivation from Equations (5) to (6) can be found in
Supplementary Material.

Fig. 1. Running NetML model on gene correlation graphs. A gene correlation graph is constructed from gene expression data for each cancer type. The vertices are then initial-

ized by the correlation between each individual gene expression and the labels. The proposed NetML model re-ranks all the genes to get cancer-specific gene scores and com-

mon gene scores across all the cancer types for biomarker discovery. The selected biomarkers can be used as molecular signatures for cancer outcome prediction

Algorithm 1. NetML model.

1: Input: Ld; yd, a, cc, cd and d
2: Output: f d ; f c
3: Initialization: f d ; f c ¼ 1

m ; 1
m ; . . . ; 1

m

h im
, maxIter ¼ 100,

� ¼ 1e�7

4: for d¼1 ! d do

5: Let the eigenvalue decomposition of [aLdþ(1�a)I] be

UdSdU
T
d

6: S
1
2

dU
T
d ! Xd

7: end for

8: for t¼1 !maxIter do

9: for d¼1 ! d do

10: �½af Tc XT
d � ð1 � aÞyTdX

�1
d �T ! Yd

11: arg minf d
ðjjYd � Xdf djj

2
2 þ cd jjf djj1 þC1Þ ! f d

12: end for

13:
Pd

d¼1½aLd þ ð1 � aÞI� ¼ XT
c Xc ! Xc

14: �½
Pd

d¼1½af
T
d Ld þ ð1 � aÞðf d � ydÞ

T �X�1
c �T ! Yc

15: arg minf c
ðjjYc � Xcf cjj

2
2 þ ccjjf cjj1 þ C2Þ ! f c

16: f c ! f ðtÞc
17: ifjjf ðtÞc � f ðt�1Þ

c jj1 < �

18: break

19: end if

20: end for

21: return: f d; f c
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The complete NetML algorithm is outlined in Algorithm 1. In the
algorithm, the for-loop between Lines 4–7 calculates Xd for each cancer
type d. The outer for-loop between Lines 8–20 performs multiple passes
for updating f d and f c. The inner for-loop between Lines 9–12 scans
through each cancer type to update each f d for all d cancer types. Lines
13–16 update f c. The convergence of the algorithm is checked at Line
17. After convergence, the non-zero elements in f d and f c are cancer-
specific genomic features and common genomic features for phenotype
prediction as illustrated in Figure 1. In the real experiment, if the coeffi-
cients for one feature in all the f ds and f c are non-zero, we set the val-
ues in f ds to be 0 and keep the original coefficient in f c since these are
common features cross domains identified by the model.

2.4 NetSML model
We next extend the framework in Equation (2) for semi-supervised
multi-task learning on sample-feature bipartite graphs. The model
NetSML is formulated for cancer-specific and common molecular
signatures discoveries and also for cancer diagnosis/prognosis as a semi-
supervised learning problem. For each cancer type d, a sample-gene bi-
partite graph is constructed as shown in Figure 2. Each edge connecting
sample vertex and gene vertex is weighted by the corresponding gene
expression in the sample as illustrated in Figure 2. The sample vertices
in the bipartite graph are labeled with þ1/�1/0 (tumor/healthy/un-
labeled) as illustrated by the blue rectangle and the gene vertices are ini-
tialized with zeros. NetSML will assign values to all the blue vertices.

Let ydðuÞ and ydðvÞ denote the initial values in sample vertices and
gene vertices, respectively, and u and v indicate the samples and genes.
The normalized gene expression value is denoted by Sd in cancer type

d. Sd ¼ D
�1

2

dðvÞWdD
�1

2

dðuÞ, where Wd is the raw gene expression data in

cancer type d. DdðvÞ and DdðuÞ are diagonal matrices, and the elements

on the diagonals represent row sums and column sums of Wd. The
notations to define NetSML are summarized in Table 2. In this context,
the cost function over the bipartite graphs is defined as:

Lðf cðvÞ; ff dðvÞ; f dðuÞg
d
d¼1

Þ ¼
Pd

d¼1½jjf cðvÞ þ f dðvÞjj
2
2 þ jjf dðuÞjj

2
2

�2ðf cðvÞ þ f dðvÞÞ
TSdf dðuÞ þ a1jjf dðvÞ þ f cðvÞ � ydðvÞjj

2
2

þa2jjf dðuÞ � ydðuÞjj
2
2 þ cd jjf dðvÞjj1� þ ccjjf cðvÞjj1;

