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Abstract—One of the effective ways of detecting 
malicious traffic in computer networks is  intrusion 
detection systems (IDS). Though IDS identify malicious 
activities in a network, it might be difficult to detect 
distributed or coordinated attacks because they only have 
single vantage point. To combat this problem, 
cooperative intrusion detection system was proposed. In 
this detection system, nodes exchange attack features or 
signatures with a view of detecting an attack that has 
previously been detected by one of the other nodes in the 
system. Exchanging of attack features is necessary 
because a zero-day attacks (attacks without known 
signature) experienced in different locations are not the 
same. Although this solution enhanced the ability of a 
single IDS to respond to attacks that have been 
previously identified by cooperating nodes, malicious 
activities such as fake data injection, data manipulation 
or deletion and data consistency are  problems 
threatening this approach.  In this paper, we propose a 
solution that leverages blockchain’s distributive 
technology, tamper-proof ability and data immutability 
to detect and prevent malicious activities and solve data 
consistency problems facing cooperative intrusion 
detection. Focusing on extraction, storage and 
distribution stages of cooperative intrusion detection, we 
develop a blockchain-based solution that securely 
extracts features or signatures, adds extra verification 
step, makes storage of these signatures and features 
distributive and data sharing secured. Performance 
evaluation of the system with respect to its response time 
and resistance to the features/signatures injection is 
presented. The result shows that the proposed solution 
prevents stored attack features or signature against 
malicious data injection, manipulation or deletion and 
has low latency.   

Keywords— Features, Signatures, Cyberattacks, Blockchain, 

IDS, Cooperative intrusion detection, Latency, Security, Data 

injection, Permissionless, Data consistency, Data integrity, 

Malicious activities. 

I. INTRODUCTION  

Computer networks are still experiencing cyberattacks 
despite their protections with different multilayer security 
infrastructure which includes intrusion detection system 
(IDS). Although IDS has been proven to be useful in 
identifying malicious activities, their abilities to detected 
coordinated or distributive are impaired because they have 
only single viewpoint. This has made it possible for some 

attacks to go undetected or not detected on time.  Also, a 
zero-day attack (attack without known signature) 
experienced in an organization’s IDS located, say in New 
York, USA might be different from that experienced in 
another organization’s IDS located, say London, United 
Kingdom or another company located in the same region. 
Therefore, if this threat information is exchanged among the 
organization’s IDS, more malicious activities can be stopped 
by coordinating efforts of participating IDS.    To improve 
detecting power of single IDS, cooperative intrusion 
detection was proposed[1-3]. In cooperative intrusion 
detection system, IDS nodes exchange attack features or 
signatures among each other with the view of detecting 
attacks that have previously been detected by other IDS 
nodes. Cooperative intrusion was adopted because of its 
enhancement in detection rate of single IDS. However, 
malicious activities such as fake data injection, data 
manipulation or deletion and data consistency are some of 
the major problems facing this approach. 

The main vulnerable stages in existing cooperative 
intrusion detection system are storage and distribution stages 
[4] (Fig 1a). Most of  existing approaches to secure these 
target phases either utilize a centralized approach (which 
makes the network vulnerable to single point-of-failure and 
man-in-the-middle attacks [1,5,15]) or uses decentralized 
approach in which  the integrity and consistency of the 
shared data cannot be guaranteed [2,6]. Several researches 
have been put forward to secure shared data in cooperative 
intrusion detection. Authors in [25] proposed message 
authentication code (MAC). Although this method detects 
accidental and intentional changes in the data, downloading 
and calculating MAC of large files is overwhelming and time 
consuming. Another method described in [25] to secure the 
integrity of cloud data is to compute the  hash values  of 
every data in the cloud by using hash tree. Although this 
solution is lighter as compared to first method, it is also not 
practical because computing the hash values of  huge data 
requires more computation power and it is time consuming. 
The authors in [26] employs third party to coordinate 
activities of database. The problem with this approach is the 
need to trust third party which expose  data to man-in-the-
middle attack or the  network to a single-point-of-failure 
attack. To solve these problems, we propose a solution which 
leverages distributive ledger technology, data immutability 
and tamper-proof abilities of blockchain technology to 
securely extract, store and distribute cyberattack features and 
signatures among nodes in real time (Fig. 1b). We define 
attack features as characteristics of attacks, retrieve from 



attacks traffic detected by anomaly-based IDS while attack 
signatures are predefined rules obtain from signature-based 
IDS. 

