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ABSTRACT

Legume plants such as soybean produce two major types of root lateral organs, lateral roots and root nodules.
A robust computational framework was developed to predict potential gene regulatory networks (GRNs) associated
with root lateral organ development in soybean. A genome-scale expression data set was obtained from soybean
root nodules and lateral roots and subjected to biclustering using QUBIC (QUalitative BIClustering algorithm).
Biclusters and transcription factor (TF) genes with enriched expression in lateral root tissues were converged using
different network inference algorithms to predict high-confidence regulatory modules that were repeatedly retrieved
in different methods. The ranked combination of results from all different network inference algorithms into one
ensemble solution identified 21 GRN modules of 182 co-regulated genes networks, potentially involved in root lat-
eral organ development stages in soybean. The workflow correctly predicted previously known nodule- and lateral
root-associated TFs including the expected hierarchical relationships. The results revealed distinct high-confidence
GRN modules associated with early nodule development involving AP2, GRF5 and C3H family TFs, and those
associated with nodule maturation involving GRAS, LBD41 and ARR18 family TFs. Knowledge from this work sup-
ported by experimental validation in the future is expected to help determine key gene targets for biotechnological
strategies to optimize nodule formation and enhance nitrogen fixation.
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INTRODUCTION
Gene regulation is a fundamental process that controls the spatial and
temporal patterns of gene expression. Transcription factors (TFs) are
central to gene regulation as their activities determine the expression
patterns and function of multiple genes (Eeckhoute et al. 2009). A TF
is a functional protein that binds to short sequences (called TF bind-
ing site or cis-regulatory elements) on the upstream promoter region
of genes to regulate their transcription. One TF can regulate multiple
genes including other TFs in signalling, developmental or metabolic

pathway. Therefore, TFs act as master regulators of pathways. The
nested group of all different TF regulators and their downstream tar-
get genes form gene regulatory networks (GRNs) (Blais and Dynlacht
2005). Identification of GRNs and key TFs that are part of these net-
works is an effective first step to answer multiple biological questions
on genotype to phenotype relationships (Petricka and Benfey 2011;
Kim and Przytycka 2013). Potential TFs, their co-regulators, down-
stream signalling pathways and target genes associated with specific
biological processes can be predicted by constructing GRNs.
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Clustering of large-scale data sets such as global gene expression
profiles obtained by RNA sequencing to identify co-regulated TFs
and the targeting genes is a promising approach to model and infer
the GRNs at a systems level (Udvardi et al. 2007; Baitaluk et al. 2012).
For example, grouping genes/TFs with similar expression patterns (i.e.
co-expressed genes) across a group of samples might give insight on
TF regulated gene networks and related biological processes. In addi-
tion, gene expression is regulated at multiple levels through different
mechanisms (Kaufmann et al. 2010). Recruitment and binding of
other proteins such as ‘co-factors’ in TF complexes to tightly regulate
the location or the extent of transcription is one of the major mecha-
nisms (Guan ef al. 2014). Often, these interactions between different
TFs and co-factor partners are studied using protein—protein interac-
tion (PPI) assays, which provide novel insights into their potential bio-
logical function (Rivas and Fontanillo 2010; Szklarczyk et al. 2017).
Indication of PPIs among co-regulated genes can add confidence to
GRN predictions, and PPIs can reveal signalling, regulatory and/or
biochemical roles of proteins based on their interactomes (Chaturvedi
et al. 2007).

The combined use of high-throughput data and mathematical
models to build gene co-expression and regulatory networks is the core
principle of many systems biology approaches (Sun and Zhao 2009).
However, these large-scale data sets are likely to be noisy, and GRN
predictions using these big data sets may contain a high number of false
positives. Additionally, GRN inference is a computationally intensive
job; so filtered data sets consisting of well-defined/accurate data sets
(such as significantly co-expressed genes set) might dramatically
reduce the computational complexity and time. Most importantly, it
would reduce the true search space for the prediction of regulator TFs
and their potential target genes and minimize false positives. In order
to obtain significantly co-expressed genes, ‘biclustering’ is a desirable
method as it allows two-way clustering of genes as well as samples, i.e.
a similar expression pattern (co-expressed genes) under a subset of all
samples. Subsequently, the use of sorted, biclustering-filtered data for
GRN inference might improve the TF regulator and target gene pre-
diction accuracy. We applied this approach to determine GRNs associ-
ated with root lateral organ development in soybean.

Plants produce lateral organs such as leaves, flowers and lateral
roots (LRs). Pools of stem cells present in the growing tip of the shoot
(the shoot apical meristem) contribute to the formation of aerial/
shoot lateral organs. Lateral organs in the root are unique in that they
are derived via de novo differentiation of mature cells in the root. Lateral
roots are present in all vascular plants, but a group of Fabids clade
plants is capable of producing another root lateral organ, called root
nodules’ These arise from specific and coordinated interactions with a
set of nitrogen-fixing bacteria collectively called rhizobia. For example,
the interaction of soybeans with Bradyrhizobium diazoefficiens results
in root nodules. Biological nitrogen fixation in root nodules helps
reduce the need for chemical nitrogen fertilizers, which are expen-
sive and cause environmental pollution. Similarly, proper patterns of
LR formation (root branching) are crucial for plants to access water
and other nutrients in the soil. Therefore, these two root lateral organs
play important roles in the development of soybeans, a major crop in
the USA as well as in other countries. A number of genetic and sys-
tems biology studies especially in the model plant Arabidopsis thaliana

have identified developmental pathways and regulators involved in LR
development (Benkové and Bielach 2010; Atkinson et al. 2014; Du
and Scheres 2018). Many functional genomics studies have identified
genes expressed during nodule development in soybean and other leg-
umes (Zhu et al. 2013; Li and Jackson 2016). However, only a few reg-
ulators associated with nodule development are known and these were
identified primarily using genetic approaches that require the presence
of a clear developmental phenotype (Roy et al. 2020).

