
## CNS and CNP Iron(II) Mono-Iron Hydrogenase (Hmd) Mimics: Role of Deprotonated Methylene(acyl) and the *trans*-Acyl Site in H<sub>2</sub> Heterolysis

 Yae In Cho, Gummadi Durgaprasad, and Michael J. Rose\*<sup>1D</sup>

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

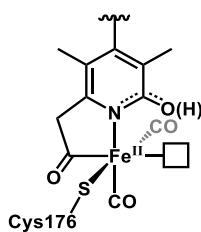
### Supporting Information

**ABSTRACT:** We report syntheses and H<sub>2</sub> activation involving model complexes of mono-iron hydrogenase (Hmd) derived from acyl-containing pincer ligand precursors bearing thioether (CNS<sup>Pre</sup>) or phosphine (CNP<sup>Pre</sup>) donor sets. Both complexes feature pseudo-octahedral iron(II) dicarbonyl units. While the CNS pincer adopts the expected *mer*-CNS (pincer) geometry, the CNP ligand unexpectedly adopts the *fac*-CNP coordination geometry. Both complexes exhibit surprisingly acidic methylene C–H bond (reversibly de/protonated by a bulky phenolate), which affords a putative dearomatized pyridinate-bound intermediate. Such base treatment of Fe-CNS also results in deligation of the thioether sulfur donor, generating an open coordination site *trans* from the acyl unit. In contrast, Fe-CNP maintains a CO ligand *trans* from the acyl site both in the parent and dearomatized complexes (the  $-PPh_2$  donor is *cis* to acyl). The dearomatized *mer*-Fe-CNS was competent for H<sub>2</sub> activation (5 atm D<sub>2(g)</sub> plus phenolate as base), which is attributed to both the basic site on the ligand framework and the open coordination site *trans* to the acyl donor. In contrast, the dearomatized *fac*-Fe-CNP was *not competent* for H<sub>2</sub> activation, which is ascribed to the blocked coordination site *trans* from acyl (occupied by CO ligand). These results highlight the importance of both (i) the open coordination site *trans* to the organometallic acyl donor and (ii) a pendant base in the enzyme active site.



### INTRODUCTION

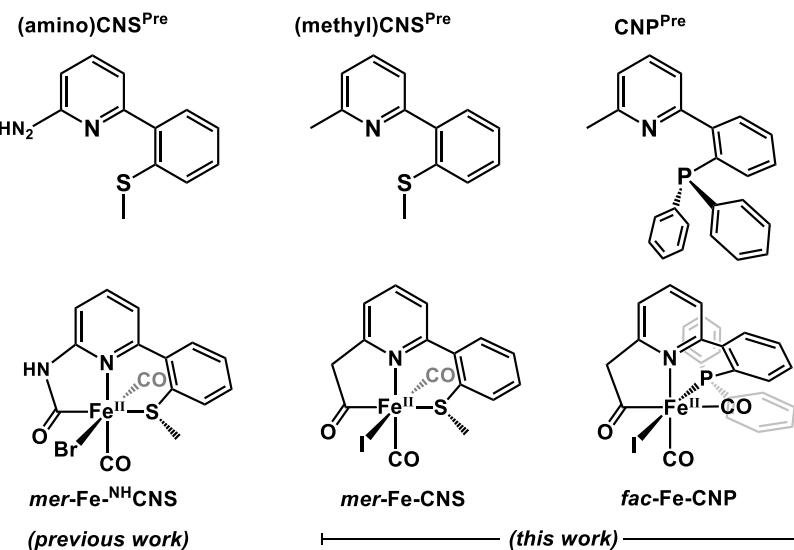
In nature, dihydrogen activation has been accomplished by a class of enzymes called hydrogenases.<sup>1</sup> Among the three types, mono [Fe]-hydrogenase (Hmd) catalyzes the reversible cleavage of H<sub>2</sub> in a *nonredox*, heterolytic fashion as a key step during the methanogenic conversion of carbon dioxide (CO<sub>2</sub>) to methane (CH<sub>4</sub>).<sup>2</sup> In this process, the substrate methenyltetrahydromethanopterin (methenyl-H<sub>4</sub>MPT<sup>+</sup>) is used as a C<sub>1</sub> “carrier” throughout the metabolic pathway. As a result of H<sub>2</sub> activation by Hmd, a hydride is transferred to the H<sub>4</sub>MPT<sup>+</sup> substrate, thus producing methylenetetrahydromethanopterin (methylene-H<sub>4</sub>MPT) and a proton.<sup>3,4</sup>


The active site is composed of the following moieties (Scheme 1): a redox-inactive Fe(II) center, a bidentate acyl-pyridine moiety presenting N (pyridone/pyridinol) and C

(acyl) donors derived from the so-called FeGP cofactor; an S donor from Cys176; *cis* carbonyl ligands; and last a labile/open coordination site (*trans* to acyl-C) for solvent or substrate binding.<sup>2,5–7</sup> As structure dictates function, close examination of particular coordination motifs through a biomimetic approach can aid in clarifying the role of each ligand and its orientation, thus providing deeper insight for understanding the catalytic mechanism.

One of the most intriguing features of [Fe]-hydrogenase is the presence of the Fe-acyl moiety. Indeed, this organometallic motif is thus far unique in biological systems. Electronically, the acyl-C donor cannot be replicated by any of the standard amino acid residues, nor by any of the ligands found in other hydrogenase enzymes (CO, CN<sup>−</sup>, thiolate, azadithiolate, etc.). While it is an extremely strong  $\sigma$ -donor ( $pK_a \approx 35$ )—stronger than almost any other known biological ligand other than methyl ( $pK_a \approx 45$ ; *e.g.* methylcobalamin)—it is also a good  $\pi$ -acceptor due to the available resonance form of the oxyanion/Fischer carbene ( $Fe=C-O^-$ ). It is thus presumed to play a very specific role in the nonredox activation of H<sub>2</sub> and hydride transfer mechanism.

Regarding the geometry of the donors about the metal center, it can be reasonably postulated that in the absence of


**Scheme 1. Active site of [Fe]-hydrogenase**



Received: May 23, 2019

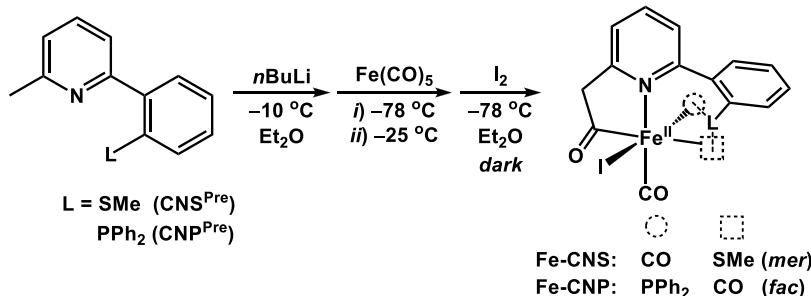
Published: September 9, 2019

**Scheme 2. Structures of the Ligand Precursors ( $\text{CNS}^{\text{Pre}}$  and  $\text{CNP}^{\text{Pre}}$ ), Our Previous Fe-carbamoyl Complex,<sup>36</sup> and the Fe-acyl Complexes (Fe-CNS and Fe-CNP) Used in This Work**



steric (or otherwise geometrically directing) effects, the strong  $\sigma$ -donating ability of the acyl-C directs the open/solvent binding site to its *trans* position. Indeed, this postulate is epitomized in the model chemistry developed by Hu, Pickett, and others—wherein non-macrocyclic CNS donor sets (i.e., the thiolate is not tethered to the acylpyridine or carbamoylpyridine moiety) inherently adopt a *fac*-CNS donor geometry with the solvent<sup>8</sup> or open<sup>9–11</sup> site *trans* from the acyl-C donor. However, reactivity studies with such “nontethered” model complexes have not been forthcoming, possibly due to the instability of hydride intermediates or lack of  $\text{H}_2$  activation due to fluxional geometries. The strong *trans* influence of the acyl group (much stronger than carbonyl)<sup>12</sup> likely plays a major role in the catalysis in terms of electronic effects. In this respect, it is remarkable that nature chose to make use of a rare type of ligand to promote catalysis.

Metal–ligand cooperativity in small molecule systems, and even more broadly in active site chemistry,<sup>13–16</sup> has been recently noted. A number of related iron(II) carbonyl complexes have been investigated by organometallic and catalysis researchers in the past decade to better understand the role of each donor moiety. Milstein and co-workers adopted the use of pincer-type  $\text{P}^{\text{C}}\text{N}^{\text{C}}\text{N}$  and  $\text{P}^{\text{C}}\text{N}^{\text{C}}\text{P}$ -type ligands, in which the central pyridine presents two phosphine moieties at the *ortho* positions via methylene linkers.<sup>17–20</sup> A variety of Fe(II)–(PNN/PNP)–hydride complexes were shown to serve as hydrogenation catalysts, and—mechanistically—these species universally proceed through a dearomatized pyridinate species, wherein one of the picolinic protons in the methylene linker is deprotonated. Subsequently, the metal–ligand cooperativity of the Lewis acidic (metal) and basic (ligand) sites drive the heterolytic activation of  $\text{H}_2$ . In related work, Kirchner and co-workers focused on iron(II) complexes with  $\text{P}^{\text{N}}\text{N}^{\text{N}}\text{P}$ -type ligands where the pyridine ring and the phosphine moieties are connected by amide (NH) linkers instead.<sup>21–23</sup> Upon activation with strong base (NH deprotonation), the complexes catalyze the hydrogenation of ketones and aldehydes and proceed through the same heterolytic cleavage of  $\text{H}_2$  as supported by DFT calculations.<sup>21,23</sup> Huang and co-workers<sup>24–26</sup> studies a number of ruthenium–PNN complexes that proceeded through the


similarly “dearomatized” intermediate, and these Ru-pincer complexes catalyzed dehydrogenative couplings,<sup>24</sup> transfer hydrogenation,<sup>25</sup> and electrocatalytic reduction of  $\text{CO}_2$ .<sup>26</sup>

