
Virtual Machine Introspection for Anomaly-Based
Keylogger Detection

Huseyn Huseynov∗, Kenichi Kourai†, Tarek Saadawi∗ and Obinna Igbe∗
∗Department of Electrical Engineering

City University of New York, City College, New York, United States
Emails: hhuseynov@ccny.cuny.edu, saadawi@ccny.cuny.edu, obiigbe91@gmail.com

†Department of Computer Science and Networks
Kyushu Institute of Technology, Fukuoka, Japan

Email: kourai@ksl.ci.kyutech.ac.jp

Abstract—Software Keyloggers are dominant class of malicious
applications that surreptitiously logs all the user activity to
gather confidential information. Among many other types of
keyloggers, API-based keyloggers can pretend as unprivileged
program running in a user-space to eavesdrop and record all
the keystrokes typed by the user. In a Linux environment,
defending against these types of malware means defending
the kernel against being compromised and it is still an open
and difficult problem. Considering how recent trend of edge
computing extends cloud computing and the Internet of Things
(IoT) to the edge of the network, a new types of intrusion-
detection system (IDS) has been used to mitigate cybersecurity
threats in edge computing. Proposed work aims to provide
secure environment by constantly checking virtual machines for
the presence of keyloggers using cutting edge artificial immune
system (AIS) based technology. The algorithms that exist in
the field of AIS exploit the immune system’s characteristics of
learning and memory to solve diverse problems. We further
present our approach by employing an architecture where host
OS and a virtual machine (VM) layer actively collaborate to
guarantee kernel integrity. This collaborative approach allows
us to introspect VM by tracking events (interrupts, system calls,
memory writes, network activities, etc.) and to detect anomalies
by employing negative selection algorithm (NSA).

Index Terms—Artificial Immune System, Edge Computing,
Virtual Machine Introspection, Keylogger, Spyware, Invasive
Software, Genetic Algorithm.

I. INTRODUCTION

Software keyloggers are one of the most serious types of
malware that surreptitiously log keyboard activity, and in most
cases exfiltrate the recorded data to third parties. Despite many
conducted research and commercial efforts, keyloggers can
still pose a significant threat of stealing personal and financial
information. Depending on which part of the computer they are
embedded into and what operating system used, all keyloggers
can be categorized as either hardware-based or software-based.
The latter is the most common and in turn divided into
several categories that can be found in Section II of this
paper. In comparison with other types of malware, such as
viruses and worms, the goal of keyloggers is generally not to
cause damage or to spread to other systems. Instead, software

keyloggers monitor the behavior of users and steal private
information, such as keystrokes and browsing patterns. This
information is then sent back to third parties and in best cases
can be used as a basis for targeted advertisement or marketing
analysis, while in the worst-case malicious application can
steal all the private information, bank account passwords or
any confidential information.

Since the last few years, hackers have started paying more
attention to Linux and mac-OS platforms, making them a new
target for viruses, trojans, spyware, adware, ransomware, and
other nefarious threats. This tendency is primarily associated
with proliferation of Linux based IoT devices, as well as
increased interest for Linux OS among regular users and
organizations. Despite the fact that the attack surface for Linux
is much much smaller, it has its own share of vulnerabilities
and malware threats, which is why proactive monitoring is
important to keep the system safe. Therefore, providing a
single AI based solution as comprehensive protection for
multiple platforms is crucial, contrary to the existing signature-
based threat detection technique. The biggest disadvantage
of signature-based keyloggers is that, while using them user
can be sure only being protected from keyloggers that are in
their signature-base list, thus staying absolutely vulnerable to
others. For this reason, security experts are now focusing on
using anomaly-based (or behavior-based) detection techniques,
which analyze system calls and network utilization of a
process to classify it as benign or malicious.

Our work focused on development of a distributed appli-
cation by using negative selection algorithm (NSA) derived
from artificial immune system (AIS). This software will reside
on a host machine and constantly introspect multiple virtual
machines. Once the suspicious process(es) detected based on
anomalous behavior, the application in real-time will notify
the system administrator about potential threat. The crucial
part of this software is Virtual Machine Introspection (VMI),
which addresses several security issues from outside the guest
OS without relying on functionality that can be rendered un-
reliably by advanced malware. VMI tool (KVMonitor) acts by
tracking the events (interrupts, memory read/writes, network
activities, and so on). Collected data is being processed by AIS
based Intrusion Detection System (IDS) for anomaly detection.978-1-7281-4846-5/20/$31.00 ©2020 IEEE

II. LINUX KEYBOARD DRIVER STRUCTURE AND
CLASSIFICATION OF KEYLOGGERS

The main idea behind keyloggers is to get in between any
two links in the chain of events between when a key is pressed
and when information about that keystroke is displayed on the
monitor. One of the ways how this can be achieved in Linux
OS is by running user-space based keystroke loggers. In order
to understand closely how this process works it’s important to
find out how Linux handles the keyboard driver.

