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ABSTRACT
The primary challenge in template-free protein structure predic-
tion is controlling the quality of computed tertiary structures, also
known as decoys. While research on how to do so is highly ac-
tive, the main rule of thumb is to generate as many decoys as can
be afforded. This rule acknowledges that more decoys increase
the likelihood that some will reside near the sought biologically-
active/native structure. Generating large numbers of decoys im-
poses time and space costs. These costs percolate down to decoy
selection algorithms that need to select from the generated decoys
a few sufficiently near-native. In this paper, we evaluate the hypoth-
esis that the generated decoy ensemble can be significantly reduced
without sacrificing decoy quality. Evaluation on diverse proteins
shows that drastic reductions can be achieved in the number of
preserved decoys while retaining the quality of generated decoys
via clustering. The presented results suggest that decoy ensemble
reduction promises to aid protein structure prediction.
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1 INTRODUCTION
While it is now well-recognized that the three-dimensional/tertiary
structure of a protein is key to determining its array of activities in
the cell [5], protein structure determination (PSP) poses many chal-
lenges [13]. Increasingly faster and cheaper high-throughput gene
sequencing technologies have yielded millions of protein-encoding
gene sequences that are now stored in genomic databases [4]. In
contrast, as of June 2019, the number of known native structures
determined in wet laboratories and deposited in the Protein Data
Bank (PDB) [3] is 152, 500. This discrepancy continues to moti-
vate computational research in PSP. Increasingly, the focus is on
template-free PSP, where target protein sequences with no known
structures do not have sufficiently-similar protein sequences with
known structures that could otherwise serve as templates [11].

Template-free PSP is carried out in two stages. In the first stage,
the focus is on decoy generation; the tertiary structures are referred
to as decoys to highlight the fact that it is unclear which ones are
sufficiently close to the sought native structure. While decoy gener-
ation algorithms effectively address an optimization problem where
they seek tertiary structures that minimize the interaction energy
among the atoms of a given target protein, one cannot infer that a
lower-energy decoy is more similar to the sought native structure;
the energy functions designed in computational laboratories are in-
herently inaccurate [1, 6, 15]. The focus of the second stage, known
as decoy selection, is to tease out the decoys that are near-native
among the many generated in the first stage.

Good advances have been made in decoy generation [10, 16–
18, 23–26]. These advances are documented in the Critical Assess-
ment of protein Structure Prediction (CASP), which is a biennial
community experiment/competition that assesses progress in PSP
in several categories, including the template-free/free modeling
category [9]. In most state-of-the-art decoy generation algorithms,
the amino-acid units that comprise a protein are represented at a
reduced level of detail. The representation of choice models explic-
itly only the backbone atoms and either a centroid pseudo-atom or
the beta carbon for the side-chain atoms of each amino acid. The
actual variables are typically dihedral angles on bonds connecting
the explicitly-modeled atoms. The energy functions that evaluate
decoys operate over Cartesian coordinates of modeled atoms due to
their dependence on (pairwise) interatomic distances. The reader
is referred to the review [11] for more details.

Despite clever choices in variable selection, the search space ex-
plored by a decoy generation algorithm is vast and high-dimensional;
e.g., on a protein not exceeding 100 amino acids, modeling three
backbone dihedral angles per amino acid results in around 300
variables; the search space has 300 dimensions. In addition, the
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energy function is noisy. These challenges make it exceptionally
difficult to control the quality of generated decoys, and algorithmic
research on how to achieve this under the umbrella of stochastic
optimization is highly active [21].

Users of popular platforms, such as Rosetta and Quark, are ad-
vised to generate as many decoys as can be afforded. More decoys
mean higher likelihood that some will reside near the sought native
structure. This recommendation is impractical. While generating
decoys used to be significantly more expensive than analyzing
them, now this relationship is less imbalanced. Great progress in
software and hardware has made it less costly to generate decoys.
Algorithms operating under the umbrella of evolutionary compu-
tation can generate hundreds of thousands of decoys [17, 24–26].
Decoy selection algorithms tasked with analyzing decoys now may
have to additionally deal with a data size issue.