Recently, we obtained transcriptomes of emerging nodules (ENs),
mature nodules (MNs), emerging LRs (ELRs) and young LRs (YLRs)
in soybean (Adhikari et al. 2019). This allowed us to identify genes and
TFs that are enriched specifically in nodule tissues and not in LRs. We
present a robust computational framework, which we applied to pre-
dict TFs and their target GRNSs associated with soybean root nodule
development. This approach consists of the following steps (Fig. 1): (i)
preparing a compendium of soybean lateral organ transcriptome data
and cataloging TFs enriched in root nodules; (ii) initial biclustering
of transcriptome data using the QUalitative BIClustering (QUBIC)
algorithm (Li et al. 2009; Xie et al. 2019; Zhang et al. 2017) to identify
all (nodule development stage-specific) co-expressed gene modules;
(iii) GRN construction and inference using reliable network con-
struction programs, Lemon-Tree (Bonnet et al. 2015) and Inferelator
(Greenfield et al. 2010); (iv) augmentation of GRNs with evidence
from physical or direct and indirect regulatory interaction informa-
tion from PPI and cis-regulatory element enrichment analysis; and
(v) building a consensus from different modes of GRN inference for
potential regulators and their predicted targets. We ran two modes of
Lemon-Tree: one with default mode, where Lemon-Tree itself pro-
duced the co-expressed clusters and the other mode where Lemon-
Tree used reinforced bicluster (BC) information from QUBIC. This
study provides a template framework for GRN construction and
augmentation by exploiting big datasets, which are being generated,
deposited and made available (making use of available data) in public

domain at a rapid rate.

MATERIALS AND METHODS
RNA-seq data set for root lateral organ development
in soybean
We utilized a genome-wide soybean transcriptome data set gener-
ated from root lateral organs (Adhikari ef al. 2019). This data set con-
tains the transcriptomes of two different developmental stages of two
root lateral organs collected in three biological replicates: ENs, MNs,
ELRs and YLRs. Adjacent root sections above and below these organs
devoid of any lateral organs (designated as ABEN, ABMN, ABELR
and ABYLR, respectively) were used to construct respective age- and
inoculation-status appropriate control tissue libraries. Comparison of
gene expression profiles between each lateral organ tissue type and
the corresponding control tissue type (e.g. EN vs. ABEN, ELR vs.
ABELR and so on) helped to identify organ-specific/enriched genes.
In total, 24 RNA-seq libraries (four target tissue types, four control tis-
sue types, three biological replicates each) were prepared, sequenced
and analysed. Expression patterns of previously known marker genes,
consistency between replicates, and high sequence quality of this data
set indicated that it was well-suited for global gene expression analysis
(Adhikari et al. 2019). A total of 113 210 gene transcripts (FPKM
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Figure 1. Schematic representation showing our workflows for prediction of regulator TFs and their GRNs associated with root

lateral organ development in soybean.

threshold >1 in at least one sample) with their normalized expression
values in 24 different tissues from the above data set were utilized here.

Furthermore, for expression comparisons at different steps during
our analysis, we utilized the following public data sets: Soybean Gene
Atlas encompassing RNA-seq data from 14 different soybean tissues
(Severin et al. 2010) and Soybean eFP Browser, http://bar.utoronto.
ca/efpsoybean/cgi-bin/efpWeb.cgi, comprising RNA-seq data from
soybean root hair and other tissues (Libault et al. 20104,b) to evaluate
organ-specific enrichment, and Soybean Genome Sequence Assembly
version 7.0 (Gmax_109_gene.gff3.gz; ftp://ftp.jgi-psf.org/pub/com-
pgen/phytozome/v9.0/ Gmax/annotation/ ) to obtain gene annota-
tion and Arabidopsis ortholog information.

Cataloging TFs enriched in different stages of root
lateral organ development in soybean
To achieve our objective of identifying regulator TFs and prediction
of GRNs associated with root nodules, we used soybean transcrip-
tion factor annotations from the Plant Transcription Factor Database
(PlantTFDB v3.0; http://planttfdb.cbi.pku.edu.cn/) (Jin et al. 2014)

as a starting point. Among the 58 TF families annotated in soybean,
48 TF families had at least one member differentially expressed in at
least one of the four organ tissue types in our data. For each TF fam-
ily, we summed the unique transcripts that were enriched in EN and/
or MN to calculate the total number of family members enriched in
nodule tissues. Similarly, we calculated the number of TFs enriched
in LR tissues. By comparing the number of family members enriched
in nodule versus LR tissues, we identified nodule-specific or enriched,
LR-specific or enriched and lateral organ non-specific (equal number
of transcripts in LR and nodules) TF families (Fig. 2). Statistical analy-
sis (Fisher’s exact test, P < 0.05) of nodule- versus LR-specific enrich-
ment showed that TFs belonging to TALE, MYB-related, MIKC,
C2H2, bZIP, G2-like, WRKY and NFYB families were either nodule-
specific or significantly enriched in nodules. Overall, very distinct fam-
ilies of TFs appear to be active either in nodule or LRs despite reported
morphological similarities between these organs.

We selected a set of 294 TFs, which were specifically enriched in
EN, and MN tissues in our data set as possible regulators (see Results;
Supporting Information—Table S1). This approach led us to focus
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Figure 2. TF families enriched in specific root lateral organs. Bar graphs indicated the number of family members enriched in
nodules (blue) or lateral roots (orange). TFs enriched only on nodules and not in LRs are denoted as nodule-specific (and vice
versa for LR-specific). TFs with more family members enriched in nodules versus LRs are denoted as nodule-enriched (and vice
versa for LR-enriched). TF annotations are based on Plant Transcription Factor Databases (PlantTFDB). Asterisks (*) indicate
TF families that were significantly enriched either in nodule or lateral root (Fisher’s exact test; P < 0.05).

on regulators and their GRNS acting specifically during nodule devel-
opment. We also included 32 previously characterized TFs/organ-spe-
cific marker genes reported elsewhere in literature for their respective
role in root lateral organ development in model crop plants as positive
controls for validation and relevancy of parameters [see Supporting
Information—Table S2]. For example, ENOD40, FWLI, LBC A,
LBC_Cl1, LBC_C2 and LBC_C3 genes were used as marker genes,
and NINI and NSPI were used as marker regulators for nodule devel-
opment. ARFS, CRF2, GATA23, LRP1 and TMO?7 genes were used as
marker regulators for LR development. Together, we used 316 TFs of
interest as a starting point for the identification of GRNs.

