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Abstract—The three-dimensional structures populated by a
protein molecule determine to a great extent its biological
activities. The rich information encoded by protein structure
on protein function continues to motivate the development of
computational approaches for determining functionally-relevant
structures. The majority of structures generated in silico are not
relevant. Discriminating relevant/native protein structures from
non-native ones is an outstanding challenge in computational
structural biology. Inherently, this is a recognition problem that
can be addressed under the umbrella of machine learning. In
this paper, based on the premise that near-native structures are
effectively anomalies, we build on the concept of anomaly detec-
tion in machine learning. We propose methods that automatically
select relevant subsets, as well as methods that select a single
structure to offer as prediction. Evaluations are carried out on
benchmark datasets and demonstrate that the proposed methods
advance the state of the art. The presented results motivate
further building on and adapting concepts and techniques from
machine learning to improve recognition of near-native structures
in protein structure prediction.

Keywords-protein structure prediction, near-native decoys,
anomaly detection, machine learning.

I. INTRODUCTION

Decades of research have shown that protein molecules
are inherently flexible [1]. The spatial arrangements in which
atoms in a protein molecule position themselves in three
dimensions, also referred to as structures, determine to a great
extent the biological activities of a protein in the cell [2]. Due
to the promise that tertiary structures holds to decode function,
significant research in wet laboratories focuses on elucidating
biologically-active/native structures.

However, advancements in protein structure determination
in the wet laboratory are not keeping up with advancements
in genome sequencing. While ever increasing, the number of
known protein structures in the Protein Data Bank (PDB)
lags the number of known protein-encoding genes by many
orders of magnitude [3]. This gap motivates the development
of computational methods as complementary tools to wet-
laboratory techniques for protein structure determination [4].

The most challenging setting for computational approaches
is template-free protein structure prediction (PSP). In PSP,
no other known structure of a sufficiently-similar protein
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sequence is available for use as a template [S5]. In the absence
of a viable template, computational methods approach PSP as
an optimization problem. The goal is to find tertiary structures
that minimize an energy function that sums up interactions
among atoms in a particular arrangement in a structure.

Currently, one of the main challenges is that energy func-
tions are semi-empirical and give rise to an energy surface
riddled with local minima. The majority of structures gener-
ated in silico are not relevant, hiding among them what is
often a very small (or even negligible) subset of near-native
structures. To further emphasize this point of the presence of
very little signal in a sea of noise, the generated structures are
referred to as decoys in PSP literature.

The body of work on computational methods for determin-
ing whether a structure is near-native or for selecting near-
native structures from a set of computationally-determined
ones is quite rich. In Section I-A we provide a glimpse into
related work. However, while work is rapidly increasing, the
the question of which decoys are near-native is an outstanding
challenge in computational structural biology. This question
can be inherently framed as a recognition problem and is thus
prime to be approached under the umbrella of machine learn-
ing. Indeed, as we summarize in Section I-A, many machine
learning methods are proposed to address this problem.

In this paper, we take a unique approach based on the
premise that near-native structures are effectively anomalies
in a distribution of computationally-generated structures by
template-free PSP methods. Specifically, we leverage the
concept of anomaly detection and propose two groups of
methods, methods that automatically select subsets of (high-
quality/near-native) decoys from a given set and methods
automatically select one (high-quality) decoy to offer as pre-
diction of a near-native structure. A diverse set of proteins
are employed to test these methods and evaluate our premise.
Decoys for them are generated via the state-of-the-art, Rosetta
template-free PSP protocol. The results demonstrate that lever-
aging anomaly detection advances the state of the art and
motivate further building on related concepts and techniques
to improve the recognition of near-native protein structures.

A. Related Work

Since energy is an unreliable indicator of nativeness [6],
[7], the question of which decoys are near-native is an out-



standing challenge in computational structural biology. This is
recognized by a special category in the biennial “’Critical As-
sessment of protein Structure Prediction” (CASP) competition
referred to as model assessment [4]. The term *model’ in this
context refers to a tertiary structure, and 'model assessment’
refers to the evaluation of a structure via a function that is a
surrogate for nativeness (or functional relevance) [8].