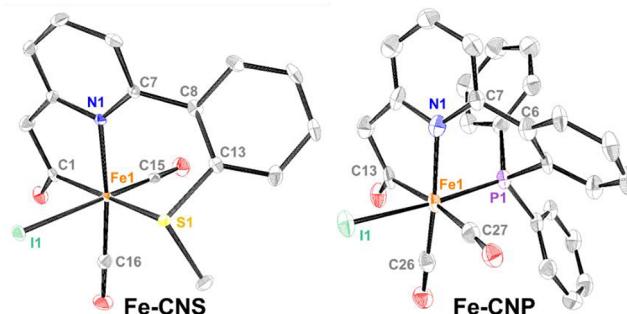
Among bioinorganic researchers, the Song group utilized 2-acylmethyl-6-pyridinol (or hydroxymethyl) ligands to chelate iron(II) and provide more structural resemblance to the [Fe]-hydrogenase enzyme active site.<sup>27–29</sup> Although lacking reactivity studies, they successfully implemented all the donor atoms in correct geometry and donor orientation as found in the active site. The Hu group has also investigated small-molecule mimics featuring acylmethylpyridine ligands exhibiting a 2-hydroxy,<sup>11</sup> 2-methoxy,<sup>9,30</sup> or 2-tertbutyl group;<sup>11</sup> a thiolate ligand (2,6-dimethylbenzenethiolate<sup>9,11</sup> and others);<sup>11</sup> and the *cis*-carbonyl motif. Through pioneering studies using a hybrid protein–molecule approach,<sup>31</sup> it was hypothesized that the following components are crucial in the  $\text{H}_2$  activation: (i) the presence of a protein environment and substrate (methenyl- $\text{H}_4\text{MPT}^+$ ), (ii) thiolate ligand as an internal base (in other words, a proton acceptor), and (iii) the pyridine-2-OH moiety (or conjugate pyridone), which positions the active site/cofactor suitable for the heterolytic cleavage of  $\text{H}_2$ . The hybrid enzyme exhibited measurable reactivity (TOF = 2 and 1  $\text{s}^{-1}$  for the heterolytic cleavage of  $\text{H}_2$  in the presence of the substrate and the production of  $\text{H}_2$ , respectively),<sup>31</sup> which corresponded to about 1% of wild-type activity, thus exceeding the rates of the previously reported synthetic hydrogenation catalysts (TOF  $\approx 10^{-3}$ – $10^{-1}$   $\text{s}^{-1}$ ).<sup>32,33</sup>

A recent study by our group demonstrated that preservation of the facial coordination motif of the CNS donors via an “anthracene scaffold” approach, a synthetic model can promote  $\text{H}_2$  activation in the absence of the protein environment.<sup>34</sup> The active solvato-Fe(II) species not only activates  $\text{H}_2$ , but also abstracts hydride from a model imidazolidine substrate (hydride source via C–H activation), then produces  $\text{H}_2$  with the aid of a bulky phenol (proton source). Furthermore, we recently demonstrated that functional  $\text{H}_2$  activation and hydride transfer can be performed by a thiolate-containing model complex derived from this anthracene scaffold.<sup>35</sup>

More closely related to the present work, we reported the carbamoyl-pincer model complex  $[(\text{C}^{\text{NH}}\text{NS})\text{Fe}(\text{CO})_2(\text{Br})]$ <sup>36</sup> (Scheme 2)—the carbamoyl version of the methylene-acyl Fe-

**Scheme 3. Metalation of CNS<sup>Pre</sup> and CNP<sup>Pre</sup> Ligand Precursors into the Acylmethylpyridyl-Fe(II) Complexes, Fe-CNS and Fe-CNP, Respectively**




CNS complex in this report. The CNS donor set was ligated in standard pincer (meridional) fashion, and treatment with a hydride source ( $\text{NaHBET}_3$ ) provided spectroscopic evidence for the  $\text{Fe}-\text{H}$  species (low temp  $^1\text{H}$  NMR spectroscopy:  $-5.08$  ppm in  $d^8\text{-THF}$ ). However, the complex was not competent for  $\text{H}_2$  activation, and ligand decomposition was observed upon treatment with strong base ( $\text{NH}$  deprotonation). We were thus interested to determine the importance of the donor identity (acyl versus carbamoyl) in an analogous complex for  $\text{H}_2$  activation.

In this work, we focus on the structural and reactivity effects of the methylene-acyl donor in concert with thioether versus phosphine donors in a single-chelate approach by reporting the new compounds, ligand precursor, CNS<sup>Pre</sup>, and the iron(II)-acyl complexes, Fe-CNS and Fe-CNP. (CNP<sup>Pre</sup> was synthesized previously;<sup>37</sup> here, we report a new synthetic route and use it as a ligand precursor for synthesizing acyl complex, Fe-CNP.). The apparent flexibility of this ligand frame allows the metal center to “choose” its ideal binding mode based on steric and electronic effects. The structures and enzyme-like reactivities of the resulting Fe-CNS and Fe-CNP complexes are compared herein in the “forward” direction, using  $\text{D}_2$  activation in the presence or absence of base.

## RESULTS

**Syntheses.** Metalations to prepare the Fe-CNS and Fe-CNP complexes were performed in analogous fashion (Scheme 3). As reported previously, syntheses of the acylmethylpyridyl-Fe(II) complexes typically proceed through (i) metalation of ligand (or ligand precursor) with  $\text{Fe}(0)$  or  $\text{Fe}(2-)$  carbonyls; (ii) migratory insertion of one of the carbonyls to generate the  $\text{Fe}(0)$  intermediate with the methylene-acyl-iron unit; finally, (iii) oxidation using  $\text{X}_2$  ( $\text{X} = \text{I}$  or  $\text{Br}$ ) to afford the desired Fe(II)-acyl complex.<sup>12,27</sup> When using  $\text{Fe}(0)$  carbonyls (as in this work), a harsh deprotonation of the methylpyridine moiety of a chosen ligand precursor is required prior to the metalation step. The crude product was collected as a yellow-brown powder, and purification via alumina chromatography provided analytically pure and crystallographically defined samples.

**Crystal Structures: Reasons for *mer* versus *fac* Coordination Motifs.** The crystal structures of the Fe-acyl thioether (Fe-CNS) and phosphine (Fe-CNP) complexes are depicted in Figure 1. In each case, the Fe(II) center is coordinated with one iodide, two carbonyls, and one ligand (C, N, and L donors). Notably, the ligation mode of the “pincer” ligand is different in each complex: Fe-CNS exhibits meridional binding, whereas Fe-CNP exhibits an unexpected facial coordination motif. In each case, one CO ligand occupies



**Figure 1.** ORTEP diagram (50% thermal ellipsoids) of Fe-CNS (left) and Fe-CNP (right) exhibiting the *mer*-CNS or *fac*-CNP donor orientations, respectively. Hydrogen atoms are omitted for clarity. Color scheme: carbon (gray); nitrogen (blue); oxygen (red); sulfur (yellow); iron (orange); iodine (green); phosphorus (purple).

the position *trans* to the pyridine N, similar to the Hmd active site. However, the second carbonyl in each case is differentially located: *trans* to the iodide in Fe-CNS, and *trans* to the acyl-C donor in Fe-CNP. Each of the  $\text{Fe}-\text{C}(\equiv\text{O})$  bond distances is approximately  $1.77$  Å, with the notable exception for the CO *trans* to the acyl moiety in Fe-CNP, which is nearly  $0.1$  Å longer ( $1.876(11)$  Å, Table 1). This is indicative of the strong  $\sigma$ -donor strength of the acyl-carbanion donor. The  $\text{Fe}-\text{C}_{\text{acyl}}$  bond distances for Fe-CNS and Fe-CNP are not drastically different ( $1.945(5)$  and  $1.974(10)$  Å, respectively). Regarding Fe-CNP, a literature search reveals that the average distance a  $\text{Fe}-\text{C}_{\text{acyl}}$  bond with a *trans* CO is roughly  $1.976$  Å,<sup>9,28,29,38,39</sup> which is consistent with the value of Fe-CNP ( $1.974(10)$  Å). The  $\text{Fe}-\text{I}$  distances for both complexes are nearly identical:  $2.6958(7)$  and  $2.6980(17)$  Å for Fe-CNS and Fe-CNP, respectively.

In Fe-CNS, the  $\text{N}_{\text{py}}-\text{Fe}-\text{C}_{\text{acyl}}$  ferracycle angle is  $85.19(17)^\circ$  (Table 1). The aryl unit coupled at the *ortho* position on the pyridine ring is twisted out of plane by  $-41.2(7)^\circ$ , primarily due to the steric hindrance between the hydrogen atoms on the pyridine and aryl rings *ortho* to the coupling site. This “flipped up” aryl group directs the thioether S to ligate to Fe center *trans* to the acyl moiety, thus affording the *mer* coordination motif. In contrast, the *ortho* aryl unit of the CNP ligand rotates in the opposite direction, characterized by a  $+38.9(13)^\circ$  torsion angle. This allows the bulkier  $-\text{PPh}_2$  moiety (versus  $-\text{SMe}$ ) to occupy the site *trans* to iodide, rather than *cis* to iodide as in Fe-CNS.

