
Scalable distributed algorithms for multi-robot near-optimal motion
planning

Guoxiang Zhao, Minghui Zhu

Abstract— This paper investigates a class of motion planning
problems where multiple unicycle robots desire to safely reach
their respective goal regions with minimal traveling times. We
present a distributed algorithm which integrates decoupled
optimal feedback planning and distributed conflict resolution.
Collision avoidance and finite-time arrival at the goal regions
are formally guaranteed. Further, the computational complexity
of the proposed algorithm is independent of the robot number.
A set of simulations are conduct to verify the scalability and
near-optimality of the proposed algorithm.

Index Terms— robotic motion planning, multi-robot optimal
coordination, scalability

I. INTRODUCTION

Motion planning of mobile robotic networks is an active
research topic, where a set of control policies is identified
to command a team of mobile robots from initial states to
their respective goal sets, while abiding dynamic constraints
and environmental rules. Single-robot motion planning is
computationally challenging. In particular, the generalized
mover’s problem in [1] is shown to be PSPACE-hard in
degrees of freedom. Most single-robot planning algorithms
fall into three categories: cell decomposition [2] [3], roadmap
[4] and potential field [5] [6]. However, these methods suffer
from either heavy computations or local minima in potential
field in high-dimensional space. Sampling-based algorithms
are shown to be effective in addressing computational inef-
ficiency. Rapidly-exploring Random Tree (RRT) algorithm
[7] can quickly return a feasible path. However, RRT is not
asymptotically optimal [8]; i.e., the length of the shortest
path returned by RRT is worse than the global minimum
with probability one. Searching for the optimal path is harder
than feasible path planning. For example, the shortest path
problem in the 3D space is NP-hard in the number of
obstacles [9]. Recent paper [8] proposes RRT*, which is both
computationally efficient and asymptotically optimal. That is,
RRT* only scales constantly with respect to (w.r.t.) RRT in
computational complexity but guarantees that the returned
solution converges to the optimum almost surely.

Multi-robot motion planning is even more computationally
challenging. Centralized planners, e.g., [2], treat all the
robots as a single entity. As pointed out in [2], centralized
planners are not practical since the worst-case computational
complexity grows exponentially as the robot number. Con-
sequently, many alternative planners have been proposed to

This work was partially supported by the grants NSF ECCS-1710859 and
NSF CNS 1830390.

G. Zhao and M. Zhu are with School of Electrical Engineering and
Computer Science, Pennsylvania State University, University Park, PA
16802. (email: {gxzhao, muz16}@psu.edu)

address the scalability issue. In decoupled planning [10] [11],
each robot independently plans its path and a coordination
scheme is used to resolve conflicts. In priority planning
[12] [13], each robot is assigned with a unique priority
such that (s.t.) lower-ranked robots make compromises for
higher-ranked ones. These algorithms achieve scalability at
the expense of optimality. In [14] and [15], game theory is
leveraged to coordinate multiple robots and convergence to
Nash equilibria is ensured. However, Nash equilibria may
not be socially optimal and the algorithms rely on steering
functions, whose solutions are only known for a limited class
of dynamic systems.

Distributed control of mobile robots has been extensively
studied in recent years [16]–[18]. A widely used idea is to
encode the network-wide goal of interest as a team objective
function and the control laws of individual robots are derived
from their partial derivatives of the team objective function.
The synthesized control laws only require local information
exchanges and thus are scalable w.r.t. network expansion.
This idea has been successfully applied to many multi-
robot missions, e.g., consensus [19], formation control [20]
[21], vehicle routing [22] and sensor deployment [23] [24].
These algorithms usually use Lyapunov analysis [25]–[27] to
guarantee asymptotic convergence to certain critical points of
the team objective functions. However, they do not guarantee
that aggregate running costs, e.g., travelling times and energy
consumptions, are minimized.

Contribution statement: In this paper, we propose a dis-
tributed algorithm to coordinate a fleet of unicycle robots.
The algorithm integrates decoupled optimal feedback plan-
ning and distributed conflict resolution. In particular, each
robot individually plans its optimal motion offline and evades
other objects within its sensing range in online execution.
Since the computational complexity of the decoupled plan-
ning is independent of the robot number and conflict reso-
lution is fully distributed, the algorithm is scalable w.r.t. the
robot number. In addition, each robot’s individual planner is
optimal and its motion is rarely interfered in exercise, so the
algorithm is also near-optimal; i.e., its loss in optimality is
minor compared to benchmark. Safe and finite-time arrival at
the goal regions is formally ensured. Simulations confirm the
scalability and near-optimality of the proposed algorithm.