Surrogate functions range from carefully-crafted pseudo-
energy functions that combine physics-based and statistical
terms [9]-[13] to functions learned from data via machine
learning algorithms, such as Support Vector Machines [14],
[15], Random Forest [16], Ensemble Learning [17], and even
Neural Networks [18], [19]. These methods utilize features
derived from statistical scoring functions [20] and/or expert-
constructed structures [21].

While ML-based methods show great promise, supervised
learning ones have to address several challenges, as shown
in recent [22]. Computationally-generated decoys come with
no labels (native or non-native); associating labels for the
purpose of training relies on metrics and thresholds that
introduce some arbitrariness and consequently imprecision
in the process. More generally, decoy datasets are severely
imbalanced, generating many decoys is a computationally-
intensive process, and ML methods can additionally be prone
to capturing spurious correlations when faced with many
features needed to represent tertiary structures.

It is worth noting that, while model assessment’ is often
interchangeably used in literature with ’decoy selection,” the
two problems are not equivalent. The latter refers to the setting,
where the goal is to automatically select from a given set
of tertiary structures/decoys those that are near-native (also
referred to as high-quality). While model assessment may be
the first step to then selecting decoys determined to be of
high quality by the assessment, using model assessment is not
necessary. For instance, decoy selection methods that remain
popular are those based on clustering.

The success of clustering-based methods is intrinsically tied
to the quality of a given decoy dataset. The majority of datasets
are severely imbalanced; a small percentage of decoys are
near-native. By seeking consensus, clustering-based methods
cannot identify near-native decoys if they are severely under-
represented. The interested reader can find several other issues
that challenge clustering-based methods listed in [23], [24].

Several methods have advanced clustering-based methods
by leveraging the energy surface (the structure space lifted by
the additional dimension of internal energy) populated by a
set of computationally-generated decoys. For instance, work
in [25] utilizes components of the energy surface, known as
energy basins, in lieu of clusters. After first grouping decoys
into basins, the work in [25] ranks basins based on several
characteristics and demonstrates that top basins contain more
near-native/higher-quality decoys than top clusters [25].

B. Contributions of Proposed Methods

In this paper, we focus on the problem of decoy selection
and address it in two forms, one where the goal is to select

a subset of decoys, and the other where the goal is to be
more precise and select a single decoy to offer as prediction
of a near-native structure. Moreover, we specifically focus
on the setting where the decoys are generated for a given
protein molecule (from its amino-acid sequence) via template-
free PSP methods. Because of the framework under which
these methods operate, the issue of data imbalance, which is
common in bioinformatics [26], is prominent and informs our
premise in this paper. To further substantiate this point, we
note that on a dataset of 54,795 decoys that we employ in
our evaluations in this paper, only 0.845% are near-native.

We posit that anomaly detection (AD) is an intuitive and
natural approach in the presence of such data imbalance. AD
is the task of discovering which observations are outliers
(abnormal). First and most important, abnormal observations
do not have to correspond to a single class. Most likely,
they are captured by an unbound (yet to be known) number
of classes. Supervised methods will overfit by forcing the
learning of models that explain classes we already know and
for which we already have training examples. AD, on the
other hand, only requires that we have examples of normal
instances. Second, as in most AD applications, outliers are
rare and therefore a minority of observations. This kind of
imbalance is difficult to address with supervised learning,
since the data needs to be balanced first if one does not want
the majority class to influence results negatively. Balancing
leads to oversampling the minority observations which leads to
overfitting, or undersampling the majority observations, which
leads to loss of a great amount of data.

AD amounts to finding points that do not fit the distribution
of normal data. This is accomplished by one of the following
approaches. (i) Assuming a particular form of this distribution
(e.g., Gaussian) and fitting the normal data to it, testing the rest
of the data for fitness over the fitted distribution (e.g., [27]). (ii)
Finding a way to measure the outlierness of points with respect
to a baseline of normal points and ranking observations using
this measure (e.g., [28]). (iii) Using a measure of outlierness
and a test of fitness over an empirical distribution of normal
points to determine if an observation is an outlier (e.g., [29]).

