Consortium Blockchain-Based Architecture for
Cyber-attack Signatures and Features Distribution

Oluwaseyi Ajayi
Department of Electrical Engineering,
City College of New York,

New York, USA
Oluwaseyi.j.ajayi@gmail.com

Abstract—One of the effective ways of detecting
malicious traffic in computer networks is intrusion
detection systems (IDS). Though IDS identify malicious
activities in a network, it might be difficult to detect
distributed or coordinated attacks because they only have
single vantage point. To combat this problem,
cooperative intrusion detection system was proposed. In
this detection system, nodes exchange attack features or
signatures with a view of detecting an attack that has
previously been detected by one of the other nodes in the
system. Exchanging of attack features is necessary
because a zero-day attacks (attacks without known
signature) experienced in different locations are not the
same. Although this solution enhanced the ability of a
single IDS to respond to attacks that have been
previously identified by cooperating nodes, malicious
activities such as fake data injection, data manipulation
or deletion and data consistency are problems
threatening this approach. In this paper, we propose a
solution that leverages blockchain’s distributive
technology, tamper-proof ability and data immutability
to detect and prevent malicious activities and solve data
consistency problems facing cooperative intrusion
detection. Focusing on extraction, storage and
distribution stages of cooperative intrusion detection, we
develop a blockchain-based solution that securely
extracts features or signatures, adds extra verification
step, makes storage of these signatures and features
distributive and data sharing secured. Performance
evaluation of the system with respect to its response time
and resistance to the features/signatures injection is
presented. The result shows that the proposed solution
prevents stored attack features or signature against
malicious data injection, manipulation or deletion and
has low latency.

Keywords— Features, Signatures, Cyberattacks, Blockchain,
IDS, Cooperative intrusion detection, Latency, Security, Data
injection, Permissionless, Data consistency, Data integrity,
Malicious activities.

I. INTRODUCTION

Computer networks are still experiencing cyberattacks
despite their protections with different multilayer security
infrastructure which includes intrusion detection system
(IDS). Although IDS has been proven to be useful in
identifying malicious activities, their abilities to detected
coordinated or distributive are impaired because they have
only single viewpoint. This has made it possible for some
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attacks to go undetected or not detected on time. Also, a
zero-day attack (attack without known signature)
experienced in an organization’s IDS located, say in New
York, USA might be different from that experienced in
another organization’s IDS located, say London, United
Kingdom or another company located in the same region.
Therefore, if this threat information is exchanged among the
organization’s IDS, more malicious activities can be stopped
by coordinating efforts of participating IDS.  To improve
detecting power of single IDS, cooperative intrusion
detection was proposed[1-3]. In cooperative intrusion
detection system, IDS nodes exchange attack features or
signatures among each other with the view of detecting
attacks that have previously been detected by other IDS
nodes. Cooperative intrusion was adopted because of its
enhancement in detection rate of single IDS. However,
malicious activities such as fake data injection, data
manipulation or deletion and data consistency are some of
the major problems facing this approach.

The main vulnerable stages in existing cooperative
intrusion detection system are storage and distribution stages
[4] (Fig 1a). Most of existing approaches to secure these
target phases either utilize a centralized approach (which
makes the network vulnerable to single point-of-failure and
man-in-the-middle attacks [1,5,15]) or uses decentralized
approach in which the integrity and consistency of the
shared data cannot be guaranteed [2,6]. Several researches
have been put forward to secure shared data in cooperative
intrusion detection. Authors in [25] proposed message
authentication code (MAC). Although this method detects
accidental and intentional changes in the data, downloading
and calculating MAC of large files is overwhelming and time
consuming. Another method described in [25] to secure the
integrity of cloud data is to compute the hash values of
every data in the cloud by using hash tree. Although this
solution is lighter as compared to first method, it is also not
practical because computing the hash values of huge data
requires more computation power and it is time consuming.
The authors in [26] employs third party to coordinate
activities of database. The problem with this approach is the
need to trust third party which expose data to man-in-the-
middle attack or the network to a single-point-of-failure
attack. To solve these problems, we propose a solution which
leverages distributive ledger technology, data immutability
and tamper-proof abilities of blockchain technology to
securely extract, store and distribute cyberattack features and
signatures among nodes in real time (Fig. 1b). We define
attack features as characteristics of attacks, retrieve from



