
978-1-7281-3885-5/19/$31.00 ©2019 IEEE

Consortium Blockchain-Based Architecture for

Cyber-attack Signatures and Features Distribution

Oluwaseyi Ajayi

Department of Electrical Engineering,

City College of New York,

New York, USA

Oluwaseyi.j.ajayi@gmail.com

Obinna Igbe

Department of Electrical Engineering,

City College of New York,

New York, USA

Obiigbe91@gmail.com

Tarek Saadawi

Department of Electrical Engineering,

City College of New York,

New York, USA

sadaawi@ccny.cuny.edu

Abstract—One of the effective ways of detecting
malicious traffic in computer networks is intrusion
detection systems (IDS). Though IDS identify malicious
activities in a network, it might be difficult to detect
distributed or coordinated attacks because they only have
single vantage point. To combat this problem,
cooperative intrusion detection system was proposed. In
this detection system, nodes exchange attack features or
signatures with a view of detecting an attack that has
previously been detected by one of the other nodes in the
system. Exchanging of attack features is necessary
because a zero-day attacks (attacks without known
signature) experienced in different locations are not the
same. Although this solution enhanced the ability of a
single IDS to respond to attacks that have been
previously identified by cooperating nodes, malicious
activities such as fake data injection, data manipulation
or deletion and data consistency are problems
threatening this approach. In this paper, we propose a
solution that leverages blockchain’s distributive
technology, tamper-proof ability and data immutability
to detect and prevent malicious activities and solve data
consistency problems facing cooperative intrusion
detection. Focusing on extraction, storage and
distribution stages of cooperative intrusion detection, we
develop a blockchain-based solution that securely
extracts features or signatures, adds extra verification
step, makes storage of these signatures and features
distributive and data sharing secured. Performance
evaluation of the system with respect to its response time
and resistance to the features/signatures injection is
presented. The result shows that the proposed solution
prevents stored attack features or signature against
malicious data injection, manipulation or deletion and
has low latency.

Keywords— Features, Signatures, Cyberattacks, Blockchain,

IDS, Cooperative intrusion detection, Latency, Security, Data

injection, Permissionless, Data consistency, Data integrity,

Malicious activities.

I. INTRODUCTION

Computer networks are still experiencing cyberattacks
despite their protections with different multilayer security
infrastructure which includes intrusion detection system
(IDS). Although IDS has been proven to be useful in
identifying malicious activities, their abilities to detected
coordinated or distributive are impaired because they have
only single viewpoint. This has made it possible for some

attacks to go undetected or not detected on time. Also, a
zero-day attack (attack without known signature)
experienced in an organization’s IDS located, say in New
York, USA might be different from that experienced in
another organization’s IDS located, say London, United
Kingdom or another company located in the same region.
Therefore, if this threat information is exchanged among the
organization’s IDS, more malicious activities can be stopped
by coordinating efforts of participating IDS. To improve
detecting power of single IDS, cooperative intrusion
detection was proposed[1-3]. In cooperative intrusion
detection system, IDS nodes exchange attack features or
signatures among each other with the view of detecting
attacks that have previously been detected by other IDS
nodes. Cooperative intrusion was adopted because of its
enhancement in detection rate of single IDS. However,
malicious activities such as fake data injection, data
manipulation or deletion and data consistency are some of
the major problems facing this approach.

The main vulnerable stages in existing cooperative
intrusion detection system are storage and distribution stages
[4] (Fig 1a). Most of existing approaches to secure these
target phases either utilize a centralized approach (which
makes the network vulnerable to single point-of-failure and
man-in-the-middle attacks [1,5,15]) or uses decentralized
approach in which the integrity and consistency of the
shared data cannot be guaranteed [2,6]. Several researches
have been put forward to secure shared data in cooperative
intrusion detection. Authors in [25] proposed message
authentication code (MAC). Although this method detects
accidental and intentional changes in the data, downloading
and calculating MAC of large files is overwhelming and time
consuming. Another method described in [25] to secure the
integrity of cloud data is to compute the hash values of
every data in the cloud by using hash tree. Although this
solution is lighter as compared to first method, it is also not
practical because computing the hash values of huge data
requires more computation power and it is time consuming.
The authors in [26] employs third party to coordinate
activities of database. The problem with this approach is the
need to trust third party which expose data to man-in-the-
middle attack or the network to a single-point-of-failure
attack. To solve these problems, we propose a solution which
leverages distributive ledger technology, data immutability
and tamper-proof abilities of blockchain technology to
securely extract, store and distribute cyberattack features and
signatures among nodes in real time (Fig. 1b). We define
attack features as characteristics of attacks, retrieve from

attacks traffic detected by anomaly-based IDS while attack
signatures are predefined rules obtain from signature-based
IDS.