 

Fig. 1.(a)Cyber-attack targets of existing cooperative intrusion detection. 

(b) Blockchain-based solution for cooperative intrusion detection [4]. 
 

The contributions of our work can be  summarized as 

follows: 

• We propose a private-public blockchain-based  

architecture that automatically retrieves attack 

features from attack traffic detected by any 

anomaly-based IDS or retrieves attack signature 

from signature-based IDS. 

• The architecture automatically verifies integrity 

and consistency of retrieved features or signatures 

and present in standard format compatible with 

other IDS nodes. 

• The verified attack features and signature are 

securely stored  in a blockchain network.  

• The architecture grants permissionless access to any 
public node to securely join the blockchain network 
and obtain stored attack features or signatures in 
real time. 

Blockchain technology was first implemented to solve 
double spending problem in cryptocurrency called bitcoin in 
2009 [7]. Blockchain network is an append-only, public 
ledger that keeps records of transaction that has occurred in 
the network. Every participant in a blockchain network are 
called nodes.  The data in blockchain network is known as 
transaction and it is divided into blocks. Each block is 
dependent on previous one (parent block). Every block stores 
some metadata and  hash value of  previous block. So, every 
block has a pointer to its parent block. Each transaction in 
the public ledger is verified by consensus (i.e. an agreement) 
of most of  participants in the system. Once transaction is 
verified, it is impossible to mutate / erase the records [7]. 
Blockchain technology is broadly divided into two: public 
and private blockchain[8]. Public blockchain is a 
permissionless blockchain in which verification and 
validation of transactions are done by all nodes. e.g. Bitcoin, 
Ethereum. While private blockchains are permissioned 
blockchains where  only nodes given permission can join and 
participate in the network. e.g. Hyperledger. Blockchain has 
been applied to diverse areas since its inception in 2009 e.g. 
health system [9,10], intrusion detection system [11-13], and 
data integrity security [14, 24]. 

The remainder of this paper is organized as follows: 

related works on cooperative intrusion detection are 

discussed in Section II. Section III describes proposed 

architecture. Section IV presents results. Section V presents  

conclusions of this paper and possible future works. 

II. RELATED WORKS 

A. Cooperative Intrusion detection 

Authors in [1] proposed cooperative intrusion detection 

system (CoIDS) which uses  a cooperative approach for 

intrusion detection . In their method, individual intrusion 

detection components work cooperatively to perform 

concerted detection. The result showed that their system is 

efficient and effective in preventing viruses spreading in 

chain way. However, with introduction of intrusion 

detection manager (IDM), who maintains and update data 

including cooperative protocols, rules and logs, there is need 

to trust IDM which may expose the system to attacks such 

as man-in-the-middle or single-point-of-failure. In another 

research put forward in [2], the authors proposed 

cooperative intrusion detection framework in cloud 

computing to reduce the impact of denial of service attacks 

(DoS) and distributed denial of service attacks (DDoS). In 

their system, each IDS has a cooperative agent that compute 

and determine whether to accept the alerts sent from other 

IDS. The result showed that their proposed system only 

increases little computation effort compared with pure snort-

based IDS but prevents the system from single point of 

failure attack. Although their system shows a promising 

result, they failed to consider situation when each 

cooperative agent uses different IDSs. Also, their system is 

susceptible to malicious intruder activities such as data 

hijacking via medium of transmission. 