attacks traffic detected by anomaly-based IDS while attack
signatures are predefined rules obtain from signature-based
IDS.
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Fig. 1.(a)Cyber—attack targets of existing cooperative intrusion detection.
(b) Blockchain-based solution for cooperative intrusion detection [4].

The contributions of our work can be summarized as

follows:

e We propose a private-public blockchain-based
architecture that automatically retrieves attack
features from attack traffic detected by any
anomaly-based IDS or retrieves attack signature
from signature-based IDS.

e The architecture automatically verifies integrity
and consistency of retrieved features or signatures
and present in standard format compatible with
other IDS nodes.

e The verified attack features and signature are
securely stored in a blockchain network.

e  The architecture grants permissionless access to any
public node to securely join the blockchain network
and obtain stored attack features or signatures in
real time.

Blockchain technology was first implemented to solve
double spending problem in cryptocurrency called bitcoin in
2009 [7]. Blockchain network is an append-only, public
ledger that keeps records of transaction that has occurred in
the network. Every participant in a blockchain network are
called nodes. The data in blockchain network is known as
transaction and it is divided into blocks. Each block is
dependent on previous one (parent block). Every block stores
some metadata and hash value of previous block. So, every
block has a pointer to its parent block. Each transaction in
the public ledger is verified by consensus (i.e. an agreement)
of most of participants in the system. Once transaction is
verified, it is impossible to mutate / erase the records [7].
Blockchain technology is broadly divided into two: public
and private blockchain[8]. Public blockchain is a
permissionless blockchain in which verification and
validation of transactions are done by all nodes. e.g. Bitcoin,
Ethereum. While private blockchains are permissioned
blockchains where only nodes given permission can join and
participate in the network. e.g. Hyperledger. Blockchain has
been applied to diverse areas since its inception in 2009 e.g.
health system [9,10], intrusion detection system [11-13], and
data integrity security [14, 24].

The remainder of this paper is organized as follows:
related works on cooperative intrusion detection are
discussed in Section II. Section III describes proposed
architecture. Section IV presents results. Section V presents
conclusions of this paper and possible future works.

II. RELATED WORKS

A. Cooperative Intrusion detection

Authors in [1] proposed cooperative intrusion detection
system (ColIDS) which uses a cooperative approach for
intrusion detection . In their method, individual intrusion
detection components work cooperatively to perform
concerted detection. The result showed that their system is
efficient and effective in preventing viruses spreading in
chain way. However, with introduction of intrusion
detection manager (IDM), who maintains and update data
including cooperative protocols, rules and logs, there is need
to trust IDM which may expose the system to attacks such
as man-in-the-middle or single-point-of-failure. In another
research put forward in [2], the authors proposed
cooperative intrusion detection framework in cloud
computing to reduce the impact of denial of service attacks
(DoS) and distributed denial of service attacks (DDoS). In
their system, each IDS has a cooperative agent that compute
and determine whether to accept the alerts sent from other
IDS. The result showed that their proposed system only
increases little computation effort compared with pure snort-
based IDS but prevents the system from single point of
failure attack. Although their system shows a promising
result, they failed to consider situation when each
cooperative agent uses different IDSs. Also, their system is
susceptible to malicious intruder activities such as data
hijacking via medium of transmission.