A. Linux Keyboard Driver

One of the basic component of any Linux environment
is Display Server – an application which sits between the
graphical interface and the kernel. Its primary task is to
coordinate the input and output of its clients (programs and
applications running GUI interface) to and from the rest of
the OS, the hardware, and each other. It communicates with its
clients over the display server protocol which can be network-
transparent and network capable. Commonly known display
server communications protocols include X11, Wayland, Mir,
etc. In this paper we have focused on employing Linux with
X11 protocol [10].

When user presses a key on the keyboard, the keyboard
sends corresponding scancodes to keyboard driver. A single
key press can produce a sequence of up to six scancodes [8],
[10].

Fig. 1. Processing of keystrokes from Linux terminal.

The handle scancode() function in the keyboard driver
parses the stream of scancodes and converts them into a
series of key-press and key-release events called keycode by
using a translation-table via function kbd translate(). Each
key is provided with a unique keycode k in the range 1-
127. Pressing key k produces keycode k, while releasing
it produces keycode k+128. For instance, pressing key ”a”
returns keycode 30, while releasing ”a” produces keycode 158
(128+30). On the next step, keycodes are being converted to
key symbols by scanning them on the appropriate keymap.
There are eight possible modifiers (shift keys - Shift, AltGr,
Control, Alt, ShiftL, ShiftR, CtrlL and CtrlR), and depending
on which modifiers are currently active the appropriate keymap
is used. Once the characters obtained they are placed into the

raw tty queue – tty flip buffer. In this queue, receive buf()
function is called periodically in order to get characters from
tty flip buffer and put them into tty read queue, as shown in
Fig. 1.

The keyboard driver can be in one of four modes depending
on what type of data the application will get as keyboard input:

• RAW MODE (scancode): the application receives scan-
codes for input. It is used by application that implement
their own keyboard (ex. X11).

• MEDIUMRAW MODE (keycode): the application re-
ceives information on which keys (identified by their
keycodes) get pressed and released.

• XLATE MODE (ASCII): the application effectively re-
ceives characters as defined by the keymap, using an 8-bit
encoding.

• UNICODE MODE (unicode): the only difference be-
tween this mode and XLATE MODE is by allowing the
user to compose UTF-8 unicode characters by their deci-
mal value, using Ascii 0 to Ascii 9, or their hexadecimal
value, using Hex 0 to Hex 9. A keymap can be set up
to produce UTF-8 sequences (with U+DDDD pseudo-
symbol, where D is a hexadecimal digit).

When user process want to get user input, it calls function
read() on stdin (standard input stream) of the process. Function
sys read() calls read() defined in file operations structure
(linux/fs.h), which is pointed to tty read of corresponding tty
(/dev/ttyX on Fig.1) to read input characters and return to the
process.

B. Classification of Software Keyloggers

Kernel based: A program that obtains root access to hide
itself in the OS and intercepts keystrokes that pass through
the kernel [7]. Such keyloggers reside at the kernel level,
which makes them difficult to detect, especially for user-
mode applications that don’t have root access. They can often
be implemented as rootkits that subvert the operating system
kernel to gain unauthorized access to the hardware. The fact
that a keylogger using this method can act as a keyboard device
driver makes them a powerful tool in the hands of intruders.

User-space or API based: These keyloggers hook keyboard
APIs inside a running application. The keylogger registers
keystroke events, as if it was a normal piece of the application
instead of malware. The keylogger receives an event each
time the user presses or releases a key and quietly records it.
These types of keyloggers follow the routine of how Linux
keyboard driver is processing keystrokes described in the
previous section. Typically, they can be written in a known
application or pretending to be a separate system process.
Depending on the logic of malware, these keyloggers are
mostly trying to establish a network connection in order to
send their logs. Provided work also focused on detection of
user-space based keyloggers.

Form grabbing or formjacking: These types of keyloggers
logs web form submissions by recording the web browsing on
submit events. This happens when the user completes a form

and submits it, usually by clicking a button or hitting enter
key.