Fig. 1.(a)Cyber-attack targets of existing cooperative intrusion detection.

(b) Blockchain-based solution for cooperative intrusion detection [4].

The contributions of our work can be summarized as

follows:

• We propose a private-public blockchain-based

architecture that automatically retrieves attack

features from attack traffic detected by any

anomaly-based IDS or retrieves attack signature

from signature-based IDS.

• The architecture automatically verifies integrity

and consistency of retrieved features or signatures

and present in standard format compatible with

other IDS nodes.

• The verified attack features and signature are

securely stored in a blockchain network.

• The architecture grants permissionless access to any
public node to securely join the blockchain network
and obtain stored attack features or signatures in
real time.

Blockchain technology was first implemented to solve
double spending problem in cryptocurrency called bitcoin in
2009 [7]. Blockchain network is an append-only, public
ledger that keeps records of transaction that has occurred in
the network. Every participant in a blockchain network are
called nodes. The data in blockchain network is known as
transaction and it is divided into blocks. Each block is
dependent on previous one (parent block). Every block stores
some metadata and hash value of previous block. So, every
block has a pointer to its parent block. Each transaction in
the public ledger is verified by consensus (i.e. an agreement)
of most of participants in the system. Once transaction is
verified, it is impossible to mutate / erase the records [7].
Blockchain technology is broadly divided into two: public
and private blockchain[8]. Public blockchain is a
permissionless blockchain in which verification and
validation of transactions are done by all nodes. e.g. Bitcoin,
Ethereum. While private blockchains are permissioned
blockchains where only nodes given permission can join and
participate in the network. e.g. Hyperledger. Blockchain has
been applied to diverse areas since its inception in 2009 e.g.
health system [9,10], intrusion detection system [11-13], and
data integrity security [14, 24].

The remainder of this paper is organized as follows:

related works on cooperative intrusion detection are

discussed in Section II. Section III describes proposed

architecture. Section IV presents results. Section V presents

conclusions of this paper and possible future works.

II. RELATED WORKS

A. Cooperative Intrusion detection

Authors in [1] proposed cooperative intrusion detection

system (CoIDS) which uses a cooperative approach for

intrusion detection . In their method, individual intrusion

detection components work cooperatively to perform

concerted detection. The result showed that their system is

efficient and effective in preventing viruses spreading in

chain way. However, with introduction of intrusion

detection manager (IDM), who maintains and update data

including cooperative protocols, rules and logs, there is need

to trust IDM which may expose the system to attacks such

as man-in-the-middle or single-point-of-failure. In another

research put forward in [2], the authors proposed

cooperative intrusion detection framework in cloud

computing to reduce the impact of denial of service attacks

(DoS) and distributed denial of service attacks (DDoS). In

their system, each IDS has a cooperative agent that compute

and determine whether to accept the alerts sent from other

IDS. The result showed that their proposed system only

increases little computation effort compared with pure snort-

based IDS but prevents the system from single point of

failure attack. Although their system shows a promising

result, they failed to consider situation when each

cooperative agent uses different IDSs. Also, their system is

susceptible to malicious intruder activities such as data

hijacking via medium of transmission.

A cooperative intrusion detection based on granular

computing was proposed in [5]. In their work, they analyzed

four different attacks; probing, distributive denial of service,

Remote to local (R2L) and user to Root (U2R). They

divided the attacks to one host-one host, one host-many

hosts, many hosts-one hosts and many hosts-many hosts,

based on source and destination addresses of the network

packages. The result showed that their method can detect

slow scanning attacks which cannot be detected by a

traditional scanning detector. However, response unit and

database are susceptible to hacking, data can be injected,

manipulated and deleted. In [15] the authors proposed a

prototype Distributed Intrusion Detection System (DIDS).

Their system combines distributed monitoring and data

reduction with centralized analysis to monitor a

heterogeneous network of computers. They considered how

to track a user moving across network with a new user-id

on each computer. The result showed that their prototype

demonstrate viability in solving network-user identification

problem. However, with DIDS director responsible for all

evaluation, the system is vulnerable to single-point-of-

failure or man-in-the-middle attacks.

In [25], the authors described two models of proving the

integrity of data. In the first model, the file is downloaded,

and the hash is checked. A message authentication code

algorithm (MAC) is used. The data owner downloads

outsourced data and then calculates the MAC. By using this

method, accidental and intentional changes can be detected.