The unexpected and spontaneous facial ligation of CNP can be explained by closely examining and comparing both steric and electronic effects on the Fe-acyl complexes. In both complexes, the coordination of the acyl C, pyridine N, iodide,

Table 1. Selected Bond Lengths and Bond Angle Comparison between Fe-CNS and Fe-CNP

|                           | selected bond lengths (Å)        |                                 | selected bond angles (deg)                                                                               |                       |                     |
|---------------------------|----------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|---------------------|
|                           | Fe-CNS                           | Fe-CNP                          | Fe-CNS                                                                                                   | Fe-CNP                |                     |
| Fe—N <sub>py</sub>        | 2.031(4)                         | 2.038(8)                        | N <sub>py</sub> —Fe—C <sub>acyl</sub>                                                                    | 85.19(17)             | 82.9(4)             |
| Fe—C <sub>acyl</sub>      | 1.945(5)                         | 1.974(10)                       | N <sub>py</sub> —Fe—S/P                                                                                  | <i>S</i>              | <i>P</i>            |
| Fe—S/P                    | <i>S</i><br>2.3396(14)           | <i>P</i><br>2.202(3)            | N <sub>py</sub> —C <sub>py</sub> —C <sub>Ph</sub> —C <sub>Ph'</sub>                                      | 87.80(11)<br>−41.2(7) | 79.1(2)<br>38.9(13) |
| Fe—CO                     | <i>trans</i> -iodide<br>1.772(5) | <i>trans</i> -acyl<br>1.876(11) | ligand binding<br>meridional (pincer-type)<br><i>trans</i> to acyl?<br><i>trans</i> to N <sup>Py</sup> ? |                       |                     |
| Fe—CO <sub>trans-py</sub> | 1.768(5)                         | 1.774(11)                       | SMe<br>CO                                                                                                |                       |                     |
| Fe—I                      | 2.6958(7)                        | 2.6980(17)                      | CO<br>CO                                                                                                 |                       |                     |

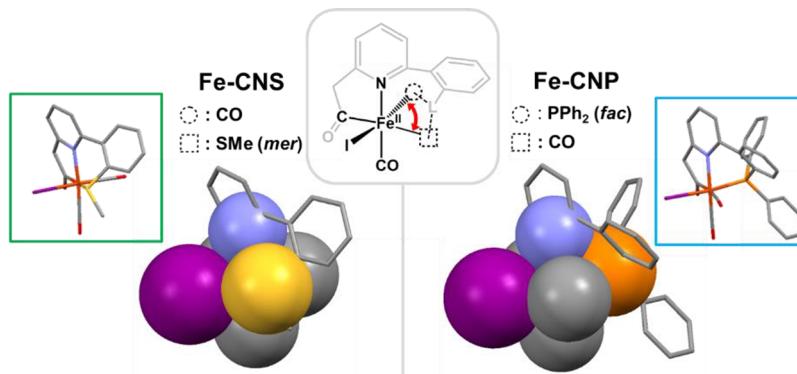
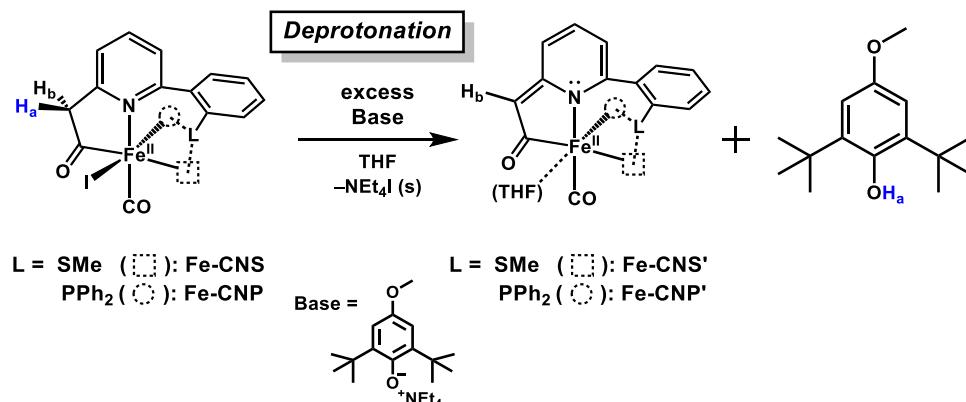




Figure 2. Structures of Fe-CNS and Fe-CNP, respectively, showing only the six donor atoms in space-filling model. Each inset represents the capped-sticks model of the larger structure at the same angle. Color scheme: carbon (gray); nitrogen (blue); iodine (dark magenta); sulfur (yellow); phosphorus (orange). Hydrogen atoms are omitted for clarity.

Scheme 4. Deprotonation of Fe-CNS or Fe-CNP with a Bulky Phenolate Base<sup>a</sup>

<sup>a</sup>The hollow wedged bond for one carbonyl group represents the position either *trans* from iodide (Fe-CNS) or *trans* from acyl (Fe-CNP).

and CO<sub>trans-py</sub> remains unchanged. Only two sites, those *trans* to iodide and *trans* to acyl (represented as dotted circle and dotted square in Figure 2, respectively) are occupied by different donors—namely, the second CO and either SMe or PPh<sub>2</sub>. Also, space-filling models of both complexes reveal that the iodide is the bulkiest donor atom (radius: 206 pm) among the six; iodide is also larger than the combined CO ligand. Therefore, iodide will preferentially occupy the least crowded coordination site (complete space-filling models: Figure S2). For Fe-CNS, the second bulkiest donor is the SMe unit, while in Fe-CNP it is PPh<sub>2</sub> moiety. Comparing —SMe and —PPh<sub>2</sub>, the former has only one “short” arm (methyl), which can easily be deflected away from the bulky iodide without changing the coordination site of the —SMe donor. On the other hand, —PPh<sub>2</sub> has two bulky substituents. Therefore, the bulky

phosphine moiety cannot occupy the position *cis* to the bulkiest donor atom, iodide. Incidentally, the “flexibility” of the *ortho*-aryl linkage facilitates binding of the —PPh<sub>2</sub> unit *trans* to the iodide, while retaining unperturbed Fe—P bond metrics (2.202(3) Å); the facial CNP ligation is the final result.

Deeper inspection of the donor strengths of —SMe versus —PPh<sub>2</sub> also provides insight into the geometric properties of the complexes. Among the CNS and CNP donor sets, the  $\sigma$ -donor strength is ordered as follows: acyl-C > —PPh<sub>2</sub> > N<sub>py</sub> > —SMe. Thus, the position *trans* from the acyl-C would be the most labile site due to its strong *trans* influence, thus dissuading the coordination of another strong  $\sigma$ -donor (such as —PPh<sub>2</sub>). However, in case of CNS, the —SMe unit is a weak  $\sigma$ -donor not unlike the weakly bound H<sub>2</sub>O molecule *trans* from acyl in the active site. Indeed, all of the previously reported

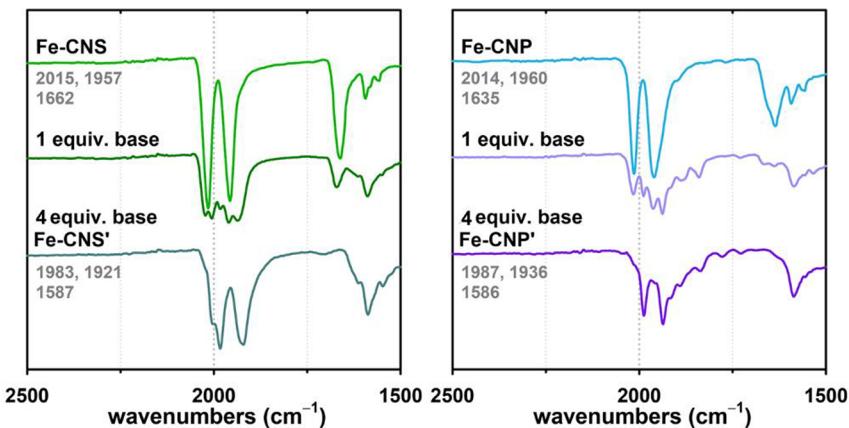



Figure 3. Infrared spectra of Fe-CNS (left) and Fe-CNP (right) deprotonation via bulky phenolate. Note that more than one equivalent of base is required for a complete deprotonation to Fe-CNS' or Fe-CNP'.