(7)

where f dðvÞ and f cðvÞ are the coefficients of cancer-specific genes and
common genes, respectively, f dðuÞ is the label of the samples in

cancer type d. All three variables are learned together by minimizing
the Equation (7). cd > 0 and cc > 0 are two regularization parame-
ters. The hyper-parameters a1 and a2 balance three different parts in
the objective function. The first part, jjf cðvÞ þ f dðvÞjj

2
2 þ jjf dðuÞjj

2
2�

2ðf cðvÞ þ f dðvÞÞ
TSdf dðuÞ, constrains new scores/labels assigned to

the variables to be consistent between the connected sample–gene
pairs in each bipartite graph. The second part, jjf dðvÞ þ f cðvÞ�
ydðvÞjj

2
2, is a fitting term which keeps the total score (cancer-specific

score and common score across all cancer types) assigned to each
gene consistent with the initial score. The third part,
jjf dðuÞ � ydðuÞjj

2
2, is used in the same spirit to constrain the cost on

the sample vertices. For the unlabeled sample vertices with ydðuÞ ¼ 0,
the fitting term is used to regularize these f dðuÞ such that the total
cost is constrained.

2.4.1 Alternative optimization algorithm

Similar to Algorithm 1 for solving the model in Equation (2). The
objective function defined by Equation (7) can also be solved by al-
ternative optimization of f dðvÞ; f cðvÞ and f dðuÞ.

Computation of f dðvÞ
If we fix variables f cðvÞ and f dðuÞ, solving Equation (7) with respect
to each f dðvÞ can be simplified as solving a Lasso problem:

Fig. 2. Running NetSML model on sample-feature bipartite graphs. Gene expression data in each cancer study are modeled as sample-feature bipartite graphs. The sample ver-

tices are initialized by the case/control labels and the gene vertices are initialized with 0. The sample vertices are connected to all the gene vertices and the edges are weighted

by the gene expression value. Semi-supervised multi-task learning model classifies the unlabeled samples in each cancer type and ranks the genes based on their cancer-specific

gene scores f dðvÞ and common gene scores f cðvÞ

Table 2. Notations for NetSML model

Notation Definition

d No. of domains (e.g. cancer types)

nd No. of samples in domain d 2 ½1; d�
m No. of genes

Wd 2 R
m�nd Gene expression in domain d

Sd 2 R
m�nd Normalized gene expression in domain d

f dðvÞ 2 R
m�1 Coefficients of domain-specific genes

f cðvÞ 2 R
m�1 Coefficients of common genes

f dðuÞ 2 R
nd�1 Predicted labels of samples in domain d

ydðuÞ 2 R
nd�1 Initial labels of samples in domain d

ydðvÞ 2 R
m�1 Initial scores of genes in domain d

a1; a2; cd ; cc 2 Rþ Hyper-parameters
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Lðf dðvÞÞ ¼ jjYdðvÞ � f dðvÞjj
2
2 þ c0djjf dðvÞjj1;

where c0d ¼ cd
1þa1

and YdðvÞ ¼
Sd f dðuÞþa1ydðvÞ

1þa1
� f cðvÞ.

Computation of f cðvÞ
Similarly, solving Equation (7) with respect to f cðvÞ can be simplified
as solving the following problem if f dðvÞ and f dðuÞ are fixed.

Lðf cðvÞÞ ¼ jjYcðvÞ � f cðvÞjj
2
2 þ c0cjjf cðvÞjj1;

where YcðvÞ ¼
Pd

d¼1

Sd fdðuÞþa1ydðvÞ
ð1þa1Þd � fdðvÞ

d

h i
and c0c ¼

cc
ð1þa1Þd.

Computation of f dðuÞ
If f cðvÞ and f dðvÞ are fixed, solving Equation (7) with respect to each
f dðuÞ can be simplified as solving the following Lasso problem:

Lðf dðuÞÞ ¼ jjYdðuÞ � f dðuÞjj
2
2;

where YdðuÞ ¼
STd ðf dðvÞþf cðvÞÞþa2ydðuÞ

1þa2
.

The complete derivation and outline of NetSML algorithm to
solve Equation (7) is available in Supplementary Material. The algo-
rithm iteratively updates f cðvÞ and f dðvÞ; f dðuÞ for each cancer type.
After convergence, the non-zero elements in f cðvÞ and f dðvÞ are com-
mon genomics features and cancer-specific features. The unlabeled
samples in cancer type d are classified to different groups based on
the sign of the final score for each sample in f dðuÞ.