However, downloading and calculate the MAC of huge data

is overwhelming, requires more bandwidth and time

consuming. The second method computes the hash value in

the cloud using a hash tree. This is also not practical as

computing the hash values of large data requires more

computation. The authors in [26] proposed the use of third-

party auditor (TPA) to check the data integrity of stored

data. The problem with this approach is the need to trust

third party which expose data to man-in-the-middle attack

or the network to a single-point-of-failure attack. Recently,

more attention has been drawn to remote data auditing by

which data integrity and correctness of remotely stored data

is investigated [27], [28] and[29].

Despite the efforts in the existing solutions, cyber

attackers can explore the vulnerabilities of the systems and

compromise stored data in some of the solutions, while in

others, most of the solutions are not practical especially for

real-time and huge data. Thus, data security and consistency

problems are not completely eradicated. Hence, the

motivation for this work.

III. THE PROPOSED ARCHITECTURE

The proposed architecture is built on Ethereum
blockchain platform. It combines characteristics of both
private and public blockchain to store and distribute
cyberattack features and signatures. It is a private blockchain
because certain nodes can prepare, verify and validate
transactions. It is regarded as public blockchain because
nodes do not need permission to join or leave the network.
Ethereum blockchain handles a great number of concurrent
transactions which makes it scalable [16]. It is an open
source blockchain based distributed computing featuring
smart contracts. Smart contract is an agreement among
members of consortium which is stored on the chain and run
by all participants[17]. Although the main Ethereum
platform is a public blockchain, in this paper it is configured
as public-private blockchain networks. Fig. 2 shows a
pictorial representation of the proposed architecture.

Fig. 2. The Proposed Architecture

The architecture is composed mainly of the following:

• Authorized Nodes

These are nodes that start the blockchain network.

They prepare, submit and verify transactions.

These nodes also run consensus algorithm, thus

validate transactions/blocks. All authorized nodes

update database

• Unauthorized Nodes

These are public nodes. They do not need

permission to join or leave the blockchain network.

They join the network to retrieve stored signatures

or features. They are not privileged to prepare,

verify, validate or run consensus algorithm. They

do not update the database but can only request

transaction address of mined transactions/blocks.

• Database

Database; which is accessible to all nodes, stores

address of transaction, smart contract and their

Application Binary Interface (ABIs). Every public

node has read-only access to it. All information is

updated by authorized nodes. Any data

manipulation in database results in inability to

access contents of the blockchain but does not

affect data stored in the blockchain network. Such

malicious activity can be easily detected.

The proposed architecture is divided into 3 stages as shown

below.

Fig. 3. Building blocks of the proposed architecture

A. Extraction

This stage is divided into two: signature extraction and

features extraction.

1. Signature Extraction: Attack signature or rule is

extracted from a signature-based IDS e.g.

Snort[18], Bro[19], Suricata[20] etc. Whenever an

attack is detected, the signature that was used to

detect such an attack is retrieved from the IDS. An

example of a retrieved signature is presented as

shown in Fig. 4.

S/N Type Signature

Fig. 4. Retrieved signature

• S/N: Serial number of retrieved signatures.

• Type: The name of IDS that detected the

attack. We experimented with Snort, Bro

and Suricata.

• Signature: The actual signature that is

retrieved is placed in this column

2. Feature Extraction: Attack features are

characteristics of an attack traffic that differentiate

it from a normal traffic. Anomaly-based IDS is

trained with features extracted from normal traffic,

then used to detect any deviation from known

traffic pattern. Anomaly-based IDS has been

shown to have capabilities of detecting zero-day

attacks (i.e. attacks with unknown signatures) with

high accuracy [21,22]. In this work, network-based

attack features are extracted based on feature

names proposed in [23] using network traffic

analyzing tools. Attack features are extracted

under two categories: (i) Connection features and

(ii) packet features

(i) Connection features: These are attack features

that are obtained from attack network connections.

We develop a script that sniffs and analyzes

network traffic using tcpdump v. 4.9.2., libpcap v.

1.9.0, tcptrace 6.6.0 and wireshark v. 3.0.1.

Tcpdump is installed to analyze tcp packets while

wireshark uses libpcap to capture attack traffic in

real time. Tcptrace is used to analyze the capture

attack traffic. When an attack is detected, attack

traffic is sniffed, captured and network connections

are analyzed. Some of features extracted from

attack network connection are shown in Table I

Table I: Attack Network Connection Features

S/N Feature Name Definition

1 Source Port Port from which attack is launched.

2 Destination Port Target port in target network.

3 Source IP IP address of attack node.

4 Destination IP Target IP address in target network

5 Source Bytes Total number of bytes sent from

attack nodes during attack period.

