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Abstract

Two sets A and B of points in the plane are mutually avoiding if no line generated
by any two points in A intersects the convex hull of B, and vice versa. In 1994, Aronov,
Erdos, Goddard, Kleitman, Klugerman, Pach, and Schulman showed that every set of
n points in the plane in general position contains a pair of mutually avoiding sets each
of size at least y/n/12. As a corollary, their result implies that, for every set of n points
in the plane in general position, one can find at least \/n/12 segments, each joining
two of the points, such that these segments are pairwise crossing.

In this note, we prove a fractional version of their theorem: for every k > 0 there
is a constant £, > 0 such that any sufficiently large point set P in the plane contains
2k subsets Aq,..., A, B1,..., By, each of size at least €;|P|, such that every pair of
sets A = {a1,...,ax} and B = {b1,...,b;}, with a; € A; and b; € B;, are mutually
avoiding. Moreover, we show that ¢, = Q(1/k*). Similar results are obtained in higher
dimensions.

1 Introduction

Let P be an n-element point set in the plane in general position, that is, no three members are
collinear. For k > 0, we say that P contains a crossing family of size k if there are k segments
whose endpoints are in P that are pairwise crossing. Crossing families were introduced in
1994 by Aronov, Erdés, Goddard, Kleitman, Kluggerman, Pach, and Schulman [1], who
showed that for any given set of n points in the plane in general position, there exists a
crossing family of size at least \/n/12. They raised the following problem (see also Chapter 9
in [3]).

Problem 1.1 ([1]). Does there exist a constant ¢ > 0 such that every set of n points in the
plane in general position contains a crossing family of size at least cn?

There have been several results on crossing families over the past several decades [7, 11, 13].
Very recently, Pach, Rudin, and Tardos showed that any set of n points in general position
in the plane determines n'=°1) pairwise crossing segments. More precisely, they proved the
following theorem.
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Figure 1: Two mutually avoiding sets A = {aq,as, a3, as} and B = {by, bs, b3, by} yield a crossing
family of size four.

Theorem 1.2 ([10]). Any set P of n points in general position in the plane determines at

least n/2o(\/ ogn) yirwise crossing segments.

The result of Aronov et al. on crossing families was actually obtained by finding point
sets that are mutually avoiding. Let A and B be two disjoint point sets in the plane. We say
that A avoids B if no line subtended by a pair of points in A intersects the convex hull of
B. The sets A and B are mutually avoiding if A avoids B and B avoids A. In other words,
A and B are mutually avoiding if and only if each point in A ”sees” every point in B in the
same clockwise order, and vice versa. Hence two mutually avoiding sets A and B, where
|A| = |B| = k, would yield a crossing family of size k. See Figure 1.

Theorem 1.3 ([1]). Any set of n points in the plane in general position contains a pair of
mutually avoiding sets, each of size at least v/n/12.

It was shown by Valtr [14] that this bound is best possible up to a constant factor. In
this note, we give a fractional version of Theorem 1.3.

Theorem 1.4. For every k > 0 there is a constant €, > 0 such that every sufficiently large
point set P in the plane in general position contains 2k disjoint subsets A1, ..., Ay, By, ..., By,
each of size at least €| P|, such that every pair of sets A = {ay,...,ax} and B ={by,... by},
with a; € A; and b; € By, are mutually avoiding. Moreover, €, = Q(1/k%).

As an immediate corollary, we establish the following fractional version of the crossing
families theorem.

Theorem 1.5. For every k > 0 there is a constant €, > 0 such that every sufficiently large
point set P in the plane in general position contains 2k subsets Ay, ..., Ay, By, ..., By, each
of size at least ex|P|, such that every segment that joins a point from A; and Byy1—; crosses
every segment that joins a point from A1 and By, for 1 <i < k. Moreover, g, = Q(1/k*).

Let us remark that if we are not interested in optimizing ¢ in the theorems above, one
can combine the well-known same-type lemma due to Barany and Valtr [2] (see section 3.1)
with Theorem 1.3 to establish Theorems 1.4 and 1.5 with g5, = 27°*")._ Hence, the main



advantage in the theorems above is that ¢, decays only polynomially in k. We will however,
use this approach in higher dimensions with a more refined same-type lemma.

Higher dimensions. Mutually avoiding sets in R? are defined similarly. A point set P in
R? is in general position if no d + 1 members of P lie on a common hyperplane. Given two
point sets A and B in R?, we say that A avoids B if no hyperplane generated by a d-tuple
in A intersects the convex hull of B. The sets A and B are mutually avoiding if A avoids B
and B avoids A. Aronov et al. proved the following.

Theorem 1.6 ([1]). For fived d > 3, any set of n points in R? in general position contains
a pair of mutually avoiding subsets each of size Qd(nl/(d2*d+1)).