Javascript based: A malicious script tag is injected into
a targeted web page and listens for key events such as
onKeyUp(). Script can be injected via a variety of methods,
including cross-site scripting, man-in-the-browser, man-in-the-
middle, or as a result of compromise on the remote server.

Provided classification shows the most common types of
keyloggers that can be found in Windows, Mac or Linux
operating systems. The list can be continued, since there are
many other types of keyloggers such as CSS based, memory-
injection based and so on. Experiments were conducted to test
capabilities of proposed framework to improve the detection
rate and reduce the possibility of successful evasion.

III. KEYLOGGER DETECTION

Our approach is explicitly focused on designing a detection
technique for unprivileged user-space keyloggers running on
Linux-based virtual machines. Unlike other classes of keylog-
gers, a user-space keylogger is a background process which
registers operating system supported hooks to surreptitiously
eavesdrop (and log) every keystroke issued by the user into
the current foreground application. Our goal is to prevent user-
space keyloggers from stealing confidential data originally
intended for a (trusted) legitimate foreground application.
Designed software consists of two major parts: virtualization
tool (KVMonitor), which constantly introspects virtual ma-
chine, and genetic algorithm based application, which analyze
captured data for potential anomalies.

Proposed work employs artificial immune system (AIS)
based algorithm for anomaly detection. One significant feature
of the theory immunology is the ability to adapt to changing
environments and dynamically learning. AIS is inspired by
the human immune system (HIS), which has the ability to
distinguish internal cells and molecules of the body against
diseases [1], [4].

A. Artificial Immune System (AIS)

Anomaly-based intrusion detection system monitors net-
work traffic and user/system activity for abnormal behavior.
Unlike the signature-based detection method, the anomaly-
based IDS can detect both known attacks and unknown (zero-
day) attacks. Hence, it is a better solution than the signature-
based detection technique if its system is well designed
[4]. Therefore, efficiency of anomaly-based IDS depends on
multiple requirements such as what kind of algorithm has been
deployed, what is the main target, understanding generated
input data, application run-time and so on.

The algorithms that exist in the field of AIS exploit the
immune system’s characteristics of learning and memory to
solve diverse problems. These algorithms are based on human
immune system (HIS) models taken from the field of immunol-
ogy. Immunology uses models for understanding the structure
and function of the immune system. The self-nonself (SNS)
model is an immunology model that has been successfully
utilized in AIS in the design of IDS systems to detect network

attacks; both insider and outsider [1], [6]. Our approach lies
on application of Negative Selection Algorithm (NSA) as part
of the AIS to detect and classify suspicious processes.

The negative selection algorithm is based on the self-nonself
model of the human immune system (HIS). The first step of
the NSA according to Forest et al. [15] involves randomly
generating detectors (which is the AIS’s equivalent of B cell in
HIS) in the complementary space (i.e., space which contains
no seen self elements) and then to apply these detectors to
classify new (unseen) data as self (no data manipulation)
or non-self (data manipulation). For this purpose, the whole
shape-space U is divided into a self set S and a non-self set
N with

U = S ∪N and S ∩N = ∅ (1)

The steps undertaken by NSA can be subdivided into 6
phases shown on Table I. First, at the Data Capture Phase,
normal profiles (also called self profiles or self samples) are
extracted from the training data. Each data instance in the
normal profile is obtained from the data instances captured by
the system during periods of normal virtual machine activity
(i.e., during the absence of any keyloggers). The process
of Data Capture has been obtained by employing multiple
times KVMonitor – our virtual machine introspection (VMI)
software [2]. KVMonitor resides in the host machine and
can introspect multiple virtual machines. More detailed about
KVMonitor and the process of VMI is described in the next
subsection.

TABLE I
SIX MODULES OF ARTIFICIAL IMMUNE SYSTEM BASED IDS [1]

Steps Phases

1 DATA CAPTURE

2 FEATURE SELECTION

3 DATA PREPROCESSING

4 DETECTOR DISTRIBUTION

5 MONITORING

6 DETECTOR GENERATION

On the phase called Detector Generation we employ an
evolutionary approach using a genetic algorithm (GA). GAs
are adaptive heuristic search algorithm based on the evo-
lutionary ideas of natural selection and genetics. As such
they represent an intelligent exploitation of a random search
used to solve optimization problems. Each generation consists
of a population of character strings that are analogous to
the chromosome that we see in our DNA. Each individual
represents a point in a search space and a possible solution.
The individuals in the population are then made to go through
a process of evolution [6].