Initial biclustering of transcriptome data
We utilized normalized expression values of all the 113 210 gene
transcripts in 24 libraries for initial biclustering, rather than only sig-
nificantly differentially expressed gene transcripts. We reasoned that
irrespective of enrichment, the TFs and their target gene clusters tend
to have similar expression patterns in the root lateral organs, making
this an unbiased approach. We chose biclustering (two-way cluster-
ing) using QUBIC (Li et al. 2009), over traditional clustering to simul-
taneously identify all the statistically significant BCs of target genes
with TFs (if any) as well as the samples where these BCs originated
from. Different combinations of QUBIC’s parameters were tuned to
optimize biclustering to retain the majority of TFs while keeping the
total number of co-expressed gene transcripts to the minimum. The
program first discretizes the data using the parameters g and r and then
a heuristic algorithm is applied to identify BCs, where q is the propor-
tion of affected expression data under all conditions for each gene and r
represents the rank of the regulating conditions detected by the param-
eter q. It is suggested to select a smaller g to focus on a local regula-
tor (Li et al. 2009). Parameter f controls the overlap between different
BCs and k controls the minimum number of samples in BCs. Another
important parameter ¢, which controls the level of consistency in BCs,

was tested to balance the number of TFs and the total number of co-
expressed genes covered in BCs. We obtained 219 BCs that contained
240 of the 316 TFs (76 %) and 30 639 out of 113 210 transcripts (~27
%; see Results for details). The output from QUBIC is available in
Supplementary Information—Data Set S1. This ‘filtered’ data set
was used for regulator and GRN prediction. All programs were tested
and implemented on a Linux server with Intel x86-64 processor and 32
cores with 1TB RAM configuration.

Prediction of potential TF regulators and their GRN

inference
To improve the confidence of regulator and GRN prediction, we uti-
lized two module-based GRN inference methods: Lemon-Tree (v.3.0)
(Bonnet et al. 2015) and Inferelator (v.2015.08.05) (Bonneau et al.
2006). We compared and scored regulatory predictions from both
methods to select high-confidence regulators and their target genes
in GRNs.

Lemon-Tree
Lemon-Tree has the option to integrate cluster information; hence, we
ran it in two modes: (i) where clusters were generated by Lemon-Tree
from the ‘filtered’ data set (mode I) and (ii) where BC information
from QUBIC was fed to Lemon-Tree as co-expressed gene modules for
GRN inference (mode II). For mode I, we ran 10 independent Gibbs
sampler runs of Lemon-Tree (with default parameters) to identify the
most confident regulatory modules and TF regulators. The results
were used to extract representative module solutions (tight clusters)
from an ensemble of all possible statistical models using the Gibbs
sampler method. Lemon-Tree modules are clustered (hierarchical
tree) based on samples with similar mean and standard deviation. This
tight cluster corresponds to sets of genes, frequently associated across
all clustering solutions. For mode II, we prepared this tight cluster data
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set using BCs information from QUBIC, but otherwise used the same
settings used for mode L.

In the next step, the Lemon-Tree algorithm provides a list of
weighted TFs with a ranked probability score. The top 1 % regulators
with a high score were selected as potential high-confidence regulators
for each cluster of co-expressed genes. A global score reflecting the sta-
tistical confidence of the regulator assigned to each node in a hierar-
chal tree manner for each set of co-expressed genes modules was also
provided. The regulator score takes into account the number of trees
a regulator was assigned to, with what score (posterior probability),
and at which level of the tree (Joshi et al. 2009). An empirical distri-
bution of scores for randomly assigned regulators-to-module was also
provided to assess significance (Bonnet et al. 2015). In this data set,
the lowest score of a regulator in the top 1 % list was at least three times
higher than that of the highest score for a randomly assigned regula-
tor (see Results for details). Therefore, either the top 1 % or at least a
3-fold higher score than randomly assigned regulators appears to be a
good threshold to determine high-confidence regulators.

Inferelator

Inferelator (20 bootstraps) was utilized with default settings to build
regulatory networks (Bonneau ef al. 2006). Similar to Lemon-Tree, it
also uses the gene expression matrix to predict the regulator TFs and
their target genes. However, unlike Lemon-Tree, Inferelator does not
take cluster information as input, but generates its own clusters. The
program generated a ranked list of target genes for each regulator TF
utilizing the gene expression matrix and the TFs of our interest. Unlike
Lemon-Tree, there is no ‘score-based’ selection of TFs in Inferelator,
while there are score-based regulatory interactions between TF and
their target genes. Inferelator-generated scores (s) for TF (x) regulat-
ing gene (g) using input gene expression matrix (RNA—seq) as:

s(x — g | RNA-seq) = Inferelator (x — g | RNA-seq)
x sign (cor (x,g))

where a regulatory interaction confidence score is multiplied by the
sign of the correlation coefficient between the TF and the putative tar-
get gene to differentiate activating versus repressing interactions (posi-
tive and negative scores, respectively) (Greenfield et al. 2010; Ciofani
etal. 2012).

Combined scoring of regulatory predictions for
consensus GRN
By taking advantage of the top regulator prediction feature of Lemon-
Tree and top-ranked regulatory target prediction of Inferelator, we
compared and combined TF and targeted module genes from all three
inference solutions: Lemon-Tree mode I, IT and Inferelator (described
above). The regulatory TFs and corresponding target genes common
among all three inference solutions using Linux ‘comm’ command were
rated as potential consensus regulators and their targeted GRN interac-
tions. Ranked score function for every predicted regulatory interaction
was calculated by normalizing scores produced by each inference solu-

tion (score divided by the highest score in each inference solution) and
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then averaging normalized score calculated from all three inference
solutions. These ranked scores were used to select high-confidence
candidate TF-target interactions. These scores were shown as edges in
the GRN modules, visualized and analysed using Cytoscape (version
3.3.0) (Shannon et al. 2003).

>~ Ns(L-mode I),
Ns (L-mode II), Ns(Inferelator)
3

Average score, As =

Where Ns = £; Ns=normalized score; x = probabilistic score from
each mode; X = maximum score in each mode; L-mode I = Lemon-
Tree mode [; L-mode II = Lemon-Tree mode II.

Evidence for putative PPIs

Most eukaryotic TFs recruit various co-factors for their DNA-binding
specificities and regulatory activities through PPIs. To evaluate poten-
tial PPIs that are part of the predicted GRNS, a total of 31 932 066 pre-
dicted/experimentally validated soybean protein interactions (NCBI
taxon-Id:3847) were obtained from the STRING database (version
10.0) (search tool for the PPI network) (Szklarczyk et al. 2015). This
database provides information on both experimental and predicted
interactions (both physical and functional interactions) from varied
sources based on co-expression, experiments and literature mining.
We evaluated and compared if the predicted TFs and targets from the
different inference solutions (Lemon-Tree mode I, IT and Inferelator)
were potential PPI partners using all the 31 932 066 STRING PPI
interactions in soybean. A non-redundant data set, ignoring the tran-
script numbers of TFs, targets (from TF-target interactions) predicted
by three individual inference solutions and PPI from STRING were
compared using the Linux ‘comm’ command to identify TF-target pair
common in the STRING data set.