6 Destination
Bytes

Total number of bytes sent from
target network to attack nodes during

attack period.

7 Source Packets Total number of packets sent from

attack nodes during attack period.

8 Connection Total number of connections
initiated with target network by

attack node.

9 Duration Total time elapsed during attack.

10 Packets/seconds Number of packets sent by attack

node within 1 second.

11 Source Host

count

Total number of attack nodes

connecting to target network.

12 Destination Host

Count

Total number of target nodes in

target network.

13 Throughput Rate at which attack nodes sends

bytes to target node.(measured in

kbps).

14 Service Count Total number of ports connected to

by attack nodes during attack period.

15 Same service
count

Total number of connections to the
same port number during attack

period.

16 Different Host

rate

Percentage of attack nodes attacking

different target nodes.

17 Same service

rate

Percentage of attack nodes attacking

same port during attack period.

18 Same Host rate Percentage of attack nodes attacking

the same target node during attack
period.

(ii) Packet features: These are attack features

obtained by sniffing and analyzing attack packets.

We develop a script that use scapy v 2.4.0 to

analyze attack packets. Scapy decodes traffic

packets and matches request with replies. When an

attack is detected, attack packets are captured and

decoded using script. Table II shows some of the

packet features extracted.

Table II: Attack Network Packet Features

S/N Feature Name Definition

1 Land ‘1’ if source and destination IP and
ports are the same; otherwise ‘0’.

2 Type of service Class of traffic assigned to attack

packet

3 Protocol Higher layer protocol used in data
portion of attack packet

4 Ip flags How packet should be routed or

processed by higher layer

5 TCP Flags Defines type of packet sent by
attack node

6 Urgent (urg) Indicates priority of handling

packets by router

7 Time to Live Time left for packet to be discarded

8 Checksum Error checking in packet header

9 Wrong Fragment ‘1’ if checksum is ‘incorrect’;

otherwise ‘0’

Transaction is prepared based on attack signatures

in Fig. 4 or attack features in Tables II and III. The

transaction is signed with owner’s private key and submits

for verification. For additional verification process

introduced by our architecture, owner submits other

verification information. Examples of verification

information are IP address, MAC address, and transaction

account. Fig. 5 shows submitted transaction.

Fig. 5. Submitted Transaction

• Class: This states the type of IDS. It is either
signature based, or anomaly based.

• (FEATURES)priv_key: This is signed features. This
field is updated if class states “anomaly based”
otherwise it is skipped.

• (SIGNATURE)priv_key: This is signed signature.
This field is updated if class states “signature
based” otherwise it is skipped.

• Verification information: Additional security
information

B. Storage

Storage stage is divided into three main steps:

• Verification of transaction and owner.

• Standard format creation

• Transaction validation (i.e. joining transaction

block to blockchain).

Agreed upon transaction format (Fig. 5), verification

information of all authorized nodes, conversion and format

creation scripts (Algorithm 2 and 3) are written as smart

contract and mine into the blockchain network. Network

feature extraction scripts are run by all authorized nodes.

Smart contract executes the following functions:

1. Transaction and owner’s verification: These are

handled by smart contract to ensure that no

malicious intruder submits transaction. Algorithm 1

describes how smart contract handles verification of

both transaction and owner. Smart contract verifies

the privilege of owner to submit transaction and

Class (FEATURES)priv_key (SIGNATURE)priv_key Verification
Information

consistency of submitted transaction with agreed

format. For this to be successful and push the

transaction to format creation step, the transaction

must agree with the format (Fig. 5), private key

must be verified using sender’s public key and

verification information must be in their respective

sets. If any of these conditions fail, smart contract

returns fail, and transaction is dropped.

2. Standard format creation: This is one of the

novelties in our approach. Algorithm 2 describes

how smart contract converts a transaction to a

standard format. Smart contract checks the “class”

field in Fig. 5. If “anomaly based”, smart contract

checks for missing columns in feature subfields. If

there are no missing subfield columns, transaction is

arranged in agreed standard format and pushed to

validation step, otherwise, it returns fail and

transaction is dropped. On the other hand, if “class”

field indicates “signature based” signature is

converted to standard format (Algorithm 3) and

pushed for validation. Fig. 6 shows the standard

format of transaction submitted for validation.