 

A cooperative intrusion detection based on granular 

computing was proposed in [5]. In their work, they analyzed 

four different attacks; probing, distributive denial of service, 

Remote to local (R2L) and user to Root (U2R). They 

divided the attacks to one host-one host, one host-many 

hosts, many hosts-one hosts and many hosts-many hosts,  

based on source and destination addresses of the network 

packages. The result showed that their method can detect 

slow scanning attacks which cannot be detected by a 

traditional scanning detector. However, response unit and 

database are susceptible to hacking, data can be injected, 

manipulated and deleted.  In [15] the authors proposed a 

prototype Distributed Intrusion Detection System (DIDS). 

Their system combines distributed monitoring and data 

reduction with centralized analysis to monitor a 

heterogeneous network of computers. They considered how 

to track  a user moving across network with a new user-id 

on each computer. The result showed that their prototype  

demonstrate viability in solving network-user identification 

problem. However, with DIDS director responsible for all 

evaluation, the system is vulnerable to single-point-of-

failure or man-in-the-middle attacks. 

 

In [25], the authors described two models of proving the 

integrity of data. In the first model, the file is downloaded, 

and the hash is checked. A message authentication code 

algorithm (MAC) is used. The data owner downloads 

outsourced data and then calculates the MAC. By using this 

method, accidental and intentional changes can be detected. 

However, downloading and calculate the MAC of huge data 

is overwhelming, requires more bandwidth and time 

consuming. The second method computes the hash value in 

the cloud using a hash tree. This is also not practical as 



computing the hash values of large data requires more 

computation. The authors in [26] proposed the use of third-

party auditor (TPA) to check the data integrity of stored 

data. The problem with this approach is the need to trust 

third party which expose  data to man-in-the-middle attack 

or the  network to a single-point-of-failure attack. Recently, 

more attention has been drawn to remote data auditing by 

which data integrity and correctness of remotely stored data 

is investigated [27], [28] and[29]. 

 

Despite the efforts in the existing solutions,  cyber 

attackers can explore the vulnerabilities of the systems and 

compromise stored data in some of the solutions, while in 

others, most of the solutions are not practical especially for 

real-time and huge data. Thus, data security and consistency 

problems are not completely eradicated. Hence, the 

motivation for this work. 

 

III. THE PROPOSED ARCHITECTURE 

The proposed architecture is built on Ethereum 
blockchain platform. It combines characteristics of both 
private and public blockchain to store and distribute 
cyberattack features and signatures. It is a private blockchain 
because certain nodes can prepare, verify and validate 
transactions. It is regarded as public blockchain because 
nodes do not need permission to join or leave the network. 
Ethereum blockchain handles a great number of concurrent 
transactions which makes it scalable [16]. It is an open 
source blockchain based distributed computing featuring 
smart contracts. Smart contract is an agreement among 
members of consortium which is stored on the chain and run 
by all participants[17]. Although the main Ethereum 
platform is a public blockchain, in this paper it is configured 
as public-private blockchain networks. Fig. 2 shows a 
pictorial representation of the proposed architecture. 

 

Fig. 2. The Proposed Architecture 
 

 

The architecture is composed mainly of the following: 
 

• Authorized Nodes 

These are nodes that start the blockchain network. 

They prepare, submit and verify transactions. 

These nodes also run consensus algorithm, thus 

validate transactions/blocks. All authorized nodes 

update database 

 

• Unauthorized Nodes 

These are public nodes. They do not need 

permission to join or leave the blockchain network. 

They join the network to retrieve stored signatures 

or features. They are not privileged to prepare, 

verify, validate or run consensus algorithm. They 

do not update the  database but can only request 

transaction address of mined transactions/blocks. 

 

• Database 

Database; which is accessible to all nodes, stores 

address of  transaction, smart contract and their 

Application Binary Interface (ABIs). Every public 

node has read-only access to it. All information is 

updated by authorized nodes. Any data 

manipulation in database results in inability to 

access contents of the blockchain but does not 

affect data stored in the blockchain network. Such 

malicious activity can be easily detected. 

 

The proposed architecture is divided into 3 stages as shown 

below. 