Cis-regulatory motif and functional enrichment
analysis evidence for direct regulation
Cis-regulatory motif enrichment was carried out using potential pro-
moter sequences (300 bp downstream-600bp upstream of predicted
transcription start sites) of target genes for all potential regulator TFs
predicted by all three inference solutions (Lemon-Tree mode I, II
and Inferelator). Motif enrichment and Gene Ontology (GO) were
performed by ShinyGO (http://www.ge-lab.org:3838/go/) using
P-value cutoff (FDR-corrected; Benjamini-Hochberg enrichment)

<0.05 to determine regulation and function.

RESULTS
Optimization of QUBIC parameters for initial
biclustering
The primary goal for biclustering in our analysis was to optimize the
total number of significant BCs, where the majority of the TFs (out of
TFs of interest and marker TFs) are retained while keeping the total
number of co-expressed genes to a minimum for GRN prediction. In
order to evaluate this condition, we iterated various runs in several
steps to empirically optimize key QUBIC parameters. For example, to
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focus on a local regulator that typically involve smaller regulatory net-
works, smaller g values were used. To control the overlap by checking
the overlapping genes and the number of TFs in between produced
BCs, we iterated the run with f = 0.5-0.65 (by 0.05). We used k = 6
presumably to retain at least three replicates each from either early or
late developmental stages or from LR or nodule tissue types in one BC.
Importantly, the consistency level of BCs was tested using parameter
‘¢’ iterated from ¢ = 0.6-1 (by 0.1) to balance the number of TFs and a
total number of genes covered in BCs (Fig. 3). We noted that the lower
the value of consistency level ‘) the larger was the size of the BC. We
evaluated the change in a number of total TFs versus total genes in BCs
with increasing consistency levels with the goal of determining the ‘c’
value at which we covered the greatest number of TFs in comparison
to a total number of genes without losing much consistency (c). At
¢ =0.98, 76 % of the TFs of interest were retained with just 27 % of
the genes covered in BCs (Fig. 3). The maximum number of marker
TFs (18 out of 22) cataloged for root lateral organs were covered at
¢ = 0.98, suggesting this to be an ideal value for our analysis. On the
other hand, at the highest consistency level (c = 1), only three marker
TFs were covered in BCs (not shown). Overall, based on results from
several iterations and optimizing for the inclusion of greater number
of TFs in BCs, we finalized the following parameters: r = 1, ¢ = 0.2,

¢=0.98,0=1500, f=0.25, k = 6, which produced 219 statistically sig-
nificant BCs. These 219 BCs comprised ~27 % (30 639 out of 113
210) of total gene transcripts. Notably, ~76 % (240 out of 316 TFs
of our interest) of the TFs of interest (including 81 % of marker TFs)
were retained in 141 of the 219 total BCs produced. The first cluster
was the largest cluster with a total of 446 genes. We conclude that the
empirical determination of biclustering parameters depending on the
biological question and the associated experimental objective is crucial
for useful outcomes. The underlying reason is that QUBIC is a heuris-
tic algorithm for two-dimensional clustering without any hidden sta-
tistical hypotheses for the minimal number of samples, the number of
to-be-identified BCs or the size of a BC.

Evaluation of QUBIC BCs using characterized TFs
and co-expressed genes from public LR organ-related
data sets
We observed one organ-specific BC each for LR (both ELR and YLR;
BC001) and nodule (both EN and MN; BC013) tissues that included
all three biological replicate samples in one BC, suggesting that these
are likely to be highly consistent and reproducible. Four BCs each were
specific to all three replicates of ELR (BC015, 019, 033 and 101) and
MN (044, 048, 152 and 155) tissue types. To test the rationality of
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BCs, we compared the expression patterns of co-expressed genes with
marker TFs in publicly available transcriptome data (Severin ef al.
2010). The transcription factor NSPI (Glymal6g01020), crucial for
nodule development, was present in BC037 and BC045. BC037 was
specific to nodule tissues and comprised of 367 co-expressed genes.
Among these, 52 % had more than 2-fold up-regulation in EN and
MN tissues in our RNA-seq data. A marker gene highly enriched
in nodule tissues, ENOD40 (Glyma02g04180), was found in five
BCs (BCO013, 22, 40, 45, 53 and 95) with different combinations of
nodule samples clustered together in each BC. All genes in BC013
showed specificity for nodule tissue samples with all three replicates
in EN and MN in our study. Also, 50 % of the genes from this BC
showed greater expression in nodule tissue relative to other tissues
types in the soybean Gene Expression Atlas (Severin et al. 2010)
[see Supporting Information—Table S$3]. Gene Ontology enrich-
ment analysis for this BC indicated enrichment of the biological
process GO term ‘nucleic acid metabolic process’ (FDR-corrected
P-value 0.02) and molecular function GO term ‘Purine ribonucleo-
side triphosphate binding’ (FDR-corrected P-value 0.05), both of
which are associated with biological nitrogen fixation that occurs
specifically in nodule tissues. For example, soybean nodules export
nitrogen in the form of ureides (purines) (Collier and Tegeder
2012). The above observations indicate the appropriate clustering of
relevant transcripts and validate the parameters used for clustering.
Notably, we observed few novel transcripts and genes with unknown
function, co-expressed in the nodule-specific BCs [see Supporting
Information—Table S3]. This observation suggests a potential role
for these genes in nodule development and offers candidate genes for
functional characterization.

Furthermore, we took advantage of the time course data for IAA-
induced LR development in Arabidopsis (Lewis et al. 2013), to select
and evaluate marker genes present in LR-related BCs in soybean. For
example, the LR marker TF, GmTMO?7 (Glyma04g34080), a potential
ortholog of Arabidopsis TMO?7 identified in the above study, was pre-
sent in BCs 110, 120 and 173. Of the 113 genes present in BC120, 96
showed coordinated up-regulation with TMO7 in LR tissues, whereas
17 showed negative co-expression. We evaluated the expression pat-
terns of potential Arabidopsis orthologs of these genes in the LR
induction time course data set (Lewis et al. 2013). Data were available
for orthologs of 13 of the 96 positively correlated genes and 2 of 17
negatively correlated genes. Many of these Arabidopsis orthologs (see
marked blue and red box in Supporting Information—Table $4)
were induced in roots with LR primordia at stage 4 and beyond which
corresponds to soybean ELR and YLR tissues we used in our study. This
suggested that the potential orthologs have a similar expression pattern
during LR development in both Arabidopsis and soybean. The other
LR marker LRPI was in BCO19 that comprised of 845 genes. Among
these genes, 746 were positively and 99 were negatively co-expressed
with LRPI in all three replicates of ELR. Arabidopsis orthologs of 30
positively co-expressed genes also showed induction during a similar
developmental stage [see Supporting Information—Table $4] in
the LR induction time course data set (Lewis et al. 2013). This sug-
gested that the biclustering parameters used indeed helped to group
functionally relevant co-expressed genes together. Therefore, using
the identified BCs as input GRN algorithms can identify regulators
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and regulatory relationships of target genes with higher efficiency and
fewer false positives (due to spurious correlations).