In this paper we adapt and evaluate a comprehensive and
diverse list of AD techniques for decoy evaluation in PSP.
We build on recent work in [25] on detection of energy basins
and first identify “anomalous” basins. We show that AD allows
identifying better-quality basins for decoy selection. Second,
we further provide methods that directly select a decoy from
the top, anomalous basins and offer as prediction. Evalua-
tions on benchmark datasets along rigorous machine learning
metrics demonstrate that the proposed methods advance the
state of the art and warrant further research on adapting
concepts and techniques from machine learning to improve
decoy selection in template-free protein structure prediction.

II. METHODS

It may be tempting to directly apply AD techniques to
a decoy dataset, effectively evaluating whether a decoy is
anomalous or not. Such evaluation would constitute model



assessment, but it would require that decoys be represented
via meaningful features/descriptors. While this is certainly a
reasonable direction of research, our preliminary work in this
direction suggests that finding informative descriptors is not
trivial and relies greatly on domain-specific insight. Moreover,
aiming to obtain such descriptors automatically relies on deep
NNs that place demands on the size of decoy datasets and in
turn place large computational demands on template-free PSP
methods used to generate such datasets.

Therefore, in this paper we propose to apply AD techniques
over subsets of decoys (effectively addressing decoy selection),
identifying anomalous subsets and offering them as prediction.
We build over recent works by our laboratory on organizing
decoys into basins, which are better-quality clusters, as we
summarize below. We describe novel methods that utilize
basins to identify among them one or a few containing
good-quality decoys. Finally, we additionally propose methods
that select an individual decoy from a basin and offer it as
prediction.

A. Basins+Select

Basins+Select, recently proposed and demonstrated
in [25], is employed as a baseline against which we evalu-
ate performance improvements obtained by novel, AD-based
methods proposed here to select basins. Work in [25] shows
that Basins+Select outperforms clustering-based methods
that do not take into account energetics. The method relies
on two concepts, a nearest-neighbor graph and energy basins,
which we summarize briefly below.

The nearest-neighbor graph (nngraph) encodes the spatial
proximity of decoys in the structure space probed by a
template-free PSP method. The decoys constitute the vertices
of the nngraph. The edges encode a local (spatial proximity)
neighborhood over each decoy. The distance between two de-
coys is measured via Root-Mean-Squared-Deviation (RMSD),
which averages the Euclidean distance among atoms in two
given decoys over the atoms.

To remove differences due to rigid translation and rotation in
three-dimensional Cartesian space, all decoys in a dataset are
first optimally superimposed over the first decoy [30], which
is chosen arbitrarily as reference. Using RMSD to compute
the distance between two decoys, each vertex/decoy u is
connected to other vertices v if d(u,v) < ¢; € is a user-defined
parameter. A small ¢ may result in a disconnected nngraph.
This is remedied in [25] by gradually increasing the value of
€ over a maximum number of iterations, while controlling the
density of the resulting nngraph via a maximum number of
nearest neighbors per vertex.

On-graph clustering algorithms leveraging the concepts of
communities in social and information networks have been
proposed and adapted to cluster decoys over the nngraph [31].
These algorithms result in decoy groupings that are outper-
formed by Basins+Select, which additionally takes into
consideration decoy energies.

Basins+Select utilizes the concept of basins in the
energy surface (often referred to as the energy landscape). The

landscape lifts the decoy space by one additional dimension
that corresponds to the internal/potential energy in a decoy.
Basins “of attraction” in the landscape are local neighborhoods
around local minima; the latter are referred to as focal minima.

Using the Structural Bioinformatics Library (SBL) [32],
Basins+Select decomposes a decoy nngraph into basins.
These are identified as follows. Vertices that are local (en-
ergy) minima in the nngraph are identified first. A vertex is
considered a local minimum if its energy is no higher than
the energies of other vertices to which it is connected via an
edge. Each such identified local minimum vertex represents a
basin.

Remaining vertices are assigned to basins as follows. Each
vertex u is associated a negative gradient estimated by se-
lecting the edge (u,v) that maximizes the ratio [e(u) —
e(v)]/d(u,v), where e(u) is the energy of the decoy in
vertex u. The negative gradient is followed (via the edge that
maximizes the above ratio) until a local minimum is reached.
Vertices that via this process reach the same local minimum are
assigned to the basin associated/identified with that minimum.