 
Fig. 3.  Building blocks of  the proposed architecture 

A. Extraction 

This stage is divided into two: signature extraction and  

features extraction.  

1. Signature Extraction:  Attack signature or  rule  is 

extracted from a signature-based IDS e.g. 

Snort[18], Bro[19], Suricata[20] etc. Whenever an 

attack is detected, the signature that was used to 

detect such an attack is retrieved from the IDS. An 

example of a retrieved signature is presented as 

shown in Fig. 4. 
 

S/N Type Signature 

Fig. 4.  Retrieved signature  

 

• S/N: Serial number of retrieved signatures. 

• Type: The name of IDS that detected the 

attack. We experimented with Snort, Bro 

and Suricata. 

• Signature: The actual signature that is 

retrieved is placed in this column 

2. Feature Extraction:  Attack features are 

characteristics of an attack traffic that differentiate 

it from a normal traffic. Anomaly-based IDS is 

trained with features extracted from  normal traffic, 

then used to detect any deviation from known 

traffic pattern. Anomaly-based IDS has been 

shown to have capabilities of detecting zero-day 

attacks (i.e. attacks with unknown signatures) with 

high accuracy [21,22]. In this work, network-based 

attack features are extracted based on feature 



names proposed in [23] using network traffic 

analyzing tools.  Attack features are extracted 

under two categories: (i) Connection features and 

(ii) packet features 

 

(i) Connection features: These are attack features 

that are obtained from attack network connections. 

We develop a script that sniffs and analyzes 

network traffic using tcpdump v. 4.9.2., libpcap v. 

1.9.0, tcptrace 6.6.0  and wireshark v. 3.0.1. 

Tcpdump is installed to analyze tcp packets while 

wireshark uses libpcap to capture attack traffic in 

real time. Tcptrace is used to analyze the capture 

attack traffic. When an attack is detected, attack 

traffic is sniffed, captured and network connections 

are analyzed. Some of features extracted from 

attack network connection are shown in Table I 

 
Table I: Attack Network Connection Features 

 
S/N Feature Name Definition 

1 Source Port  Port from which attack is launched. 

2 Destination Port Target port in target network. 

3 Source IP IP address of attack node. 

4 Destination IP Target IP address in target network 

5 Source Bytes Total number of bytes sent from 

attack nodes during attack period. 

6 Destination 
Bytes 

Total number of bytes sent from 
target network to attack nodes during 

attack period. 

7 Source Packets Total number of packets sent from 

attack nodes during attack period. 

8 Connection Total number of connections 
initiated with target network by 

attack node. 

9 Duration Total time elapsed during attack.  

10 Packets/seconds  Number of packets sent by attack 

node within 1 second. 

11 Source Host 

count 

Total number of attack nodes 

connecting to target network. 

12 Destination Host 

Count 

Total number of target nodes in 

target network. 

13 Throughput  Rate at which attack nodes sends 

bytes to target node.(measured in 

kbps). 

14 Service Count Total number of ports connected to 

by attack nodes during attack period.   

15 Same service 
count  

Total number of connections to the 
same port number during attack 

period. 

16 Different Host 

rate  

Percentage of attack nodes attacking 

different target nodes. 

17 Same service 

rate  

Percentage of attack nodes attacking 

same port during attack period. 

18 Same Host rate  Percentage of attack nodes attacking 

the same target node during attack 
period. 

 

(ii) Packet features: These are attack features 

obtained by sniffing and analyzing attack packets. 

We develop a script that use scapy v 2.4.0 to 

analyze attack packets. Scapy decodes traffic 

packets and matches request with replies. When an 

attack is detected, attack packets are captured and 

decoded using  script. Table II shows some of  the 

packet features extracted. 