A cooperative intrusion detection based on granular
computing was proposed in [5]. In their work, they analyzed
four different attacks; probing, distributive denial of service,
Remote to local (R2L) and user to Root (U2R). They
divided the attacks to one host-one host, one host-many
hosts, many hosts-one hosts and many hosts-many hosts,
based on source and destination addresses of the network
packages. The result showed that their method can detect
slow scanning attacks which cannot be detected by a
traditional scanning detector. However, response unit and
database are susceptible to hacking, data can be injected,
manipulated and deleted. In [15] the authors proposed a
prototype Distributed Intrusion Detection System (DIDS).
Their system combines distributed monitoring and data
reduction with centralized analysis to monitor a
heterogeneous network of computers. They considered how
to track a user moving across network with a new user-id
on each computer. The result showed that their prototype
demonstrate viability in solving network-user identification
problem. However, with DIDS director responsible for all
evaluation, the system is vulnerable to single-point-of-
failure or man-in-the-middle attacks.

In [25], the authors described two models of proving the
integrity of data. In the first model, the file is downloaded,
and the hash is checked. A message authentication code
algorithm (MAC) is used. The data owner downloads
outsourced data and then calculates the MAC. By using this
method, accidental and intentional changes can be detected.
However, downloading and calculate the MAC of huge data
is overwhelming, requires more bandwidth and time
consuming. The second method computes the hash value in
the cloud using a hash tree. This is also not practical as



computing the hash values of large data requires more
computation. The authors in [26] proposed the use of third-
party auditor (TPA) to check the data integrity of stored
data. The problem with this approach is the need to trust
third party which expose data to man-in-the-middle attack
or the network to a single-point-of-failure attack. Recently,
more attention has been drawn to remote data auditing by
which data integrity and correctness of remotely stored data
is investigated [27], [28] and[29].

Despite the efforts in the existing solutions, cyber
attackers can explore the vulnerabilities of the systems and
compromise stored data in some of the solutions, while in
others, most of the solutions are not practical especially for
real-time and huge data. Thus, data security and consistency
problems are not completely eradicated. Hence, the
motivation for this work.

III. THE PROPOSED ARCHITECTURE

The proposed architecture is built on Ethereum
blockchain platform. It combines characteristics of both
private and public blockchain to store and distribute
cyberattack features and signatures. It is a private blockchain
because certain nodes can prepare, verify and validate
transactions. It is regarded as public blockchain because
nodes do not need permission to join or leave the network.
Ethereum blockchain handles a great number of concurrent
transactions which makes it scalable [16]. It is an open
source blockchain based distributed computing featuring
smart contracts. Smart contract is an agreement among
members of consortium which is stored on the chain and run
by all participants[17]. Although the main Ethereum
platform is a public blockchain, in this paper it is configured
as public-private blockchain networks. Fig. 2 shows a
pictorial representation of the proposed architecture.
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Fig. 2. The Proposed Architecture

The architecture is composed mainly of the following:

e Authorized Nodes
These are nodes that start the blockchain network.
They prepare, submit and verify transactions.
These nodes also run consensus algorithm, thus
validate transactions/blocks. All authorized nodes
update database

e Unauthorized Nodes

These are public nodes. They do not need
permission to join or leave the blockchain network.
They join the network to retrieve stored signatures
or features. They are not privileged to prepare,
verify, validate or run consensus algorithm. They
do not update the database but can only request
transaction address of mined transactions/blocks.

e Database

Database; which is accessible to all nodes, stores
address of transaction, smart contract and their
Application Binary Interface (ABIs). Every public
node has read-only access to it. All information is
updated by authorized nodes. Any data
manipulation in database results in inability to
access contents of the blockchain but does not
affect data stored in the blockchain network. Such
malicious activity can be easily detected.

The proposed architecture is divided into 3 stages as shown
below.
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Fig. 3. Building blocks of the proposed architecture

A. Extraction

This stage is divided into two: signature extraction and
features extraction.

1. Signature Extraction: Attack signature or rule is
extracted from a signature-based IDS e.g.
Snort[18], Bro[19], Suricata[20] etc. Whenever an
attack is detected, the signature that was used to
detect such an attack is retrieved from the IDS. An
example of a retrieved signature is presented as
shown in Fig. 4.