A detector is defined as d = (C, rd), where C =
{c1, c2, ..., cm}, ci ∈ R, as an m-dimensional point that corre-
sponds to the center of a unit hypersphere with rd ∈ R as its
unit radius. Fig. 2 shows a generic flowchart of this detector
generation process [4]. Randomly generated detectors that
match any self sample is discarded. The detector generation
process is halted when the desired number of detectors is
obtained.

Fig. 2. NSA detector generation phase.

To find out if a detector d = (C, rd) matches any
normal profile, the distance (D) between this detector and
it’s nearest self profile neighbor (Xnormal, rs) ∈ S is
computed, where Xnormal is also an m-dimensional point
{xnormal

1 , xnormal
2 , ..., xnormal

m } and corresponds to the center
of a unit hypersphere with rs as its unit radius. The distance
(D) is obtained using Euclidean distance measure given by
equation (2). √√√√(

m∑
i=1

(ci − xnormal
i))2 (2)

A variable radius is assigned to the new detector sample
based on the minimum distance from the detector that is going
to be retained and its nearest self/normal profile (i.e., (D)−rs).

The NSA keylogger detection phase matches system calls,
interrupts, traffic records from testing data with the stored de-
tectors. These data obtained by constantly running KVMonitor
with given time interval. Application collects data based on
following three Linux API categories:

1. Keyboard Tracking: XkbGetState(), XKeysymToString(),
Read() and Write() system calls [10].

2. File Access: CreateFile, OpenFile, ReadFile and Write-
File [8].

3. Network: socket, tcp socket, udp socket, send, sendto,
sendmsg [14].

After the data has been collected with respect to given time
interval, Euclidean distance matching used for matching pur-

poses. For any instance in the testing data, if the radius of
it’s hypersphere falls within the radius covered by any stored
detector, this instance is considered to be anomaly, otherwise,
it is considered to be normal.

B. Virtual Machine Introspection (VMI)

The performance becomes important factor when users
choose virtualization software, e.g. Xen and KVM. Proposed
application for efficient VM introspection (KVMonitor) was
32 times faster than existing LibVMI during memory intro-
spection comparison. The experimental results showed that
checking the kernel memory was 118 times faster than in Xen
[2], [3].

KVMonitor is a library linked to IDSes that allows of-
floaded IDSes to introspect the memory, disks and network
of VMs. As illustrated in Fig. 3, an IDS is offloaded onto the
host operating system. An offloaded IDS introspects a VM
by accessing virtual devices managed by QEMU-KVM via
KVMonitor [2]. One advantage of the KVMonitor mechanism
is efficiency. KVMonitor communicates with QEMU-KVM
only at once because it can translate a series of addresses
using the same value of the CR3 register. Another advantage
is that the KVMonitor can naturally translate virtual addresses
of a specific process by traversing its page directory [2].

Fig. 3. The architecture of proposed VM introspection [2].

Proposed IDS application resides in the host machine and
utilizes KVMonitor N times with given time intervals T . Each
time it collects necessary data about VM such as interrupts,
system calls, memory writes, network activities and other data.
As shown in Table I, once the data has been collected the ap-
plication starts to perform negative selection algorithm (NSA)
in order to distinguish normal processes from suspicious. This
has been achieved on the last ”Detector Generation” phase
(Table I) where we apply a genetic algorithm (GA) illustrated
in Fig. 2.

Once the malicious application has been detected based on
its anomalous behavior, proposed IDS in real-time will send a
notification to system administrator. The notification includes,
but is not limited to, the process id number of the suspicious
application, detected time, system utilization characteristics
and other important information.

IV. EXPERIMENTS

To evaluate the ability of detection real-world keyloggers,
we experimented with more than dozens of keyloggers from
the top open source software list [9]. To carry out the ex-
periments, we manually installed each keylogger in a virtual
machine, launched our detection system from the host machine
for N ·T ms, and recorded the results. In this paper, we provide
experiments conducted on three different types of open source
keyloggers provided on Table II. Among the listed keyloggers
Blueberry has been slightly modified, so it can send the log
files to remote server over TCP protocol once the number of
entered characters become 250. On the oher hand, EKeylogger
keeps data in the buffer and sends it by email every 10 seconds.
Provided keylogger detection system was able to successfully
analyze and detect all anomaly correlations, as well as to return
process ID(s) (PID) of keyloggers running in the VM.