 
Table II: Attack Network Packet Features 

 

S/N Feature Name Definition 

1 Land  ‘1’ if source and destination IP and 
ports are the same; otherwise ‘0’. 

2 Type of service Class of traffic assigned to attack 

packet 

3 Protocol  Higher layer protocol used in data 
portion of attack packet 

4 Ip flags  How packet should be routed or 

processed by higher layer 

5 TCP Flags Defines type of packet sent by 
attack node 

6 Urgent (urg) Indicates priority of handling 

packets by router 

7 Time to Live Time left for packet to be discarded 

8 Checksum  Error checking in packet header 

9 Wrong Fragment  ‘1’ if checksum is ‘incorrect’; 

otherwise ‘0’ 

  

Transaction is prepared based on attack signatures 

in Fig. 4 or attack features in Tables II and III. The 

transaction is signed with owner’s private key and submits 

for verification. For additional verification process 

introduced by our architecture, owner submits other 

verification information. Examples of verification 

information are IP address, MAC address, and transaction 

account. Fig. 5  shows submitted transaction. 

 

 
Fig. 5. Submitted Transaction 

• Class: This states the type of IDS. It is either 
signature based, or anomaly based. 

• (FEATURES)priv_key: This is signed features. This 
field is updated if class states “anomaly based” 
otherwise it is skipped. 

• (SIGNATURE)priv_key: This is signed signature. 
This field is updated if class states “signature 
based” otherwise it is skipped. 

• Verification information: Additional security 
information  

B. Storage 

Storage stage is divided into three main steps:  

• Verification of transaction and owner. 

• Standard format creation 

• Transaction validation (i.e. joining transaction 

block to blockchain).   

Agreed upon transaction format (Fig. 5), verification 

information of all authorized nodes, conversion and format 

creation scripts (Algorithm 2 and 3) are written as smart 

contract and mine into the blockchain network. Network 

feature extraction scripts are run by all authorized nodes. 

Smart contract executes the following functions: 

1. Transaction and owner’s verification: These are 

handled by smart contract to ensure that no 

malicious intruder submits transaction. Algorithm 1 

describes how smart contract handles verification of 

both transaction and owner. Smart contract verifies 

the privilege of owner to submit transaction and 

Class (FEATURES)priv_key (SIGNATURE)priv_key Verification 
Information 



consistency of submitted transaction with agreed 

format. For this to be successful and push the 

transaction to format creation step, the transaction 

must agree with the format (Fig. 5), private key 

must be verified using sender’s public key and 

verification information must be in their respective 

sets. If any of these conditions fail, smart contract 

returns fail, and transaction is dropped. 

 

 
 

2. Standard format creation:  This is one of the 

novelties in our approach. Algorithm 2 describes 

how smart contract converts a transaction to a 

standard format.  Smart contract checks  the “class” 

field in Fig. 5.  If “anomaly based”, smart contract 

checks for missing columns in feature subfields. If 

there are no missing subfield columns, transaction is 

arranged in agreed standard format and pushed to 

validation step, otherwise, it returns fail and 

transaction is dropped. On the other hand, if “class” 

field indicates “signature based” signature is 

converted to standard format (Algorithm 3) and 

pushed for validation. Fig. 6 shows the standard 

format of transaction submitted  for validation. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.  Standard Format of mined Transaction 

 

 

 
 

Algorithm 3 describes how an attack signature is 

converted to standard format. Retrieved signature 

is checked for mandatory variables. If any of the 

mandatory variables are absent, script returns error 

and signature is dropped. Otherwise, script reads 

these values and assign to corresponding standard 

format variables. Due to the different ways of 

writing rules, we ignore any other standard format 

variables without equivalent values from retrieving 

signature. 

 

 

3. Transaction Validation: This step is handled by 

blockchain consensus protocol. The pending 

transaction is converted to standard format, then 

built to a block by authorized node. The block is 

broadcasted into the blockchain network for 

validation. Every node receives broadcasted block, 

but only authorized nodes (miners) work to validate 

the block. Each block contains a unique code called 

hash. It also contains hash of previous block. Data 

from previous blocks are encrypted or hashed into a 

series of numbers and letters. This is done by 

processing block input through a mathematical 

function, which produces an output of a fixed 

length. The function used to generate the target 

hash  produces the same result each time the same 

input is used, makes determining the input difficult 

 FEATURES SIGNATURES 

 

Connection Features Packet Features 

 

Type Signature Standard Format 

 



and makes small changes to the input result in a 

very different hash. 