Once basins are identified, they can be ranked/ordered by
various characteristics based on basin size and basin energy, as
described in [25]. Basin size measures the number of decoys
in a basin. Basin energy can be implemented as the energy
of the focal minimum in it (so, the lowest energy among the
decoys in it) or the average energy over the energies of the
decoys in a basin. In the interest of clarity of evaluation, in this
paper we focus only on size-based ranking, ordering identified
basins from largest to smallest, and selecting the top one(s) in
this ranking as the decoy subset of potentially good quality.
This subset is evaluated with metrics designed for the setting
of decoy selection, as related later in Section II-E.

B. Basin-based Methods for Selection of Decoy Subsets

In this paper, we employ Basins+Select as a baseline
method against which we evaluate three novel methods that
select subsets of potentially good-quality (near-native) decoys
from a decoy dataset. As described in Section I, our focus
is on evaluating AD as a means of handling data imbalance
in decoy datasets; i.e., a very small percentage of near-
native decoys. We do so in a method to which we refer
as Basins+AD+Select. The naming conveys the order
of steps. Decoys are first grouped into basins via SBL as
in [25]. The identified basins are then evaluated via various
AD techniques to identify “anomalous” basins. Details of
various AD techniques we employ and evaluate are related
in Section II-C.

Once anomalous basins are identified, they are ranked by
size, from largest to smallest. The largest [ basins are offered
as the decoy subset of potentially good quality. When [ is
specified to be larger than 1, the decoys in the [ selected basins
are merged into one decoy subset offered as prediction.

The proposed Basins+AD+Select method is
additionally compared against two other novel methods
proposed  here, CSSample+Basins+Select  and
CSSample+Basins+AD+Select. Both methods evaluate



the hypothesis that additional information about the decoys,
beyond their internal energies, may be leveraged to improve
the quality of the selected decoy subset(s). The CSSample
component refers to the fact that the decoy dataset is reduced
prior to identification of basins. The reduction takes into
account a contact-based score that evaluates the quality of a
decoy in a blind setting (absence of a known native structure).

Given the amino-acid sequence alone, contacts can be
predicted with various methods. We make use of RaptorX-
Contact due to its good performance in CASP [33]. RaptorX-
Contact weights predicted contacts by a confidence score. In
this paper, we select the top 10 contacts. These are compared
against contacts evaluated in a decoy; contacts are computed
between CB atoms, using a distance threshold of 8A (CA is
used in glycine in lieu of a CB atom). Recall/sensitivity is used
to compare contacts in a decoy to sequence-predicted contacts,
using the latter as the ground truth. Sensitivity is used as a
contact score for each decoy; since it ranges in [0,1], it is
employed as a probability to sample decoys with high contact
scores. Half of the decoys in a dataset are sampled in this
manner.

Basins are then identified over the sampled/reduced dataset.
In CSSample+Basins+Select, the largest basin is of-
fered as prediction. In CSSample+Basins+AD+Select,
the identified basins (over the reduced dataset) are fed to AD
techniques to identify anomalous basins. The latter are ranked
according to size, and the largest [ are offered as prediction.

C. Anomaly Detection Techniques

We investigate a comprehensive list of 10 state-of-the-art
AD techniques, applying them over detected basins. Each
basin is represented with four features: size (the number of
decoys in a basin), the average energy calculated over energies
of decoys in a basin, Pareto Rank, and Pareto Count. These
latter two features are inspired by work on multi-objective
optimization and selection [25], [34], where the concept of
dominance across several possibly conflicting objectives, such
as basin size and energy here, is used to rank solutions (in this
case, basins). Once such represented, basins are subjected to
any of the following AD techniques.

In “Angle-Based Outlier Detection” (ABOD), the anoma-
lous score of a data point is observed as the variance of its
weighted cosine scores to all neighbors [35]. If a data point
is an outlier, the variance of angles between the pairs of other
data points is small. The main advantage of this method is
independence of parameters.