Regulatory TFs and their GRNs associated with root
lateral organ development in soybean

For the prediction of regulators and inference of corresponding GRNs,
we utilized only those 141 BCs that contained our TFs of interest and
marker TFs (240 TFs) which comprised 25.8 % (29 270 out of 113
210) of expressed gene transcripts. This approach potentially reduced
the computational complexity and time required for modelling GRNs
relevant to our study. This sum expression matrix of 29 270 genes and
240 TF genes was used as input for GRN inference by Lemon-Tree
mode I, mode II and Inferelator.

Lemon-Tree produced 828 tight clusters in step 1 from the input
expression matrix. A higher number of clusters (828 vs. 141 BCs from
QUBIC) suggested that Lemon-Tree clusters were relatively more dis-
crete/smaller in comparison to QUBIC BCs. In step 2, two separate
options/modes were utilized (see Materials and Methods and Fig. 1).
In mode I, we utilized the 828 tight-clustered modules generated
by Lemon-Tree (mode I) and in mode I, the 141 BCs produced by
QUBIC (mode II). In mode I, 176 TFs were ranked as the top 1 % reg-
ulators, whereas in mode II, 92 TFs were ranked as top 1 % regulators
[see Supporting Information—Table SS]. Score evaluation was per-
formed for the top 1 % and randomly predicted regulators from both
modes. In both cases, the minimum score for a top regulator (14.22,
mode I and 12.13, mode II) was ~three times higher than the maxi-
mal score (4.99, mode I and 4.23, mode II) for a randomly assigned
regulator (Fig. 4). This suggested that the scores for top regulators are
greater than what could be expected by chance. Inferelator algorithm
predicted 132 TFs as potential regulators and five predicted groups
[see Supporting Information—Table $5]. Comparison of 176, 92
and 132 TFs predicted as regulators respectively, by Lemon-Tree mode
I, mode I1 and Inferelator, revealed that 56 TFs (~27 %) were predicted
by all three different modes (Fig. SA). We ranked these common 56
TFs as high-confidence TF regulators. In addition, ~62 % of the TFs
predicted as a regulator by Lemon-Tree mode I were also identified as
regulators by Lemon-tree mode Il and/or Inferelator [see Supporting
Information—Fig. S1A].

Furthermore, a total of 113 668 non-redundant TF-target regula-
tory interactions were predicted by all three modes (Lemon-Tree mode
1—26 012, mode II—95 845 and Inferelator—3287) [see Supporting
Information—Table S6]. A higher number of regulatory interac-
tions in Lemon-Tree mode II is likely due to larger BCs produced by
QUBIC. There was relatively smaller overlap among the three modes
[see Supporting Information—Fig. S1B]. We evaluated whether
known LR and nodule marker TFs were predicted as regulators as
a measure of successful TF prediction by the three different modes.
Soybean orthologs of LR marker TFs, LRPI (Glymal4g03900),
ARFS (Glymal4g40540), CRF2 (Glyma08g02460) and TMO7
(Glyma04g34080 and Glyma06g20400), were predicted as regu-
lators by all three inference modes. Additional orthologs of ARFS
(Glymal7¢37580) and CRF2 (Glyma05g37120) were predicted
as regulators by Lemon-Tree mode I and II. However, orthologs
of GATA23 (Glyma03g39220, Glymal9¢g41780) and LRPI
(Glyma02g44860, Glyma07g35780) were not identified as regulators
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Figure 5. Overlap and differences of predicted (A) regulator TFs and (B) regulatory interactions between TFs and their target
genes by three different GRN inference workflows. Numbers in centre indicate the number of potential regulators (in A) and
interactions (in B) recovered by all the three different workflows.

by any of the modes. These four genes were not enriched in LR tis-  of the five LR-associated markers correctly as regulators by all three
sues [see Supporting Information—Table S§2] and this likely why — modes suggested that the workflow was reliable and would be useful
they were not predicted as a regulator in this data set. Prediction of four  in predicting previously unknown regulators of nodule development.
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A number of TFs were demonstrated to play a crucial role in
nodule development through genetic evidence from model legumes
(Udvardi et al. 2007; Magne et al. 2018). These include NODULE
INCEPTION (NIN; RWP-RK family (Schauser et al. 1999)),
NODULATION SIGNALING PATHWAY1 and 2 (NSP1 and NSP2;
GRAS domain proteins), Nuclear Factor Y (NF-YA1; (Battaglia et al.
2014)), Ethylene Response Factors Required for Nodulation (ERN1
and ERN2; AP2/ERF family; (Baudin et al. 2015)) and CYCLOPS
(coiled-coil domain protein) (Heckmann ef al. 2006; Heckmann et al.
2011; Hayashi et al. 2012; Singh et al. 2014). In addition, an MYB TF
that interacts with NSP2, an ARID domain protein that interacts with
SymRK, a bHLH and a set of HD-ZIP IIIs involved in nodule vascular
development, and a C2H2 Zn finger TF involved in bacteroid develop-
ment are also known (Zhu et al. 2008). A potential soybean ortholog
of NIN, Glyma02¢g48080 (Hayashi et al. 2012), belonging to ortho-
group OGEF1237 was predicted as a regulator by Lemon-Tree mode
L Only one other NIN-like gene in this orthogroup (Glyma04g00210)
was included in our list of input TFs based on expression enrichment
in nodules, but was not predicted as a regulator by any mode. Two
other NIN-like genes outside of this orthogroup (Glymal2g05390
and Glyma01g36360) were predicted to be regulators by Lemon-
Tree modes I and II. Nodule-enriched NF-YAs (Glyma02g35190 and
Glymal0g10240) were identified as regulators by Lemon-Tree mode
I and Inferelator. In Lotus japonicus, two Nuclear Factor-Y (NF-Y) sub-
unit genes, LiNF-YAI and LjNF-YBI, were identified as transcriptional
targets of NIN (Soyano et al. 2013). In agreement, our analysis pre-
dicted that one of the soybean NIN-like genes, Glyma12g05390, regu-
lates NF-YAI (Glymal0g10240; Lemon-Tree mode II) and the other
NIN-like gene, Glyma01g36360, regulates NF-YA2 (Glyma02g35190;
Lemon-Tree mode I; see Supporting Information—Table S5).