 

To validate the block, authorized nodes works to 

get target hash. A target hash is a number that a 

hashed block header must be less than or equal to 

for a new block to be awarded. This is achieved by  

using an iterative process such as proof-of-work, 

which requires consensus from all authorized nodes. 

Proof-of-work was chosen because this is the 

consensus algorithm run by Ethereum blockchain 

platform. The characteristics of proof-of-work is 

that it is computationally difficult to compute and 

easy to verify. The process of guessing the hash 

starts in  block header. The hash contains block 

version number, a timestamp, the hash used in 

previous block, the hash of Merkle Root, the nonce, 

and the target hash. Successfully mining a block 

requires an authorized node to keep guessing the 

nonce that produced the target hash. Nonce is a 

random string of numbers which keeps changing 

until target hash is produced. The right nonce is 

broadcasted to other nodes. Other authorized nodes 

verify the correctness of the nonce value by 

appending this number to the hashed contents of the 

block, and then rehashed it. If  the new hash meets 

the requirements set forth in target, then the block is 

added to the blockchain. It is impossible to mutate 

/erase the block (i.e. the stored features or signature 

can neither be manipulated nor deleted). 

C.  Distribution 

After new block has been chained to the blockchain, 

transaction address is issued to owner (sender). Steps 

involved in secure distribution of mined transaction  are 

summarized in  the following steps: 

1. Blockchain updating: Current state (i.e. new  

block) of blockchain is broadcasted to every node 

in the blockchain network. Every node (authorized 

and unauthorized) receives a copy of this update. 

Transaction address and Application Binary 

Interface (ABI) are sent to the database by  the 

transaction owner. This database is made public so 

that everyone can have access to these information 

(Fig. 2).  

 

2. Signatures/Features Downloading: This step is 

carried out by every node in the network (i.e. 

authorized and unauthorized). Blockchain nodes 

request transaction address and ABI from database. 

This information is used to obtain stored 

transaction (attack signature or features). Nodes 

extract signature or features from retrieved 

transaction and use in their intrusion detection 

system.  

IV. RESULTS  

The proposed architecture is implemented on Ethereum 

blockchain platform. We use Solidity v 0.5.4 

implementation of Ethereum for smart contract and geth v 

1.4.18 for Ethereum. For the proof-of-concept, blockchain 

network is set up in  a laboratory with five blockchain 

nodes, one MYSQL database and one attack nodes as shown 

in Fig. 2. We implement four authorized nodes ( to ensure 

consensus of miners during validation stage) and one 

unauthorized (public) node.  To make a node  authorized, its 

verification information is included in smart contract. Table 

III shows the configuration of all nodes. 

 
Table III: Node configurations 

 

Node OS RAM Processor 

Authorized 
node 1 

Desktop, 
Ubuntu 16.04 

4GB 2.2GHz 

Authorized 

node 2 

Laptop, 

Ubuntu 18.04 

16GB 2.81GHz 

Authorized 
node 3 

Desktop, 
Ubuntu 18.04 

8GB 2.44GHz 

Authorized 

node 4 

Laptop, 

Ubuntu 18.04 

4GB 2.44GHz 

Unauthorized 
node  

Laptop, 
Ubuntu 18.04 

4GB 2.40GHz 

Attack node  Laptop, 

Ubuntu 16.04 

4GB 2.20GHz 

Database 
node 

Desktop, 
windows 10 

4GB i5 
@2.44GHz 

 

We install 3 signature-based IDS randomly on all 

blockchain nodes. Snort v2.9.7 is installed on authorized 

nodes 1, 4 and unauthorized node, Bro v 2.6.1 is installed on 

authorized nodes 2, 3 and unauthorized node and Suricata v 

4.1.3 is installed on authorized node 4.  Denial of Service 

(DoS) attack rule (shown below) is written at local rule file 

of authorized node 2 snort IDS and snort is started in 

monitoring mode. 