II. PROBLEM FORMULATION

Consider a team of mobile robots, labeled by V ,
{1, . . . , N}, in an environment equipped with a global coor-
dinate frame with basis (ex, ey). Each robot is modeled as
a circular disk with radius dr > 0. The state of robot i ∈ V

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 226

Authorized licensed use limited to: Penn State University. Downloaded on June 26,2020 at 14:21:06 UTC from IEEE Xplore. Restrictions apply.

is denoted by qi ,
[
rTi θi

]T ∈ Ci , Xi × R consisting of
the position ri ,

[
xi yi

]T
and the orientation θi w.r.t. the

global coordinate frame. Each robot is equipped with a body-
attached coordinate frame with basis exi ,

[
cos θi sin θi

]T
and eyi ,

[
− sin θi cos θi

]T
. The motion of robot i w.r.t.

(ex, ey) is described as a unicycle and governed by:

q̇i =

cos θi 0
sin θi 0

0 1

ui, (1)

where ui ,
[
vi ωi

]T ∈ Ui = R2 is the control of robot i
consisting of the linear velocity vi and the angular velocity
ωi. We refer to the vector viexi as the velocity of robot i.

The environment is packed with circular obstacles VO.
Obstacle ` ∈ VO is centered at rO` and has radius do; i.e.,
XO
` , {p ∈ R2|‖p − rO` ‖ ≤ do}, where ‖ · ‖ is the 2-

norm. A robot aims at reaching a goal region while keeping
a certain distance away from obstacles and other robots to
ensure its safety. The goal region for robot i ∈ V is denoted
by XG

i ⊆ Xi \
⋃
`∈VO XO

` while the set of goal states is
denoted by CGi , XG

i × R. The minimum safety distances
between two robots and a robot-obstacle pair are denoted by
ds , 2dr and dso , dr + do respectively.

Each robot has limited capabilities to communicate with
nearby robots and sense local environment. Specifically,
each robot can broadcast messages to nearby robots within
a communication range dc > ds. As in [16], we define
the communication graph at position r by GC(r, dc) ,
(V, EC(r, dc)), where r ,

∏
i∈V ri is the collection of all

robots’ positions, EC(r, dc) , {(i, j)|‖ri − rj‖ ≤ dc} is
the collection of communication edges and each edge (i, j)
indicates that the messages of robot i can be transmitted
to robot j. The communication range dc may be omitted
when no confusion is caused. Similarly, each robot can
measure the states of other robots or the positions of static
obstacles within a sensing range dsense > max{ds, dso}.
Throughout the paper, we assume the sensing range equals
to the communication range.

The problem of interest in this paper is to synthesize
distributed controllers s.t. all robots can safely reach their
own goal regions and meanwhile their total traveling times
are minimized. That is, we search for a set of policies∏
i∈V πi s.t. the cost functional

∑
i∈V ti is minimized while

for each robot i ∈ V , the solution of q̇i = f(qi)πi satisfies
ri(ti) ∈ XG

i and dij(τ) ≥ ds,∀j 6= i, τ ∈ [0,min{ti, tj}].
We trade small loss in optimality for great scalability in the
design of distributed controllers.

III. NOTATIONS AND ASSUMPTIONS

Throughout the paper, denote the vector from the center
of robot j ∈ V to the center of robot i ∈ V by rji , ri− rj .
Similarly, the vector from the center of obstacle ` ∈ VO is
denoted by r`i , ri − rO` . The direction of rji and r`i are
defined as e`i , r`i

‖r`i‖ and e`i ,
r`i
‖r`i‖ respectively. Denote

the angle between a given vector p =
[
p1 p2

]T
and ex by

Arg(p) , arg minθ∈[0,2π) ‖ p
‖p‖ −

[
cos θ sin θ

]T ‖.

The set of neighboring robots of robot i is defined by
Ni(r, dc) , {j ∈ V|(j, i) ∈ EC(r, dc)}, whose messages
can be received by robot i and whose states can be measured
by robot i. Denote the neighboring robots whose indices are
larger than robot i by N+

i (r, dc) , {j ∈ Ni(r, dc)|j > i}.
The second argument may be omitted when no confusion
is caused. Define the position set where robot i contacts
obstacles by SOi , {ri ∈ Xi|∃` ∈ VO s.t. ‖rO` −ri‖ = dso}.
Denote the indicator function as 1A(a), where 1A(a) = 1 if
a ∈ A and 1A(a) = 0 otherwise. The following assumption
is imposed throughout the paper.

