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Abstract:Centralnervoussystematypicalteratoid/rhabdoidtumors(ATRTs)arerareandaggressive

tumorswithaverypoorprognosis.CurrenttreatmentsforATRTincluderesectionofthetumor,

followedbysystemicchemotherapyandradiationtherapy,whichhavetoxicsideeffectsforyoung

children.GeneexpressionanalysesofhumanATRTsandnormalbrainsamplesindicatethatATRTs

haveaberrantexpressionofepigeneticmarkersincludingclassIhistonedeacetylases(HDAC’s)and

lysinedemethylase(LSD1).Here,weinvestigatetheeffectofasmallmoleculeepigeneticmodulator

knownasDomatinostat(4SC-202),whichinhibitsbothclassIHDAC’sandLysineDemethylase

(LSD1),onATRTcellsurvivalandsinglecellheterogeneity.Ourfindingssuggestthat4SC-202isboth

cytotoxicandcytostatictoATRTin2Dand3Dscaffoldcellculturemodelsandmaytargetcancerstem

cells.Single-cellRNAsequencingdatafromATRT-06spheroidstreatedwith4SC-202haveareduced

populationofcellsoverexpressingstemcell-relatedgenes,includingSOX2.Flowcytometryand

immunofluorescenceon3DATRT-06scaffoldmodelssupporttheseresultssuggestingthat4SC-202

reducesexpressionofcancerstemcellmarkersSOX2,CD133,andFOXM1.Drug-inducedchangesto

thesystemsbiologylandscapearealsoexploredbymulti-omicsenrichmentanalyses.Insummary,

ourdataindicatethat4SC-202hasbothcytotoxicandcytostaticeffectsonATRT,targetsspecificcell

sub-populations,includingthosewithcancerstem-likefeatures,andisanimportantpotentialcancer

therapeutictobeinvestigatedinvivo.

Keywords:ATRT;4SC-202;Domatinostat;cancerstemcell;scaffold;single-cellRNA-sequencing;

systemsbiology

1.Introduction

Atypicalteratoidrhabdoidtumor(ATRT)isatypeofrareandaggressivecentralnervoussystem

tumorwithpoorprognosis;themediansurvivalisonly6–17months[1–7].Amalignantembryonal
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tumor of the central nervous system (CNS), ATRT is composed of primarily rhabdoid cells that may or
may not have fields resembling classical primitive neuroectodermal tumor [8]. Tumors can occur in
any location in the CNS, including the spinal cord [9], and a majority of cases are characterized by
the deletion or mutation of the INI1 gene [10]. ATRTs are a rare disease, comprising only 1–2% of all
pediatric CNS tumors – but they make up between 10–20% of malignant brain tumors for patients
under the age of 3 [3,10,11].

Surgery and radiation alleviate imminent neurological problems but are accompanied by
exceedingly morbid long-term side effects. Aggressive multiple chemotherapy approaches to substitute
radiation have been attempted, yet overall survival is dismal, particularly for patients under three
years of age [5–7]. This aggressive tumor remains a challenge in the field of pediatric neuro-oncology
and newer therapeutic approaches are desperately needed to increase survival for very young patients.

The drug 4SC-202 is a recently developed histone deacetylase inhibitor (HDACi) that has not
been fully characterized in terms of its various applications or mechanisms of action. 4SC-202 is an
orally available benzamide-type HDACi that specifically targets class I HDACs—HDAC1, HDAC2,
HDAC3, and HDAC8—and the histone demethylase LSD1 (4SC company data: B.P.S. Bioscience Assay
Report, Reaction Biology Corporation Assay Results) and is more potent and specific than currently
available HDAC inhibitors [12,13]. In multiple cancer cell lines and preclinical models, 4SC-202 has
exerted anti-tumor activities [13–15]. We have previously published that 4SC-202 significantly reduces
the viability of medulloblastoma in culture [16]. Pre-clinical studies performed in hepatocellular
carcinoma, medulloblastoma, urothelial carcinoma, and colon cancer indicate that 4SC-202 inhibits
cell proliferation, induces apoptosis, inhibits mitosis, and is efficacious in vivo, causing a reduction
of tumor growth in a number of different mouse xenograft studies including Hedgehog driven basal
cell carcinoma (BCC) and a colorectal cancer murine model [12,13,15,17,18]. A first-in-humans clinical
study showed that the drug is safe and has potential anti-cancer benefits in hematological cancers [19].

While preclinical studies have demonstrated the efficacy of 4SC-202 in some models, the mechanism
by which 4SC-202 exerts anti-cancer effects stills needs further characterization. Prior studies indicate
4SC-202 may target cancer stem cells [20] and other studies have demonstrated that 4SC-202 blocks
hedgehog (HH)/Gli signaling in a human medulloblastoma model [12,16]. Hedgehog signaling has
been shown to play a role in the maintenance of stem cells [21]. Cancer stem cells (CSCs) comprise a
small percentage of tumors (0.01–1%) within a heterogeneous tumor mass [22–24], are able to self-renew,
and have been implicated in cell migration and metastasis as well as treatment resistance [25]. Since
4SC-202 blocks hedgehog signaling, which has been implicated in the maintenance and survival of
stem cells [26–28], we hypothesize that 4SC-202 may influence the stemness of the ATRT cancer stem
cell population and thereby alter the growth and survival of ATRT.

2. Results

2.1. ATRTs Have Aberrant Expression of 4SC-202 Targets

It has been previously demonstrated that ATRTs are good candidates for HDACi treatment due to
epigenetic dysregulation [29]. These conclusions correspond well with the results from a reanalysis
of a previously published custom NanoString nCounter gene expression panel comparing frozen
ATRT tumors (n = 17) to frozen normal pediatric neuronal samples (n = 7), where the top differentially
expressed genes (DEGs) include epigenetic modulators involved in acetyl and methyl regulation
(Figure S1). Since 4SC-202 not only functions as a Class I histone deacetylase inhibitor (HDACi) but also
influences methylation by inhibiting lysine demethylase (LSD1), the specific targets of 4SC-202 were
evaluated to determine if these genes are upregulated in ATRT in order to determine the suitability of
4SC-202 for ATRT treatment.

Further analysis of previously published microarray and NanoString gene expression datasets
from human ATRT tissue samples and normal age-matched brain samples [30] suggest that Class I
HDACs, HDAC1, HDAC2, HDAC3, and epigenetic modifier LSD1 are significantly overexpressed
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inATRTwhencomparedtonormalbrainsamples(Figure1).HDAC1andLSD1aresignificantly

overexpressedinbothdatasets.HDAC2isoverexpressedintheNanoStringdatasetforthefreshfrozen

tissue,butonlyoverexpressedinoneofthetwoprobesetsforthemicroarray.Theprobesetthatis

overexpressed(201833_at)includesmoretranscriptsthantheprobesetthatisnot(242141_at).HDAC3

issignificantlyoverexpressedcomparedtonormalbraininthemicroarraydatasetandhashighermean

expressioninATRTthannormalcerebellumsamples,butthedifferenceisnotsignificant,possiblydue

tosmallsamplesize(n=2normalcerebellumsamples).DifferencesinexpressionofHDAC8arenot

significantforanyoftheprobesetsinthemicroarraydataset.Theseresultsareconsistentwiththe

originalanalysisofthemicroarraydatathatfoundthatATRTswerecharacterizedbydysregulationof

epigeneticmarkers[29].BecauseofthisepigeneticdysregulationinvolvingoverexpressionofHDAC1,

HDAC2,HDAC3,andLSD1,weanticipatethatthe4SC-202,whichspecificallytargetsClassIHDACs

(HDAC1,HDAC2,HDAC3,HDAC8)andLSD1,mayselectivelyaff
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procedure; p < 0.001 (***), p < 0.01 (**), p < 0.1 (*). 
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Figure1.GeneexpressionanalysisindicatesepigenetictargetssuchasclassIHDAC’s(HDAC1,

2,3,8)andLSD1areupregulatedinATRTtissuerelativetonormalbraintissue.(a)Analysisof

GSE35493[29]microarraydatademonstratessignificantupregulationofmostClassIHDAC’sand

LysineDemethylase(LSD1)inATRTtumorscomparedtonormalpediatricbraintissuesamples(n=7

normalbraintissuesamples,n=17ATRTtissuesamples).(b)ReanalysisofrawNanoStringdata[30]

confirmsupregulationofHDAC1,2,andLSD1inATRTtumortissuecomparedtoage-matchednormal

braintissue(n=7normalbraintissuesamples,n=17ATRTtissuesamples).Errorbarsrepresentthe

standarderrorofthemean.PvalueswereadjustedusingtheBenjaminiandHochbergprocedure;

p<0.001(***),p<0.01(**),p<0.1(*).