Fig. 6. Standard Format of mined Transaction

Algorithm 3 describes how an attack signature is

converted to standard format. Retrieved signature

is checked for mandatory variables. If any of the

mandatory variables are absent, script returns error

and signature is dropped. Otherwise, script reads

these values and assign to corresponding standard

format variables. Due to the different ways of

writing rules, we ignore any other standard format

variables without equivalent values from retrieving

signature.

3. Transaction Validation: This step is handled by

blockchain consensus protocol. The pending

transaction is converted to standard format, then

built to a block by authorized node. The block is

broadcasted into the blockchain network for

validation. Every node receives broadcasted block,

but only authorized nodes (miners) work to validate

the block. Each block contains a unique code called

hash. It also contains hash of previous block. Data

from previous blocks are encrypted or hashed into a

series of numbers and letters. This is done by

processing block input through a mathematical

function, which produces an output of a fixed

length. The function used to generate the target

hash produces the same result each time the same

input is used, makes determining the input difficult

 FEATURES SIGNATURES

Connection Features Packet Features

Type Signature Standard Format

and makes small changes to the input result in a

very different hash.

To validate the block, authorized nodes works to

get target hash. A target hash is a number that a

hashed block header must be less than or equal to

for a new block to be awarded. This is achieved by

using an iterative process such as proof-of-work,

which requires consensus from all authorized nodes.

Proof-of-work was chosen because this is the

consensus algorithm run by Ethereum blockchain

platform. The characteristics of proof-of-work is

that it is computationally difficult to compute and

easy to verify. The process of guessing the hash

starts in block header. The hash contains block

version number, a timestamp, the hash used in

previous block, the hash of Merkle Root, the nonce,

and the target hash. Successfully mining a block

requires an authorized node to keep guessing the

nonce that produced the target hash. Nonce is a

random string of numbers which keeps changing

until target hash is produced. The right nonce is

broadcasted to other nodes. Other authorized nodes

verify the correctness of the nonce value by

appending this number to the hashed contents of the

block, and then rehashed it. If the new hash meets

the requirements set forth in target, then the block is

added to the blockchain. It is impossible to mutate

/erase the block (i.e. the stored features or signature

can neither be manipulated nor deleted).

C. Distribution

After new block has been chained to the blockchain,

transaction address is issued to owner (sender). Steps

involved in secure distribution of mined transaction are

summarized in the following steps:

1. Blockchain updating: Current state (i.e. new

block) of blockchain is broadcasted to every node

in the blockchain network. Every node (authorized

and unauthorized) receives a copy of this update.

Transaction address and Application Binary

Interface (ABI) are sent to the database by the

transaction owner. This database is made public so

that everyone can have access to these information

(Fig. 2).

2. Signatures/Features Downloading: This step is

carried out by every node in the network (i.e.

authorized and unauthorized). Blockchain nodes

request transaction address and ABI from database.

This information is used to obtain stored

transaction (attack signature or features). Nodes

extract signature or features from retrieved

transaction and use in their intrusion detection

system.

IV. RESULTS

The proposed architecture is implemented on Ethereum

blockchain platform. We use Solidity v 0.5.4

implementation of Ethereum for smart contract and geth v

1.4.18 for Ethereum. For the proof-of-concept, blockchain

network is set up in a laboratory with five blockchain

nodes, one MYSQL database and one attack nodes as shown

in Fig. 2. We implement four authorized nodes (to ensure

consensus of miners during validation stage) and one

unauthorized (public) node. To make a node authorized, its

verification information is included in smart contract. Table

III shows the configuration of all nodes.

Table III: Node configurations

Node OS RAM Processor

Authorized
node 1

Desktop,
Ubuntu 16.04

4GB 2.2GHz

Authorized

node 2

Laptop,

Ubuntu 18.04

16GB 2.81GHz

Authorized
node 3

Desktop,
Ubuntu 18.04

8GB 2.44GHz

Authorized

node 4

Laptop,

Ubuntu 18.04

4GB 2.44GHz

Unauthorized
node

Laptop,
Ubuntu 18.04

4GB 2.40GHz

Attack node Laptop,

Ubuntu 16.04

4GB 2.20GHz

Database
node

Desktop,
windows 10

4GB i5
@2.44GHz

We install 3 signature-based IDS randomly on all

blockchain nodes. Snort v2.9.7 is installed on authorized

nodes 1, 4 and unauthorized node, Bro v 2.6.1 is installed on

authorized nodes 2, 3 and unauthorized node and Suricata v

4.1.3 is installed on authorized node 4. Denial of Service

(DoS) attack rule (shown below) is written at local rule file

of authorized node 2 snort IDS and snort is started in

monitoring mode.