3 Experiments

In the experiments, we first generated four artificial datasets to test
the NetML model on detecting common latent features and dataset
specific features in coefficients vectors. Next, we performed three
experiments on real cancer gene expression datasets (mRNA-
sequencing data and microarray gene expression data). The first ex-
periment was a cross-dataset analysis on breast cancer to show that
the multi-task learning model can utilize information from other
similar studies to improve outcome prediction. The second experi-
ment was a cross-domain analysis on two major subtypes of lung
cancer, lung squamous cell carcinoma (LUSC) and lung adenocar-
cinoma (LUAD). The third experiment was also a cross-domain ana-
lysis on breast cancer, ovarian cancer, and prostate cancer.

3.1 Simulation
In this section, we generated four artificial datasets with the same
number of features to test NetML of detecting common and data-
specific discriminative features. The synthetic datasets were con-
structed as follows: we let d ¼ 4, fndgdd¼1 ¼ 200 and m¼600. If we
represent the features in the dth domain by a matrix Zd 2 R

nd�m,
then

Z1ði; jÞ �
Nð90; 50Þ; if 1 � i � 100 and 1 � j � 150
Nð100;50Þ; if 1 � i � 100 and 551 � j � 600
Nð60; 20Þ; otherwise;

8<
:

Z2ði; jÞ �
Nð90; 50Þ; if 1 � i � 100 and 101 � j � 250
Nð100;50Þ; if 1 � i � 100 and 551 � j � 600
Nð60; 20Þ; otherwise;

8<
:

Z3ði; jÞ �
Nð90; 50Þ; if 1 � i � 100 and 201 � j � 350
Nð100;50Þ; if 1 � i � 100 and 551 � j � 600
Nð60; 20Þ; otherwise;

8<
:

Z4ði; jÞ �
Nð90; 50Þ; if 1 � i � 100 and 301 � j � 450
Nð100; 50Þ; if 1 � i � 100 and551 � j � 600
Nð60; 20Þ;otherwise;

8<
:

The generated data are visualized in Figure 3. There are 600 fea-
tures and 200 samples, and the first 100 samples and the second 100
samples are in two different classes in all the 4 datasets. The first
150 are true discriminative features in the first domain, the features
between 101 and 250 are the true discriminative features in the se-
cond domain, the features between 201 and 350 are the true dis-
criminative features in the third domain, and the features between
301 and 450 are the true discriminative features in the fourth do-
main. The features between 551 and 600 are the common discrim-
inative features in all the domains. NetML was applied to both
datasets with a ¼ 0.01, cc ¼ 1e�3 and cd ¼ 1e�3, and the learned
coefficients f 1; f 2 and f c were plotted in Figure 3. From the result
we can see that, NetML can recover the hidden structures in the
datasets and detect the common- and domain-specific features.

3.2 Experiments on cancer datasets
3.2.1 Analysis across breast cancer datasets

NetML and NetSML were first tested on two breast cancer micro-
array gene expression datasets: GSE6532 (Loi et al., 2007) and
GSE7390 (Desmedt et al., 2007). The raw CEL files were down-
loaded from the GEO website and normalized by RMA (Irizarry
et al., 2003). After merging probes by gene symbols and removing
probes with no gene symbol, a total of 13 261 unique genes derived
from the 22 283 probes were included in this study. The patients
were classified as cases and controls in the two datasets based on the
time of developing distant metastasis. The patients who were free of
metastasis for longer than 8 years of survival and follow-up time
were classified as metastasis-free and the patients who developed
metastases within 5 years were classified as metastasis cases. There
are 96 metastasis-free patients and 51 metastasis samples in
GSE6532 and 136 metastasis-free and 35 metastasis patients in
GSE7390.

We applied NetML, t-test and Wilcoxon rank sum test to iden-
tify potential biomarkers from the two breast cancer datasets.
To evaluate the prediction power of the marker genes we performed
a 5-fold cross-validation on each of the two datasets with 3-folds for
training, 1-fold for validation and 1-fold for test. We evaluated the
classification performance using a support vector machine (SVM)
with an RBF kernel. Specifically, we selected the markers genes by
NetML based on non-zero entries in f 1þf c and f 2þf c on the train-
ing data in each dataset, then the parameters in the proposed models

Fig. 3. Simulation experiments. The top panel shows the heat map of four artificial

datasets. The bottom panel shows the corresponding coefficients vectors learned in