S/N | Type | Signature

Fig. 4. Retrieved signature

e  S/N: Serial number of retrieved signatures.
o Type: The name of IDS that detected the
attack. We experimented with Snort, Bro
and Suricata.

e Signature: The actual signature that is

retrieved is placed in this column
2. Feature Extraction: Attack features are
characteristics of an attack traffic that differentiate
it from a normal traffic. Anomaly-based IDS is
trained with features extracted from normal traffic,
then used to detect any deviation from known
traffic pattern. Anomaly-based IDS has been
shown to have capabilities of detecting zero-day
attacks (i.e. attacks with unknown signatures) with
high accuracy [21,22]. In this work, network-based
attack features are extracted based on feature



names proposed in [23] using network traffic
analyzing tools. Attack features are extracted
under two categories: (i) Connection features and
(i1) packet features

(i) Connection features: These are attack features
that are obtained from attack network connections.
We develop a script that sniffs and analyzes
network traffic using tcpdump v. 4.9.2., libpcap v.
1.9.0, ftcptrace 6.6.0 and wireshark v. 3.0.1.
Tepdump is installed to analyze tcp packets while
wireshark uses libpcap to capture attack traffic in
real time. Tcptrace is used to analyze the capture
attack traffic. When an attack is detected, attack
traffic is sniffed, captured and network connections
are analyzed. Some of features extracted from
attack network connection are shown in Table I

Table I: Attack Network Connection Features

S/N Feature Name Definition
1 Source Port Port from which attack is launched.
2 Destination Port | Target port in target network.
3 Source IP IP address of attack node.
4 Destination IP Target IP address in target network
5 Source Bytes Total number of bytes sent from

attack nodes during attack period.

6 Destination
Bytes

Total number of bytes sent from
target network to attack nodes during
attack period.

7 Source Packets Total number of packets sent from

attack nodes during attack period.

Total number of connections
initiated with target network by
attack node.

8 Connection

9 Duration Total time elapsed during attack.

10 | Packets/seconds Number of packets sent by attack

node within 1 second.

Total number of attack nodes

connecting to target network.

11 Source Host
count

12 | Destination Host
Count

Total number of target nodes in
target network.

Rate at which attack nodes sends
bytes to target node.(measured in
kbps).

13 | Throughput

14 | Service Count Total number of ports connected to

by attack nodes during attack period.

Total number of connections to the
same port number during attack
period.

15 Same service
count

16 | Different Host | Percentage of attack nodes attacking
rate different target nodes.
17 | Same service | Percentage of attack nodes attacking

rate same port during attack period.

18 | Same Host rate Percentage of attack nodes attacking
the same target node during attack

period.

(ii) Packet features: These are attack features
obtained by sniffing and analyzing attack packets.
We develop a script that use scapy v 2.4.0 to
analyze attack packets. Scapy decodes traffic
packets and matches request with replies. When an
attack is detected, attack packets are captured and
decoded using script. Table II shows some of the
packet features extracted.

Table II: Attack Network Packet Features

Definition
‘1" if source and destination IP and
ports are the same; otherwise ‘0’.
Class of traffic assigned to attack
packet
Higher layer protocol used in data
portion of attack packet

S/N Feature Name
1 Land

2 Type of service

3 Protocol

4 Ip flags How packet should be routed or
processed by higher layer
5 TCP Flags Defines type of packet sent by

attack node
Indicates  priority
packets by router
Time left for packet to be discarded
Checksum Error checking in packet header

9 Wrong Fragment ‘1’ if checksum is ‘incorrect’;
otherwise ‘0’

6 Urgent (urg) of handling

N

Time to Live

Seo

Transaction is prepared based on attack signatures
in Fig. 4 or attack features in Tables Il and III. The
transaction is signed with owner’s private key and submits
for wverification. For additional verification process
introduced by our architecture, owner submits other
verification information. Examples of verification
information are IP address, MAC address, and transaction
account. Fig. 5 shows submitted transaction.