   

Attack rule: alert tcp ! $ any any -> $HOME_NET 
80 (flags: S; msg:"Possible DoS"; count 70, 

seconds 10; sid:10001;rev:1;).  

 

DoS attack is launched at authorized node 2. This node 

detects this attack, retrieves the above signature and submits 

it as a transaction to an already set up blockchain network as 

explained section III. Three other authorized nodes validate 

this transaction and chain it to the blockchain network. 

Table IV shows the standard format of mined signature. 

We install tcpdump v. 4.9.2., libpcap v. 1.9.0 , tcptrace 

v.6.6.0, wireshark v. 3.0.1. and scapy v.2.4.0 on all 

authorized nodes. We run  connection and packet analyzing 

scripts on authorized node 2 in addition to an anomaly-

based IDS called Dendritic Cell Algorithm (DCA) [21]. 

DoS attack was launched at authorized node 2. This is 

submitted to the blockchain network as discussed in 

previous section. Three other authorized nodes validate this 

transaction and attach it to the blockchain network. 

Furthermore, other forms of attack such as port scanning 

and Land attacks were launched at authorized node 2.  Each 

attack was repeated 20 different times. Table V shows 

sample values of features extracted for each attack in one 

attack launch. The following assumptions are made: 

1. None of the authorized nodes is compromised i.e 

all features or signatures submitted are good.  

2. We implement for moderate network traffic and all 

authorized node is assumed to have similar 

network traffic. 

 

 



Table IV:  Standard format of retrieved signature 
 

Standard Format Variable Signature Values 

Action Alert 

Protocol tcp 

Source IP Any 

Source port Any 

Destination IP Home_net 

Destination port 80 

Flags S 

Message Possible Dos 

flow ------ 

Packets/sec 70 

Time (seconds) 10 

sid 10001 

rev 1 

 

 
Table V: Extracted Features for DoS, Port scanning and Land Attacks 

 
S/ 

N 

Features DoS Port 

Scanning 

Land 

1 No of connections 6594 8 11 

2 Source 

bytes(kbytes) 

1147008 708 846 

3 Source frames 6592 10 9 

4 Source 
throughput(kbps) 

1698.4 216.1 917.96 

5 Source 

frame/second 

9995.4 3125.0 9999.99 

6 Destination 
bytes(kbytes) 

355968 364 0 

7 Destination 

frames 

6592 6 0 

8 Destination 
throughput(kbps) 

527.1 111.08 0 

9 Destination 

frame/second 

9995.4 1875.0 0 

10 Duration(seconds) 0.65 0.32 0.09 

11 Source diff. host 

rate 

0 0.16 0.11 

12 Source same host 

rate 

1 0.84 0.89 

13 Source diff. 

service rate 

0.99 1 0.11 

14 Source same 

service rate 

0.01 0 0.89 

15 Source diff. host 

count 

1 1 1 

16 Source count 6583 6 1 

17 Destination diff. 
host count 

1 1 1 

18 Destination 

service count 

1 3 1 

19 Source IP 192.168.0.144 192.168.0.
144 

192.168.0.
161 

20 Source port 8131 48314 80 

21 Destination IP 192.168.0.161 192.168.0.

161 

192.168.0.

161 

22 Destination port 21 22 80 

23 Protocol TCP TCP TCP 

24 Type of service 0 0 0 

25 Time to live 64 64 64 

26 TCP flags SYN SYN SYN 

27 IP flags RES DF RES 

28 Urgent 0 0 0 

29 Fragment 0 0 0 

30 Land 0 0 1 

31 Checksum Correct Correct Correct 

32 Wrong fragment 0 0 0 

 

To evaluate performance of our system, we examine its 

security against unauthorized transaction submission, then  

evaluates its response time. The following data are collected 

for each transaction.  