2.2.4SC-202IsCytotoxicandCytostatictoATRTinTwo-andThree-DimensionalCellCulture

Intwo-dimensionalcellculture,4SC-202wassignificantlycytotoxictotwoATRTcelllines,

ATRT-06andATRT-05,following72h.ofnanomolar-tomicromolar-scaledrugexposurebutdidnot

affecttheviabilityofnon-cancercelllines—neuralstemcells(NSC)andhumanembryonickidney

(HEK-293)cells—inseveralseparateexperiments.Significantdifferencesinviabilitywereobserved

betweenATRT-06ascomparedtoNSC(p<0.05),andbetweenATRT-06andATRT-05comparedto

HEK-293(p<0.001),at1µM4SC-202treatment,accordingtopairedtwo-tailedt-tests(Figure2a,b).

RecentstudiesexaminingthemolecularsubtypingofATRTtumorsindicatethatATRT-05ismost

closelycorrelatedwithGroup1ATRT(neurogenic,ATRT-SHH)andATRT-06withGroup2ATRT

(mesenchymal,ATRT-MYC)[31,32].Additionally,inaspheroidmodel,treatmentwith56nM4SC-202

significantlydecreasedspheroidgrowthwhencomparedtoavehicletreatmentwith0.02%DMSO

(FigureS2). AhigherdoseofDomatinostat(4SC-202)reducedATRT-06cellgrowthwithin3D

scaffolds.AsillustratedinFigure2c,ATRT-06cellsgrownwithinthe3Dscaffoldnicheexhibitedlower

survivabilitythanwhentreatedwith50µM4SC-202.Flowcytometryexperimentsdemonstrated

thatalmost50%ofATRT-06cellsweredeadwhenexposedto50µM4SC-202withinthescaffolds.

ThesefindingswerecorroboratedbyH&Estaining(Figure2d)ofcell-ladenscaffoldsectionslices,

wherethenumberofeosin-stainedATRT-06cellnucleiwasobservedtoreducewithanincreasein

4SC-202concentration.Additionally,thesefindingswerealsoconfirmedbyconfocalimagingof3D
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scaffoldsembeddedwithATRT-06cells(DiO,green).Anincreasein4SC-202concentrationresultedin

lossofATRT-06cellsasdemonstratedbyH&Estaining(Figure2d)andDiOstainingofthescaffold

sections(Figure2e).ResultsfromanimageanalysisoftheconfocalimageswithFijiindicatethat50

µM4SC-202changesthecells’spatiotemporaldistribution(clustering)inthesegmented3Dportionof
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Figure2.4SC-202issignificantlycytotoxicandcytostatictoATRTin2Dand3Dcellculturemodels.

(a)SytoxGreenproliferationassaysindicatethat4SC-202significantlyreduceslivecellsinATRT-06

atconcentrationsrangingfrom0–20µMascomparedtoacontrolneuralstemcell(NSC)line.

(b)Luminescenceviabilityassays(Promega)indicate4SC-202significantlyreducesviabilityin2

separateATRTcellslines-ATRT-06andATRT-05atconcentrationsrangingfrom0–1micromolarbut

doesnotaffectviabilityofnon-cancerouscelllinesNSCandHEK-293.Atwo-tailpairedt-testindicates

thatat1µM4SC-202treatment,thereisasignificantdifferenceinviabilitybetweenATRT-06as

comparedtoHEK-293,p<0.001(**),andothersignificantdifferencesbetweenATRTcelllinesas

comparedtocontrolsnotedintext.(c)4SC-202reducessurvivalofATRT-06in3-dimensionalscaffold

model.(d)H&Econfirmadose-dependentreductioninproliferation,atconcentrationsrangingfrom

0–50µMwiththefewestcellsvisiblefollowing50µM4SC-202.Scalebar=100µm(e)Representative

confocalmicroscopyimagesofrotatedandtopviewsofATRT-06cellline(DiO,green)in3Dmatrices

onday3atconcentrationsrangingfrom0–50µM.Scalebar=200µm.
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These changes in the cells’ spatiotemporal distribution in the scaffolds were semi-quantitatively
characterized by analyzing the frequency of the volumes of segmented cells (Figure S3). Changes
in the volume density indicate that there is a change in the spatiotemporal distribution pattern with
an increase in the relative number of clustered cells and size of the cell clusters in the controls as
compared to the sample treated with 0.2 µM 4SC-202. In contrast, for the 50 µM 4SC-202-treated
sample, the relative number of non-clustered cells increased (Figure S3).

These results in both a spheroid and 3D scaffold model of ATRT demonstrate that 4SC-202
selectively decreases the viability of ATRT cells.

2.3. 4SC-202 Decreases the Population of Cells Overexpressing Stem Cell Markers

Because there is preliminary evidence that 4SC-202 may affect cancer cell stemness or stem
cell-related pathways [12,20], a population-based analysis was conducted to characterize how 4SC-202
induced changes in specific cell populations in ATRT. Single-cell RNA-sequencing was performed on
early smaller untreated spheroids (7 days after plating, small control), and larger spheroids treated
with either 0.02% DMSO (large control) or 56 nM 4SC-202 (9 days after plating) (Figure 3a). Because
the user does not select the number or occupancy of clusters in the graph-based clustering method
used, clustering was used as a tool to identify populations in the single cell dataset. Cells cluster
principally according to (1) experimental condition and (2) health of the cells, though these factors
alone are insufficient to account for cluster 6 (Figure 3b). The small control and the large control
spheroids are well integrated and group together both in the Uniform Manifold Approximation and
Projection (UMAP) representation and in the clustering. Cells from the drug-treated spheroid are
generally clustered separately with only a small percentage of cells overlapping either in the UMAP
representation or the clusters (Figure 3b,c). These results suggest that the difference between the small
and large control spheroids are significantly smaller than the differences between the drug and control
spheroids, as would be expected since HDACi are known to change gene expression patterns [33].

In addition to experimental conditions, cells also appear to be clustered based on the health of the
cell. Clusters 0, 1, 4, and 5 all have a high percentage of their genes mapped to mitochondrial genes (high
mtRNA) whereas clusters 2, 3, and 6 have a lower percentage of mitochondrial genes (low mtRNA)
(Figure 3e,f). High mtRNA content has been correlated with broken cells where cytoplasmic content
has been lost but mitochondrial content has been better retained [34]. Of the low mtRNA content cell
clusters, clusters 3 and 6 are predominantly control, whereas cluster 2 is principally 4SC-202-treated
(Figure 3). 4SC-202-treated cells have higher mtRNA expression than the control cells. 74.9% and 76.7%
of small and large control spheroid cells have a percent mtRNA under 10 %, respectively, whereas
only 0.094 % of 4SC-202-treated cells have a percent mtRNA under 10% (Figure 3d). While for the
downstream analysis clusters 2, 3, and 6 are considered “healthy”, the drug-treated cluster 2 may be
less healthy than the clusters principally populated by control tumor cells (Figure 3e).