Verification
Information

Class | (FEATURES)priv_key (SIGNATURE)priv_key

Fig. 5. Submitted Transaction

e (lass: This states the type of IDS. It is either
signature based, or anomaly based.

®  (FEATURES)priv_key: This is signed features. This
field is updated if class states “anomaly based”
otherwise it is skipped.

®  (SIGNATURE)priv_key: This is signed signature.
This field is updated if class states “signature
based” otherwise it is skipped.

e Verification information: Additional security
information

B. Storage

Storage stage is divided into three main steps:

e  Verification of transaction and owner.

e Standard format creation

e Transaction validation (i.e. joining transaction

block to blockchain).
Agreed upon transaction format (Fig. 5), verification
information of all authorized nodes, conversion and format
creation scripts (Algorithm 2 and 3) are written as smart
contract and mine into the blockchain network. Network
feature extraction scripts are run by all authorized nodes.
Smart contract executes the following functions:

1. Transaction and ownmer’s verification: These are
handled by smart contract to ensure that no
malicious intruder submits transaction. Algorithm 1
describes how smart contract handles verification of
both transaction and owner. Smart contract verifies
the privilege of owner to submit transaction and



consistency of submitted transaction with agreed
format. For this to be successful and push the
transaction to format creation step, the transaction
must agree with the format (Fig. 5), private key
must be verified using sender’s public key and
verification information must be in their respective
sets. If any of these conditions fail, smart contract
returns fail, and transaction is dropped.

Alporithm 1: Verification

Procedure: Verification (Transaction, V.I)
Inputs: Transaction, Verification Information (V.I)

1 If (Transaction agrees with Format) and
2 (V.I in respective V.I sets) and (public key verifies private key):
3 Return Success
4 Push transaction to format creation step
5 else:
6 Return fail
7 Drop transaction
8 end if
9  end procedure
2. Standard format creation: This is one of the
novelties in our approach. Algorithm 2 describes
how smart contract converts a transaction to a
standard format. Smart contract checks the “class”
field in Fig. 5. If “anomaly based”, smart contract
checks for missing columns in feature subfields. If
there are no missing subfield columns, transaction is
arranged in agreed standard format and pushed to
validation step, otherwise, it returns fail and
transaction is dropped. On the other hand, if “class”
field indicates ‘‘signature based” signature is
converted to standard format (Algorithm 3) and
pushed for validation. Fig. 6 shows the standard
format of transaction submitted for validation.
Algorithm 2: Standard Format Creation
Procedure: Standard Format Creation by checking efass field of
verified transaction
Input: Verified Transaction
Qutput: Standard Format
1 if class is “signature based™
2 ‘ Push transaction to conversion script
3 else:
4 if no missing subfields in features field:
5 | Rearrange and push transaction for validation
6 else:
7 Return error
8 Drop transaction
9 endif
10 endif
11 end procedure

SIGNATURES

FEATURES |

———

Connection Features | Packet Features

Type | Signature | Standard Format

Fig. 6. Standard Format of mined Transaction

Algorithm 3: Signature Conversion Script

D00 =] Oy O o Lo oo

—_— = =
S

Procedure: Converts IDS signature to Standard Format

based on common fields

Inputs: Variables of retrieved Signature (S/G..,) and

values of retrieved Signature (S/G\an.)