In “Clustering-Based Local Outlier Factor” (CBLOF), data
are classified into different clusters based on clustering [35].
The outlier score of a data point is calculated based on the size
of the cluster to which a data point belongs and the distance
to the nearest large cluster.

In “Feature Bagging,” multiple AD methods are base detec-
tors that are applied on different set of features on various sub-
samples of a dataset; the combination of the results generated
is used for detecting outliers [35].

The “Histogram-Based Outlier Score (HBOS) technique is
based on the assumption of independence of features and
detects outliers in linear time on data size. In HBOS, for each
feature (dimension), a univariate histogram is constructed with
which the degree of outlierness is estimated [35].

In “k-Nearest Neighbors Detector” (kNN), the kth-nearest
neighbor distance of a data point is considered its anomaly
score. Two settings are considered, one in which the average
of all the k-neighbors distance is the score, and another one in
which the median is considered instead [35]. Different distance
metrics can be used, such as cityblock, cosine, Euclidean, L1,
L2, Manhattan, etc.

In “Local Outlier Factor” (LOF), local densities of particular
regions are computed, and instances in low-density regions are
potential anomalies [35]. LOF measures the local deviation of
density of a data point in comparison to its neighbors. The
LOF is computed as the ratio of average local reachability den-
sity of a data point’s k-nearest neighbors and local reachability
density of the data point. This LOF is the scoring criterion for
outlier detection.

“Outlier detection with Minimum Covariance Determinant”
(MCD) detects outliers in a Gaussian-distributed data. A
minimum covariance determinant model is fit on the data. The
Mahalanobis distance is then used as an estimate of the outlier
degree of the data [35].

“OneClass-SVM” (OCSVM) gives useful results on high-
dimensional datasets with unknown distribution with proper
hyper-parameter tuning. The v parameter is set to the propor-
tion of outliers expected to be present in the data, and the ~
parameter determines the smoothing of the contour lines [35].

Finally, the “Principal Component Analysis (PCA) for
AD” technique relies on PCA to project data onto a lower-
dimensional hyperplane. Data that are outliers with respect to
the top few principal components (with largest eigenvalues)
correspond to outliers on one or more of the original variables.
Outlier scores are estimated as the sum of the projected
distance of a data point on all eigenvectors [35].

D. Single-Decoy Selection Methods

Given a subset of decoys selected by a method described
above, we then propose and evaluate four novel single-decoy
selection methods that select a single decoy from a decoy
subset. Random-DecoySelect is employed as a baseline,
as it samples a decoy uniformly at random over a decoy subset.

CS+E-DecoySelect sorts decoys first by contact score
(highest to lowest); decoys with the same contact score are
then sorted by energy (lowest to highest). The top decoy in
this ranking is offered as prediction. This ranking yields better
results than an alternative one, where decoys are first ordered
by energy and then by contact score (data not shown).

The third method, AD-Random-DecoySelect, evaluates
the decoys in a subset and removes those that are deemed
anomalous; in our evaluation, we focus only on 1-class
SVM. Note that removing anomalous decoys is in contrast
to the strategy employed in selecting a decoy subset, where
anomalous basins were determined to contain potentially



good-quality decoys. Since the single-decoy selection methods
operate over one or few (merged) basins, the decoys should
be structurally- and energetically-similar. So, the objective
changes into looking for consensus. After removing anoma-
lous decoys, uniform random sampling is employed over the
remaining ones to extract a decoy and offer it as prediction.

Alternatively, in AD-CS+E-DecoySelect, after remov-
ing anomalous decoys identified via 1-class SVM, the re-
maining decoys are ranked by their contact score first
and energy second, and the highest-ranking decoy is ex-
tracted and offered as prediction. Again, this ranking
yields better results than an alternative one, where de-
coys are first ordered by energy and then by contact
score. We note that in AD-Random-DecoySelect and
AD-CS+E-DecoySelect decoys are represented via three
features, energy, contact score, and RMSD from the decoy
with the lowest energy in the considered subset.