Gene expression of class I HDACs are altered in 4SC-202-treated cluster 2 relative to control clusters
3 and 6 (Figure S4a). HDAC1 and HDAC2 are significantly underexpressed in the 4SC-202-treated
cluster relative to control. HDAC3 is overexpressed in the 4SC-202-treated cluster relative to the control
clusters and KDM1A and HDAC8 appear to be overexpressed in cluster 6 relative to the other clusters,
though not significantly. This lack of significance for cluster 6 relative to the other clusters may be due
to the small number of cells in cluster 6 (n = 65) relative to clusters 3 (n = 1142) and cluster 2 (n = 1718).
Because HDAC1 and HDAC2 are overexpressed in ATRT relative to normal brain, 4SC-202 may alter
pathways related to dysregulation of these genes. The change in the expression of genes critical for
the replication of ATRT tumorigenesis in vivo were also tested (Figure S4b) [35]. While TP53 shows
no significant difference across clusters 2, 3, and 6, SMARCB1 is underexpressed in 4SC-202-treated
cluster 2 relative to cluster 6. This result suggests that 4SC-202 does not rescue the expression of genes
critical to the formation and development of ATRT.
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Figure3.SinglecellRNA-sequencing(scRNA-seq)dataclusteringcorrespondstodifferencesin

mtDNAexpressionlevelsandtreatmentgroup.(a)DepictionofUniformManifoldApproximation

andProjection(UMAP)dimensionalreductionofintegratedearlyuntreatedspheroid,vehicle-treated

spheroid,and4SC-202-treatedspheroidscRNA-seqtranscriptomicdata.(b)UMAPplotofgraph-based

clusteringofintegratedscRNA-seqdatasets.Clusteringalgorithmoptimizesto7clusters.(c)Number

ofcellsperclusterbysamplegroup.Inset:Cluster6bysamplegroup.(d)Violinplotofthepercentage

ofrawreadsthataremappedtomtRNAacrossexperimentalconditions.(e)Violinplotofthepercentage

ofrawreadsmappedtomtRNAacrossclusters.(f)UMAPplotofintegratedspheroidscoloredbythe

percentagemtRNA.

WhilemostoftheclusteringillustratedinFigure 3canbeattributedtodifferencesbetween

treatmentgroupandmtRNAexpressionlevels,thesefactorsaloneareunabletoexplainthedifference

betweenclusters3and6,whicharebothprincipallycontrolclustersandhavelowpercentmtRNA.

Cluster6accountsfor4.53%ofthe“healthy”controlcells,butonly0.31%ofthe“healthy”drug-treated

cells. Most“healthy”4SC-202-treatedcellsarelocalizedincluster2,andthereisnoequivalentof

cluster6forthedrug-treateddata.

Cluster6overexpressesmultiplestemcellmarkers,includingSOX2,andstemcell-relatedgenes

relativetoallotherclustersandrelativetolowmtRNAcontrolcluster3(Figure4a,b;FigureS5).

Theaverageexpressionandpercentofthecellsexpressingthesestemcell-relatedgenesareconsistently

higherincluster6thanintheotherclusters.Thelogfoldchangesforthesestemcellmarkersalso

appeartobehigherforcluster6thanfortheother“healthy“clusters,thoughthesignificanceislower.

Thisdiscrepancymaybepartiallyaccountedforbythesmallsizeofcluster6(n=65)comparedto

theotherclusters(Cluster2,n=1718;Cluster3,n=1142)(Figure3c).Theoverexpressionofstem

cell-relatedgenesincluster6isfurthersupportedbytheoverexpressionofID2,ID3,GPC3,SOX2,

SOX4,andCD44incluster6relativetothecontrolcluster3,whichalsohaslowpercentmtRNA

(FigureS5A).Overexpressionofstemcell-relatedgenesinnormalcluster6relativetonormalcluster3

issupportedbyalargerpanelofgenestestedforlocaldifferentialexpressioninLoupeCellBrowser

andbyANOVAfollowedbyapost-hocTukey’stest(FigureS5D–G).Globally,controlATRTsamples

alsoexhibithigherexpressionofstemcell-relatedgenesrelativeto4SC-202-treatedsamples,though
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thisdifferencemaybeinpartduetothedifferenceintherelativesizesofthe“healthy”and“unhealthy”
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expressionchanges.Non-significantchangesaregrey.Significanceisshownasthenegativelogof

theFDR.Nosignificanceisgrey,lowsignificanceiswhite,andhighsignificanceisblue.Heatmaps
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Whilecluster6appearstooverexpressstemcellmarkersandrelatedgenes,thegenesthatare

mostoverexpressedinthiscluster(lowestFDR)aregenesrelatedtomitosisandcellcycling(Figure4c).

Therewassubstantialoverlapbetweenthelistofdifferentiallyexpressedgenes(DEGs)resultingfrom

acomparisonofcluster6toallclusters,andcluster6tocontrolcluster3,particularlyforthosegenes

withthehighestsignificance(FigureS6).Theprotein–proteinnetworkfortheconsensusdifferentially

expressedgenelistbuilt-inSTRING[39]showshighlevelsofconnectivitybetweenthesegenes,

thoughonlyonestrongconnectionwithSOX2throughFOXM1(Figure4c).TheDEGareuniformly

overexpressedandasignificantlyhighpercentagearerelatedtomitosisandcellcyclinggeneontology

terms.Thisbiastowardscell-cyclerelatedgenesasthetopdifferentiallyexpressedgenesratherthan

stemcellmarkersmayberelatedtothetendencyofsinglecellRNA-sequencingresultstoemphasize

highlyexpressedgenesduetogenedropoutevents[40].Thisalsomayaccountfortheuniformlylow

expressionofcommonstemcellmarkerssuchasPROM1.

4SC-202wassignificantlycytotoxictoseveraldifferentATRTcelllinesbutdidnotaffectviability

ofnon-cancerouscelllinessuchasneuralstemcells(Figure2a,b).Flowcytometryexperimentsin

ATRTspheroidsindicatethataSOX2positivepopulationofcells(Figure5a,b)iseliminatedfollowing

72hoursof4SC-202treatment(Figure5c,d).Additionally,weevaluatedstemcellmarkerexpression
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after4SC-202treatmentin3Dscaffolds. Wefoundadose-dependentreductionofFOXM1andSOX2

expressingcellsatµMrangeconcentrationof4SC-202andacompleteCD133expressionreductionwith

4SC-202treatment(Figure5e).Quantificationofstemcellmarkersindicatedasignificantreduction

ofFOXM1andSOX2expressingcells(Figures5fand5g,respectively)andcompleteeliminationof

CD133expressionwith50µM4SC-202treatmentafter3days(Figure5

Cancers 2020, 12, x FOR PEER REVIEW 8 of 25 

 

Based on the significant decrease in the population of cells expressing stem cell markers after 

4SC-202 treatment relative to the total population of surviving cells, 4SC-202 appears to reduce cell 

populations with high stem cell marker expression. 

 

Figure 5. 4SC-202 reduces a cancer stem-like population of cells. (a) A SOX2 positive population of 

cells in vehicle-treated ATRT-06 spheroids, indicated by a small peak (b), nearly disappears 72 h 

following 4SC-202 treatment (c,d). (e) Representative fluorescent images exhibiting reduced number 

of cells expressing FOXM1, SOX2, and CD133 by ATRT-06 cells grown in 3D scaffolds after treatment 

with 4SC-202 at μM concentrations. Scale bar = 50 μm. Stem cell marker expression of ATRT-06 cells 

growing within 3D scaffolds indicates a significant reduction in the number of FOXM1 positive cells 

(f), SOX2 positive cells (g), and CD133 expression (fluorescence intensity) (h), (*) p < 0.05. 

2.4. 4SC-202 Modulates Systems Biology Landscape in ATRT for Tumor Cell Population 

Our understanding of the 4SC-202 mechanism of action toward the ATRT cell population with 

low stemness depends on its multi-omics systems biology landscape (transcription factors, gene, 

miRNA, protein, biological processes). The changes in the viability of the ATRT models cannot be 

explained exclusively by a change in a stem cell population since the population with high stemness 

h).