In addition, the end of the decoy generation stage adds back the
side-chain atoms on each decoy and carries out local improvements
on the resulting all-atom decoys prior to handing them off to the
decoy selection stage. Adding atomistic detail is computationally
expensive, as the energy function employed has to handle a large
number of atoms per decoy (that includes all side-chain atoms and
all hydrogen atoms per amino acid). This is exacerbated when the
recommendation is to collect large numbers of decoys.

The focus of this paper is on the interaction between the first and
second stage and asks a fundamental question: Can the ensemble
of generated decoys be reduced, thus lowering the computational
burden on refinement and selection, all the while without sacrificing
decoy quality? This paper addresses this question via clustering.
To the best of our knowledge, there is little work on reducing
decoy ensembles. A common approach is to discard higher-energy
decoys, which requires setting a threshold. The pitfall is that similar
structures can have different energies. The threshold would also
have to be determined on a per-target basis. Some related attempts
employ Principal Component Analysis to reduce the dimensionality
of the structure space [19, 20]. Employing dimensionality reduction
techniques may be useful for visualization of decoy ensembles, but
it is not exactly clear how they would apply to ensemble reduction.

Here we propose a clustering-based approach. Our focus is not
on comparing clustering algorithms but on evaluating representa-
tive ones for their utility in reducing decoy ensembles. A rigorous
analysis is conducted to determine optimal settings for employed
clustering algorithms. Evaluations on protein datasets that include
CASP targets show drastic reductions in ensemble size while retain-
ing decoy quality. The presented results suggest that research on
decoy ensemble reduction is a promising direction to aid template-
free PSP and can generally be useful in reducingmolecular structure
data. The rest of this paper is organized as follows. We describe
the proposed methodology in Section 2. Evaluation is presented in
Section 3. The paper concludes in Section 4.

2 METHODS
From now on, we will employ the terms for generated ensemble
Ωgen and reduced ensemble Ωred. The generated ensemble Ωgen
consists of decoys generated from a decoy generation algorithm.
The reduced ensemble Ωred is the objective of the methodology we
propose in this paper; Ωred retains only a fraction of the decoys

in the original Ωgen. To efficiently produce a reduced-size decoy
ensemble Ωred that retains the quality of the original, full-size
decoy ensemble Ωgen, the proposed methodology leverages fast
shape similarity of the decoys. It consists of three stages: (i) A
featurizer extracts decoy features that summarize the shape of a
decoy. (ii) These features are utilized by a clustering algorithm to
group generated decoys based on their shape similarity. (iii) Finally,
a selector populates the reduced ensemble Ωred with selected decoys
from each cluster/group identified over Ωgen.

2.1 Decoy Ensemble Generation
While the focus of this work is not on decoy generation algorithms,
it is worth summarizing the algorithm employed to generate the
ensemble Ωgen over which we evaluate our objective of reducing
it while retaining quality. We make use of the hybrid evolutionary
algorithm (HEA) that has been previously published [17] and evalu-
ated against Rosetta and other algorithms [16–18]. HEA carries out
a biased exploration of the space of backbone dihedral angles, using
the same representation as in the Rosetta decoy generation algo-
rithm. As an evolutionary algorithm, HEA evolves a population of
decoys towards lower-energy regions of the Rosetta energy surface
(evaluated with a Rosetta coarse-grained energy function) while
delaying premature convergence via evolutionary search strategies.
The interested reader is referred to Ref. [17] for more details on the
HEA. We note that any decoy generation algorithm can be used
to generate a decoy ensemble for our purposes. Specifically, we
employ HEA to generate hundreds of thousands of decoys for a
target protein (given its amino-acid sequence).

2.2 Featurizer: Extraction of Shape-based
Features of Generated Decoys

We leverage the Ultrafast Shape Recognition (USR) metrics that
were originally introduced in [2] to summarize three-dimensional
molecular shapes. The purpose of the USR metrics was to speed up
searches for similar structures in molecular structure databases. We
employ such metrics as features by which to encode a generated
decoy. USRmetrics are momenta of distance distributions (of atoms)
from four chosen reference points in a tertiary structure. These
reference points are the molecular centroid (ctd), the closest atom
to ctd (cst), the farthest atom from ctd (fct), and the farthest atom
from fct (ftf). For each reference point, the distance of each atom is
computed, and the resulting distribution is summarized with three
momenta, the mean, the variance, and the skewness. In this way,
each decoy in Ωgen is summarized by 12 features.