E. Evaluation Metrics

The methods we describe above fall in one of two cate-
gories: they select a subset of decoys or select an individual
decoy from a set. In the former, such methods can be evaluated
in terms of purity, a metric we originally introduced in [25].
In the latter, methods can be evaluated via loss, a classic ML
metric that we adapt here.

Methods of the first category organize decoys into
groups/basins. Groups can be ranked/ordered based on char-
acteristics that can be measured over a group. For instance,
one such characteristic can be size. Ordering by largest to
smallest can provide groups G1, .. ., G, with n being the total
number of identified groups. Such a method that first organizes
decoys into groups and then ranks them can be used for decoy
selection as follows: Provided a user-specified parameter [, the
groups (i1, ..., Gy in the ranking Gy, ..., G, can be selected,
merged together in a set S, and the decoys in S can be offered
as prediction of near-native structures.

The set S can be evaluated in terms of its purity; that is,
how many near-native decoys are actually contained in it. On a
test case, where the native structure is known, all given decoys
(generated by a decoy generation algorithm) can be evaluated
in terms of their dissimilarity from the native structure. We
employ least Root-Mean-Squared-Deviation (IRMSD), which
averages the Euclidean distance among atoms in two given
structures over the atoms after removing differences due to
rigid translation and rotation in 3d [30]. Provided a distance
threshold dist_thresh, all decoys below the threshold are
labeled as near-native; the rest are labeled as non-native. The
former are positives, and the latter are negatives. So, a selected
set S of decoys (consisting of decoys in groups Gy, ...,G))
can be evaluated in terms of its purity TP(S)/|S|, where
TP(S) is the number of near-native decoys (true positives)
in S. It is evident that purity is related to precision.

Methods in the second category select one decoy. We note
that one can easily put together a pipeline that follows up
a method from the first category with a method from the
second category. For instance, after selecting first a subset

S of decoys from a given dataset, uniform random sampling
can be employed to select any decoy from S and offer for
prediction. We propose loss to evaluate how good a selected
decoy is. The decoy that is closest to the native structure
(in terms of IRMSD) has a loss of 0. A perfect method
would always find such a decoy. Let us refer to this decoy
as BestDecoy. In the absence of such a method, any other
selected decoy SelectedDecoy presents a loss measured as
RSMD(SelectedDecoy, NativeStructure) - RSMD(BestDecoy,
NativeStructure).

F. Implementation Details

The Python library pyod.models is used to implement the
AD methods listed above. The fraction of outliers employed
in these methods is 0.05, the number of nearest neighbors of
a decoy (in AD methods that rely on this parameter) varies
in [15,40], and the distance function used is the Euclidean.
Results reported for proposed methods relying on sampling
are averages over 50 independent drawings.

III. RESULTS

We experiment with 18 proteins of different lengths and
folds. These proteins constitute a benchmark dataset often used
by decoy generation algorithms [34], [36]. We used the Rosetta
template-free (decoy generation) protocol [37] to generate
around 51, 000 to 68,000 decoys per target. For each Rosetta-
generated decoy, we have its all-atom Cartesian coordinates
and its all-atom internal energy (scorel2) measured in Rosetta
Energy Units (REUs).

Table I presents all the 18 proteins arranged into 3 different
categories/levels of difficulty (easy, medium, and hard). These
levels have been determined using the minimum IRMSD
between the generated decoys and a known native structure
of the corresponding protein (obtained from the PDB). The
size of the decoy ensemble || for each target is shown in
Column 5. The proteins in this dataset are identified via the
PDB entry id of a known native structure for them. The 4-letter
PDB ids are shown in Column 2; the fifth letter identifies the
chain in a multi-chain PDB entry. Column 7, which shows
the percentage of near-native decoys (within dist_threshold of
the known native structure), conveys the extreme imbalance
of the decoy datasets; in some cases, the near-native decoys
constitute less than 5% of the dataset.