Figure5.4SC-202reducesacancerstem-likepopulationofcells.(a)ASOX2positivepopulation

ofcellsinvehicle-treatedATRT-06spheroids,indicatedbyasmallpeak(b),nearlydisappears72h

following4SC-202treatment(c,d).(e)Representativefluorescentimagesexhibitingreducednumberof

cellsexpressingFOXM1,SOX2,andCD133byATRT-06cellsgrownin3Dscaffoldsaftertreatment

with4SC-202atµMconcentrations.Scalebar=50µm.StemcellmarkerexpressionofATRT-06cells

growingwithin3DscaffoldsindicatesasignificantreductioninthenumberofFOXM1positivecells(f),

SOX2positivecells(g),andCD133expression(fluorescenceintensity)(h),(*)p<0.05.



Cancers 2020, 12, 756 9 of 25

Based on the significant decrease in the population of cells expressing stem cell markers after
4SC-202 treatment relative to the total population of surviving cells, 4SC-202 appears to reduce cell
populations with high stem cell marker expression.

2.4. 4SC-202 Modulates Systems Biology Landscape in ATRT for Tumor Cell Population

Our understanding of the 4SC-202 mechanism of action toward the ATRT cell population with low
stemness depends on its multi-omics systems biology landscape (transcription factors, gene, miRNA,
protein, biological processes). The changes in the viability of the ATRT models cannot be explained
exclusively by a change in a stem cell population since the population with high stemness characteristics
is a minority of the total cells [41,42]. Consequently, it seems likely that cells with low stemness are
also affected by 4SC-202. To identify potentially perturbed biological processes, the “healthy” control
cluster (cluster 3) was compared to the “healthy” 4SC-202-treated cluster (cluster 2) from the single
cell dataset. DEGs were considered those with an adjusted p value < 0.05. Because gene drop-out
events are prevalent in single cell RNA sequencing datasets, DEGs were used as the basis to build
networks across multiple systems biology levels including tissue-specific protein–protein interaction,
gene-miRNA interaction, gene-TF interaction, and gene co-expression networks in NetworkAnalyst [43].
Over-representation analysis was run on the DEGs and each of these networks and the results compared
systematically to identify consistent terms (FDR < 0.1). Those terms that were most consistent were
grouped with other terms into manually curated term families that summarize families of potentially
perturbed biological processes. While each individual enrichment test contributes partially to an
understanding of the changes in the systems biology landscape, consistent and cumulative changes
across each network increase the strength of the characterization of changes to the systems biology
landscape. Detailed enrichment results for each systems biology level are available in the Supplemental
Information (Figures S7–S11).

The topologies of the systems biology networks show some consistency: the gene coexpression
network has multiple well-defined subnetworks (6 with at least 20 nodes), but the protein, TF,
and miRNA networks are all principally composed of a single dense network (Figure 6, left, Figures
S8–S11). At the biological process level, the GO term connectivity is generally poor, though some
connectivity is shown between the mRNA processing terms (Figure S7). Despite the limitations in this
GO network, the consistency across the topologies of the protein, TF, and miRNA networks indicates
some complementarity across the different systems biology levels. This complementarity is useful for
understanding the mechanism of action of 4SC-202 by identifying trends in the functionalization of
these bioelements and their networks.

A functional analysis of our multi-omics network identifies three families of processes that
persistently show up across multiple systems biology levels: mRNA processing, transcription/chromatin
regulation, and apoptosis-related processes (Figure 6). Terms from each of these families appear in
three networks for the transcription/chromatin regulation and apoptosis terms, and in all five networks
for mRNA processing terms. In the case of the apoptosis-related terms, three out of four of the terms
are negative regulation of apoptotic process. Of the differentially expressed genes mapped to the
negative regulation of apoptotic process term, 32 of 39 are upregulated. Consequently, these results do
not explain the mechanism by which 4SC-202 decreases the viability of ATRT models.
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Figure6.Biologicalprocesslevelsystemsbiologyanalysistoidentifyfamiliesofprocessespotentially

perturbedby4SC-202intumorcellswithlowstemness.Networksofgenesdifferentiallyexpressed

(DEGs)inhealthy,non-stemcellclustersrepresentingdrug-treatedandcontrolsamples(Cluster2vs

Cluster3,FDR<0.05)andinteractorsweregeneratedatmultiplesystemsbiologylevelsandthenthe

networksweretestedforoverrepresentationofbiologicalprocesses.Familiesoftermsweremanually

curatedbasedonbiologicalknowledgeaswellasoverlapinthegenesets.Inthenetworks,redcoloring

indicateshighsignificance(biologicalprocess)orlogfoldchangevaluesofdifferentiallyexpressed

genes. Whitecoloringindicateslowsignificance(biologicalprocess)orgene/proteinindicatedto

interactwithDEGs.BluesquaresaremiRNAortranscriptionfactors(TF)thatareindicatedtointeract

withDEGS.

Toconfirmthissystems-levelanalysis,asecondintegrativeapproachtoidentifychangestothe

systemsbiologylandscapewasemployed.Theabove-mentionednetworksplusthedrug-protein

networksweresubsequentlytrimmed,integrated,andgeneontologyenrichmentrunonregions

thatweredenselyconnected.Becauseprocessesareconnectedatdifferentsystemsbiologylevels,

thesedenselyconnectedregionsmayrepresentareasofoneormorerelatedbiologicalprocesses.

Hereagain,whilethegenelistintheanalysisincludesprojectionandhencemaynotbeentirely

accurate,thestrengthoftheanalysisisdependentonconsistencyintheinteractionsbetweennetworks.

Geneontologyenrichmentresultswerereturnedtoshowtheconnectionbetweenthesedensely

connectedregionsandhierarchiesofbiologicalprocesses.

Basedontheresultsfromthethreemostdenselyconnectedregions,potentiallyperturbedbiological

processesincludetranscriptionandhistone/chromatinmodification(Figure7).Theenrichmentofthese

processesisconsistentwiththeprocess-levelsystemsbiologyapproach.Additionally,cell-extracellular

matrixandextracellularmatrixpathways,stemcell-relatedpathways,bloodvesseldevelopment

pathways,andmetabolicpathwaysappeartobeperturbed,whichmaycollectivelyinfluencetumor

growth,metastasis,andtheefficacyofconventionaltherapiesinvivo.Detailedenrichmentresults

fromthefirstfivedenselyconnectedregionsenrichmentareavailableintheSupplementalInformation

(FiguresS12–S16).
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Figure7.Integratedsystemsbiologyanalysistoidentifybiologicalprocessespotentiallyperturbed

by4SC-202intumorcellswithlowstemness.Networksweregeneratedfromexistingdatabasesat

5separatesystemsbiologylevelsfromgenesdifferentiallyexpressed(FDR<0.05)inthe“healthy”

4SC-202-treatedcluster2relativetothe‘healthy’controlcluster3,trimmedtounder1000nodes,

andthenintegrated. Denselyconnectionsubregionswereidentified,andGOenrichmentwas

performedtoidentify“families”ofbiologicalprocessesintheGOhierarchy.OnlyselectGOtermsare

shown—additionaltermsarevisualizedinFiguresS12–S16.Greysquaresrepresentgenesthatarenot

differentiallyexpressedinthedataset.Coloredsquaresindicatethelogfoldchangeofthedifferentially

expressedgenes.ColoringofGOcirclesindicatessignificancewhereredishighandyellowislowand

thesizeofthecirclesindicatehowmanydifferentiallyexpressedgenesweremappedtoeachterm.

AbulkRNAsequencingexperimentwasalsoruntovalidatethesinglecellresults.Because

ofthehighpopulationofunhealthycellsinthesinglecelldataset,thedifferentialexpressionof

cluster2(principally4SC-202-treated)wastakenwithrespecttoclusters3and6(principallycontrol).

Resultsfromthissinglecelldifferentialexpressionanalysiswerecomparedwithresultsfromthebulk

RNA-sequencingdifferentialexpressionanalysisbetween4SC-202-treatedanduntreatedspheroids.