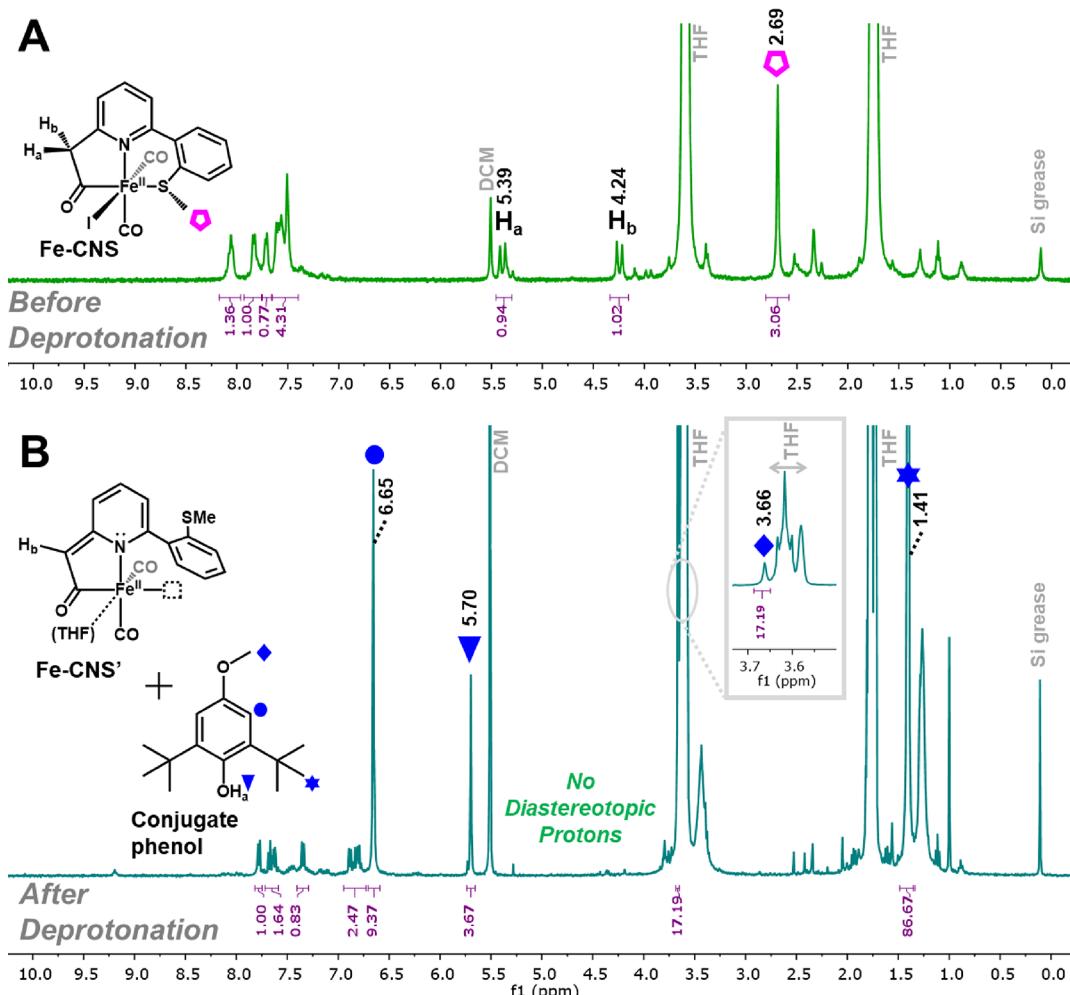
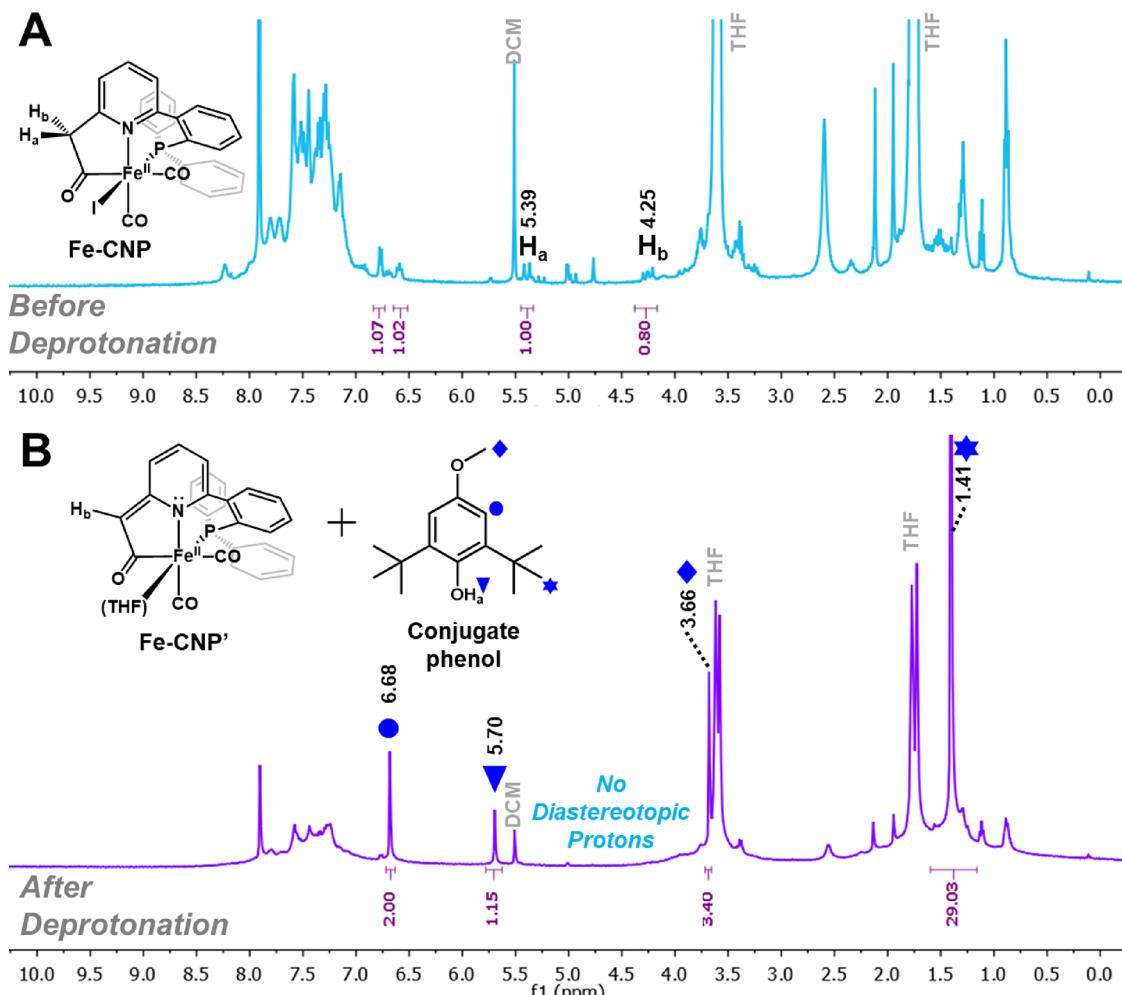




Figure 4. (A)  $^1\text{H}$  NMR spectrum of Fe-CNS in  $d^8\text{-THF}$ . (B)  $^1\text{H}$  NMR spectrum of deprotonated species Fe-CNS' and conjugate phenol + phenolate in  $d^8\text{-THF}$ .

iron-acyl-phosphine complexes<sup>38–41</sup> exhibit non-chelating phosphine ligand(s) at *cis* site(s). Similarly, all examples of iron-*carbamoyl* complexes that contain non-chelating phosphine ligands exhibit *cis*-phosphine(s), except for one case of a *trans*  $\text{PMe}_3$  unit.<sup>36,42</sup> All of these data are consistent with the strong  $\sigma$ -donor effect of the acyl group, thus affording the *cis*- $\text{PPh}_2$  binding motif (and consequently, *fac*-CNP).

**Reactivity Studies. Deprotonation.** In related non-biomimetic work on iron(II) pincers, it has been established that heterolytic cleavage of  $\text{H}_2$  occurs via metal–ligand cooperation that utilizes the conjugate base of acidic methylene or amide linkers in the ligand framework.<sup>16</sup> These conjugate bases are “dearomatized” due to the presence of a pyridinate anion (rather than pyridine) in the central position.



**Figure 5.** (A)  $^1\text{H}$  NMR spectrum of Fe-CNP in  $d^8\text{-THF}$ . (B)  $^1\text{H}$  NMR spectrum of deprotonated species Fe-CNP' and conjugate phenol + phenolate in  $d^8\text{-THF}$ .

In our biomimetic system, we found that the methylene linker protons serve an analogous role (Scheme 4).

Up to 4 equiv of base were required for a complete conversion of Fe-CNS to Fe-CNS'. The progress was monitored by infrared spectroscopy, showing a clear transition of the carbonyl stretches  $\{2015, 1957\} \rightarrow \{1983, 1921 \text{ cm}^{-1}\}$  as well as the acyl stretch ( $1662 \rightarrow 1587 \text{ cm}^{-1}$ ) (Figure 3, left). Under similar conditions, deprotonation of a methylene proton of Fe-CNP yielded the dearomatized species Fe-CNP', exhibiting red shift of the carbonyls  $\{2014, 1960\} \rightarrow \{1987, 1936 \text{ cm}^{-1}\}$  and the acyl ( $1635 \rightarrow 1586 \text{ cm}^{-1}$ ) stretches in infrared spectrum (Figure 3, right). To confirm the acid/base nature of this transformation, attempts were made to regenerate the parent complex, Fe-CNS, by adding a proton source. Addition of 2,6-lutidinium bromide to Fe-CNS' did result in a blue shift of the carbonyl stretches  $\{1983, 1921\} \rightarrow \{2002, 1933 \text{ cm}^{-1}\}$  as expected (Figure S3), similar to Fe-CNS; however, the acyl stretch near  $1665 \text{ cm}^{-1}$  was only partially recovered. We also attempted to abstract iodide from Fe-CNS and Fe-CNP using either  $\text{Na}[\text{BAr}^{\text{F}}]$  or  $\text{AgBF}_4$  in both the presence and absence of  $\text{PPh}_3$ ; both reactions resulted in the loss of all CO, indicating the decomposition of the complexes.

The methylene protons in both iron-acyl complexes are diastereotopic—their chemical environment is quite different, resulting in two doublets in the  $^1\text{H}$  NMR spectrum at 5.46 and

3.86 ppm for Fe-CNS in  $\text{C}_6\text{D}_6$  ( $\text{H}_a$  and  $\text{H}_b$ , respectively; Figure S4A, top) and 5.79 and 4.94 ppm for Fe-CNP (Figure S4A, bottom). Comparing the structures of the two complexes, the chemical environments of the “front-side” protons adjacent to the iodide remain relatively similar, compared with distinct chemical environments of the “back-side” protons (adjacent to CO versus  $-\text{PPh}_3$  in Fe-CNS versus Fe-CNP). The similar chemical shifts of 5.46 (Fe-CNS) and 5.79 (Fe-CNP) support the assignment of the downfield diastereotopic resonance to be  $\text{H}_a$  in both cases. The more deshielded nature of  $\text{H}_a$  indicates more susceptibility to deprotonation, and thus  $\text{H}_a$  is likely the acidic proton in the reactivity studies detailed below.

Reactivity studies required the use of THF or  $d^8\text{-THF}$  versus  $\text{C}_6\text{D}_6$  as a coordinating solvent and for improved solubility of reagents. Treatment of Fe-CNS ( $^1\text{H}$  NMR spectrum, Figure 4A) with a bulky phenolate base ( $\text{NEt}_4^+$  salt of 2,6-di-*tert*-butyl-4-methoxyphenolate) results in the disappearance of the diastereotopic resonances, indicating the formation of the dearomatized species Fe-CNS' (Figure 4B), analogous to the dearomatized iron-pyridinate species observed by Milstein and Kirchner.<sup>16–21,43</sup> As a result, the conjugate acid phenol is observed ( $\delta \text{ OH: } 5.70 \text{ ppm}$ ), and  $\text{NEt}_4\text{I}_{(s)}$  is formed as precipitate. It is noted that an excess of the conjugate phenol (see assigned resonances in Figure 4B) remains observable due to the requirement for  $\sim 4$  equiv of phenolate to drive complete

deprotonation (see IR section above, Figure 3, left). Lastly, the disappearance of the  $-\text{S}(\text{CH}_3)$  resonance at 2.69 ppm suggests deligation of the sulfur donor due to the (now) dianionic ligand framework.