NetML
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and SVM were tuned based on the classification performance on val-
idation data. In both NetML and NetSML, cc and cd were chosen
from f1e�5, 1e�4, 1e�3g, and a was fixed to 0.01. The classifica-
tion performance was evaluated on the test data in each dataset sep-
arately. We repeated the 5-fold cross-validation 50 times and report
the mean of the AUROC and AUPRC scores in Table 3. Similarly,
we selected the same numbers of features as in f 1þf c and f 2þf c
based on P-values for both t-test and Wilcoxon rank sum test. The
same 5-fold cross-validation setup was applied for the selected fea-
tures in the baseline methods. Since NetSML is a semi-supervised
learning model, and it can simultaneously select features and classify
test samples, SVM was not applied to the identified features by
NetSML. Instead, the classification performance of NetSML and a
four layers fully connected feed-forward neural network model were
compared and tested on the two datasets by using all the genes with
the same 5-fold cross-validation. The mean of the AUROC and
AUPRC scores in 50 repeats by applying NetSML and deep neural
network (DNN) are also reported in Table 3. The NetML model
outperformed CC in both datasets. NetML is clearly more capable
of selecting more predictive marker genes in the experiments by
learning the information from network structures in different cancer
datasets for the same study purpose. In addition, our NetSML model
outperformed DNN, since (i) NetSML learned more information
from gene–sample bipartite structures in both test samples and the
samples in the other dataset for the same study purpose; (ii) a gen-
eral fully connected DNN may not work well on the datasets with
high dimension but low-sample-size. It is also interesting to observe
that without a feature selection step, the classification performance
of NetSML was not as good as NetML þ SVM in most cases.

3.2.2 Analysis across lung cancer subtypes

NetML and NetSML were also tested on two lung cancer subtypes.
Both The Cancer Genome Atlas (TCGA; Weinstein et al., 2013)
LUAD and LUSC RNA-Seq gene expression datasets were downloaded
from UCSC Xena Hub (Goldman et al., 2018). The log2(x þ 1)
transformed RSEM normalized count was used in the analyses and
20 531 genes were included in this study. The patients in LUAD and
LUSC have shorter survival time compared with breast cancer
patients. So the patients in the two datasets were classified into cases
and controls based on the samples were primary tumors or normal
tissues instead of survival times. There are 517 primary tumors and
59 normal tissues in data LUAD, and 502 primary tumors and 51
normal tissues in data LUSC. The feature selection and cross-
validation setups in this experiment were the same as the setups in
Section 3.2.1. The mean AUROC and AUPRC scores are reported in
Table 4. NetML outperformed t-test and Wilcoxon rank sum test,
and NetSML also outperformed DNN. Since classifying samples
into the tumor and normal tissue is a relatively easy task compared
with predicting survival outcomes, the classification results in this
experiment are much higher than the results in Section 3.2.1.

3.2.3 Analysis across cancer domains

We applied NetML and NetSML methods on three related cancer
types, breast cancer, ovarian cancer, and prostate cancer, to detect

common and cancer-specific differentially expressed genes and clas-
sify the patient samples into correct categories at the same time. All
the TCGA breast cancer (BRCA), ovarian cancer (OV) and prostate
cancer (PRAD) RNA-Seq gene expression datasets were also down-
loaded from UCSC Xena Hub with the same pre-processing step as
in Section 3.2.2. There are 115 metastasis-free patients and 137 me-
tastasis patients in breast cancer dataset, 92 metastasis-free samples
and 106 metastasis patients in ovarian cancer dataset and 79
metastasis-free samples and 81 metastasis patients in prostate cancer
dataset. The setups for feature selection and classification in this ex-
periment were the same as the setups in Section 3.2.1. The mean
AUROC and AUPRC scores are reported in Table 5. In breast cancer
and prostate cancer datasets, NetML þ SVM outperformed all the
baseline methods and NetSML also beat DNN. In the ovarian data-
set, NetSML outperformed DNN and the performance of NetML þ
SVM is similar to baseline methods. Overall, NetMLþSVM and
NetSML consistently achieved better or similar classification results
compared with the baselines in all the experiments.