In the other direction, Valtr showed in [14] that by taking a k x - - - x k grid, where k = [n'/?],

and slightly perturbing the n points so that the resulting set is in general position, one obtains

a point set that does not contain mutually avoiding sets of size cn'~'/?, where ¢ = ¢(d).
Our next result is a fractional version of Theorem 1.6.

Theorem 1.7. For d > 3 and k > 2, there is a constant €45, such that every sufficiently
large point set P in R? in general position contains 2k subsets Ai,..., Ay, Bi,..., By, each
of size at least ;| P|, such that every pair of sets A ={ay,...,ar} and B = {by,..., b}, with
a; € A; and b; € B;, are mutually avoiding. Moreover, €4 = 1/k where cq > 0 depends
only on d.

Similar to Theorem 1.4, €4 in Theorem 1.7 also decays only polynomially in k for fixed
d > 3. However, ¢, does have a rather bad dependency on d, ¢; ~ 2°@.

Finally, we establish a result on crossing families in higher dimensions which was also
observed by Aronov et al. in [1].

2 Proof of Theorem 1.4

Proof. In this section we give the proof of Theorem 1.4 which closely follows an argument
of Pér and Valtr in [12]. Let k£ > 2 and let P be a set of n points in the plane in general
position where n > (1500k)%. Tt follows from Theorem 1.2 that among any 12(40k + 1)?
points P, it is always possible to find two mutually avoiding sets A C P and B C P each of
size at least 40k + 1. It follows that P contains at least

(12(40712+1)2) o (801?+2)
( n—(80k+2) ) o (12(40k+1)2)
12(40k+1)2—(80k+2) 80k+2

(2.1)

pairs of mutually avoiding sets, each set of size 40k + 1. Note that (2.1) follows from the
equality

G G

for positive integers m,a,b where 1 < b < a < m.




Let A and B be a pair of mutually avoiding sets each of size 40k + 1. For b € B, label
the points in A with aq, ..., a4or,1 in radial clockwise order with respect to b. Likewise, for
a € A, label the points in B with by, ..., byory1 in radial counterclockwise order with respect
to a. We say that the pair (A’, B") supports the pair (A, B) if A’ = {a; € A;i =1 mod 4}
and B’ = {b; € B;i =1 mod 4}. Clearly, |A'| = |B'| = 10k + 1.

Since P has at most (10£+1)2 pairs of disjoint subsets with size 10k + 1 each, there is a
pair of subsets (A’, B’) such that A’, B’ C P,|A’| = |B’'| = 10k + 1, and (A’, B") supports at
least
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= |B| = 40k + 1. Notice that for the first

" ) , where 1 < r < m. To see why the

mutually avoiding pairs (A, B) in P, where |A]
inequality, we use the inequality (%)T < (T) <
second inequality holds, we claim that

(10k + 1)20k+2 L1
(40/€ + 1)160k+4 (50/6)141’“

as long as k > 2.

To prove the claim, we need to show that

4 1\ 20k+2
(50k)M% > (40k + 1)140k+2 (()]{;—4—) |

10k + 1

Since k > 2, (40k + 1)110k+2 (g,}z_ﬁ)zomz < (40k + 1)141’“(‘118];—11)21’“. Therefore, it is enough to
show

(50k)"(10k + 1)* > (40k + 1)'%2,

It is easy to check that 504110 > (40.5)'6? (since k > 2, 40k+1 < 40.5k) and this completes
the proof of the claim. For the last inequality, it is easy to observe that e100%41280k+2(50) 141k <
(430)1% for k > 2. Note that
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Therefore,
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Figure 2: The regions A; and B; defined by support A" = {a}, a}, a},a} and B = {b}, b, b5, b} }.
Let us remark that 4 # 10k + 1 for k € Z. The purpose of this figure is to give some intuition on
how the regions A; and B; are formed.

Set A" = {a},...,d}gp,} and B = {b,... b}, ). For any two consecutive points
aj,a;.; € A',1 <1 < 10k, consider the region A; produced by the intersection of regions
bounded by the lines ba;, bia;,, and b.a;, bg,a;, .. Similarly, we define the region B; pro-
duced by the intersection of regions bounded by the lines a0}, a1}, and a},,b;, a}obi,, for
1 <i < 10k. Therefore, we have 20k regions Ay, ..., Aiox, Bi, ..., Biok. See Figure 2.

Observation 2.1. Let A and B be a pair of mutually avoiding sets each of size 40k + 1.
If (A',B') supports (A, B), where A" = {a},...,a}p} and B" = {b},... b\, }, then
A=AUAU---UAyg and B = B'U By U--- U By, where |4;| = |B;| = 3 for all
1 <4 < 10k, and A; lies in region A; and B; lies in region B;.