Similarly, as noted in the IR section (Figure 3, right), Fe-CNP also requires  $\sim 4$  equiv of base to complete deprotonation. After treatment of Fe-CNP with the phenolate base, the diastereotopic protons (5.39 and 4.25 ppm in  $d^8\text{-THF}$ , Figure 5A) are no longer observed, and the resonances from the conjugate phenol emerge (Figure 5B).

$D_2$  Activation. The deprotonated species Fe-CNS' was then placed under 5 atm of  $D_2$ , and the reaction was monitored by  $^2\text{H}$  NMR spectroscopy (Figure 6). A new resonance at 5.39

For the deprotonated phosphine congener Fe-CNP', the analogous reaction with  $D_2$  (7 atm,  $^2\text{H}$  NMR analysis) does not result in a phenol-OD resonance ( $\text{D}^+$ ); again, no Fe-D resonance was detected (Figure S6). This phenol-OD resonance has served as an obligate marker for  $D_2$  heterolysis in all systems studied in our laboratory.<sup>34,35</sup> Indeed, following  $D_2$  exposure, both the NMR spectra ( $^1\text{H}$  and  $^{31}\text{P}$ ) as well as IR analysis indicate that the unaltered Fe-CNP' remains the only detectable species; that is, no decomposition or methylene resonance ( $^1\text{H}$  or  $^2\text{H}$ ) is observed. We do note the presence of one minor peak in the  $^2\text{H}$  spectrum near 7.8 ppm; however, based on the absence of  $^{13}\text{C}\{^2\text{H}\}$  coupling in the  $^{13}\text{C}$  NMR spectrum, we have been unable to identify this feature. Nonetheless, we similarly attempted to detect hydride transfer from  $D_2$  to the  $^{\text{Tol}}\text{Im}^+$  substrate—unsurprisingly to no avail.

## DISCUSSION

**Fe-CNS versus Fe-CNP Reactivity.** We postulate that the reason for the lack of  $D_2$  activation in Fe-CNP' is due to the “blocking” of the coordination site *trans* to the acyl unit by the CO ligand. We have demonstrated the requirement for an open site *trans* to acyl in several other systems, including those supported by an anthracene scaffold that uniformly enforces a *fac*-CNS coordination motif with the solvent/ $\text{H}_2$  binding site *trans* to the acyl unit.<sup>34,35</sup> This generates an apparent paradox with the Fe-CNS case, wherein the *trans* site is also “blocked” by the thioether-S donor. However, recent studies have indicated the potential hemilability of thioether-S in related systems. It is notable that in the enzyme site, one presumed role of the strongly  $\sigma$  donating, acyl carbanion is to stabilize the weakly bound water to enable  $\text{H}_2$  binding via Kubas interaction. We did demonstrate through IR spectroscopy in both coordinating (THF) and noncoordinating solvents (DCE, FPh) that the Fe-S bond remains intact in the Fe-CNS starting complex. It is likely, however, that upon generating another negative charge in the ligand frame (dearomatized pyridine anion), the sulfur deligates from the iron center. Ultimately, we propose the mechanistic cycle illustrated in Schemes 5 and 6, which is the only model consistent with all of our observations. In the case of Fe-CNP/Fe-CNP', the consistent ligation of the CO ligand *trans* to the acyl unit blocks  $\text{H}_2$  binding and activation, despite the generation of a basic site on the ligand frame.

**Relevance to Enzyme.** It is evident that the indispensable factor that dictates reactivity toward  $\text{H}_2$  is the presence of an open coordination site *trans* to the organometallic acyl unit. It is likely that the presence of a pendant base is also required (methenyl-acyl in our work; pyridonate in enzyme). However, due to the hemilabile thioether in the Fe-CNS system, we are unable to unambiguously differentiate these two effects.

Regarding the pendant base postulate, the emerging mechanism for the enzyme is that this role is fulfilled by the pyridone moiety (rather than the Cys-S as in  $[\text{NiFe}]$ , or azadithiolate in  $[\text{FeFe}]$ ). However, our system lacks the truly biomimetic and anionic pyridonate donor and instead employs the neutral pyridine as a substitute. We wish to highlight the limited implication of the deprotonated methylene(acyl)pyridine unit observed in our system, versus the methylene(acyl)pyridone unit in the enzyme: Due to the pre-existing anionic charge in the enzyme's pyridonate heterocycle, we strongly contend that the methylene(acyl)  $\text{p}K_a$  would be biologically inaccessible; its deprotonation would require the generation of a *di*-anionic pyridone—unlikely. Therefore, we

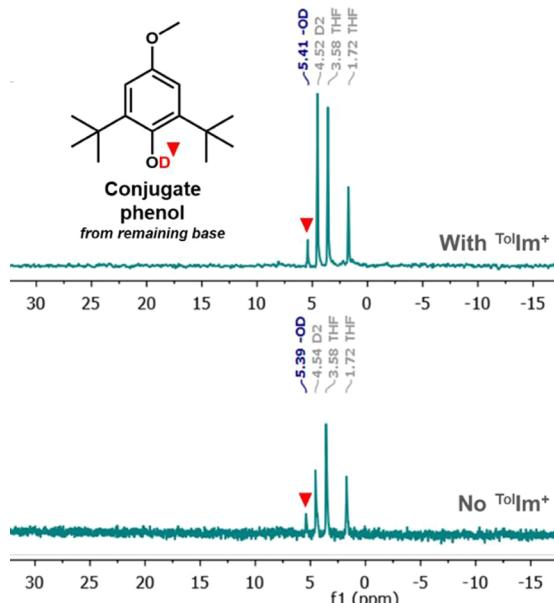
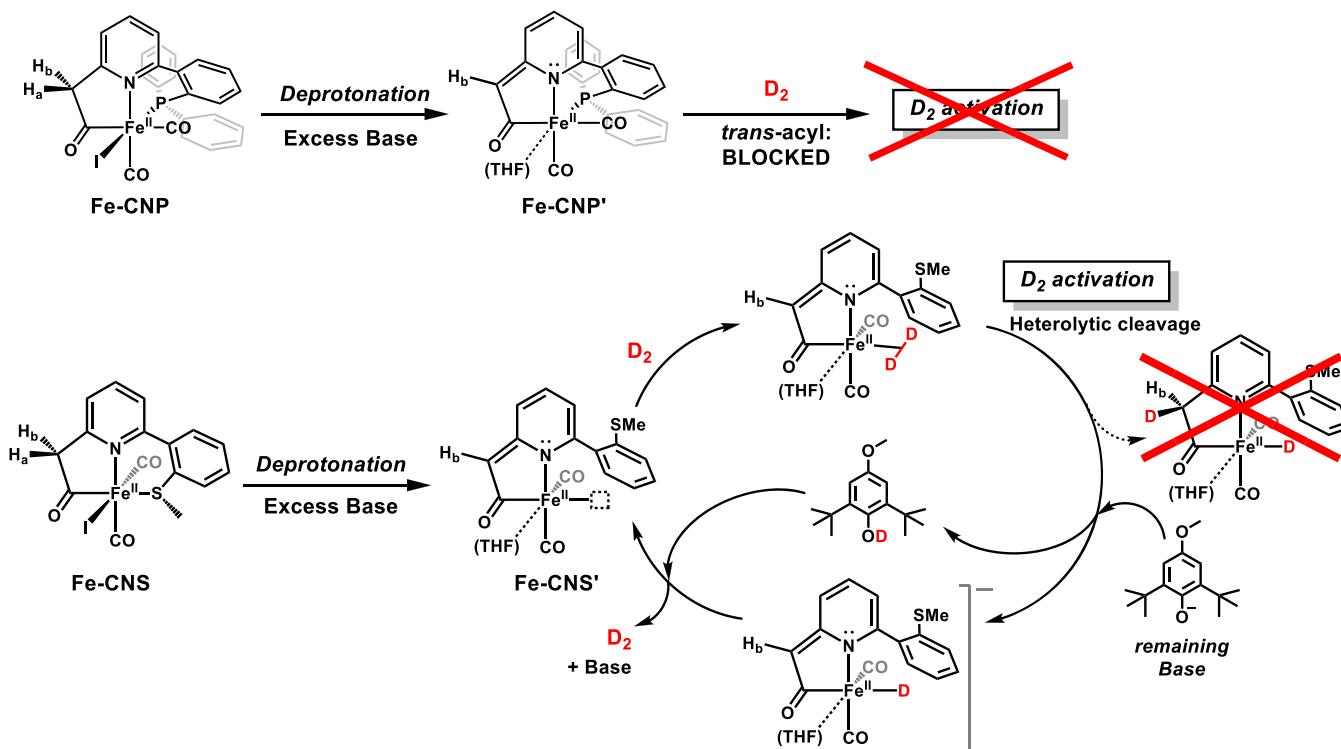
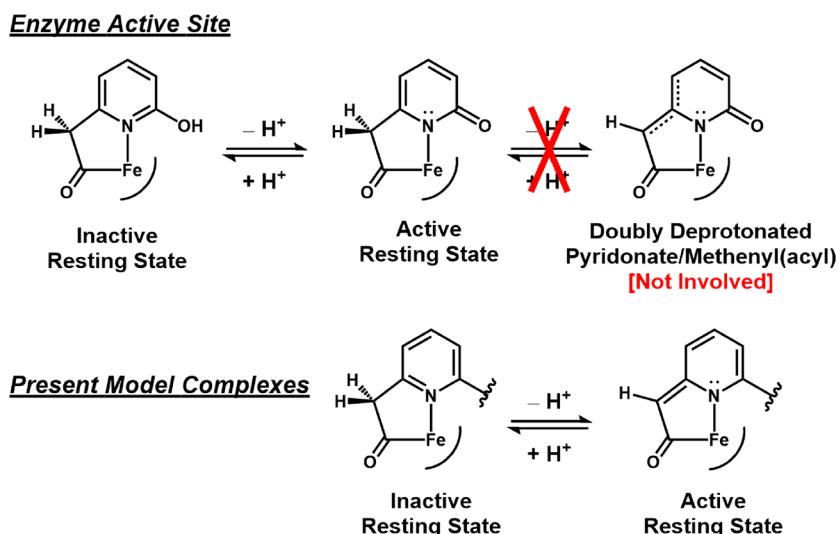




Figure 6.  $^2\text{H}$  NMR spectra of  $D_2$  activation by Fe-CNS' with or without the presence of substrate ( $^{\text{Tol}}\text{Im}^+$ ) in THF, exhibiting an  $-\text{OD}$  signal of the conjugate phenol at 5.41 and 5.39 ppm, respectively.


ppm was observed within 30 min, which was assigned as the conjugate phenol-OD resonance ( $\text{D}^+$ , confirmed via isolation of the authentic phenol-OD species from  $\text{CD}_3\text{OD}$ );<sup>34</sup> no Fe-D resonance ( $\text{D}^-$ ) was observed (e.g., 0 to  $-30$  ppm). Nonetheless, the observation of the  $\text{D}^+$  resonance indicates activation of  $D_2$  via heterolysis by the Fe-CNS system. It is also notable in the  $^2\text{H}$  NMR spectra that the ligand “basic site” is not deuterated during successful  $D_2$  heterolysis, indicating that the methine carbon is not directly involved in  $D_2$  activation.