We performed a literature survey of each individual marker gene
identified by NetML. Thirteen of them are supported by literature to be
related to breast cancer, ovarian cancer, prostate cancer or all three as
reported in Table 6. Gene CTBS, AKIRIN2 and FEXO4 identified in f c
were reported to play important roles in breast cancer, ovarian cancer,
and prostate cancer. For example, AKIRIN2 codes a protein that targets
BCAM, a suppressive oncogene in multiple cancers, including the three
cancer types in this study (Akiyama et al., 2013). FBXO4 mutation can
affect Cyclin D1, a commonly dysregulated cyclin in prostate, breast
and ovarian cancers (Qie and Diehl, 2016). It is clear that NetML iden-
tified signature genes are functionally coherent.

The top 100 common signature genes identified by NetML in
three cancer types based on the values in f c enriched in 130 GO
(gene ontology) terms and three KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways (P-value < 0.05). The most signifi-
cantly enriched GO functions are listed in Table 7. The similar en-
richment analysis on the top 100 common signature genes identified
by NetSML was also performed and the gene list enriched in 91 GP
terms and two KEGG pathways, and the most significant ones are
reported in Table 8. It is clear that the NetML models identified sig-
nature genes that are functionally coherent.

3.3 Running time
To measure the scalability of NetML and NetSML, we tested the algo-
rithms on the two breast cancer datasets in Section 3.2.1. The two data-
sets contain 147 and 171 breast cancer samples, respectively. NetML
took 320 CPU seconds to run the experiment with one pair of parame-
ters to identify the signature genes. NetSML took 256 CPU seconds to
run the experiment with one pair of parameters to select the signature
genes and classify the unlabeled test samples. The CPU time was meas-
ured on Intel Core i7-7700CPU with 3.60 GHz.

4 Discussion and conclusion

Application of multi-task learning on gene expression analysis
across multiple cancer types/subtypes is promising since the

Table 3. The mean AUROC and AUPRC scores of classifying

patients in breast cancer datasets

Feature selection

method

Classifier GSE6532 GSE7390

AUROC AUPRC AUROC AUPRC

NetML SVM 0.707 0.555 0.671 0.592

t-test SVM 0.623* 0.443* 0.546* 0.244*

Wilcoxon rank sum SVM 0.650* 0.490* 0.567* 0.288*

NetSML 0.641 0.615 0.661 0.571

All the gene DNN 0.610 0.450* 0.592* 0.228*

Note: *The difference between baseline and proposed methods is statistic-

ally significant (P-value < 0.01).

Table 4. The mean AUROC and AUPRC scores of classifying

patients in lung cancer subtypes

Feature selection

method

Classifier LUAD LUSC

AUROC AUPRC AUROC AUPRC

NetML SVM 1 1 1 1

t-test SVM 0.990 0.963* 0.994 0.960*

Wilcoxon rank sum SVM 0.990 0.963* 0.994 0.960*

NetSML 1 1 1 1

All the gene DNN 0.991 0.942* 0.990 0.964*

Note: *The difference between baseline and proposed methods is statistic-

ally significant (P-value < 0.01).
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Table 5. The mean AUROC and AUPRC scores of classifying patients in BRCA, OV and PRAD

Feature selection method Classifier BRCA OV PRAD

AUROC AUPRC AUROC AUPRC AUROC AUPRC

NetML SVM 0.649 0.622 0.571 0.619 0.708 0.640

t-test SVM 0.602 0.568* 0.581 0.571 0.613* 0.581*

Wilcoxon rank sum SVM 0.645 0.610 0.598 0.602 0.635* 0.603

NetSML 0.636 0.658 0.623 0.664 0.686 0.625

All the gene DNN 0.573* 0.522* 0.585 0.574* 0.605* 0.561*

Note: *The difference between baseline and proposed methods is statistically significant (P-value < 0.01).

Table 6. Literature review of the candidate cancer genes

Cancer type Gene names References Description

BRCA SAV1 Chen et al. (2014) SAV1 is part of the Hippo pathway responsible for mammary gland regulation and is

knocked out in breast cancer samples.

IRF2 Doherty et al. (2001) IRF2 is identified as being over-expressed in human breast cancer tissue compared with

normal adjacent tissue.

TANK Wei et al. (2014) TANK is the target of TBK-1, which is over-expressed in breast cancer tissue.

MKRN1 Wang et al. (2013) MKRN1 codes for an E3 ligase that regulates p21 protein level, where p21 controls breast

cancer cell proliferation.

OV CYP2R1 Downie et al. (2005) CYP2R1 is expressed at a significantly higher level in primary ovarian cancer compared with

a normal ovary.

ADIPOR2 Tiwari et al. (2015) ADIPOR2 is expressed at a significantly lower rate in cancerous ovaries.