We note that the motivation for encoding each decoy via fea-
tures is two-fold. First, reducing the number of coordinates needed
to represent each decoy reduces the computational time needed
by any algorithm expected to process generated decoys in some
fashion. Second, it is well-known that clustering algorithms, which
we utilize in the second stage of our approach, are less effective in
high-dimensional spaces [8, 12, 22].

2.3 Clustering: Grouping Generated Decoys by
Shape Similarity

With each decoy in Ωgen represented by 12 features as described
above, clustering algorithms are now applied to group the decoys



into clusters. We choose two popular clustering algorithms, hier-
archical and k-means. The choice reflects the fact that these algo-
rithms can handle large data.

Our application of k-means is as follows. We consider two hyper-
parameters, the decoys that can serve as cluster centroids and the
number of clusters k . For a given value of k , we initially select k
decoys uniformly at random over Ωgen to serve as the centroids.
For this particular grouping C of the dataset into k clusters, one
can now measure the loss function via the within-cluster scat-
ter: L(C) = 1

2
∑k
l=1

∑
i ∈Cl

∑
j ∈Cl , j,i D(xi ,x j ), where D(xi ,x j )mea-

sures the Euclidean distance between two points/decoys xi , x j in
the same cluster Cl , where l ∈ {1, . . . ,k}. One can vary the decoys
serving as cluster centroids and among the different options choose
the ones that result in the smallest loss. For a given k , we do so 10
times, each time selecting decoys at random to serve as centroids,
and retaining the assignment resulting in smallest loss.

The optimal number of clusters, k , is determined via the popular
knee-finding approach. Specifically, for a givenk , after the centroids
of clusters are determined as above, the squared distance of each
decoy in a cluster from the centroid of the cluster can be recorded,
and the sum of these squared distances can be obtained over the
clusters k . This sum of squared distances, also often referred to as
the sum of squared errors (SSE), can be plotted for different values
of k , as shown in Fig. 1 on a particular target protein. The knee (also
referred to as elbow) in the curve indicates the optimal number
of clusters. We want a small SSE. Naturally, the SSE approaches 0
as one increases k ; it is exactly 0 when k = |Ωgen |. The goal is to
choose a small value of k that results in a low SSE. The knee or the
elbow in the curve that tracks SSE as a function of k corresponds to
the region where increasing k starts yielding diminishing returns.

Figure 1: The SSE is plotted as a function of the number
of clusters identified via k-means on decoys generated via
HEA on a target protein. This target is part of our evalua-
tion dataset that we relate in Section 3. Specifically, it is the
target protein with known native structure in the PDB entry
with identifier (id) 1ail.

Hierarchical clustering does not require a priori specifying the
number of clusters. We note that hierarchical clustering refers
to a family of clustering algorithms that build nested clusters by
merging or splitting them successively. We make use of the merg-
ing/agglomerative approach, where every decoy starts as its own
cluster, and clusters are successively merged together until the root
is reached; the root is the unique cluster that contains all the decoys.
There are different linkage criteria depending on the metric used for
the merge strategy. We use single linkage, which sets the distance

between two clusters as the distance between the two closest points
across the clusters.

The hierarchy of clusters is represented as a tree/dendrogram.
“Cutting” at different places in the tree corresponds to selecting a
particular partition of the dataset into clusters. We utilize a cached
implementation, so that cutting at different places in the hierarchi-
cal tree does not require recomputation of the clusters. In order to
determine where to cut the tree, we employ the Davies-Bouldin
(DB) index [7], which is a popular clustering validation technique in
the absence of ground truth labels that is computed on features in-
herent to the dataset. A lower DB index relates to better separation
between the clusters. Specifically, the DB index is defined as the
average similarity between each cluster and its most similar one;
it evaluates intra-cluster similarity and inter-cluster differences to
provide a non-negative score. In our application of hierarchical
agglomerative clustering with single linkage, the DB index is eval-
uated at every height of the tree, and the height that results in the
smallest DB is the one that is selected as the optimal partition (and
optimal corresponding number of clusters).