For ¢ =1,...,10k, let «;, respectively f;, denote the number of points of P lying in the
interior of A;, respectively B;. It follows from Observation 2.1 that (A’, B’) supports at most

| (%) | (g) pairs of mutually avoiding sets (A, B), each of size 40k + 1. Therefore,

10k 10k

1,60k 10k o B ,
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Without loss of generality, let us relabel the regions Ay, ..., Aok, Bi, ..., Biox so that a; <
Qg < - <o and fy < Py <o < Pog

Claim 2.2. There exists an i such that 1 <1 < 9k, and oy, B; > m.



Proof. For the sake of contradiction, suppose for each 7, 1 <17 < 9k, we have o; <

(1327614)4 :
Therefore,
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Hence, we have

n20k n20k

(30K)%7F = (1320k)%0k (11k)11F

(2.2)

After simplifying (2.2), we get % < 1 which is a contradiction as % ~ 1.054.
Thus, there exists an 7, 1 < ¢ < 9k, with a; > . With a similar calculation, there

(1320k
exists an ¢, 1 <17 < 9k with §; > O

_n__
(1320k)% *

By setting A} = P N Aoy and B = P N By, for 1 < ¢ < k, we have 2k sub-
sets Aj,..., A}, By,..., B}, each of size at least W, such that every pair of subsets
{a1,...,a;} and {by,..., by}, where a; € A and b; € B}, is mutually avoiding. ]

3 Mutually avoiding sets in higher dimensions

In this section we will prove Theorem 1.7. Let P = (pi,...,pn) be an n-element point
sequence in R? in general position. The order type of P is the mapping  : ( d +1) — {+1,-1}
(positive orientation, negative orientation), assigning each (d + 1)-tuple of P its orientation.
More precisely, by setting p; = (a;1, @iz, - - .,a;q4) € RY,

1 1 ... 1
iy 1 Qi1 - oo gyl
X({pi17pi27"'7p’id+1}) = sgn det : : .. : )
Aiy,d  Qig,d -+ Qigyy,d

where 11 < iy < -+ < id+1.
Hence two point sequences P = (py,...,p,) and @ = (q1, ..., q,) have the same order-type
if and only if they are “combinatorially equivalent.” See [6] and [9] for more background on
order-types.

Given k disjoint subsets Py,..., P, C P, a transversal of (P,..., P) is any k-element
sequence (p1,...,px) such that p; € P; for all i. We say that the k-tuple (P, ..., P;) has
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same-type transversals if all of its transversals have the same order-type. In 1998, Barany
and Valtr proved the following same-type lemma.

Lemma 3.1 ([2]). Let P = (p1,...,pn) be an n-element point sequence in R in general
position. Then for k > 0, there is an ¢ = e(d, k), such that one can find disjoint subsets
Py, ..., P, C P such that (P, ..., P;) has same-type transversals and |P;| > en.

Their proof shows that £ = 2-0""") " This was later improved by Fox, Pach, and Suk [5]
who showed that Lemma 3.1 holds with & = 2-9@*18%) e will use the following result,
which was communicated to us by Jacob Fox, which shows that Lemma 3.1 holds with e
decaying only polynomially in k for fixed d > 3.

Lemma 3.2. Lemma 3.1 holds for e = k™%, where cq depends only on d.

The proof of Lemma 3.2 is a simple application of the following regularity lemma due to
Fox, Pach, and Suk. A partition on a finite set P is called equitable if any two parts differ
in size by at most one.

Lemma 3.3 (Theorem 1.3 in [5]). For d > 0, there is a constant ¢ = c(d) such that the
following holds. For any e > 0 and for any n-element point sequence P = (py, ..., p,) in R?,
there is an equitable partition P = Py U ---U Pk, with 1/e < K < (1/¢€)¢, such that all but

at most 5(df§1) (d + 1)-tuples of parts (P, ..., F,,,,) have same-type transversals.

Let us note that K > 1/e follows by first arbitrarily partitioning P into [1/e| parts, such
that any two parts differ in size by at most one, and then following the proof of Theorem
1.3 in [5].

The next lemma we will use is Turan’s Theorem for hypergraphs. Given an r-uniform
hypergraph H, let ex(n,H) denote the maximum number of edges in any H-free r-uniform
hypergraph on n vertices.

Lemma 3.4 (de Caen [4]). Let K}, denote the complete r-uniform hypergraph on k vertices.