A. Comparative Evaluation of Basin Purity

Figure 1 shows the purity of the decoy subset
consisting of the largest basin(s) obtained by the
four methods under comparison, Basins+Select,
Basins+AD+Select, CsSamplet+Basins+Select,

and CsSample+Basins+AD+Select. The top panel
evaluates the largest basin, the middle panel the decoy
subset that merges the largest two basins, and the bottom
one the largest three basins. It is worth noting that the
AD techniques that confer the best performance to the
AD-employing basin selection methods vary based on the
decoy datasets; consistently, however, the top-performing



TABLE I
TESTING DATASET (* DENOTES PROTEINS WITH A PREDOMINANT 3 FOLD
AND A SHORT HELIX). THE CHAIN EXTRACTED FROM A MULTI-CHAIN
PDB ENTRY (SHOWN IN COLUMN 2) TO BE USED AS THE NATIVE
STRUCTURE IS SHOWN IN PARENTHESES. THE FOLD OF THE KNOWN
NATIVE STRUCTURE IS SHOWN IN COLUMN 3. THE LENGTH OF THE
PROTEIN SEQUENCE (#AAS) IS SHOWN IN COLUMN 4. THE SIZE OF THE
ROSETTA-GENERATED DECOY DATASET IS SHOWN IN COLUMN 5.
COLUMN 6 SHOWS THE MINIMUM LRMSD OVER DECOYS FROM THE
KNOWN NATIVE STRUCTURE. COLUMN 7 SHOWS THE PERCENTAGE OF
NEAR-NATIVE DECOYS (WITHIN DIST_THRESHOLD OF THE KNOWN
NATIVE STRUCTURE).

difficulty | PDB id | fold #aas | #decoys | min % near-
IRMSD | native
A)
lail @ 70 58,491 0.50 6.352
1dtd(B) a+p | 61 58,745 0.51 22.827
Easy 1wap(A) | B 68 68,000 0.60 10.192
1tig a+p | 88 60, 000 0.60 15.109
1dtj(A) at+p | 74 60, 500 0.68 22.435
1hz6(A) | a+pB | 64 60,000 0.72 11.325
1c8c(A) | B* 64 65,000 1.08 10.882
2¢i2 a+p | 65 60, 000 1.21 22.443
Medium | 1bq9 B8 53 61,000 1.30 1.565
1hhp B* 99 60,000 1.52 2.486
1fwp a+pB | 69 51,724 1.56 5.819
Isap B8 66 66,000 1.75 2.304
2h5n(D) | « 123 54,795 2.00 0.845
2ezk @ 93 54,626 2.56 13.047
Hard laoy a 78 57,000 3.26 10.923
lees a 83 55,000 3.95 5.529
lisu(A) | coil 62 60,000 5.53 5.304
laly B8 146 53,000 8.53 2.779

ones are PCA for AD, Feature Bagging, and OCSVM,
followed next by CBLOF and HBOS (data not shown).
The results shown in Figure 1 are those obtained with
the best AD technique (in Baseline+AD+Select and
CsSample+Basins+AD+Select).

Figure 1 allows making several interesting observations.
First, all methods are able to extract a pure subset of decoys on
the easy decoy datasets, where the percentage of near-native
decoys is high. This is not surprising, as all methods build over
basins, which prior work shows outperform clustering for de-
coy selection [25]. Two methods show larger variation in per-
formance, Basins+Select, the baseline method (lower pu-
rity on lail) and CsSample+Basins+AD+Select (lower
purity on 1dtd(B)). Differences in performance become more
pronounced over the medium and hard datasets, where the
top performing method results in higher purity on more of
the datasets. Specifically, on the medium-difficulty datasets,
Basins+AD+Select outperforms other methods on 6/7 of
the datasets on the evaluation of the largest basin, on 4/7 of the
datasets on the evaluation of the decoy subset consisting of the
two largest basins, and on 3/7 of the datasets on the evaluation
of the decoy subset consisting of the three largest basins. On
the harder datasets, Basins+AD+Select outperforms other
methods on 4/6 of the datasets on the evaluation of the largest
basin, on 3/6 of the datasets on the evaluation of the decoy
subset consisting of the two largest basins, and on 4/6 of
the datasets on the evaluation of the decoy subset consist-
ing of the three largest basins. Filtering first by predicted
contact scores as in CsSample+Basins+AD+Select

helps when the decoy subset consists of more basins;
CsSample+Basins+AD+Select is the best-performing
method on 4/7 of the medium-difficulty decoy datasets when
focusing on the three largest basins. Altogether, these results
allow concluding that Basins+AD+Select is the better-
performing method, resulting in higher-purity decoy subsets.