Two potential orthologs of LjERNI (Glyma02g08020 and
Glyma19g29000) were predicted as regulators by Lemon-Tree modes
I and II. Among the major nodulation TFs, only NSPI was not pre-
dicted to be a regulator by our GRN workflow. In summary, the work-
flow correctly predicted known nodulation and LR TFs including the
expected relationships between NIN, NF-YA and ERN1.

Putative PPIs identified in root lateral
organ-related GRNs
Co-expressed and co-regulated genes have a higher likelihood of hav-
ing an indirect functional interaction or direct physical interaction
(Xulvi-Brunet and Li 2010). Many TFs form a complex with other
proteins for proper molecular and cellular activity. Protein—protein
interactions are the physical interactions between two or more pro-
teins which form the crux of a functional protein complex formation
(Barabasi and Oltvai 2004). To evaluate if potential regulators identi-
fied by us undergo PPIs with other co-regulated proteins, we compared
all 113 668 unique TF-target pairs against verified and/or predicted
PPIs reported in the STRING database (see Materials and Methods
for details). We identified 843 potential interactions among 69 TFs
with PPI confidence scores ranging from 150 to 995 [see Supporting
Information—Fig. S2; Table S7]. The high scorer (>800) PPIs
were observed from Lemon-Tree mode II run. It was previously sug-

gested that a score of <800 was probably false positives that originated
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from prediction methods (Isik ef al. 2015). Also, the maximum num-
ber (~64 %) of PPIs was identified by Lemon-Tree mode II, while
only four PPIs were predicted by all three modes [see Supporting
Information—Fig. S1C]. A likely explanation is the comparatively
bigger BCs in this mode generated by QUBIC. While overall, in com-
parison to all predicted interactions by each mode independently,
Inferelator had a greater frequency (2 %) of interactions in PP], i.e. out
of total predicted 3288, 61 were observed in PPI, followed by Lemon-
Tree mode I (1 %) and then mode IT (0.65 %). Two ARFS LR markers
Glymal4g40540 and Glymal7g37580 were predicted to interact with
an AUX/IAA protein (Glymal3g43050; PPIscore 980) and ATHB14-
like homeodomain TF (GlymalSg13640; PPI score 530) present in
GRNs predicted by Lemon-Tree mode I and Inferelator, respectively.
Glymal3g43050 is an ortholog of Arabidopsis TAA28 that has been
demonstrated to interact with AtARFS (De Rybel et al. 2010), and
this regulatory module plays a key role in LR development (Rogg et al.
2001).

High-confidence TF regulators and their GRNs
associated with root lateral organ development in
soybean
To determine high-confidence regulatory interactions and build a
consensus GRN, we evaluated if TF-target pairs were conserved
across all three modes of GRN prediction (Lemon-Tree modes I, I
and Inferelator). Results showed that 182 regulatory relationships
(that included 21 TFs) were commonly predicted by all three modes
(Fig. SB; see Supporting Information—Table S8). Therefore, for
38 % of the TFs predicted as high-confidence regulators (21 of 56),
common target genes were also predicted independently by all three
modes. These 21 TFs formed independent GRNs with their co-reg-
ulated target genes (Fig. 6). We ranked the consensus interactions by
computing the average of the normalized score given by all three GRN
inference modes (ranged from min = 0.19, max = 0.88; see Materials
and Methods for details). Table 1 lists the 21 TFs, their annotation and
enrichment in root lateral organs. Supporting Information—Table
S8 lists the score for all high-confidence TF-target pairs predicted
by all three modes (Lemon-Tree mode I, Lemon-Tree mode II and
Inferelator). Based on the expression of the TF regulator and their pre-
dicted target (Fig. 7), we categorized GRN enriched in specific lateral

organ tissues.

TF regulators annotated as AP2; ANT (AINTEGUMENTA),
transcriptional factor B3 family protein, AtGRES (Growth-Regulating
Factor $), C3H, AtbZIPS2 (Arabidopsis thaliana basic leucine zipper
52)-like, PC-MYBI and SHR (Short Root) appear to co-regulate GRN
modules during early nodule (EN) development. Transcription factor
regulators annotated as GRAS; SCARECROW-LIKE 6 (SCL6), LOB
DOMAIN-CONTAINING PROTEIN 41 (LBD41), AP2 domain-con-
taining transcription factor TINY, NUTCRACKER (NUC); nucleic
acid binding, bZIPS, FER-Like Regulator Of Iron Uptake (FRU),
RESPONSE REGULATOR (RR18) and two unknown TF proteins
appear to co-regulate GRN modules late during nodule (MN) devel-
opment. Interestingly, four PPIs (out of 843 in PPI network) were also
commonly predicted by all three GRN inference networks in our study
for LBD41 and FRU in MNs [see Supporting Information—Table
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Figure 6. Consensus co-regulatory interactions predicted and recovered by three different GRN inference workflows. Nodes
in diamond denote regulator TFs and circles denote predicted target genes. Edges denote the normalized score of interaction
calculated by all three workflows. Broader the edges, higher the normalized interaction score.

Table 1. List of TFs predicted as regulator by all three GRN inference methods used in our study.