Attack rule: alert tcp ! $ any any -> $HOME_NET
80 (flags: S; msg:"Possible DoS"; count 70,

seconds 10; sid:10001;rev:1;).

DoS attack is launched at authorized node 2. This node

detects this attack, retrieves the above signature and submits

it as a transaction to an already set up blockchain network as

explained section III. Three other authorized nodes validate

this transaction and chain it to the blockchain network.

Table IV shows the standard format of mined signature.

We install tcpdump v. 4.9.2., libpcap v. 1.9.0 , tcptrace

v.6.6.0, wireshark v. 3.0.1. and scapy v.2.4.0 on all

authorized nodes. We run connection and packet analyzing

scripts on authorized node 2 in addition to an anomaly-

based IDS called Dendritic Cell Algorithm (DCA) [21].

DoS attack was launched at authorized node 2. This is

submitted to the blockchain network as discussed in

previous section. Three other authorized nodes validate this

transaction and attach it to the blockchain network.

Furthermore, other forms of attack such as port scanning

and Land attacks were launched at authorized node 2. Each

attack was repeated 20 different times. Table V shows

sample values of features extracted for each attack in one

attack launch. The following assumptions are made:

1. None of the authorized nodes is compromised i.e

all features or signatures submitted are good.

2. We implement for moderate network traffic and all

authorized node is assumed to have similar

network traffic.

Table IV: Standard format of retrieved signature

Standard Format Variable Signature Values

Action Alert

Protocol tcp

Source IP Any

Source port Any

Destination IP Home_net

Destination port 80

Flags S

Message Possible Dos

flow ------

Packets/sec 70

Time (seconds) 10

sid 10001

rev 1

Table V: Extracted Features for DoS, Port scanning and Land Attacks

S/

N

Features DoS Port

Scanning

Land

1 No of connections 6594 8 11

2 Source

bytes(kbytes)

1147008 708 846

3 Source frames 6592 10 9

4 Source
throughput(kbps)

1698.4 216.1 917.96

5 Source

frame/second

9995.4 3125.0 9999.99

6 Destination
bytes(kbytes)

355968 364 0

7 Destination

frames

6592 6 0

8 Destination
throughput(kbps)

527.1 111.08 0

9 Destination

frame/second

9995.4 1875.0 0

10 Duration(seconds) 0.65 0.32 0.09

11 Source diff. host

rate

0 0.16 0.11

12 Source same host

rate

1 0.84 0.89

13 Source diff.

service rate

0.99 1 0.11

14 Source same

service rate

0.01 0 0.89

15 Source diff. host

count

1 1 1

16 Source count 6583 6 1

17 Destination diff.
host count

1 1 1

18 Destination

service count

1 3 1

19 Source IP 192.168.0.144 192.168.0.
144

192.168.0.
161

20 Source port 8131 48314 80

21 Destination IP 192.168.0.161 192.168.0.

161

192.168.0.

161

22 Destination port 21 22 80

23 Protocol TCP TCP TCP

24 Type of service 0 0 0

25 Time to live 64 64 64

26 TCP flags SYN SYN SYN

27 IP flags RES DF RES

28 Urgent 0 0 0

29 Fragment 0 0 0

30 Land 0 0 1

31 Checksum Correct Correct Correct

32 Wrong fragment 0 0 0

To evaluate performance of our system, we examine its

security against unauthorized transaction submission, then

evaluates its response time. The following data are collected

for each transaction.

• Transaction deployment time (t1): This is the time a

transaction is submitted to the blockchain network.

These data are collected directly from sender

console.

• Execution time (t3): This is the time taken for

content of each transaction to appears in the

designated files of each node. The time is retrieved

by setting on current time on all node consoles.

A. Unauthorized transaction: The architecture is tested

against malicious transaction injection. An unauthorized

node prepares a transaction and submit to the

blockchain. Authorized nodes work to validate this

transaction. It is observed that transaction address is not

issued to the sender. This implies that transaction is not

validated (i.e.transaction is not chained to the

blockchain). We manually generate transaction address

and ABI, then use them to query the blockchain. We

observe that no transaction is returned from the

blockchain. This is because no transaction with such

address is mined to the blockchain network.

B. Latency: This is response time (measured in seconds) of

the blockchain network. For each transaction, latency is

the difference between execution time and deployment

time (t3-t1). Latency includes verification time, mining

time and time taken for nodes to request transaction

address and retrieve mined features or signatures. Fig.7

shows response time of each node for every transaction.