Ofthe74differentiallyexpressedgenesfromthebulkRNA-sequencingexperiment,25overlap

withthedifferentiallyexpressedgenefromthesingle-cellRNA-sequencingresults(FigureS17a).

Theseoverlappinggenesareprincipallystructuralcomponentsofribosomesandaresuitablyinvolved

intranslation,translocationofproteins,andcatabolicmRNAbiologicalprocesses(FigureS17b,c).

Thesebiologicalprocessesarealsoobservedinthefirstfunctionalannotationclusteroftermsafter

separatelyanalyzingeachdifferentiallyexpressedgenesetinDAVID(FilesS2,S3)[44,45].Theseresults

suggestconsistencybetweenthesinglecellandthebulksequencingresultsatthepathwaylevel,

thoughthereareonlymoderatelevelsofconsistencyatthegenelevel.

Collectively,theseprocessesgiveastartingplacefortheinvestigationofadrugmechanismwhile

providingsomeinsightintofurtherareasofpotentialaction,suchasmetastasis(cell-extracellular

matrixinteractions),for4SC-202.

3.Discussion

TranscriptomicanalysisdemonstratesupregulationofepigenetictargetssuchasclassIHDAC’s

andLSD1in17age-matchedATRThumantumorsascomparedtonormalbrainsamples[30].

ThisupregulationoftheClassIHDAC’sandLSD1inATRTtumorssuggeststhat4SC-202maybean
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important therapeutic to study in ATRT since 4SC-202 inhibits the Class I HDAC’s as well as LSD1.
Indeed, proliferation and viability assays using several different techniques suggests that 4SC-202
is both cytotoxic and cytostatic in two- and three-dimensional cell culture models. In a number of
different cancer models studies, 4SC-202 exerts both cytotoxic and cytostatic effects and arrested
cell growth in the G2M phase [46]. In this study, 4SC-202 exerted cytostatic properties in the ATRT
three-dimensional scaffold model, confirming results obtained in the two-dimensional cell culture.

Standard monoloyer cultures are well established and are easy to use. However, they are
characterized by significantly reduced cell-cell interactions, lack of cell-ECM interactions and lack of
in vivo-like architecture, diffusion or drug resistance. Spheroids, on the other hand, better recapitulate
cell-cell interactions and in vivo-like architecture. However, spheroids showed limited in vivo-like
drug resistance, are less amenable for high-content screening, and their size variability affects
their reproducibility. In contrast, 3D scaffolds recapitulate key cell-cell and cell-ECM interactions,
mimic in vivo-like architecture and complexity, are amenable to high-content screening and recapitulate
diffusion gradients of drugs, oxygen, nutrients, and waste, and in vivo-like drug resistance. However,
there are still some limitations related to the variability among scaffold matrices (batch-to-batch, animal
origin, structure or pore size) [47–49].

Higher concentrations of 4SC-202 were needed to exert its cytotoxic and cytostatic effect in the
three-dimensional cell culture as compared to in the two-dimensional cell culture. Indeed, a number of
studies have shown that 3D scaffolds model recapitulate in vivo-like drug resistance and higher doses
might be needed in order to see clinical therapeutic efficacies. The higher drug resistance in 3D scaffolds
are likely due in part to the presence of cancer cell-extracellular matrix (ECM) interactions [50–52],
matrix stiffness [53,54], and concentrations gradients inside 3D scaffolds [55], which collectively affect
drug resistance [56]. Furthermore, a spatiotemporal distribution analysis in the 3D scaffolds revealed
that 4SC-202 changes the cells’ clustering relative to no treatment by increasing the relative number of
non-clustered cells (Videos S1–S4). Previously, treatment with HDAC inhibitors have shown effects on
cell-cell, cell-ECM interactions or adhesion/migration mechanisms, which could explain the lack of
clustering with a relatively higher number of isolated cells among treated cells [35–37].

A number of studies support that 4SC-202 exerts cytotoxic effects by inducing apoptosis in
established hepatocarcinoma cell lines and patient-derived cells, colorectal cancer cells, Myelodysplastic
Syndrome cells, and human medulloblastoma cells [15–17,57], and combined apoptosis and necrosis
pathways in urothelial carcinoma cells [13]. The results from the systems biology analysis indicate
that genes involved in the negative regulation of apoptosis may be overexpressed. The single-cell
RNA-sequencing of the drug-treated cells was performed on the cells that survived 4SC-202 treatment.
It is possible that the drug does not cause an enrichment of this pathway but may selectively decrease
the viability of cell populations with low expression of genes involved in the negative regulation of
apoptosis. Surviving cells may develop cellular mechanisms to be resistant to cell death and apoptosis
or were naturally more resistant. Further study is warranted to determine the effect of 4SC-202 on
apoptosis pathways and regulation in ATRT.

In addition to the cytotoxic and cytostatic effects of 4SC-202, we found that in a 3D scaffold model
of ATRT, 4SC-202 decreases the number of cells expressing CD133, FOXM1, and SOX2, and 4SC-202
decreases the SOX2 population in a spheroid model. While the population diversity of cell lines is
limited relative to tumor samples, multiple cancer cell lines have been shown to have a population
of cells that mimic cancer stem cell properties including overexpression of cancer stem cell markers,
self-renewal, radio-resistance, and metastatic activity [58–61]. In ATRT, studies have identified a
population of cells expressing CD133 with cancer stem cell-like properties that are also resistant to
ionizing radiation and have increased radiosensitivity [41,42]. FOXM1 is also closely tied to cancer cell
stem cell properties such as cell proliferation, self-renewal, and tumorigenesis [62–66]. In glioblastoma,
inhibition of FOXM1 sensitized tumors to irradiation in vitro and in vivo [67]. SOX2 is another marker
of cancer cell stemness in multiple cancer types [68–70]. Because 4SC-202 affects the cell population(s)
that express CD133, FOXM1, and SOX2 and there is strong evidence that these proteins are cancer
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stem cell markers, our data suggest that 4SC-202 may decrease the cancer stem-like cell population.
Our studies do not show whether this decrease is due to the death or transformation of the stem-like
cell population, however, having a therapeutic such as 4SC-202 that affects a cell population with
high expression of stem cell markers may be highly beneficial as an adjuvant since it could reduce
metastasis or resistance to standard of care treatments, such as radiation.

The exact mechanism by which 4SC-202 affects the stem-like cell population is not fully investigated
by this study, however, the overexpression of both FOXM1 and SOX2 in the control single cell population
with stem-related features is suggestive that changes to the stem-like cell population may be affected
by influencing the expression of these proteins. In glioblastoma, FOXM1 has been shown to promote
stemness by modulating SOX2 expression in vitro and in vivo [67], and in neuroblastoma cells, FOXM1
was shown to directly activate SOX2 expression [71]. After treatment with a dual HDAC and
PI3K inhibitor in high grade pediatric glioma, the expression and transcriptional activity of FOXM1
decreased [72], which is consistent with our finding that FOXM1 expression was altered.

FOXM1 has also been used as an indicator of MYC transcriptional regulation in ATRT [73]
suggesting that changes in the MYC pathway may influence FOXM1 expression. FOXM1 was also
identified as the downstream target of MYC in prostate cancer [74]. This relationship between MYC
and FOXM1 is of particular interest since MYC is one of the key distinguishing features of the
ATRT-MYC type, and the cell line used for the single-cell RNA-sequencing experiment has recently
been classified as ATRT-MYC type [31,32]. Inhibition of MYC has been demonstrated to decrease
pluripotency-related pathways and tumor self-renewal [73,75], and is altered by HDACi’s. In a
model of acute myeloid lymphoma, HDACi’s SAHA and MS27-275 acetylate MYC, decreasing its
expression [76]. MYC-induced transcriptional pathways were also found to be reactivated after
treatment with HDACi’s in hematologic malignancies [77]. Collectively these results suggest that
further investigation into the effect of 4SC-202 on MYC, FOXM1, and SOX2 may clarify the mechanism
by which 4SC-202 is decreasing the stem-like population in these 3D models of ATRT.