A recent result from our group demonstrates that a bulky Lewis acid substrate (putative hydride acceptor) can be employed to stabilize and detect iron-hydride species in  $^2\text{H}$  NMR experiments<sup>34</sup> or serve as a hydride-accepting substrate.<sup>35</sup> Therefore, the same reaction was performed in the presence of the model substrate  $^{\text{Tol}}\text{Im}[\text{BAr}^{\text{F}}]$ , a bulky imidazolium salt that mimics the role of methenyl- $\text{H}_4\text{MPT}^+$  in the enzyme's  $\text{H}_2$  activation process. However, a nearly identical  $^2\text{H}$  NMR spectrum was obtained in this case ( $\delta$   $-\text{OD}$  = 5.41 ppm; no Fe-D resonance observed), indicating that the  $^{\text{Tol}}\text{Im}^+$  substrate (a) does not impede  $\text{H}_2$  heterolysis, (b) does not aid in stabilizing the implicit iron-deuteride intermediate, and (c) does not serve as a hydride acceptor in this system.

**Scheme 5. Summary of Mechanistic Understanding of the Parameters Leading (or Blocking)  $H_2$  Activation in the Present Fe-CNS and Fe-CNP Systems**



**Scheme 6. Difference in Methylene Reactivity (Acidity) between the Enzyme Active Site (Top) and Present Fe-CNS/Fe-CNP Systems**



do not claim that the methylene(acyl)  $\rightarrow$  methenyl(acyl) interconversion is an active mechanism in the enzyme. Rather, we contend that the present system demonstrates the important utility of a pendant base in the vicinity of the iron center to drive  $H_2$  heterolytic cleavage.

## CONCLUSION

In summary, we were able to directly compare the electronic and steric effects on the binding mode of thioether versus triphenylphosphine moiety in Fe-acyl system by designing two pincer ligand precursors, CNS<sup>Pre</sup> and CNP<sup>Pre</sup>. The CNS ligand adopted the expected *mer*-CNS motif, while the CNP adopted

an unexpected *fac*-CNP motif due to the bulkier and more strongly  $\sigma$ -donating  $-PPh_3$  unit (does not prefer to bind *trans* to the acyl carbanion). The reactivity studies are summarized as follows:

- (1) Both Fe-CNS and Fe-CNP undergo facile methylene(acyl) deprotonation that generates a dearomatized pyridinate similar to that reported by Milstein, Kirchner, and others.
- (2) In all cases, the Fe-CNP system exhibits a “blocked” coordination site *trans* to the organometallic acyl unit, which precludes  $H_2$  binding and activation.

(3) In contrast, deprotonation of the Fe-CNS system generates an open coordination site *trans* to acyl, which enables H<sub>2</sub> activation. This highlights the key importance of the geometric location of the H<sub>2</sub> binding site as *trans* from the acyl unit to promote H<sub>2</sub> binding and heterolysis.

(4) However, neither a stable iron-hydride species nor hydride transfer to a biomimetic substrate is observed in Fe-CNS system. We suspect that the anionic nature of the proposed Fe-H intermediates result in their instabilities, thereby precluding spectroscopic detection.

(5) The methylene(acyl) motif occurs in both the present systems and the enzyme. In Fe-CNS and Fe-CNP, it serves as a convenient means to investigate the role of “pendant base” in a model system.

(6) However, due to the already anionic pyridone in the active site (versus neutral pyridine in this model system), *it is not claimed that the methylene(acyl) → methenyl(acyl) conversion occurs in the enzyme*. The endogenous pyridone-O likely serves the role of “pendant base” in the active site.

## EXPERIMENTAL SECTION

**Materials and Methods.** Fe(CO)<sub>5</sub> and Pd(PPh<sub>3</sub>)<sub>4</sub> were purchased from Strem Chemicals; 2-bromo-6-methylpyridine and Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, from Oakwood Chemicals; 2-(methylthio)phenyl boronic acid, from Boron Molecular and Matrix Scientific; 2-bromophenylboronic acid from Combi Blocks, Inc.; I<sub>2</sub> and ClPPh<sub>2</sub>, from Acros Organics; 1.6 M *n*BuLi in hexanes and D<sub>2</sub> (99.8%), from Sigma-Aldrich; K<sub>2</sub>CO<sub>3</sub>, from Fisher Scientific; aluminum oxide (neutral, Brockmann I, 50–200 μm, 60 Å), from Acros Organics; silica (SiliaFlash Irregular Silica Gels, 40–63 μm, 40 Å), from SiliCycle. The solvents dimethoxyethane (DME), ethyl acetate (EA), and 1,4-dioxane were purchased from Fisher Scientific and used without further purification. The solvents diethyl ether (Et<sub>2</sub>O), dichloromethane (DCM), chloroform, tetrahydrofuran (THF), and pentane were procured from Fisher Scientific and dried over alumina columns using a Pure Process Technology solvent purification system and stored over 3 Å molecular sieves until use. The deuterated solvent CDCl<sub>3</sub> was purchased from Cambridge Isotopes and used as received. Imidazolium (Im<sup>+</sup>)<sup>44</sup> and the bulky phenolate base were synthesized following literature procedures.

**Physical Methods.** Infrared spectra were recorded on a Bruker Alpha spectrometer equipped with a diamond ATR crystal. <sup>1</sup>H and <sup>31</sup>P NMR spectra were collected using Varian DirectDrive 400 MHz, while <sup>2</sup>H NMR spectra were collected using Varian DirectDrive 600 MHz. Elemental analyses were performed by Midwest Micro Lab.

**Syntheses of Ligand Precursors and Complexes. CNS<sup>Pre</sup> (2-Methyl-6-(2-(methylthio)phenyl)pyridine, C<sub>13</sub>H<sub>13</sub>NS).** A Suzuki coupling of 2-bromo-6-methylpyridine (4.0 g, 23 mmol) with 2-(methylthio)phenyl boronic acid (5.9 g, 35 mmol) was performed using 1 M K<sub>2</sub>CO<sub>3</sub> (35 mmol) and *trans*-Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.816 g, 1.2 mmol, 5 mol %) in 100 mL of DME. The slurry was heated at 85 °C for 24 h in a pressure vessel. The organic layer was collected by ethyl acetate (EA) extractions (3 × 100 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. Purification via column chromatography (EA:Hex = 1:8) afforded the product as a pale yellow oil. Yield: 3.4 g (67%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ in ppm): 7.64 (t, *J* = 7.7 Hz, 1H), 7.42 (ddd, *J* = 7.6, 1.5, 0.6 Hz, 1H), 7.38–7.30 (m, 3H), 7.22 (ddd, *J* = 7.5, 6.7, 1.9, 1H), 7.13 (td, *J* = 7.6, 1.0, 0.4, 1H), 2.63 (s, 3H), 2.39 (s, 3H). HRMS (+ESI): *m/z* calcd for C<sub>13</sub>H<sub>13</sub>NS (M), 215.08; found, (M + H)<sup>+</sup> 216.0845.

**Fe-CNS** [(CNS)Fe(CO)<sub>2</sub>(I)]. The CNS<sup>Pre</sup> (0.400 g, 1.86 mmol) was dissolved in 10 mL of Et<sub>2</sub>O and degassed by freeze–pump–thaw method. Then it was cooled to –10 °C for the addition of *n*BuLi (1.6 M in hexanes, 1.86 mmol). After the addition, the reaction was stirred at rt for 45 min. After the formation of an orange slurry, a prechilled Et<sub>2</sub>O solution (3 mL) of Fe(CO)<sub>5</sub> (250 μL, 1.86 mmol) was added

dropwise at –78 °C. The reaction mixture was stirred for about 1.5 h and allowed to warm to –25 °C, then recooled to –78 °C for oxidation. Under dark conditions, the prechilled Et<sub>2</sub>O solution (7 mL) of I<sub>2</sub> (0.212 g, 1.67 mmol) was added dropwise into the stirred solution via cannula transfer and kept at –78 °C for 2 h. A yellow–brown precipitate was isolated using an air-free filter tube and dried under N<sub>2</sub>. Yield: 0.528 g (59.3%). A DCM solution of the crude product was then filtered through neutral alumina and layered with pentane at –25 °C to give X-ray quality crystals (red–brown needles). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, δ in ppm): 7.36 (s, 1H), 6.96 (s, 1H), 6.88–6.78 (m, 2H), 6.72 (t, *J* = 7.8 Hz, 1H), 6.61 (d, *J* = 7.7 Hz, 1H), 6.26 (d, *J* = 7.8 Hz, 1H), 5.46 (d, *J* = 20.5 Hz, 1H), 3.86 (d, *J* = 20.4 Hz, 1H), 2.00 (s, 3H). <sup>1</sup>H NMR (<sup>2</sup>H-THF, δ in ppm): 8.07 (m, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.65–7.40 (m, 4H), 5.39 (d, *J* = 20.4 Hz, 1H), 4.24 (d, *J* = 20.4 Hz, 1H), 2.69 (s, 3H). IR bands (cm<sup>–1</sup>): 2032 (ν<sub>C≡O</sub> vs), 1962 (ν<sub>C=O</sub> vs), 1662 (ν<sub>C=O</sub> vs), 1583, 1572, 1474 (s), 1449, 1438 (s), 760, 744 (s). Elemental analysis for calcd (Fe-CNS with residual solvents: 0.1 equiv DCM and 0.2 equiv pentane): C 40.75, H 2.92, N 2.78; found: C 40.90, H 2.80, N 2.41. CCDC deposition no.: 1590122.