TABLE II
DETECTION RESULTS

Keylogger Detection Note

Logkeys XXX Multi functional GNU/Linux keylogger.
Logs all common character and func-
tion keys [11].

Blueberry XXX Opens a stream to the keyboard event
handler and gets every key press. Create
logs when the buffer gets 250 characters
and sends it to remote server over TCP
protocol [12].

EKeylogger XXX Sends recorded keystrokes every 10 sec
directly to email address [13].

System configuration is provided as follows:

• HOST: Intel® Core™ i5 2.5 GHz CPU, Memory 16 GB
DDR4-2400 PC4 SO-DIMM, OS Ubuntu 18.04 LTS

• GUEST: QEMU/KVM, Allocated CPUs “3”, Allocated
memory 2 GB, Virtual Network Interface “virtio” over
bridge, Channel Device “spicevmc”, Virtual Input Device
“Generic PS2 Keyboard”, OS Ubuntu 18.04 LTS

The experiments are divided into two cases to show the
detection performance of proposed system. In the first case we
monitor each keylogger for scenario of typing short sentences
(30-85 characters) in address bar of Mozilla Firefox browser
(Chart (a)). In the second case, we type long sentences (300-
1350 characters) using default text editor gedit (Chart (b)). In
both cases, after starting the keylogger in VM we wait first
60 seconds and then start typing process.

The result of virtual machine introspection with activated
Logkeys keylogger provided on Chart (a). On this example,
we typed a short sentence (30-85 characters) in address bar of
Firefox browser. The x-axis represents time in seconds while
the y-axis represents normalized value of API call frequencies.
The normalized API call frequency values represent the total

value we get during 10 seconds divided by the maximum value
of the whole period (600 seconds).

0 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

Time [sec]

N
or

m
al

iz
ed

A
PI

C
al

l
Fr

eq
ue

nc
y

V
al

ue
s

(a) API calls invoked by Firefox using Logkeys

Keyboard Tracking
File Access
Network

0 60 120 180 240 300 360 420 480 540 600
0

0.2

0.4

0.6

0.8

1

Time [sec]

N
or

m
al

iz
ed

A
PI

C
al

l
Fr

eq
ue

nc
y

V
al

ue
s

(b) API calls invoked by gedit using Blueberry

Keyboard Tracking
File Access
Network

...
Gen 8

1 0 4652 0 0
577 0 2920 0 0
601 0 620 0 0
795 24576 10932 1 0
4436 98304 0 1 0
5200 45602 0 1 T

Detected
Process ID: 4436 Fitness: 28.90
Process ID: 5200 Fitness: 17.70
...

Listing 1. Results after completion of 8th generation.

Chart (b) shows an example of running Blueberry keylogger
in our guest machine. As shown from the chart, on each
time frame when number of entered characters become 250,
keylogger saves data from the buffer to log file, establishes
TCP connection and sends the log file to remote server. Similar

result has been achieved from running EKeylogger in VM.
To get closer to real user keystroke patterns, we collect 200
commonly used English sentences and type them one bye
one in corresponding scenarios. Output shown on Listing 1
represents detection process while running two keyloggers
on the guest machine – Logkeys (PID=4436) and Blueberry
(PID=5200). On this example, we started Blueberry with delay
of 120 seconds after Logkeys has been executed. As shown
from the output, captured in the middle of running process,
application was able to detect both of the keyloggers on 8th

generation.
In all provided examples we set T = 10 sec and N = 60,

which means that our detection system will run 60 genera-
tions to complete genetic algorithm (GA) and will execute
KVMonitor with the time interval of 10 sec on each generation.
On average, application was able to detect anomalies within
the first 15 seconds of typing process. However, accuracy and
overall completion time depends on number of generations N .

A. Future Works

Detecting user-space keyloggers in Linux based VMs is a
challenging process. To improve the detection accuracy and
speed-up overall run-time we outlined necessary future works:

1. Hidden Keyboard Simulator: Provided examples shows
that induction of API calls happens during the typing
process. If we start keylogger and do not type anything,
system call Write() and other crucial parameters won’t
correlate. Therefore, in order to “amplify” detection pro-
cess by inducing keyloggers, we’re working on develop-
ing a hidden keyboard simulator, which will be running
on VM, acting like a real user.

2. Expanding Area of Detection: As noted on Section II,
there are many other types of keyloggers. One of our
next steps will be expanding existing detection system
by adding up Linux Kernel-based keyloggers.