Outputs: Variable of standard format (SF..)
Mandatory variable: (Action, protocol, source IP, source port,

destination 1P, destination port, message, sid, rev)

Read SIG..,

1

f any mandatory variable not in SIG,,,

return error
drop signature

else:

For SIC, .. in SIG,..:
Read SIG.....
Assign SIG, ... to equivalent SF,,,
Ignore SF,, with no equivalent STGame
end for loop

end if
end procedure

Algorithm 3 describes how an attack signature is
converted to standard format. Retrieved signature
is checked for mandatory variables. If any of the
mandatory variables are absent, script returns error
and signature is dropped. Otherwise, script reads
these values and assign to corresponding standard
format variables. Due to the different ways of
writing rules, we ignore any other standard format
variables without equivalent values from retrieving
signature.

Transaction Validation: This step is handled by
blockchain consensus protocol. The pending
transaction is converted to standard format, then
built to a block by authorized node. The block is
broadcasted into the blockchain network for
validation. Every node receives broadcasted block,
but only authorized nodes (miners) work to validate
the block. Each block contains a unique code called
hash. It also contains hash of previous block. Data
from previous blocks are encrypted or hashed into a
series of numbers and letters. This is done by
processing block input through a mathematical
function, which produces an output of a fixed
length. The function used to generate the target
hash produces the same result each time the same
input is used, makes determining the input difficult



and makes small changes to the input result in a
very different hash.

To validate the block, authorized nodes works to
get target hash. A target hash is a number that a
hashed block header must be less than or equal to
for a new block to be awarded. This is achieved by
using an iterative process such as proof-of-work,
which requires consensus from all authorized nodes.
Proof-of-work was chosen because this is the
consensus algorithm run by Ethereum blockchain
platform. The characteristics of proof-of-work is
that it is computationally difficult to compute and
easy to verify. The process of guessing the hash
starts in block header. The hash contains block
version number, a timestamp, the hash used in
previous block, the hash of Merkle Root, the nonce,
and the target hash. Successfully mining a block
requires an authorized node to keep guessing the
nonce that produced the target hash. Nonce is a
random string of numbers which keeps changing
until target hash is produced. The right nonce is
broadcasted to other nodes. Other authorized nodes
verify the correctness of the nonce value by
appending this number to the hashed contents of the
block, and then rehashed it. If the new hash meets
the requirements set forth in target, then the block is
added to the blockchain. It is impossible to mutate
/erase the block (i.e. the stored features or signature
can neither be manipulated nor deleted).

C. Distribution

After new block has been chained to the blockchain,
transaction address is issued to owner (sender). Steps
involved in secure distribution of mined transaction are
summarized in the following steps:

1. Blockchain updating: Current state (i.e. new
block) of blockchain is broadcasted to every node
in the blockchain network. Every node (authorized
and unauthorized) receives a copy of this update.
Transaction address and Application Binary
Interface (ABI) are sent to the database by the
transaction owner. This database is made public so
that everyone can have access to these information

(Fig. 2).

2. Signatures/Features Downloading: This step is
carried out by every node in the network (i.e.
authorized and unauthorized). Blockchain nodes
request transaction address and ABI from database.
This information is used to obtain stored
transaction (attack signature or features). Nodes
extract signature or features from retrieved
transaction and use in their intrusion detection
system.

IV. RESULTS

The proposed architecture is implemented on Ethereum
blockchain  platform. We use Solidity v 0.5.4
implementation of Ethereum for smart contract and geth v
1.4.18 for Ethereum. For the proof-of-concept, blockchain
network is set up in a laboratory with five blockchain

nodes, one MYSQL database and one attack nodes as shown
in Fig. 2. We implement four authorized nodes ( to ensure
consensus of miners during validation stage) and one
unauthorized (public) node. To make a node authorized, its
verification information is included in smart contract. Table
IIT shows the configuration of all nodes.