21 TFs IDs TF annotation Enrichment (log, fold change) in each organ
EN MN ELR YLR

Glyma03g27050 AP2 domain-containing protein (TINY) 2.32

Glyma17g08380 ARR18 (RESPONSE REGULATOR 18) 2.96

Glymallg04920 AtbZIPS (basic leucine-zipper 5) 2.74

Glymal3g39650 FRU (FER-LIKE REGULATOR OF IRON UPTAKE) 1.8 -1.74 -3.04

Glyma03g03760 GRAS TF; scarecrow-like 6 (SCL6) 2.29 1.22

Glymal9g06280 LBD41 (LOB DOMAIN-CONTAINING PROTEIN 41) 1.19

Glyma06g44080 NUC (nutcracker) 1.53

Glyma03g34730 Putative transcription factor 2.49

Glyma01g32130 Unknown protein 2.45 -0.87

Glyma06g05170 AP2; ANT (AINTEGUMENTA) 142 -223

Glyma09g07990 AtGRFS (GROWTH-REGULATING FACTOR 5) 3.34

Glyma02g40400 Transcriptional factor B3 family protein 2.76

Glymal4g38460 AtbZIPS2 (basic leucine zipper 52) 1.51 1.25

Glymal6g01296 C3H 2.01 2.17

Glyma05g22460 SHR (SHORT ROOT) 1.78 1.55

Glyma06g08660 PC-MYB1 1.4 1.42

Glymallg37130 NFYC 3.57 1.49

Glymal1g20490 ARF10 (AUXIN RESPONSE FACTOR 10) 1.91 2.7

Glyma06g20400 bHLH family protein (TMO?7 ortholog) 2.35

Glymal0g06080 ARF16 (AUXIN RESPONSE FACTOR 16) -1.62

Glymal9g36571 AREF protein (AUX/IAA-ARF) -0.77
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$8; Fig. $2B], which suggests both transcriptional and post-transla-
tional regulatory relationships between the TF—target pairs. It should
however be noted that STRING-DB data includes proteins that do not
physically interact with the TF. ARF16 and AUX/IAA-ARF proteins
were predicted to regulate ELR development, whereas TMO7 and
ARF10 (Auxin Response Factor 10) were predicted to co-regulate
GRNs during YLR development in soybean.

DISCUSSION
In spite of the economic and environmental importance of biological
nitrogen fixation in nodule in soybean, there is still an unanswered
question of what key TFs regulate the underlying GRNs in nod-
ules (Udvardi et al. 2007). We developed a robust computational
framework for GRN construction using genome-scale gene expres-
sion data. Specifically, this framework integrates genomic and tran-
scriptomic data to infer the key regulators and GRN associated with
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nodule development in soybean. The predicted networks consistently
included experimentally verified genes, demonstrating the ability of
our framework to reveal significant, potentially important GRNs. With
a broader impact, the framework can be used as a template for con-
structing GRNs to address any biological question of interest in any
species.

To reduce the computational complexity and make the predicted
regulator TFs and GRNSs relevant to our biological question, a biclus-
tering method and a regulatory network inference tool were used,
where their parameters were optimized via several iterations for data
analysis and modelling. Among existing GRN inference algorithms,
Lemon-Tree and Inferelator were successfully applied in different bio-
logical questions due to their valued feature, i.e. top regulator and top-
ranked regulatory target prediction (Michoel et al. 2009; Vermeirssen
et al. 2009; Dolinski and Troyanskaya 201S; Finkle et al. 2018).
Lemon-Tree detects regulatory modules and regulators from gene
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Figure 7. Heat map showing normalized expression from varied samples of root lateral organ development in soybean for
regulator TFs and their co-regulatory target genes (TF modules) in consensus networks predicted by all three GRN inference
workflows. Row annotation for 21 regulator TFs and their co-regulatory partners are shown in different colours. Co-expressed
TFs and their co-regulatory target genes in specific tissues are highlighted in black box.
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expression data using probabilistic graphical models (Bonnet et al.
2015). Whereas, Inferelator learns a system of ordinary differential
equations using the Bayesian Best Subset Regression that describes the
rate of change in transcription of each gene or gene cluster, as a func-
tion of TFs. It has been shown that predictions made by the Inferelator
are highly accurate for top-ranking predictions. Stochastic Lemon-
Tree and Inferelator perform better if the transcriptional program can
be inferred from a pre-specified list of regulators rather than from a
full gene list, because erroneous interactions with non-regulators will
be eliminated a priori (De Smet and Marchal 2010). So, we took the
differentially expressed TFs and predefined marker TFs with a known
role in nodule and LRs to infer GRN.

Novel regulators of nodule development

We distinguished organ (LR/nodule) and/or developmental stage-
specific (early/mature) consensus GRNs based on organ-specific
enrichment of the TFs, their differential expression and expression
pattern of their co-regulated genes in our transcriptome data. In addi-
tion, we also employed comparative genomics and information from
public tissue atlas and transcriptome data. The analysis correctly pre-
dicted four of the five LR regulators with high confidence and known
nodulation TFs including the expected relationships between them.
For example, the phylogenetic analysis suggested that ERN2 may not
be present in legumes that form determinate nodules such as soybean,
L. japonicus or common bean (Kawaharada et al. 2017). The expres-
sion of ERN1 and ERN2 are under the control of NIN and NF-YA in
Medicago, a legume that forms indeterminate nodules. In fact, NF-YA
binds the promoter of ERNI directly regulating its expression in
Medicago. However, ERN1 expression does not appear to be regulated
by NIN or NF-YA in L. japonicus as its expression is not altered in
NIN or NF-YA loss of function mutants. Our GRN prediction also did
not identify ERNI as a target of NF-YA or NIN in soybean. ERNI is
directly regulated by CYCLOPS in L. japonicus. NSP2 and CYCLOPS
were not included in the input TF list due to no nodule-specific enrich-
ment and/or incorrect annotation. The inclusion of CYCLOPS in
future analyses might reveal regulatory relationships between ERN1
and CYCLOPS in soybean. It remains to be seen if this is conserved
among other determinate nodule forming legumes including soybean.
Given the reliability of the workflow in accurately predicting known
TFs, we discuss previously unknown regulators of nodule develop-
ment predicted by the workflow.

With the goal of identifying high-confidence TF-target pairs oper-
ating during nodule development, we pre-selected a set of 294 TFs,
which were specifically enriched in EN, and MN tissues in our data set
as possible regulators. We identified 17 high-confidence TFs among
these as predicted by all three modes. Three TFs were predicted to
drive GRNs specifically associated with ENs, which are soybean
orthologues of Arabidopsis AINTEGUMENTA (ANT; At4g37750),
AP2/B3 domain transcriptional factor (At5¢g58280) and GROWTH-
REGULATING FACTOR S (GRFS). All three genes are associated
with sites of cell proliferation in Arabidopsis. While GRFS plays a role
in cell proliferation during leaf primordia formation and leaf develop-
ment, ANT is crucial for flower development. At5g58280 shows the
highest expression level in the shoot apex, particularly in the central
zone. Indeed, it is likely that the soybean TFs associated with EN

GRNGs direct cell proliferation during early nodule development. Seven
other TFs belonging to C3H, bZIP, MYB1, NF-YC and SHR families
predicted to co-regulate GRN modules in ENs which also happened
to be enriched in ELRs (Table 1). These GRNs might act during the
initiation of both these lateral organs. Soybean ANT ortholog was the
regulator with the highest score in our analysis (0.8) and was predicted
to co-regulate 10 target genes specifically in ENs. Its targets included
ATCSLA09, ALDH2C4, GCL1 (GCR2-LIKE 1), AAP6 and auxin-
responsive protein. A maximum of 51 co-regulated target genes were
predicted fora C3H TF regulator (enriched in both EN and ELR) by all
three modes. Most of the target genes such as glycosyl hydrolase fam-
ily protein, CYCA1;1 (Cyclin Al;1), zinc finger (C3HC4-type RING
finger), CDKB1, CMT3 (chromomethylase 3); DNA (cytosine-5-)-
methyltransferase, calmodulin-binding protein-related, CYCIBAT;
cyclin-dependent protein kinase regulator, mitotic spindle checkpoint
protein, putative (MAD2), ATARP7 (Actin-Related Protein 7); struc-
tural constituent of cytoskeleton, kinesin motor protein-related and
CDC20.1; signal transducer were high scoring target genes.