Since the extracellular matrix plays an important role in activating endothelial cells and inducing
proliferation, migration, and angiogenesis [78], the extracellular-matrix- and angiogenesis-related
pathways identified by the integrated systems biology may have been perturbed by 4SC-202-treatment.
Several members of the HDAC family have been shown to be involved in the regulation of genes
in the extracellular matrix and tumor cells that influence angiogenesis [79]. Additionally, there are
results suggesting that other HDACi’s influence metastasis, but whether as a promotion or inhibition
is dependent on the study [80–83]. 4SC-202–induced inhibition of HDAC’s may therefore play an
important role in metastasis and/or angiogenesis.

Other pathways potentially perturbed by 4SC-202 include mRNA regulation, transcription,
and histone/chromatin organization, which are closely related to the histone-level mechanism of
action of 4SC-202. Changes to these pathways are consistent with expected results and support the
validity of the systems biology analyses. The systems biology analyses also suggested that biosynthetic
and metabolic pathways may have been perturbed. These biological processes may warrant further
investigation to fully understand the mechanism of action of 4SC-202 in ATRT.

This is the first study to examine the single-cell heterogeneity in ATRT following treatment with a
newly developed dual HDAC LSD1 inhibitor and the effect of the drug on the genomic landscape.
The findings that 4SC-202 reduces the stem cell population as assessed by single cell RNA sequencing
and the potential use of a targeted therapy in ATRT are unique and will have important implications
for the treatment of ATRT.

4. Materials and Methods

4.1. Cell Culture

The human cell line CHLA-06-ATRT denoted in this manuscript as ATRT-06 and CHLA-05-ATRT
(ATRT-05) were obtained from the posterior fossa of a 4-month-old female patient and the frontal lobe
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of a 2-year-old male patient, respectively. ATRT-06 was purchased from ATCC (Manassas, VA, USA,
CRL-3038). Control cells include neural stem cells (Lifelinebiotech, Reno, NV, USA) and astrocytes
and were cultured according to manufacturer’s protocols. Cancer cells and HEK-293 were cultured
in DMEM with 10% FBS, penicillin/streptomycin, and amphotericin, and incubated at 37 ◦C and 5%
CO2. Spheroids were formed by plating 1000 cells in culture media per well in ultra-low attachment
Corning spheroid microplates.

4.2. Spheroid Model

Cells were plated in triplicate in 96-well ultra-low attachment plates (Corning, Corning, NY, USA)
at 1000 cells-well at the indicated concentrations of 4SC-202, media alone, or DMSO control (0.02%).
Seven days following plating of cells, spheroids were treated with 4SC-202 (Selleckchem, Pittsburgh,
PA, USA) at concentrations ranging from 1 nM to 50 µM and corresponding DMSO control (0.02%) for
72 h prior to be analyzed for cytotoxicity with the Sytox Green (Invitrogen, Carlsbad, CA, USA) or
dissociated and frozen for RNA sequence analysis.

4.3. Development of 3D Scaffolds to Study the Effect of Domatinostat (4SC202) on ATRT-06 Cell Survival

ATRT-06 cells (1 × 106 cells/mL) were pre-labeled with DiO (10 µg/mL) for 1 h. Then, DiO-labeled
ATRT-06 cells were embedded in a 3D matrix scaffold that was engineered through the cross-linking
of fibrinogen into fibrin as previously described [55,84,85]. Briefly, a mixture of plasma, ATRT-06
cell suspension (1.5 × 105 cells/per scaffold) in DMEM complete media was embedded into scaffolds
that were then crosslinked using calcium chloride (CaCl2) and stabilized with trans-4-(Aminomethyl)
cyclohexanecarboxylicacid (AMCHA). ATRT-06 cells grown within the scaffold were treated with
Domatinostat (4SC-202) at a range of concentrations (0–50 µM). The treatment was carried out for
3 days during which the 3D ATRT-06 scaffolds were incubated either in 96 well plates or in 8-well
chamber slides for confocal imaging. 3D scaffolds containing ATRT-06 cells incubated with DMEM
complete media or DMSO were used as controls.

4.4. Sytox Green Cell Proliferation Assay and Viability Assays in 2D

1000 cells were plated per well of a 96-well white plate (Corning) and allowed to attach overnight
before being treated with 4SC-202 or vehicle DMSO at concentrations ranging from 0–20µM. After
72 h of treatment, cells were stained with Sytox Green (Thermo Scientific, Carlsbad, CA, USA) to
measure dead cell fluorescence, then permeabilized with 0.6% Triton X to determine live and total
cell fluorescence. Cell titer Glo Luminescence viability assay (Promega, Madison, WI, USA) was also
performed as an alternate method to verify viability.

4.5. Flow Cytometry for Spheroid Analysis

Cells were washed with 1X PBS and blocked with 2% FCS. For staining with CD133 (Miltenyi
Biosciences, Bergisch Gladbach, Germany, cat# 130-080-801), the antibody and the isotype control were
added separately to live cells and stained at 40 ◦C. For staining other antibodies, cells were fixed using
the 1:3 diluted Fix: Perm solution (Ebioscience, Carlsbad, CA, USA, cat# 00-5523-00) for 30 min at
room temperature. These cells were then washed with the Perm buffer (Ebioscience, cat# 00-5523-00).
Appropriate amounts of SOX2 antibody (Ebiosciences, cat# 50-9811-82) and isotype control were added
to separate tubes with fixed cells for 30 min at room temperature. The cells were washed with PBS and
analyzed using the BD ARIA (BD Bioscience, San Jose, CA, USA) cytometer. Flow cytometric plots
were obtained with Flow Jo (version v9/10). All the analyses were made with a starting count of 1
million total viable cells.
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4.6. Flow Cytometry for 3D Scaffold Analysis

At day 3, 3D scaffolds were enzymatically digested with collagenase (20 mg/mL for 2–3 h at 37
◦C), ATRT-06 cells were retrieved and analyzed. ATRT-06 cells were isolated and identified by gating
cells with a high DiO signal (excitation, 488 nm; emission, 530/30 nm). Cell viability was evaluated
by using a Sytox Blue live-dead fluorescent dye (S34857, Invitrogen) possessing excitation, 358 nm,
emission, 461 nm. For all analyses, a minimum of 10,000 events was acquired using BD FACS Fortessa
and FACSDiva v6.1.2 software. The ATRT-06 cell counts were always normalized to a predetermined
number of counting beads (424902, Biolegend, San Diego, CA, USA), and the data was analyzed using
FlowJo v10 (FlowJo, Ashland OR, USA).

4.7. Immunohistochemistry (IHC) and Immunofluorescence (IF) Staining of 3D Scaffolds

3D scaffolds containing ATRT-06 cells were fixed in 10% neutral buffered formalin and processed
on a Leica 300 ASP tissue processor. Paraffin-embedded matrix sections were longitudinally sliced at 10
µm. The BenchMark® XT automated slide staining system (Ventana Medical Systems, Inc., Oro Valley,
AZ, USA) and the Ventana iView DAB detection kit was used as the chromogen, and the slides were
counterstained with hematoxylin and eosin (H&E). H&E images were imaged using an Aperio VERSA
Bright field Fluorescence & FISH Digital Pathology Scanner (Leica, Westwood, NJ, USA). For IF studies,
paraffin sections were dewaxed in the following order: 10 min in xylene, 10 min in 100% ethanol,
10 min in 95% ethanol, 10 min in 70% ethanol and 10 min in distilled water, followed by rehydration
in wash buffer (0.02% BSA in PBS) for 10 min. After this, sections were subjected to incubation in
blocking buffer (5% BSA in PBS) for 60 min at room temperature to block non-specific staining between
the primary antibodies and the sample. Sections were rinsed with washing buffer and incubated in
incubation buffer (1% BSA in PBS) with different primary antibodies. Primary antibody incubation
was carried out overnight at 4 ◦C to allow for the optimal binding of antibodies to sample targets and
reduce non-specific background staining. The following primary antibodies: anti-CD133 (11-1339-42,
1:100, eBioScience, San Diego, CA, USA), anti-FOXM1 (sc-376471, 1:100, Santa Cruz Biotechnology,
Santa Cruz, CA, USA), and anti-SOX2 (ab97959, 1:100, Abcam, Burlingame, CA, USA) were used.
Wherever applicable, FITC conjugated (SAB4600042, 1:1000, Sigma Aldrich, Saint Louis, MO, USA)
and Alexa Fluor 594 conjugated (A11037, 1:1000, Thermo Fischer Scientific, Waltham, MA, USA)
secondary antibodies were used. For all the samples, blocking and incubation buffers were prepared
in 1X permeabilization buffer (Biolegend). The dilution of antibodies was carried out accordingly to
the manufacturer’s instructions. Lastly, a drop of anti-fade mounting media containing DAPI was
added to the samples and sections were imaged.