It is observed that latency of 3rd transaction is smallest

for all nodes while 10th and 18th transaction has highest

latencies for all nodes. This is because latency is mostly

affected by validation time which is an iterative process

in this case. Fig. 8 shows the average response time of

each node. For each node, average response time is

addition of response times for all transaction divided by

number of transactions. The difference in average

response time depends mainly on the computing power

of the nodes. It can be seen that average response time

for all nodes is less than 1.6 seconds which is

considerably small.

Fig.7. Blockchain response time

Fig. 8. Average response time of each node

V. CONCLUSION

In this paper, we propose an architecture that detects and

prevents malicious features/signatures injection into shared

features or signatures in cooperative intrusion detection. The

proposed solution leverages blockchain’s distributive

technology, tamper-proof ability and data immutability to

solve the data security and consistency problems facing

cooperative intrusion detection. Focusing on extraction,

storage and distribution stages of cooperative intrusion

detection, the solution adds extra validation step that makes

it impossible for unauthorized nodes to attach blocks of

transaction to the blockchain network, hence detects and

prevents fake data injection. The architecture also presents a

standard format for mined cyber-attack features and

signatures which can be easily read and understood by

nodes running different IDSs. Apart from this, we

implement how the architecture grant permissionless access

to public nodes to securely join and retrieve attack features

or signatures in real time. Performance evaluation of the

system with respect to its response time and resistance to the

features/signatures injection is tested. The result showed that

the architecture detects and prevents fake data injection,

manipulation or deletion and at the same time distribute

attack features or signatures with low response time. In

future we wish to expand our work to accommodate the

following :

1. Detect compromised authorized nodes: The only

way fake data can be injected into the network is

when authorized node (Miner) is compromised (i.e.

authorized node sends illegitimate transactions).

We intend to implement how to detect when an

authorized node is compromised. We will

implement different ways an authorized node can

be compromised and how our architecture detects

such compromised transactions.

2. Optimization of performance: If the response time

can be reduced more, the architecture can be

applied in other areas where real-time data

processing is utilized e.g. autonomous vehicle

communication. We plan to implement the

architecture using different consensus protocols

with the view of reducing the response time.

3. Diverse locations with different network traffic:

One of the features of the proposed system is that it

allows nodes in different locations and

experiencing different network traffic to exchange

data. We plan to implement when blockchain nodes

are located in diverse regions and are experiencing

different network traffic.

4. Scalability of the blockchain network: one of the

major characteristics of the architecture is that it

should be robust to network growth. We plan to

implement and observe the behavior (response

time) of the system as more nodes join the

blockchain network.

REFERENCES

[1] Y. L. Dong, J. Qian, M. L. Shi, “A cooperative intrusion detection
system based on autonomous agents,” IEEE CCECE 2003, Vol. 2, pp.
861– 863, 2003.

[2] C. C. Lo, C. Huang, J. Ku, “A cooperative intrusion detection system
framework for cloud computing networks,” In Proceedings of the
2010 39th International Conference on Parallel Processing
Workshops,ICPPW '10, 2010, pp. 280-284.

[3] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, ‘‘Collaborative intrusion
detection system (CIDS): A framework for accurate and efficient
IDS,’’ in Proc. Annu. Comput. Secur. Appl. Conf. (ACSAC), Dec.
2003, pp. 234–244.

[4] O. Ajayi, M. Cherian and T. Saadawi,” Secured Cyber-Attack
Signatures Distribution using Blockchain Technology.” 17th IEEE
International Conference on Embedded and Ubiquitous Computing
(IEEE EUC 2019), in press.

 [5] W. Zhang, S. Teng, H. Zhu, D. Liu, "A Cooperative Intrusion
Detection Model Based on Granular Computing and Agent
Technologies", J. International Journal of Agent Technologies and
Systems, vol. 5, no. 3, pp. 54-74, 2013

[6] M. Uddin, A. Abdul Rehman, N. Uddin, J. Memon, R. Alsaqour, and
S. Kazi, “Signature-based Multi-Layer Distributed Intrusion
Detection” International Journal of Network Security, Vol.15, No.2,
PP.97-105, Mar. 2013

[7] S. Nakamoto (2008) Bitcoin: a peer-to-peer electronic cash
http://bitcoin.org/bitcoin.pdf

[8] Abdullah, N., Hakansson, A., & Moradian, E. (2017). Blockchain
based approach to enhance big data authentication in distributed

environment. In Ubiquitous and future networks (icufn), 2017 ninth
international conference on (pp. 887–892).