Table III: Node configurations

Node [ON) RAM Processor

Authorized Desktop, 4GB 2.2GHz

node 1 Ubuntu 16.04

Authorized Laptop, 16GB | 2.81GHz

node 2 Ubuntu 18.04

Authorized Desktop, 8GB 2.44GHz

node 3 Ubuntu 18.04

Authorized Laptop, 4GB 2.44GHz

node 4 Ubuntu 18.04

Unauthorized | Laptop, 4GB 2.40GHz

node Ubuntu 18.04

Attack node Laptop, 4GB 2.20GHz
Ubuntu 16.04

Database Desktop, 4GB i5

node windows 10 @2.44GHz

We install 3 signature-based IDS randomly on all
blockchain nodes. Snort v2.9.7 is installed on authorized
nodes 1, 4 and unauthorized node, Bro v 2.6.1 is installed on
authorized nodes 2, 3 and unauthorized node and Suricata v
4.1.3 is installed on authorized node 4. Denial of Service
(DoS) attack rule (shown below) is written at local rule file
of authorized node 2 snort IDS and snort is started in
monitoring mode.

Attack rule: alert tcp ! § any any -> SHOME NET
80 (flags: S; msg:"Possible DoS"; count 70,
seconds 10; sid:10001;rev:1;).

DoS attack is launched at authorized node 2. This node
detects this attack, retrieves the above signature and submits
it as a transaction to an already set up blockchain network as
explained section III. Three other authorized nodes validate
this transaction and chain it to the blockchain network.
Table IV shows the standard format of mined signature.

We install tepdump v. 4.9.2., libpcap v. 1.9.0 , tcptrace
v.6.6.0, wireshark v. 3.0.1. and scapy v.2.4.0 on all
authorized nodes. We run connection and packet analyzing
scripts on authorized node 2 in addition to an anomaly-
based IDS called Dendritic Cell Algorithm (DCA) [21].
DoS attack was launched at authorized node 2. This is
submitted to the blockchain network as discussed in
previous section. Three other authorized nodes validate this
transaction and attach it to the blockchain network.
Furthermore, other forms of attack such as port scanning
and Land attacks were launched at authorized node 2. Each
attack was repeated 20 different times. Table V shows
sample values of features extracted for each attack in one
attack launch. The following assumptions are made:

1. Nome of the authorized nodes is compromised i.e

all features or signatures submitted are good.

2. We implement for moderate network traffic and all

authorized node is assumed to have similar
network traffic.



Table IV: Standard format of retrieved signature

Standard Format Variable Signature Values
Action Alert
Protocol tcp
Source IP Any
Source port Any
Destination IP Home net
Destination port 80
Flags S
Message Possible Dos
flow | -
Packets/sec 70
Time (seconds) 10
sid 10001
rev 1

Table V: Extracted Features for DoS, Port scanning and Land Attacks

S/ | Features DoS Port Land
N Scanning
1 | No of connections 6594 8 11
2 | Source 1147008 708 846
bytes(kbytes)
3 | Source frames 6592 10 9
4 | Source 1698.4 216.1 917.96
throughput(kbps)
5 | Source 9995.4 3125.0 9999.99
frame/second
6 | Destination 355968 364 0
bytes(kbytes)
7 | Destination 6592 6 0
frames
8 | Destination 527.1 111.08 0
throughput(kbps)
9 | Destination 9995.4 1875.0 0
frame/second
10 | Duration(seconds) 0.65 0.32 0.09
11 | Source diff. host 0 0.16 0.11
rate
12 | Source same host 1 0.84 0.89
rate
13 | Source diff. 0.99 1 0.11
service rate
14 | Source same 0.01 0 0.89
service rate
15 | Source diff. host 1 1 1
count
16 | Source count 6583 6 1
17 | Destination diff. 1 1 1
host count
18 | Destination 1 3 1
service count
19 | Source IP 192.168.0.144 | 192.168.0. | 192.168.0.
144 161
20 | Source port 8131 48314 80
21 | Destination IP 192.168.0.161 | 192.168.0. | 192.168.0.
161 161
22 | Destination port 21 22 80
23 | Protocol TCP TCP TCP
24 | Type of service 0 0 0
25 | Time to live 64 64 64
26 | TCP flags SYN SYN SYN
27 | IP flags RES DF RES
28 | Urgent 0 0 0
29 | Fragment 0 0 0
30 | Land 0 0 1
31 | Checksum Correct Correct Correct
32 | Wrong fragment 0 0 0