3. Performing Wide Tests: Another important factor is to
implement tests on real-world cloud computers. Proposed
system reveals maximum detection accuracy of 99.68%
by testing it on one virtual machine. Running this system
on cloud based VPN server is on our checklist.

V. CONCLUSION

When some virus or malware succeed in taking control of
a given digital machine, its first task is to deactivate any
anti-malware software on the digital machine and prevent
installation of such software, so that the malware can keep
on controlling the system. Thus, classic anti-malware software
must reliably block malware upon entry; if they miss one, they
have lost. On the other hand, with a virtual machine (VM), the
anti-malware could run on the host, outside of the guest sys-
tem, thus impossible to deactivate by malware who subverted
the guest system. This is one of the main concepts behind
virtual machine introspection (VMI). Another key factor of
proposed work is employing evolutionary technique using a
genetic algorithm. Encapsulating VMI and artificial immune
system based approach for detecting malicious activities on

Linux stationed virtual machines provides efficient way of
monitoring VMs, and therefore cloud-based systems.

REFERENCES

[1] O. Igbe, I. Darwish, T. Saadawi “Distributed Network Intrusion De-
tection Systems: An Artificial Immune System Approach,” Dept. of
Electrical Engineering, City University of New York, City College, 2016.

[2] K. Kourai and K. Nakamura “Efficient VM Introspection in KVM and
Performance Comparison with Xen,” Department of Creative Informat-
ics, Kyushu Institute of Technology, Fukuoka, Japan 2014.

[3] K. Kourai and K. Juda “Secure Offloading of Legacy IDS Using Remote
VM Introspection in Semi-trusted Clouds,” Department of Creative
Informatics, Kyushu Institute of Technology, Fukuoka, Japan 2016.

[4] O. Igbe, O. Ajayi, T. Saadawi “Detecting Denial of Service Attacks
Using a Combination of Dendritic Cell Algorithm and the Negative
Selection Algorithm,” The 2nd IEEE International Conference on Smart
Cloud (SmartCloud 2017), New York, NY, 2017.

[5] D. Wang, L. He, Y. Xue, and Y. Dong “Exploiting artificial immune
systems to detect unknown dos attacks in real time,” in Cloud Com-
puting and Intelligent Systems (CCIS), 2012 IEEE 2nd International
Conference on, vol. 2. IEEE, 2012, pp. 646–650.

[6] X. Z. Gao, S. J. Ovaska, and X. Wang “Genetic Algorithms-based
Detector Generation in Negative Selection Algorithm,” IEEE Mountain
Workshop on Adaptive and Learning Systems, Institute of Intelligent
Power Electronics, Helsinki University of Technology, Finland 2006.

[7] S. Ortolani, C. Giuffrida, C. Crispo “Unprivileged Black-Box Detection
of User-Space Keyloggers,” IEEE Transactions on Dependable and
Secure Computing 99(1):1, 2011.

[8] D. Le, C. Yue, T. Smart, H. Wang “Detecting Kernel Level Keyloggers
Through Dynamic Taint Analysis,” Technical Report, College of William
& Mary, Department of Computer Science, 2008, pp 3–5.

[9] Top Open Source Keylogger Projects https://awesomeopensource.com/
projects/keylogger

[10] A. Benson, G. Aitken, E. Fortune, D. Converse, G. Sachs, W. Walker
“The X Keyboard Extension: Library Specification,”, https://www.x.org/
releases/X11R7.7/doc/libX11/XKB/xkblib.html

[11] Logkeys – a GNU/Linux Keylogger. The source code for the index
construction and search is available at https://github.com/kernc/logkeys.
It is implemented in C and dual licensed under the terms of either GNU
GPLv3 or later, or WTFPLv2 or later.

[12] Blueberry – Simple Open Source Keylogger for Linux. The source code
for the index construction and search is available at https://github.com/
PRDeving/blueberry. It is implemented in C and has open license.

[13] EKeylogger or simply Keylogger. The source code for the index
construction and search is available at https://github.com/aydinnyunus/
Keylogger. It is implemented in Python for the purpose of testing the
security of information systems.

[14] C. Benvenuti, Understanding Linux Network Internals, 2nd ed. Se-
bastopol, CA: O’Reilly, 2006, pp 541–555.

[15] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself
discrimination in a computer,” in Research in Security and Privacy, 1994.
Proceedings., 1994 IEEE Computer Society Symposium on. Ieee, 1994,
pp. 202–212.