4.8. Confocal Imaging of 3D Scaffolds

3D scaffolds containing DiO-labeled ATRT-06 cells growing in 8 well chambers and paraffin
section matrix slides after IF staining were imaged using a Nikon Ti2-A1TR confocal microscope (×20
dry, ×40 oil and ×60 oil objectives, 2.5 magnified) and analyzed using NIS elements software (Nikon,
Melville, NY, USA). Samples were excited at 488 nm (FITC/DiO), 358 nm (DAPI), 540 nm (Alexa Fluor
594), and the emission light was collected at 500–530 nm, 461 nm, and 620 nm long pass, for each
channel, respectively. Z-stack images of approximately 0.5 mm thickness were taken for each sample
at 2 µm step sizes. Each frame consisted of a 520 × 520-pixel image, taken at a rate of 1 µs/pixel.
Captured sample images were manually analyzed using the Nikon NIS-Elements Advanced Research
version 3.2 software (Nikon Instruments, Tokyo, Japan) according to the manufacturer’s guidelines.
Briefly, from the total scan of each captured image, a region of interest (ROI) was selected using a 10×
magnification at a resolution of 1280 × 1024 (RGB 8 bit). FOXM1, SOX2, CD133 and DAPI were visible
in red, red, green and blue channels respectively, and each corresponding channel was selected to
perform a total cell number count for each marker. An additional deconvolution step was performed
to remove maximum unwanted noise. The object count option on the software was utilized to count
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the cell numbers in the ROI by manually tagging each cell in each channel. These steps enhanced the
discrimination ability of the software by using uniform parametric thresholds and by also improving
the signal/noise ratio. The object thresholds were manually adjusted to remove artifacts and to gather
or entirely distinct closed detected objects.

4.9. Cell Clustering Analysis of Confocal Images From 3D Scaffolds

DiO- and DAPI-labeled confocal micrographs were batch converted to TIFF stacks using Fiji’s
(version 2.0.0-rc-69/1.52p) batch converter [86,87]: no interpolation, scale factor 1.00, and read using
Bio-Formats version 6.3.1 [88]. Using a custom R (version 3.6.0) script [89–92], each TIFF stack had
its slice intensities summed into two values per slice: sum DAPI intensity and sum DiO intensity.
As part of image pre-processing, the sum intensity outliers were determined using Tukey’s “inner
fences” method [93]. The highest slice with either DAPI or DiO absolute maximum intensity was also
determined. Any slice that was both higher than the slice of absolute maximum intensity and had an
outlying sum intensity was removed from the rest of the stack (Figure S18). The final minimum slice
value acts as a dividing line between where the fluorescence signal represented cells on top of the glass
(2D cell culture) and the cells growing free in the scaffold (3D cell culture). The cropped TIFF stacks
were saved as separate channels for subsequent pre-processing.

The following operations were performed using a custom macro in Fiji [86,87]. The cropped
channel images were duplicated, and threshold values were retrieved via the auto-threshold function
using Otsu’s method [94,95]. Object data was extracted using 3D Objects Counter [96]: show masked
images with redirection to other duplicate images, threshold value retrieved from Otsu’s auto-threshold,
including object sizes from ten pixels to maximum volume, exclude objects on edges, show statistics
and summary. The masked images were saved as TIFF stacks, and object data statistics tables were
saved as CSVs for use in R.

Using a custom R script (R Core Team, 2016), DiO object volume data (in µm3) was compiled
according to condition and day. Density histograms (Figure S3) were generated with the “ggpubr” and
“scales” R packages. The “peak region” histograms have domains [0, x + 2σ], where the sample mean
and standard deviation are derived from the respective histogram’s data.

Using a custom macro in Fiji [86,87], each condition and day’s channels were merged accordingly,
made into composites, and had their objects smoothed. Resultant image stacks were saved as TIFFs in
preparation for 3D videos. The composite images were manually viewed using Fiji’s 3D Viewer version
2.0 [97]: threshold 0, resampling factor 1, all channels displayed. Bounding boxes and coordinate
systems were shown. An appropriate view angle was manually chosen, and the animation options
were changed such that each image was rotated around the y-axis, and the rotation interval was 1.00
degree. Videos were recorded of a 360-degree rotation, and each video was saved as an AVI with JPEG
compression and 24.0 fps framerate. Day three videos are available as Videos S1–S4.

4.10. Single-Cell RNA-Sequencing Experimental Protocol

The ATRT cell line ATRT-06 spheroids were grown in cell culture (DMEM, 10% FBS, Penicillin/Strep)
at 37 ◦C. The cells were initially harvested using 0.25% Trypsin-EDTA, and a cell count performed
using Trypan blue exclusion assay. 1000 cells were plated per 100 microliters of medium in a 96 well of
an ultra-low attachment Corning spheroid microplate.

On day 7 after plating, spheroids were assigned to one of three experimental groups: early
untreated (small spheroid group), vehicle-treated control (large spheroid), and 4SC-202-treated (large
spheroid) groups. Early smaller untreated spheroids were dissociated on day 7 with Accumax (Millipore
Sigma, St. Louis, MO, USA). Approximately 10,000 dissociated ATRT-06 cells were resuspended in
a resuspension medium containing DMEM with 40% FBS and then 5,000 live cells were frozen into
cryovials containing DMEM with 30% DMSO and 40% FBS as described in the Cryopreservation
Protocol for Cryopreservation of Human PBMC’s in the 10× Genomics protocol.
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Remaining spheroids were treated either with 56 nM 4SC-202 (4SC-202-treated group) or 0.02%
DMSO (vehicle-treated control group) for 72 h. On day 9, 4SC-202-treated and vehicle-treated spheroids
were dissociated and frozen down as described above. Approximately 20,000 cells were dissociated
from ATRT-06 spheroids for each control and experimental group. Following dissociation of the
spheroids with Accutase, cells were stained with Trypan Blue and counted using the Countess
(Invitrogen). 10,000 live cells from 4SC-202-treated or vehicle-treated control spheroids and were then
frozen using DMEM with 30% DMSO and 40% FBS (10× Genomics).

Library preparation, sequencing, and the initial run of Cell Ranger pipeline were performed
at the University of Minnesota Genomics Center. After thawing, the cells were counted, and the
percent viability calculated. The early untreated experimental group had 4,500 cells with 60% viability,
the vehicle-treated group had 9,500 cells with 63% viability, and the 4SC-202-treated experimental
group had 8,000 cells with 72% viability. The 10× Genomics libraries were prepared using the Single
Cell 3’ v2 chemistry. Libraries were sequenced on an Illumina HiSeq 2500 in High-output mode
(paired-end, index: 8 bp, read 1: 26 bp, read 2: 98 bp). Minimum intended coverage was 25,000
reads per cell. Actual coverage was 244,859 reads/cell for early untreated control spheroids (harvested
day 7), 545,618 reads/cell for vehicle-treated spheroids (harvested day 9), and 19,353 reads/cell for
4SC-202-treated spheroids (harvested day 9).