Then
1 n
(7"71) r
Proof of Lemma 3.2. Let P = (py,...,p,) be an n-element point sequence in R? in general

position. Set ¢ = 1/(2k)?, and apply Lemma 3.3 to P with parameter ¢ to obtain the
equitable partition P = P, U --- U Pg with the desired properties. Hence |P;| > n/(2k)%¢,
where c is defined in Lemma 3.3. Since all but at most 5( K) (d + 1)-tuples of parts

d+1
(P P,,.,) have same-type transversals, we can apply Lemma 3.4 to obtain k parts

19 iy
Pl P € {P,..., P} such that all (d+ 1)-tuples (F,..., P, ) in {P/,..., P} have
same-type transversals. O]

Proof of Theorem 1.7. Let k > 0 and let P be an n-element point set in R¢ in general
position. We will order the elements of P = {p,...,p,} by increasing first coordinate,
breaking ties arbitrarily. Let ¢ = ¢/(d) be a sufficiently large constant that will be determined



later. We apply Lemma 3.2 to P with parameter &' = [k¢] to obtain subsets Py, ..., Py C P
such that |P,| > k~%“n, where c; is defined in Lemma 3.2, such that all (d + 1)-tuples
(P P,,,,) have same-type transversals. Let P’ be a k’-element subset obtained by
selecting one point from each subset P;. By applying Theorem 1.6 to P’, we obtain subsets
A,B C P’ such that A and B are mutually avoiding, and |A|, |B| > Q((k")"/(@~4+1) By
choosing ¢ = (d) sufficiently large, we have |A|,|B| > k. Let {ai,...,ax} C A and
{b1,...,b} C B. Then the subsets A;,..., Ay, By,..., By € {Py,..., Py}, where a; € A;

and b; € B;, are as required in the theorem. O
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3.1 Crossing Families in Higher Dimensions

Let P be an n-element point set in R? in general position. A (d — 1)-simplez in P is a
(d — 1)-dimensional simplex generated by taking the convex hull of d points in P. We say
that two (d—1)-simplices strongly cross in P if their interiors intersect and they do not share
a common vertex. A crossing family of size k in P is a set of k pairwise strongly crossing
(d — 1)-simplices in P.

In [1], Aronov et al. stated that Theorem 1.6 implies that every point set P in R? in
general position contains a polynomial-sized crossing family, that is, a collection of (d — 1)-
simplices in P such that any two strongly cross. Since they omitted the details, below we
provide the construction of a crossing family using mutually avoiding sets in R

Corollary 3.5. Let d > 2 and let P be a set of n points in R? in general position. Then P
1
contains a crossing family of size Q(\/n) for d =2, and of size Qq(n*TMi=s~=+) for d > 3.

Proof. We proceed by induction on d. The base case d = 2 follows from Theorem 1.3: a pair
of mutually avoiding sets A and B in the plane, each of size Q(y/n), gives rise to a crossing
family of size Q2(y/n). For the inductive step, assume the statement holds for all d’ < d.

Let P be a set of n points in R? in general position. By Theorem 1.6, there is a pair
of mutually avoiding sets A and B such that |A| = |B| = k = Qd(nm). Let A =
{a1,...,ar} and B = {by,...,bx}. Since conv(A) Nconv(B) = (), by the separation theorem
(see Theorem 1.2.4 in [9]), there is a hyperplane H such that A lies in one of the closed
half-spaces determined by H, and B lies in the opposite closed half-space.

For each a; € A, let a;b be the line generated by points a; and b € B. Then set
B; = {a;bNH : b € B}. Since P is in general position, B; is also in general position in
‘H for each 7. Moreover, since A and B are mutually avoiding, B; has the same order-type
as B; for every i # j. Indeed, for any d-tuple b;,,b;,,...,b;, € B, every point in A lies on
the same side of the hyperplane generated by b;,,0b;,,...,b;,. Hence the orientation of the
corresponding d-tuple in B; C ‘H will be the same as the orientation of the corresponding
d-tuple in B; C H for ¢ # j. Therefore, let us just consider By C H. By the induction
hypothesis, there exists a crossing family of (d — 2)-simplices of size

1 1
L — Q4 (k21—[‘ii_31(i2i+1)) = Qy <n2ng_3<i2¢+1)) :

in B C H.Let S ={S1,...,Sp} be our set of pairwise crossing (d — 2)-simplices in B; C H
and let 8" = {S],...,S..} be the corresponding (d — 2)-simplices in B (which may or may
not intersect).



Set S = conv(a; US!). Then Sj,...,S;, is a set of k' pairwise crossing (d — 1)-simplices
in R Indeed, consider S} and S; It SN S} # (), then we are done. Otherwise, we would
have S; NS # 0 or ;N S} # 0 since B; and B; have the same order type and S; N S; # 0.
More precisely, let r; be a ray from a; through an intersection point of S; and S;. The ray r;
intersects both S; and S; by the definition of S; and §;. Without loss of generality assume
r; intersects S; first. It follows that S; N Sy #0. O
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