B. Visualization of Largest, Selected Basin

Figure 2 shows the largest basin selected by
Basins+Select and the best method (as shown by the
above evaluation), Basins+AD+Select on 6 representative
datasets. The decoys in each dataset are plotted by their
IRMSD from the native structure versus their Rosetta energy.
Decoys in the largest basin obtained by Basins+Select
are drawn in red, and those in the largest basin obtained by
Basins+AD+Select are in yellow. Figure 2 clearly shows
how Basins+AD+Select improves purity of the largest
basins over Basins+Select. The largest basin obtained
by Basins+AD+Select is more homogeneous (in terms
of IRMSDs), and decoys in it have lower IRMSDs from the
native structure. These characteristics together are desirable,
as they may help in selecting a better decoy from the basin.

C. Comparative Evaluation of Loss

We show the loss resulting from the four methods that select
an individual decoy from a decoy subset extracted from a
given decoy datasets. We focus here on the subset consist-
ing of the largest basin selected by Basins+AD+Select.
Figure 3 shows the loss for Random-DecoySelect,
CS+E-DecoySelect, AD-RandomDecoySelect, and
AD-CS+E-DecoySelect. The top panel shows the loss
over the entire decoy dataset (where the best/lowest-IRMSD
decoy is the one over the entire dataset), whereas the bottom
panel shows the loss over the basin from which these methods
draw a single decoy (where the best decoy is computed over
those in the basin only). We recall that the loss reported for
methods that make use of uniform random sampling, shown
results are averages over 50 independent drawings.

The results in Figure 3 show that, as expected,
Random-DecoySelect, is the  worst-performing
method  (largest loss). CS+E-DecoySelect and

AD-CS+E-DecoySelect are the two top performing
methods. On some of the datasets, these methods yield
0 loss with respect to loss over the top basin (with
PDB ids 1dtj(A), 1fwp, 2h5n(D), and laly); on 2ezk,
the largest basin has only 1 decoy, so all methods yield
0 loss. Moreover, CS+E-DecoySelect outperforms
AD-CS+E-DecoySelect on 3/18 of the datasets with
respect to loss over the entire dataset and on 3/18 of the
datasets with respect to loss over the top basin. These two
methods achieve identical loss over 14/18 of the datasets with
respect to loss over the entire dataset and loss over the top
basin; this indicates that the decoy with the best contact score
in the top basin is not among the anomalous ones removed
on 14/18 datasets. AD-CS+E-DecoySelect outperforms
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Comparison of purity measured over decoys in By (top row), the subset B1_2 (middle row), and the subset B1_3 (bottom row) across the four

methodologies. Results obtained over the easy, medium, and hard datasets are shown separately in left, middle, and right columns, respectively, to highlight

the performance comparisons depending on the dataset difficulty.

CS+E-DecoySelect on 1/18 of the datasets with respect
to loss over the entire dataset and loss over the top basin.

IV. CONCLUSION

We proposed novel methods for recognition of near-native
protein structures as a decoy selection problem. We describe
a two-stage methodology that first selects a subset of decoys
from a given decoy dataset and then extracts a single decoy
from the subset for prediction in template-free PSP. The
concept of anomaly detection is employed in both stages,
first to identify outlier energy basins in which decoys are
grouped together and then to remove outlier decoys in order to
homogenize the quality of decoys. Rigorous evaluation along
metrics, such as recall and loss, shows that anomaly detection
allows identifying better-quality basins and decoys.

The proposed methods show promise for decoy selection
and warrant further research on anomaly-based recognition of
near-native protein structures in imbalanced datasets. While
our focus in this paper has been on the decoy selection
problem, the proposed concepts and methods can be leveraged
for model assessment. While not directly the focus of our
investigation in this paper, the outlierness of a decoy can
be utilized to assess its quality. Moreover, anomaly-based

scores can be combined with other characteristics/features to
approach model selection via supervised learning. These and
other related avenues will be the focus of our future research.
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