To evaluate performance of our system, we examine its
security against unauthorized transaction submission, then

evaluates its response time. The following data are collected
for each transaction.

e  Transaction deployment time (t;): This is the time a
transaction is submitted to the blockchain network.
These data are collected directly from sender
console.

o  Execution time (t3): This is the time taken for
content of each transaction to appears in the
designated files of each node. The time is retrieved
by setting on current time on all node consoles.

A. Unauthorized transaction: The architecture is tested

against malicious transaction injection. An unauthorized
node prepares a transaction and submit to the
blockchain. Authorized nodes work to validate this
transaction. It is observed that transaction address is not
issued to the sender. This implies that transaction is not
validated (i.e.transaction is not chained to the
blockchain). We manually generate transaction address
and ABI, then use them to query the blockchain. We
observe that no transaction is returned from the
blockchain. This is because no transaction with such
address is mined to the blockchain network.

B. Latency: This is response time (measured in seconds) of

the blockchain network. For each transaction, latency is
the difference between execution time and deployment
time (#3-¢;). Latency includes verification time, mining
time and time taken for nodes to request transaction
address and retrieve mined features or signatures. Fig.7
shows response time of each node for every transaction.
It is observed that latency of 3rd transaction is smallest
for all nodes while 10* and 18™ transaction has highest
latencies for all nodes. This is because latency is mostly
affected by validation time which is an iterative process
in this case. Fig. 8 shows the average response time of
each node. For each node, average response time is
addition of response times for all transaction divided by
number of transactions. The difference in average
response time depends mainly on the computing power
of the nodes. It can be seen that average response time
for all nodes is less than 1.6 seconds which is
considerably small.
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V. CONCLUSION

In this paper, we propose an architecture that detects and
prevents malicious features/signatures injection into shared
features or signatures in cooperative intrusion detection. The
proposed solution leverages blockchain’s distributive
technology, tamper-proof ability and data immutability to
solve the data security and consistency problems facing
cooperative intrusion detection. Focusing on extraction,
storage and distribution stages of cooperative intrusion
detection, the solution adds extra validation step that makes
it impossible for unauthorized nodes to attach blocks of
transaction to the blockchain network, hence detects and
prevents fake data injection. The architecture also presents a
standard format for mined cyber-attack features and
signatures which can be easily read and understood by
nodes running different IDSs. Apart from this, we
implement how the architecture grant permissionless access
to public nodes to securely join and retrieve attack features
or signatures in real time. Performance evaluation of the
system with respect to its response time and resistance to the

features/signatures injection is tested. The result showed that
the architecture detects and prevents fake data injection,
manipulation or deletion and at the same time distribute
attack features or signatures with low response time. In
future we wish to expand our work to accommodate the
following :

1. Detect compromised authorized nodes: The only
way fake data can be injected into the network is
when authorized node (Miner) is compromised (i.e.
authorized node sends illegitimate transactions).
We intend to implement how to detect when an
authorized node is compromised. We will
implement different ways an authorized node can
be compromised and how our architecture detects
such compromised transactions.

2. Optimization of performance: If the response time
can be reduced more, the architecture can be
applied in other areas where real-time data
processing is utilized e.g. autonomous vehicle
communication. We plan to implement the
architecture using different consensus protocols
with the view of reducing the response time.

3. Diverse locations with different network traffic:
One of the features of the proposed system is that it
allows nodes in different locations and
experiencing different network traffic to exchange
data. We plan to implement when blockchain nodes
are located in diverse regions and are experiencing
different network traffic.

4. Scalability of the blockchain network: one of the
major characteristics of the architecture is that it
should be robust to network growth. We plan to
implement and observe the behavior (response
time) of the system as more nodes join the
blockchain network.
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