PRAD WDR5 Kim et al. (2014) WDR4 is identified as being over-expressed in prostate cancer cells and significant for cancer

cell proliferation.

NASP Amundson et al. (2008) NASP is a significant prognostic marker in prostate cancer cells.

MTA1 Kai et al. (2010) MTA1 is over-expressed in prostate cancer and is associated with aggressive metastasis.

All three CTBS Varley et al. (2014) CTBS-GNG5 fusion is prevalent in breast cancer cells.

Plebani et al. (2012) CTBS-GNG5 fusion was found in ovarian and prostate cells lines.

AKIRIN2 Akiyama et al. (2013) AKIRIN2 codes a protein that targets BCAM, a suppressive oncogene in multiple cancers.

FBXO4 Qie and Diehl (2016) FBXO4 mutation can affect Cyclin D1, a commonly dysregulated cyclin in prostate, breast

and ovarian cancers.

Table 7. Enriched GO terms by the common signature genes in

NetML

GO:0043170:macromolecule metabolic process

GO:0042058:regulation of epidermal growth factor receptor

signaling pathway

GO:1901184:regulation of ERBB signaling pathway

GO:0006139:nucleobase-containing compound metabolic process

GO:0008152:metabolic process

GO:0090304:nucleic acid metabolic process

GO:0042059:negative regulation of epidermal growth factor

receptor signaling pathway

GO:1901185:negative regulation of ERBB signaling pathway

GO:0046483:heterocycle metabolic process

GO:0006725:cellular aromatic compound metabolic process

GO:0006351:transcription, DNA-templated

GO:0080134:regulation of response to stress

GO:0006807:nitrogen compound metabolic process

GO:0015031:protein transport

GO:0051276:chromosome organization

GO:0071704:organic substance metabolic process

GO:0007173:epidermal growth factor receptor signaling pathway

GO:0034641:cellular nitrogen compound metabolic process

GO:1901360:organic cyclic compound metabolic process

GO:0033554:cellular response to stress

Table 8. Enriched GO terms by the common signature genes in

NetSML

GO:0032561:guanyl ribonucleotide binding

GO:0019001:guanyl nucleotide binding

GO:0005525:GTP binding

GO:0071496:cellular response to external stimulus

GO:0043281:regulation of cysteine-type endopeptidase activity involved

in apoptotic process

GO:0052548:regulation of endopeptidase activity

GO:0005737:cytoplasm

GO:0010950:positive regulation of endopeptidase activity

GO:0044444:cytoplasmic part

GO:0052547:regulation of peptidase activity

GO:2000116:regulation of cysteine-type endopeptidase activity

GO:0006919:activation of cysteine-type endopeptidase activity involved

in apoptotic process

GO:0010952:positive regulation of peptidase activity

GO:0046033:AMP metabolic process

GO:1902494:catalytic complex

GO:0043280:positive regulation of cysteine-type endopeptidase activity

GO:0043231:intracellular membrane-bounded organelle

GO:0044424:intracellular part

GO:0043227:membrane-bounded organelle

GO:2001056:positive regulation of cysteine-type endopeptidase activity
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deregulation of gene expression is a hallmark of human tumor cells.
NetML and NetSML utilize multiple cancer domains/studies for detect-
ing common and domain-specific differentially expressed genes. The
comparison to t-test, Wilcoxon rank sum test and DNN, which essen-
tially represents single-task learning methods, suggests that multi-task
learning enables sharing information in domains of different cancer
studies to discover hidden structures from the biological networks that
can explain common and domain-specific cancer characteristics and
better classify patient samples as shown in the experiments.

It is interesting that several deep learning approaches (Danaee
et al., 2017; Khoshghalbvash and Gao, 2019; Lyu and Haque, 2018;
Way and Greene, 2018) have been proposed for cancer detection
and biomarker identification. It was shown that the deep learning
models can improve cancer outcome predictions. Our experiments
have shown that the performance of our multi-task semi-supervised
learning models is comparable to the deep learning approach by uti-
lizing network information and training the data from different
domains. The observation suggests that multi-task learning might be
a more effective framework for mRNA expression analysis. With
the recent TCGA, TARGET and LINCS research programs, more
and more large-scale mRNA expression datasets are becoming avail-
able for different cancer types. It is expected that multi-task learning
with biological networks as prior knowledge will play an important
role in cancer transcriptome analysis with large patient cohorts to
improve cancer biomarker detection and cancer phenotype
predictions.
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