4.11. Single-Cell RNA-Sequencing Data Analysis

10× Genomics single cell data were demultiplexed, aligned, and quantified using the Cell Ranger
pipeline (version 1.3.1, aligned to GRCh38). 10× data were read into the Seurat workflow for quality
control, integration, clustering, and differential expression analysis (version 3.0.1) [36,37]. Cells with
more than 40,000 RNA molecules were trimmed before further analysis (Figure S19A). Data were
normalized and variable features identified for individual samples. 4000 rather than the default 2000
variable features were identified in order to increase the number of features included with low but
significant expression changes (Figure S19B–D). Integration steps were performed with 50 dimensions.
The first 50 principle components (PCs) are used for inputs into the Shared Nearest Neighbor Graph
for clustering and the Uniform Manifold Approximation and Projection (UMAP) algorithm based on
the variability of the datasets. All of the first 50 PCs are considered significant relative to a uniform
distribution of p values, though the variance explained by each additional PC appears to be small
by 50 (Figure S19E,F). Graph-based clustering was performed with Seurat workflow without user
explicitly choosing number of clusters. Seurat clustering was validated by comparing with default
clustering in the Cell Ranger pipeline (Figure S20).

Differential expression was run based on a Wilcoxon Rank Sum test (|Log Fold Change| > 0.25,
p < 0.01) or by using a Poisson generalized linear model. Results from the Poisson model were used
exclusively for comparison with the bulk sequencing differential expression. Differentially expressed
genes from the Poisson differential expression were also input into DAVID [44,45] for functional
annotation analysis and clustering with a Homo sapiens background. p values were adjusted using
the Bonferroni correction for multiple testing. To confirm results from the Seurat workflow, or in
cases where interesting features are excluded due to the gene selection step in the Seurat workflow,
locally distinguishing significant feature comparisons were run on Loupe Cell Browser and/or an
ANOVA with a post-hoc Tukey’s Honestly Significant Difference test were run in R using base packages
and dplyr. Features were normalized according to the CellRanger protocol prior to testing in Loupe
Cell browser and were scaled by a size factor that was calculated as the total UMI count per cell divided
by the median UMI sum across all cells prior to ANOVA testing. Raw single-cell RNA-sequencing
data were submitted to the Sequence Read Archive under the BioProject PRJNA588272.

4.12. Bulk RNA-Sequencing

Approximately 10 days after plating, spheroids were treated with 56 nM 4SC-202, vehicle (DMSO
0.02%), or media only for 72 h. RNA extraction (RNeasy, Qiagen, Germantown, MD, USA) was
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performed on the spheroids and RNA quality was assessed using BioAnalyzer. The samples were
sent to the Genomics Sequencing Facility at South Dakota State University for library preparation and
sequencing. The samples were sequenced using Illumina NextSeq 500 (paired-end, 76 bp, 4 lanes).
FASTQ files were checked for quality control via BaseSpace. Files were uploaded as pair-end reads to
CLC-Bio and reads were aligned to GRCh38.p13. Gene quantification was performed with default
options. Differential expression analysis was performed using TPM values in OmicsBox using edgeR
with default parameters [98]. Differentially expressed genes (FDR < 0.05) were input into DAVID [44,45]
for functional annotation analysis and clustering with a Homo sapiens background. Raw sequencing
reads are available on the Sequence Read Archive under the BioProject PRJNA600953.

4.13. Microarray Analysis

Normalized gene expression data from Affymetrix HG-U133 Plus 2.0 arrays were downloaded
from Gene Expression Omnibus (GEO) repository number GSE35493 [29]. Of the samples, n = 2 were
normal pediatric cerebellum tissue, n = 9 were normal pediatric brain tissue, and n = 20 were ATRT
tissue. The normal brain tissue included n = 2 pediatric cerebellum, n = 2 pediatric occipital lobe,
n = 2 pediatric parietal lobe, n = 2 temporal lobe, and n = 1 pediatric frontal lobe tissue samples.
All Affymetrix probesets mapped to the genes of interest were considered. Error bars represent the
standard error of the mean. Significance was determined using the Linear Models for Microarray
Data (LIMMA) package implemented in GEO2R [99]. P values were adjusted using the Benjamini and
Hochberg procedure.

4.14. NanoString Analysis

Raw gene expression data from the NanoString nCounter technology that were previously
published in Chakravdhanula et al. [30] were reanalyzed using the NanoStringBioNet workflow [100].
Of the samples, n = 7 were age-matched patient-derived neuronal samples and n = 17 were ATRT
tumor tissue. All samples were frozen tissue samples. Normalization of the expression data was
performed using the NanoStringQCPro package version 1.16.0 [101]. Differential expression analysis
was performed using NanoStringDiff version 1.14.0 [102]. Normalized data are available upon
reasonable request.

4.15. Biological Process-Level Systems Biology Analysis

Genes with an adjusted p value of less than 0.05 were considered differentially expressed. Log fold
changes for differentially expressed genes were input into NetworkAnalyst 3.0 [43,103] for network
generation. Cerebellum-specific protein–protein interactions (ppi) come from the DifferentialNet
database (filter 15.0th percentile) [104], gene-transcription factor interactions are based on the ENCODE
ChIP-seq data [105], gene-miRNA interactions are from TarBase and miRTarBase [106]. The cerebellum
gene co-expression network is based on data from the TCSBN database [107]. For each network,
overrepresentation analysis (ORA) was performed on each network compared to the gene sets in the
PANTHER: BP database and processes with an FDR < 0.1 were considered significant. ORA results
from the gene set, cerebellum ppi network, gene-TF network, gene-miRNA network, and cerebellum
co-expression networks were pooled and tabulated, and terms that appeared in more than three
networks were further assessed to see if related terms also appeared. The terms “Skeletal system
development”, “Protein localization”, and “Viral process” appeared in at least three networks but were
dismissed because they were isolated terms and were of less biological interest.

4.16. Integrated Systems Biology Analysis

The ppi, gene-TF, gene-miRNA, and co-expression networks that were created as described above
were trimmed in NetworkAnalyst to between 200 and 600 nodes (200 to 17,000 edges) by increasing
the degree or betweenness requirements (ppi: 10 degree, gene-TF: 25 degree, gene-miRNA: 25 degree,
gene co-expression: 2 degree, 4 betweenness). A protein-drug interaction network was also created
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based on data collected from DrugBank 5.0 [108]. All of the trimmed networks were merged in
Cytoscape [109]. In the merge, 283 nodes were replicates, but only 20 edges suggesting that the
networks were largely non-redundant. Clusters of terms were identified from the merged network
using the MCODE application with default settings [110]. Clusters were then tested for GO biological
processes overrepresentation using the BiNGO application [111].

5. Conclusions

ATRT is an aggressive pediatric cancer that relies upon a standard of care that has lasting and
severe side effects. In this study, 4SC-202 was examined as a potential small molecule therapeutic to
ATRT in 2D and 3D cell culture models. 3D cell culture models included spheroids and a plasma-based
scaffold that mimics in vivo extracellular matrix conditions. We found that targets of 4SC-202, HDAC1,
HDAC2, HDAC3, and LSD1 are significantly overexpressed in ATRT relative to normal brain. In both 2D
and 3D cell culture models, 4SC-202 had cytostatic and cytotoxic effects. Single-cell RNA-sequencing
of the spheroid model of ATRT indicated that a population of cells that overexpressed stem-cell-related
genes was significantly reduced after treatment with 4SC-202. This population of cells overexpressed
both SOX2 and FOXM1, which interact in the protein–protein network. In both the spheroid model
and the scaffold model, the SOX2 high population was shown to decrease with 4SC-202-treatment,
and in the scaffold model, FOXM1, and CD133 populations decreased with treatment. These results
indicate that 4SC-202 affects a population of cells with stem-like expression profiles. Multiple systems
biology analyses were also conducted to identify potentially perturbed pathways in the systems biology
landscape of the tumor cell populations from single and bulk RNA-sequencing datasets. Resulting
processes included apoptosis regulation-related, extracellular matrix-related, angiogenesis-related,
and metabolism-related biological processes. Further studies are warranted to assess the effect 4SC-202
may have on the radio-sensitivity and metastasis of ATRT.
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