Gene Ontology enrichment analysis of genes involved in EN and
EN-ELR GRNs showed significant enrichment of regulation of a cell
cycle, movement of a cell or subcellular component, microtubule-
based movement, cell division and cell cycle biological process [see
Supporting Information—Fig. S4]. This is consistent with biologi-
cal processes known to occur early during lateral organ development.
Cis-regulatory motif GACCGTTA was enriched in the EN-related
GRN regulated by a Myb/SANT TF.

Similarly, MN-GRN involved in MN development was enriched
with meristem initiation and growth. Nine TF regulators annotated
as being similar to GRAS (SCL6), LBD41, TINY, NUC bZIPS,
FRU, RR18, Myb/SANT-like DNA binding protein and a SCREAM-
like protein appear to co-regulate GRN modules late during nodule
(MN) development. Among these TFs, LBD41 had the highest score
(0.77). LBD41 was predicted to co-regulate 38 target genes, among
which PDC2 (pyruvate decarboxylase-2) had the highest normalized
score (0.7). Other targets included PSAT, SIMILAR TO RCD ONE
2 (SRO2), MATERNAL EFFECT EMBRYO ARREST 14 (MEE14),
AN1-like Zinc finger, SNF2, trehalose-6-phosphate phosphatase,
hypoxia-responsive family protein, bHLH, wound-responsive fam-
ily protein and an ASPARTATE AMINOTRANSFERASE 1 (ASPI)
with normalized score >0.5 (Fig. 7). Arabidopsis LBD41 is associated
with hypoxia response and multiple targets predicted for the soybean
ortholog of LBD41 in MN were also associated with hypoxia (Gasch
et al. 2016). Nodule oxygen concentrations are highly regulated to ena-
ble the proper functioning of the oxygen-sensitive nitrogenase enzyme
complex. It is tempting to suggest that soybean LBD41 might play a
role in regulating the response to hypoxia in MN. The Arabidopsis
orthologs of SCL-6, a key regulator in MN, play a role in shoot branch-
ing by regulating axillary bud development (Wang et al. 2010). We
had previously suggested that nodules and shoot axillary meristems
require a similar hormone balance during development. It is possible
that some developmental pathways such as those regulated by SCL6
are shared between these organs. Similarly, the role of Arabidopsis
NUTCRACKER protein required in periclinal cell divisions (Long
et al. 2015), that of FRU in uptake of iron (Jakoby et al. 2004) and
RR18 in positive regulating cytokinin activity (Veerabagu et al. 2012)
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are all consistent with biological processes observed in MN tissues
(Breakspear ef al. 2014; Reid et al. 2017). Gene Ontology enrichment
analysis for MN-GRN genes showed enrichment of specification of
axis polarity, adaxial/abaxial axis specification, meristem initiation,
meristem growth and regulation of meristem growth [see Supporting
Information—Fig. $4]. While these processes are known to occur
in MNs, TFs associated with these processes had not been identified
previously. Genes involved in MN-GRN had significant enrichment
(P-value <0.05 FDR) for cis-regulatory motifs GGGCCCAC, ACCG
and TGTCGG in their upstream regulatory regions. These are likely
to be regulated by TCP, AP2 and B3 TFs, respectively. The study has
revealed potential TFs associated with different biological processes
in nodule and LR development [see Supporting Information—Fig.
$4]. Knowledge from this work supported by experimental validation
in the future is expected to help determine key gene/TF targets for
biotechnological strategies to optimize nodule formation and enhance
nitrogen fixation.
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Gene expression data used to construct gene regulatory networks
are available in NCBI Gene Expression Omnibus (GEO), accession
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SUPPORTING INFORMATION
The following additional information is available in the online version
of this article—

Figure S1. Venn diagrams outlining overlaps and differences in the
outputs among the three different gene regulatory network inference
workflows: (A) regulator transcription factor (TF) prediction, (B)
identification of targets for predicted TFs and (C) protein—protein
interactions.

Figure S2. A total of 843 STRING protein—protein interaction
(PPI) predictions matched our co-regulatory expression predic-
tion. The large network is shown in A and smaller discrete net-
works in B.

Figure S3. Gene Ontology biological process enrichment of target
genes in consensus 182 co-regulatory gene network interactions pre-
dicted for root lateral organ development in soybean.

Figure S4. Summary of lateral organ gene regulatory networks
(GRNs) involving high-confidence transcription factor regulators
predicted in this study and the biological processes enriched in
those GRNs.

Table S1. List of transcription factor genes enriched in emerging and
mature nodule tissues.

Table S2. Nodule (emerging nodules (ENs), mature nodules (MNs))
and lateral root (emerging lateral roots (ELRs) and young lateral roots
(YLRs)) marker genes used to determine clustering parameters.
Table S3. Normalized expression (read counts) from Soybean Gene
Atlas (Sevrin et al. 2010) for genes in ENOD40- and NSP1-containing
biclusters. Cell(s) with the highest value in each row (gene) are

highlighted.
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Table S4. Expression patterns of potential Arabidopsis orthologs of
soybean genes in TMO7 and LRP1 containing biclusters during lateral
root initiation (data from Lewis et al. 2013).

Table SS. High-confidence regulators predicted by each workflow.
Table S6. Unique regulator-target prediction by all three workflows.
Table S7. Protein—protein interactions between regulator—target pairs
as predicted by STRING database.

Table S8. List of 21 high-scoring regulators and their target genes
forming lateral organ-specific gene regulatory networks. Transcription
factor—target pairs highlighted in orange were predicted to be involved
in protein—protein interactions by STRING-DB.

Data Set S1. Bicluster output from QUBIC.
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