2.4 Selector: Populating the Reduced Ensemble
After the application of a clustering algorithm over Ωgen, the de-
coys in it are grouped/partitioned into clusters. The selector selects
a subset of decoys from each cluster to populate the reduced ensem-
ble Ωred. Specifically, the selector makes use of both the identified
clusters and the Rosetta score4 energy function. This function eval-
uates not only Lennard-Jones interactions, but also short-range and
long-range hydrogen bonding in a decoy. The decoys in a cluster
are organized into levels/bins. The decoys in a bin are those with
score4 energies that are identical up to two digits after the decimal
sign. One decoy is selected at random from each bin and placed
in the reduced ensemble Ωred. This process is repeated for each
identified cluster. This approach indirectly biases the contribution
to the reduced ensemble by cluster size. Larger clusters have more
decoys in them, which results in more energy levels for those clus-
ters, and so more decoys selected from larger clusters for placement
in the reduced ensemble. As a result, this approach indirectly bi-
ases towards diversity, as well, though we note that the width of a
bin/level can be modified/tuned to control the size of the reduced
ensemble.

3 RESULTS
Evaluation is carried out on two datasets. The first is a benchmark
dataset of 10 proteins of varying lengths and folds that are used
widely for evaluation [17, 25–27]. The second contains 10 hard,
free-modeling target domains from CASP12 and CASP13. On each
target, HEA is run 5 times to account for its stochasticity. Decoys
generated over these runs are collected, resulting in a Ωgen ensem-
ble of 250, 000 decoys for each target. As described in Section 2,
Ωgen is subjected to k-means or hierarchical clustering to obtain
a reduced ensemble Ωred. The number of clusters obtained from
each algorithm with the SSE- or DB-guided process detailed in
Section 2 varies per target. Fig. 2(a) shows the distribution of the
number of clusters determined by the DB index-based approach
for the hierarchical clustering algorithm over all target proteins
(in the combined benchmark and CASP dataset). Fig. 2(b) shows



the distribution of the number of clusters determined by the SSE-
guided approach for k-means over all target proteins. Visualizing
these distributions reveals that on the majority of the targets, the
number of clusters is between 20 − 35, indicating the presence of
structure in the decoy dataset (that is, a large number of decoys
are similar) that is leveraged in this paper to reduce the generated
decoy ensemble while retaining quality.

(a) (b)
Figure 2: Distribution of the number of clusters identified
via (a) hierarchical and (b) k-means clustering over target
proteins in the benchmark and CASP datasets.

The Ωgen and Ωred ensembles are compared in terms of size
and quality. For the latter, we focus on the proximity of decoys
to the known native structure of a target protein. Specifically, we
make use of the popular least root-mean-squared-deviation (lRMSD)
to measure the dissimilarity of a decoy to a known native struc-
ture [14]. lRMSD reports the average over the Euclidean distances
of corresponding atoms in two given structures once differences
due to rigid-body motions (whole-body translation and rotation
in three dimensions) are removed. Our comparison considers the
main carbon (Cα ) atom of each amino acid.

To compare quality, the minimum and standard deviation of the
lRMSDs of each decoy from the native structure in each ensemble
is reported. To provide a baseline, the reduced ensemble identified
via k-means and hierarchical clustering is compared to a reduced
ensemble identified via truncation selection. Given a target size M ,
theM lowest-energy decoys in Ωgen are selected in the truncation-
based approach to populate the reduced ensemble. The target size
M is the maximum over the reduced ensembles obtained via hi-
erarchical or k-means clustering. As the results presented below
will make clear, k-means yields larger reduced ensembles, so all
truncation-based reductions end up matching in size the reduced
ensemble obtained via k-means. Finally, a subset of the targets is se-
lected for visualization of the original and reduced ensembles. The
visualization plots a decoy in each ensemble via two coordinates,
its lRMSD from the known native structures and its Rosetta score4
energy.

3.1 Reduction versus Quality
Fig. 3 compares Ωgen and Ωred in terms of size for the benchmark
and CASP datasets. Specifically, Fig. 3 plots the reduction (1 −
|Ωred |
|Ωgen |

) · 100% obtained by k-means and hierarchical clustering. The
reductions obtained by hierarchical clustering are drastic, over 77%
on all targets, and over 80% on 9/10 of the targets. Those obtained
by k-means range from 54% to 71%. Fig. 3 shows similar results
for the CASP dataset, with reductions of 59% and higher obtained

via k-means and higher reductions of 80% and higher obtained via
hierarchical clustering.