• Transaction deployment time (t1): This is the time a 

transaction is submitted to the blockchain network. 

These data are collected directly from sender 

console. 

• Execution time (t3): This is the time taken for 

content of each transaction to appears in  the 

designated files of each node. The time is retrieved 

by setting on current time on all node consoles. 

A. Unauthorized transaction: The architecture is tested 

against malicious transaction injection. An unauthorized 

node prepares a transaction and submit to the 

blockchain. Authorized nodes work to validate this 

transaction. It is observed that transaction address is not 

issued to the sender. This implies that transaction is not 

validated (i.e.transaction is not chained to the 

blockchain). We manually generate transaction address 

and ABI, then use them to query the blockchain. We 

observe that no transaction is returned from the 

blockchain. This is because no transaction with such 

address is mined to the blockchain network.  

 

B. Latency: This is response time (measured in seconds) of 

the blockchain network. For each transaction, latency is 

the difference between execution time and deployment 

time (t3-t1). Latency includes verification time, mining 

time and time taken for  nodes to request transaction 

address and retrieve mined features or signatures. Fig.7 

shows response time of each node for every transaction. 

It is observed that latency of 3rd transaction is smallest 

for all nodes while 10th and 18th transaction has  highest 

latencies for all nodes. This is because latency is mostly 

affected by validation time which is an iterative process 

in this case. Fig. 8 shows the average response time of 

each node. For each node, average response time is 

addition of  response times for all transaction divided by 

number of transactions. The difference in average 

response time depends mainly on the computing power 

of the nodes. It  can be seen that average response time 

for all nodes is less than 1.6 seconds which is 

considerably small.  

 



 

Fig.7. Blockchain response time 

 

 

Fig. 8. Average response time of each node 
 

V. CONCLUSION 

In this paper, we propose an architecture that detects and 

prevents malicious features/signatures injection into shared 

features or signatures in cooperative intrusion detection. The 

proposed solution leverages blockchain’s distributive 

technology, tamper-proof ability and data immutability to 

solve the data security and consistency problems facing 

cooperative intrusion detection. Focusing on extraction, 

storage and distribution stages of cooperative intrusion 

detection, the solution adds extra validation step that makes 

it impossible for unauthorized nodes to attach blocks of 

transaction to the blockchain network, hence detects and 

prevents fake data injection. The architecture also presents a 

standard format for mined cyber-attack features and 

signatures which  can be easily read and understood by 

nodes running different IDSs. Apart from this, we 

implement how the architecture grant permissionless access 

to public nodes to securely join and retrieve attack features 

or signatures in real time. Performance evaluation of the 

system with respect to its response time and resistance to the 

features/signatures injection is tested. The result showed that 

the architecture detects and prevents fake data injection, 

manipulation or deletion and at the same time distribute 

attack features or signatures with low response time. In 

future we wish to expand our work to accommodate the 

following : 

1. Detect compromised authorized nodes: The only 

way fake data can be injected into the network is 

when authorized node (Miner) is compromised (i.e. 

authorized node sends illegitimate transactions). 

We intend to implement how to detect when an 

authorized node is compromised. We will 

implement different ways an authorized node can 

be compromised and how our architecture detects 

such compromised transactions. 

2. Optimization of performance: If the response time 

can be reduced more, the architecture can be 

applied in other areas where real-time data 

processing is utilized e.g. autonomous vehicle 

communication. We plan to implement the 

architecture using different consensus protocols 

with the view of reducing the response time. 

3. Diverse locations with different network traffic: 

One of the features of the proposed system is that it 

allows nodes in different locations and 

experiencing different network traffic to exchange 

data. We plan to implement when blockchain nodes 

are located  in diverse regions and are experiencing 

different network traffic.  

4. Scalability of the blockchain network: one of the 

major characteristics of the architecture is that it 

should be robust to network growth. We plan to 

implement and observe the behavior (response 

time) of the system as more nodes join the 

blockchain network. 
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