**2-(2-Bromophenyl)-6-methylpyridine (C<sub>12</sub>H<sub>10</sub>BrN).** A Suzuki coupling of 2-bromo-6-methylpyridine (3.27 g, 19.0 mmol) with 2-bromophenylboronic acid (4.20 g, 20.9 mmol, 1.1 equiv) was performed using K<sub>2</sub>CO<sub>3</sub> (2.89 g, 20.9 mmol, 1.1 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (0.769 g, 0.66 mmol, 3.5 mol %) in a 1,4-dioxane:H<sub>2</sub>O (3:1) mixture. The slurry was refluxed for 24 h. The organic layer was collected by EA extractions (3 × 100 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. Purification via column chromatography (EA:Hex = 1:8) afforded the product as pale yellow oil. Yield: 3.89 g (83%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ in ppm): 7.67–7.57 (m, 2H), 7.50 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.40–7.33 (m, 2H), 7.20 (dd, *J* = 7.5, 1.8, 0.5 Hz, 1H), 7.13 (dp, *J* = 7.7, 0.3 Hz, 1H), 2.62 (s, 3H). HRMS (+ESI): *m/z* calcd for C<sub>12</sub>H<sub>10</sub>BrN (M), 247.00, 249.00; found, (M + H)<sup>+</sup> 248.0071, 250.0051.

**CNP<sup>Pre</sup>** (2-(2-(Diphenylphosphanyl)phenyl)-6-methylpyridine, C<sub>24</sub>H<sub>20</sub>NP). [The synthetic conditions were modified from the work of Speiser et al.<sup>37</sup>] Note: A rigorous air-free handling technique is required to isolate this product as the free phosphine (avoiding phosphine oxide). A solution of *n*BuLi (1.6 M in hexanes, 16 mmol) was added dropwise into a freeze–pump–thawed solution of 2-(2-bromophenyl)-6-methylpyridine (3.97 g, 16 mmol) in THF at –78 °C. After stirring the solution at the same temperature for 1 h, ClPPh<sub>2</sub> (16 mmol) was added dropwise via syringe and allowed to warm to rt overnight. Degassed H<sub>2</sub>O was added via syringe, followed by successive air-free Et<sub>2</sub>O extractions using cannula transfers. The organic layer was transferred to a N<sub>2</sub>-purged Schlenk flask containing Na<sub>2</sub>SO<sub>4</sub> via cannula and stirred for 30 min. The dried solution was then cannula transferred to a new Schlenk flask, and the volume was reduced under vacuum until a white powder formed. The resulting yellow supernatant (impurities) was transferred into a separate Schlenk flask via cannula, and the remaining white powder (product) was washed several times with cold Et<sub>2</sub>O, then dried under N<sub>2</sub>. Storage of the supernatant and washes at –20 °C for 2 d afforded large colorless blocks suitable for X-ray diffraction. Yield: 2.94 g (52%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ in ppm): 7.59 (ddd, *J* = 7.6, 4.3, 1.3 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.39 (td, *J* = 7.5, 1.4 Hz, 1H), 7.34–7.18 (m, 12H), 7.04 (dd, *J* = 7.7, 3.9, 1.4, 0.5 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 2.27 (s, 3H). <sup>31</sup>P NMR (CDCl<sub>3</sub>, δ in ppm): –10.9 (s). CCDC deposition no.: 1590145. HRMS (+ESI): *m/z* calcd for C<sub>24</sub>H<sub>20</sub>NP (M), 353.13; found, (M + H)<sup>+</sup> 354.1413.

**Fe-CNP** [(CNP<sup>Pre</sup>)Fe(CO)<sub>2</sub>(I)]. The CNP<sup>Pre</sup> (0.500 g, 1.42 mmol) was dissolved in 15 mL of Et<sub>2</sub>O and degassed by freeze–pump–thaw. The solution was cooled to –10 °C for the addition of *n*BuLi (1.6 M in hexanes, 1.42 mmol). After the addition, the reaction was stirred at rt for 45 min. After the formation of an orange slurry, a prechilled Et<sub>2</sub>O solution (3 mL) of Fe(CO)<sub>5</sub> (191 μL, 1.42 mmol) was added dropwise at –78 °C. The reaction mixture was stirred for about 1.5 h and allowed to warm to –25 °C, then again cooled to –78 °C for oxidation. Under dark conditions, the prechilled Et<sub>2</sub>O solution (7 mL) of I<sub>2</sub> (0.162 g, 1.27 mmol) was added dropwise into the stirring solution and kept at –78 °C for 2 h. A yellow–brown precipitate was

isolated using an air-free filter tube and, then, dried under N<sub>2</sub>. Yield: 0.615 g (77.9%). The crude product was purified by dissolving in DCM and loaded on a short alumina (neutral) column in an N<sub>2</sub> atmosphere glovebox; the products were eluted using a series of solvents of increasing polarity (DCM → CHCl<sub>3</sub> → THF). The final elution with THF produced a yellow solution, from which the product was collected via crystallization (vapor diffusion of pentane into the THF solution at rt). Small orange–brown clusters of X-ray quality crystals were generated after ~10 days. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>,  $\delta$  in ppm): 7.7–6.4 (m, 17H), 5.79 (d,  $J$  = 20.2 Hz, 1H), 4.94 (d,  $J$  = 20.8 Hz, 1H). <sup>1</sup>H NMR ( $d^8$ -THF,  $\delta$  in ppm): 8.0–7.0 (m, 15H), 6.77 (d,  $J$  = 7.5 Hz, 1H), 6.59 (t,  $J$  = 9.0 Hz, 1H), 5.39 (d,  $J$  = 20.2 Hz, 1H), 4.25 (dd,  $J$  = 20.9, 14.1 Hz, 1H). <sup>31</sup>P NMR (C<sub>6</sub>D<sub>6</sub>,  $\delta$  in ppm): 79.9 (s). IR bands (cm<sup>-1</sup>): 2011 ( $\nu_{C=O}$  vs), 1974 ( $\nu_{C=O}$  vs), 1637 ( $\nu_{C=O}$  vs), 1590, 1473 (s), 1427, 1092 (s), 979, 765 (s), 742 (s), 691 (vs), 602 (vs), 565, 543, 509 (s). Elemental analysis for C<sub>27</sub>H<sub>19</sub>FeINO<sub>3</sub>P, calcd: C 52.38, H 3.09, N 2.26; found: C 52.48, H 3.32, N 2.14. CCDC deposition no.: 1590123.

**Reactivity Studies.** In a glovebox under an N<sub>2</sub> atmosphere, a small portion of iron–acyl complex (approximately 10 mg) was dissolved in 1 mL of THF at rt. Up to approximately 4 equiv of bulky phenolate base was added until all three CO stretches were determined to be completely red-shifted via IR spectroscopy. For experiments with the substrate, 1 equiv of Im[BAr<sup>F</sup>] was added to the solution at this point. The solution was then filtered through celite and transferred to a high-pressure J-Y NMR tube. The tube was removed from the glovebox and its headspace was filled with 5 atm of D<sub>2</sub> gas. Gentle mixing was provided by slow, periodic inversion (Stuart Rotator SB2) over the course of 30–60 min, after which the reaction was complete (no further changes were observed in the <sup>2</sup>H NMR spectrum at ~24 h).

## ■ ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: [10.1021/acs.inorgchem.9b01530](https://doi.org/10.1021/acs.inorgchem.9b01530).

X-ray data collection and refinement details, ORTEP diagram, space-filling models, IR and NMR (<sup>1</sup>H, <sup>31</sup>P, and <sup>2</sup>H) spectra ([PDF](#))

### Accession Codes

CCDC 1590122–1590123 and 1590145 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via [www.ccdc.cam.ac.uk/data\\_request/cif](http://www.ccdc.cam.ac.uk/data_request/cif), or by emailing [data\\_request@ccdc.cam.ac.uk](mailto:data_request@ccdc.cam.ac.uk), or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

## ■ AUTHOR INFORMATION

### Corresponding Author

\*Email: [mrose@cm.utexas.edu](mailto:mrose@cm.utexas.edu).

### ORCID

Michael J. Rose: [0000-0002-6960-6639](https://orcid.org/0000-0002-6960-6639)

### Notes

The authors declare no competing financial interest.

## ■ ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (NSF CHE-1808311) and the Welch Foundation (F-1822). The authors are grateful to Dr Vince Lynch for assistance with X-ray data collection and structure refinement, as well as Dr Steve Sorey and Dr Garrett Blake for assistance in acquiring and analyzing NMR spectra. The authors also thank

Spencer Kerns and Zhu-Lin Xie for assistance in preparing D<sub>2</sub> reactivity experiments.