Figure 3: The reduction (1− |Ωred |
|Ωgen |

)·100% obtained by k-means
and hierarchical clustering is shown for each protein in the
benchmark and CASP datasets.

Fig. 4 compares Ωred to Ωgen in terms of the minimum (top
panel) and standard deviation (bottom panel) of lRSMDs of decoys
in each ensemble to the known native structure on each target (of
the benchmark and CASP datasets). Specifically, Fig. 4 plots the
difference of the minimum or standard deviation in Ωred over the
corresponding quantity in Ωgen, comparing hierarchical clustering,
k-means, and truncation selection.

Fig. 4 reveals that truncation selection achieves the worst per-
formance; differences in minimum lRMSD range from 0.73Å to
5.12Å. That is, the best decoy retained via truncation selection can
be 5.12Å further from the native structure than the best decoy in
the original ensemble. It is clear that quality cannot be maintained
via truncation selection. In contrast, the differences in minimum
lRMSD obtained in the case of k-means are 0Å, and those obtained
by hierarchical clustering range from 0Å to 0.29Å. The slight in-
crease in the case of hierarchical clustering is not surprising, given
that hierarchical clustering yields more drastic reductions in size
over k-means, as related above.

Fig. 4 shows that differences on lRMSD standard deviation in
the case of k-means range from 0.02Å to 0.26Å, and those obtained
in the case of hierarchical clustering range from 0Å to 0.36Å, with
less than 0.1Å on 5/10 targets. Fig. 4 allows making similar ob-
servations on the CASP dataset, with quality lost in the reduced
ensemble obtained via truncation selection, quality preserved on
both the reduced ensembles obtained via the clustering algorithms,
with the best results obtained via k-means. On standard deviation,
hierarchical and k-means clustering perform comparably.

To provide greater detail, the actual distribution of decoy lRMSDs
from the native structure is shown for the Ωgen ensemble of gen-
erated decoys, as well as the reduced ensembles Ωred obtained via
k-means and hierarchical clustering. Fig. 5 does so for one target
protein (with native structure under PDB id 1ail) and shows that
the reduced ensembles obtained by each clustering algorithm con-
tain decoys with similar relative frequencies of lRMSD as Ωgen.
Altogether, these results allow concluding that, both clustering



Figure 4: Comparison of the minimum and standard devi-
ation of the distribution of lRMSDs (to the known native
structure) of decoys in the Ωgen and Ωred ensembles of each
target in the benchmark and CASP datasets. Comparison
of minimum lRMSDs includes the ensemble reduced via
truncation selection. Differences between theminimumand
standard deviation obtained over Ωred from those obtained
over Ωgen are related.

algorithms allow obtaining drastic reductions in the decoy ensem-
ble size while preserving quality, with further reductions in size
provided by hierarchical clustering.

3.2 Ensemble Visualization
Fig. 6 (top panel) visualizes the Ωgen and Ωred ensembles for a
selected target in the benchmark dataset. Decoys in Ωgen are shown
in red, and those in Ωred are superimposed in blue. Fig. 6 (bottom
panel) provides a similar visual comparison for a selected target
in the CASP dataset. Fig. 6 shows that the reduced ensemble Ωred
retains decoys from all the regions in the structure space probed by
the original ensemble Ωgen. In particular, k-means does so better
than hierarchical clustering (practically all red dots are occluded
by the superimposition), which is not surprising, as k-means yields
larger reduced ensembles than hierarchical clustering.

4 CONCLUSION
The results presented here suggest that it is possible to significantly
reduce the number of generated decoys retained for further analysis

Figure 5: The distribution of decoy lRMSDs from the native
structure is shown for the Ωgen ensemble (in red) and the
reduced ensembles Ωred obtained via k-means (green) and
hierarchical clustering (in blue). Results are shown for the
target protein with native structure under PDB id 1ail.

without sacrificing quality. A clustering-based approach is shown
effective at doing so. Hierarchical clustering is shownmore effective
at reducing ensemble size. While the presented methodology and
evaluation serves as a proof-of-concept, the work presented here
opens up many venues of further research. It is naturally appealing
to integrate the proposed approach in decoy selection methods that
operate under the umbrella of machine learning. In addition, while
one can investigate the utility and effectiveness of different features
via which to represent decoys, advances in subspace clustering
can be leveraged to address the high-dimensionality of molecular
structure spaces.
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