[9] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, and B. Amaba.
“Blockchain Technology Innovation”. 2017 IEEE Technology &
Engineering Management Conference (TEMSCON), 2017

[10] Liang, X.; Zhao, J.; Shetty, S.; Liu, J.; Li, D. Integrating blockchain
for data sharing and collaboration in mobile healthcare applications.
In Proceedings of the 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), Montreal, QC, Canada, 8–13 October 2017

[11] M Signorini and M Pontecorvi, W Kanoun, and R Di Pietro, “BAD:
a Blockchain Anomaly Detection solution” arXiv:1807.03833v2,
[cs.CR] 12 jul 2018

[12] T. Golomb, Y. Mirsky and Y. Elovici “ CIoTA: Collaborative IoT
Anomaly Detection via Blockchain” arXiv:1803.03807v2, [cs.CY] 09
Apr 2018

[13] Gu, J, B Sun, X Du, J Wang, Y Zhuang and Z Wang (2018).
Consortium blockchain-based malware detection in mobile devices.
IEEE Access, 6, 12118–12128.

[14] Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky,
L.: Ensuring data integrity using Blockchain technology. In:
Proceeding of the 20th Conference of fruct Association ISSN 2305-
7254 IEEE (2017)

[15] S.R. Snapp, J. Brentano, G.V. dias, T.L. Goan, L.T. Heberlein, C. Ho,
K.N. Levitt, B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D.
Mansur. DIDS (distributed intrusion detection system) — motivation,
architecture, and an early prototype. In Proceedings of the 14th
National Computer Security Conference, pages 167–176, October
1991.

[16] Zhang, P., Walker, M., White, J., Schmidt, D.C., and Lenz, G.:
‘Metrics for assessing Blockchain-based healthcare decentralized
apps’, Proceedings of 2017 IEEE 19th International Conference on e-
Health Networking, Applications and Services (Healthcom), October
12-15, 2017, Dalian, China.

[17] Ingo Weber, Vincent Gramoli, Mark Staples, Alex Ponomarev, Ralph
Holz, An Binh Tran, and Paul Rimba. 2017. On Availability for
Blockchain-Based Systems. In SRDS’17: IEEE International
Symposium on Reliable Distributed Systems

[18] G.D. Kurundkar, N.A. Naik, and S.D. Khamitkar, “Network
Intrusion Detection using SNORT” International Journal of
Engineering Research and Applications (IJERA) ISSN: 2248-9622
www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.1288-1296

[19] V. Paxson. “Bro: a system for detecting network intruders in real
time. “Computer Networks, 31(23-24), December 1999.

[20] R. McRee, “ Suricata: An Introduction” Information Systems Security
Association Journal, USA. August 2010

[21] O. Igbe, O. Ajayi, and T. Saadawi, “Denial of Service Attack
Detection using Dendritic Cell Algorithm” 2017 IEEE 8th Annual
Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON 2017) Oct 19th – 21st 2017, Columbia
University, New York, USA.

[22] O. Igbe, O. Ajayi, and T. Saadawi, “Detecting Denial of Service
attacks using a combination of Dendritic Cell Algorithm(DCA) and
Negative Selection Algorithm(NSA)” 2nd International conference on
Smart Cloud (Smart Cloud 2017) Nov 3rd-5th, 2017, New York,
USA.

[23] L. Dhanabal, S.P. Shantharajah, A study on NSL-KDD dataset for
intrusion detection system based on classification algorithms,
International Journal of Advanced Research in Computer and
Communication Engineering 4 (2015) 446–452

[24] Zikratov, I., Kuzmin, A., Akimenko, V., Niculichev, V., Yalansky, L.:
Ensuring data integrity using Blockchain technology. In: Proceeding
of the 20th Conference of fruct Association ISSN 2305-7254 IEEE
(2017)

[25] Sultan Aldossary, William Allen. Data Security, Privacy, Availability
and Integrity in Cloud Computing: Issues and Current Solutions.
(IJACSA) International Journal of Advanced Computer Science and
Applications,Vol. 7, No. 4, 2016 pp.485-498

[26] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for secure cloud storage,” Computers,
IEEE Transactions on, vol. 62, no. 2, pp. 362–375, Feb 2013

[27]] C. Erway, A. Kupc ̧ ¨ u, C. Papamanthou, and R. Tamassia,
“Dynamic provable ¨ data possession,” in Proceedings of the 16th
ACM conference on Computer and communications security. Acm,
2009, pp. 213–222.

[28] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted stores,”
in Proceedings of the 14th ACM conference on Computer and
communications security. Acm, 2007, pp. 598–609.

[29] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proceedings of the 4th
international conference on Security and privacy in communication
netowrks. ACM, 2008, p. 9.