## ■ REFERENCES

- (1) Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. *Chem. Rev.* **2014**, *114* (8), 4081–4148.
- (2) Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site. *Science* **2008**, *321*, 572–575.
- (3) Shima, S.; Thauer, R. K. A third type of hydrogenase catalyzing H<sub>2</sub> activation. *Chem. Rec.* **2007**, *7* (1), 37–46.
- (4) Huang, G.; Wagner, T.; Wodrich, M. D.; Ataka, K.; Bill, E.; Ermler, U.; Hu, X.; Shima, S. The atomic-resolution crystal structure of activated [Fe]-hydrogenase. *Nat. Catal.* **2019**, *2*, 537–543.
- (5) Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler, U. The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. *FEBS Lett.* **2009**, *583* (3), 585–590.
- (6) Hiromoto, T.; Warkentin, E.; Moll, J.; Ermler, U.; Shima, S. The Crystal Structure of an [Fe]-Hydrogenase-Substrate Complex Reveals the Framework for H<sub>2</sub> Activation. *Angew. Chem., Int. Ed.* **2009**, *48* (35), 6457–6460.
- (7) Shima, S.; Vogt, S.; Göbels, A.; Bill, E. Iron-chromophore circular dichroism of [Fe]-hydrogenase: The conformational change required for H<sub>2</sub> activation. *Angew. Chem., Int. Ed.* **2010**, *49* (51), 9917–9921.
- (8) Turrell, P. J.; Wright, J. A.; Peck, J. N. T.; Oganesyan, V. S.; Pickett, C. J. The third hydrogenase: A ferracyclic carbamoyl with close structural analogy to the active site of Hmd. *Angew. Chem., Int. Ed.* **2010**, *49* (41), 7508–7511.
- (9) Chen, D.; Scopelliti, R.; Hu, X. A five-coordinate iron center in the active site of [Fe]-hydrogenase: Hints from a model study. *Angew. Chem., Int. Ed.* **2011**, *50* (25), 5671–5673.
- (10) Wodrich, M. D.; Hu, X. Electronic elements governing the binding of small molecules to a [Fe]-hydrogenase mimic. *Eur. J. Inorg. Chem.* **2013**, *2013* (22–23), 3993–3999.
- (11) Hu, B.; Chen, D.; Hu, X. Synthesis and reactivity of mononuclear iron models of [Fe]-hydrogenase that contain an acylmethylpyridinol ligand. *Chem. - Eur. J.* **2014**, *20* (6), 1677–1682.
- (12) Chen, D.; Scopelliti, R.; Hu, X. [Fe]-hydrogenase models featuring acylmethylpyridinyl ligands. *Angew. Chem., Int. Ed.* **2010**, *49* (41), 7512–7515.
- (13) Grützmacher, H. Cooperating Ligands in Catalysis. *Angew. Chem., Int. Ed.* **2008**, *47*, 1814–1818.
- (14) Van Der Vlugt, J. I.; Reek, J. N. H. Neutral tridentate PNP ligands and their hybrid analogues: Versatile non-innocent scaffolds for homogeneous catalysis. *Angew. Chem., Int. Ed.* **2009**, *48* (47), 8832–8846.
- (15) Crabtree, R. H. Multifunctional ligands in transition metal catalysis. *New J. Chem.* **2011**, *35* (1), 18–23.
- (16) Bauer, G.; Kirchner, K. A. Well-defined bifunctional iron catalysts for the hydrogenation of ketones: Iron, the new ruthenium. *Angew. Chem., Int. Ed.* **2011**, *50* (26), 5798–5800.
- (17) Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex. *Angew. Chem., Int. Ed.* **2011**, *50* (9), 2120–2124.
- (18) Zell, T.; Ben-David, Y.; Milstein, D. Unprecedented iron-catalyzed ester hydrogenation. Mild, selective, and efficient hydrogenation of trifluoroacetic esters to alcohols catalyzed by an iron pincer complex. *Angew. Chem., Int. Ed.* **2014**, *53* (18), 4685–4689.
- (19) Zell, T.; Milstein, D. Hydrogenation and Dehydrogenation Iron Pincer Catalysts Capable of Metal–Ligand Cooperation by Aromatization/Dearomatization. *Acc. Chem. Res.* **2015**, *48*, 1979–1994.
- (20) Garg, J. A.; Chakraborty, S.; Ben-David, Y.; Milstein, D. Unprecedented iron-catalyzed selective hydrogenation of activated

amides to amines and alcohols. *Chem. Commun.* **2016**, *52* (30), 5285–5288.

(21) Bichler, B.; Holzhacker, C.; Stöger, B.; Puchberger, M.; Veiros, L. F.; Kirchner, K. A. Heterolytic cleavage of dihydrogen by an iron(II) PNP pincer complex via metal-ligand cooperation. *Organometallics* **2013**, *32* (15), 4114–4121.

(22) Bichler, B.; Glatz, M.; Stöger, B.; Mereiter, K.; Veiros, L. F.; Kirchner, K. A. An iron(II) complex featuring (3) and labile (2)-bound PNP pincer ligands - striking differences between  $\text{CH}_2$  and NH spacers. *Dalton Trans.* **2014**, *43* (39), 14517–14519.

(23) Gorgas, N.; Stöger, B.; Veiros, L. F.; Pittenauer, E.; Allmaier, G.; Kirchner, K. A. Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism. *Organometallics* **2014**, *33*, 6905–6914.

(24) He, L.-P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-W. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant. *Organometallics* **2012**, *31* (14), 5208–5211.

(25) Chen, T.; He, L.-P.; Gong, D.; Yang, L.; Miao, X.; Eppinger, J.; Huang, K.-W. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions. *Tetrahedron Lett.* **2012**, *53* (33), 4409–4412.

(26) Min, S.; Rasul, S.; Li, H.; Grills, D. C.; Takanabe, K.; Li, L. J.; Huang, K.-W. Electrocatalytic Reduction of Carbon Dioxide with a Well-Defined  $\text{PN}^3\text{-Ru}$  Pincer Complex. *ChemPlusChem* **2016**, *81* (2), 166–171.

(27) Song, L.-C.; Xie, Z.-J.; Wang, M.-M.; Zhao, G.-Y.; Song, H.-B. Biomimetic models for the active site of [Fe] hydrogenase featuring an acylmethyl(hydroxymethyl)pyridine ligand. *Inorg. Chem.* **2012**, *51* (14), 7466–7468.

(28) Song, L.-C.; Zhao, G.-Y.; Xie, Z.-J.; Zhang, J.-W. A novel acylmethylpyridinol ligand containing dinuclear iron complex closely related to [Fe]-hydrogenase. *Organometallics* **2013**, *32* (9), 2509–2512.

(29) Song, L.-C.; Hu, F.-Q.; Zhao, G.-Y.; Zhang, J.-W.; Zhang, W.-W. Several new [Fe]hydrogenase model complexes with a single Fe center ligated to an acylmethyl(hydroxymethyl)pyridine or acylmethyl(hydroxy)pyridine ligand. *Organometallics* **2014**, *33* (22), 6614–6622.

(30) Chen, D.; Scopelliti, R.; Hu, X. Reversible protonation of a thiolate ligand in an [Fe]-hydrogenase model complex. *Angew. Chem., Int. Ed.* **2012**, *51* (8), 1919–1921.

(31) Shima, S.; Chen, D.; Xu, T.; Wodrich, M. D.; Fujishiro, T.; Schultz, K. M.; Kahnt, J.; Ataka, K.; Hu, X. Reconstitution of [Fe]-hydrogenase using model complexes. *Nat. Chem.* **2015**, *7* (12), 995–1002.

(32) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. *J. Am. Chem. Soc.* **2004**, *126* (42), 13794–13807.

(33) Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. F.; Wan, K. Y.; Lough, A. J.; Morris, R. H. Iron(II) Complexes Containing Unsymmetrical P–N–P' Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. *J. Am. Chem. Soc.* **2014**, *136* (4), 1367–1380.

(34) Seo, J.; Manes, T. A.; Rose, M. J. Structural and functional synthetic model of mono-iron hydrogenase featuring an anthracene scaffold. *Nat. Chem.* **2017**, *9*, 552–557.

(35) Kerns, S. A.; Magtaan, A.-C.; Vong, P. R.; Rose, M. J. Functional Hydride Transfer by a Thiolate-Containing Model of Mono-Iron Hydrogenase featuring an Anthracene Scaffold. *Angew. Chem., Int. Ed.* **2018**, *57*, 2855–2858.

(36) Durgaprasad, G.; Xie, Z.-L.; Rose, M. J. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate. *Inorg. Chem.* **2016**, *55* (2), 386–389.

(37) Speiser, F.; Braunstein, P.; Saussine, L. Nickel Complexes Bearing New P,N-Phosphinopyridine Ligands for the Catalytic Oligomerization of Ethylene. *Organometallics* **2004**, *23* (11), 2633–2640.

(38) Xu, T.; Yin, C. J. M.; Wodrich, M. D.; Mazza, S.; Schultz, K. M.; Scopelliti, R.; Hu, X. A Functional Model of [Fe]-Hydrogenase. *J. Am. Chem. Soc.* **2016**, *138* (10), 3270–3273.

(39) Song, L.; Xu, K.; Han, X.; Zhang, J. Synthetic and Structural Studies of 2-Acylmethyl-6-R- Difunctionalized Pyridine Ligand-Containing Iron Complexes Related to [Fe]-Hydrogenase. *Inorg. Chem.* **2016**, *55*, 1258–1269.

(40) Hu, B.; Chen, X.; Gong, D.; Cui, W.; Yang, X.; Chen, D. Reversible CO Dissociation of Tricarbonyl Iodide [Fe]-Hydrogenase Models Ligating Acylmethylpyridyl Ligands. *Organometallics* **2016**, *35*, 2993–2998.

(41) Zhao, D.; Xu, Y.; Guo, Y.; Song, H.; Tang, L. Synthesis and reactivity of (pyrazol-1-yl) acyl iron complexes. *J. Organomet. Chem.* **2015**, *791*, 303–310.

(42) Turrell, P. J.; Hill, A. D.; Ibrahim, S. K.; Wright, J. A.; Pickett, C. J. Ferracyclic carbamoyl complexes related to the active site of [Fe]-hydrogenase. *Dalton Trans.* **2013**, *42*, 8140–8146.

(43) Butschke, B.; Feller, M.; Diskin-Posner, Y.; Milstein, D. Ketone hydrogenation catalyzed by a new iron(II)–PNN complex. *Catal. Sci. Technol.* **2016**, *6* (12), 4428–4437.

(44) Kalz, K. F.; Brinkmeier, A.; Dechert, S.; Mata, R. A.; Meyer, F. Functional model for the [Fe] hydrogenase inspired by the frustrated lewis pair concept. *J. Am. Chem. Soc.* **2014**, *136* (47), 16626–16634.