Assumption 3.1: For all t ≥ 0 and i ∈ V , it holds true
that |N+

i (r(t))|+ 1SO
i

(ri) ≤ 1.
Assumption 3.1 indicates that any robot i ∈ V at any

time t ≥ 0 at most needs to address either one robot
with larger index or static obstacles. Under Assumption
3.1, N+

i (r) can be either a singleton or an empty set.
For brevity, denote the unique element of N+

i (r) by j∗ if
|N+

i (r)| = 1. Define the safe position space by S , {r ∈∏
i∈V(Xi \

⋃
`∈VO XO

`)|∀i ∈ V and j ∈ V \ {i}, ‖ri −
rj‖ ≥ ds, and ‖ri − rO` ‖ ≥ dso,∀` ∈ VO}. Moreover,
define the restricted safe position space by Ŝt(d) , {r ∈
S||N+

i (r(t), d)|+ 1SO
i

(ri) ≤ 1,∀i ∈ V}. Then Assumption
3.1 refers to the position space

⋂
t≥0 Ŝt(dc).

The following lemma shows that Assumption 3.1 is mild.
Lemma 3.1: The function Ψ(d) , µ(S)− µ(∩t≥0Ŝt(d))

is monotonically increasing for all d > ds and Ψ(ds) = 0,
where µ : 2R

2N → R≥0 is the Lebesgue measure.
The above lemma shows that for a communication range d

that is sufficiently close to ds, the corresponding safe position
space Ŝ(d) where Assumption 3.1 holds true will be very
close to the entire safe position space S; in other words, the
cases where Assumption 3.1 does not hold are negligible.

Another assumption on the reachability of the initial state
is imposed. We introduce the concept of reachability before
the assumption.

Definition 3.1: Given a system satisfying (1) and qi(0) =
qi,1, a state qi,2 ∈ Ci is reachable from qi,1 ∈ Ci within finite
time if there exists ui : [0, ti] → Ui for some ti ∈ [0,+∞)
s.t. qi(ti) = qi,2 and ‖ri(τ) − rO` ‖ ≥ dso,∀` ∈ VO and
τ ∈ [0, ti].

Assumption 3.2: For each robot i ∈ V , ∃qi ∈ CGi is
reachable from the initial state qi,0 ∈ Ci within finite time.

Since the trajectory of a unicycle robot is reversible,
Assumption 3.2 guarantees that for any time t ≥ 0, every
robot i ∈ V can reach its goal states CGi within finite time
from any state qi(t).

IV. ALGORITHM STATEMENT

In this section, we propose a distributed hybrid controller
to solve the problem of interest.

Robot i’s controller distinguishes three cases:
• Case 1: it is moving in a robot-free environment;
• Case 2: it detects a neighboring robot with larger index

coming from the front or back;
• Case 3: it senses a nearby robot with larger index

approaching sideways.

227

Authorized licensed use limited to: Penn State University. Downloaded on June 26,2020 at 14:21:06 UTC from IEEE Xplore. Restrictions apply.

Case 1 indicates that robot i can safely proceed and only
needs to avoid static obstacles. Case 2 shows that robot i
needs to steer away immediately. Case 3 implies that robot
i needs to move away immediately and avoid computational
singularity at the same time. Robot i chooses its controller
mode by checking out these cases. At the end of the iteration,
robot i broadcasts its control to all nearby robots.

A. Robot-free environment and evasion of static obstacles
Robot i is associated with attractive controller Ai which

can command robot i to its goal region safely within finite
time when no moving obstacles interfere. Notice that Ai
ignores other robots and only solves a single-robot optimal
motion planning problem. There are a number of numerical
algorithms to synthesize Ai; e.g., [28]. Its synthesis is out
of scope of this paper. We express the attractive controller
as (vAi , ω

A
i) = Ai(qi).

B. Evasion of robots when (exi)T ej∗i 6= 0

Each robot i only considers nearby robots with larger
indices N+

i (r). When N+
i (r) 6= ∅, a sufficient condition

to avoid inter-robot collision between i and j∗ ∈ N+
i (r)

is that the velocity of robot i along ej∗i equals to that of
robot j∗; that is, (vie

x
i)T ej∗i = (vj∗e

x
j∗)T ej∗i. The solution

is referred to as the critically evasive linear velocity of robot
i w.r.t. robot j∗, and denoted by v∗i|j∗ ,

(vj∗e
x
j∗)

T ej∗i

(exi)
T ej∗i

. See
Figure 1 for (exi)T ej∗i > 0 and Figure 2 for (exi)T ej∗i < 0.

Fig. 1: Robot i evades robot j∗ when robot j∗ is behind
robot i; i.e., (exi)T ej∗i > 0.

Fig. 2: Robot i evades robot j∗ when robot j∗ is in front of
robot i; i.e., (exi)T ej∗i < 0.

The critically evasive linear velocity v∗i|j∗ acts as the
boundary of the set of safe linear velocities for robot i.

Specifically, if robot j∗ shows up behind robot i, i.e.,
(exi)T ej∗i > 0 as Figure 1, robot i may need to accelerate to
avoid rear-end collision, i.e., vi ≥ v∗i|j∗ ; if robot j∗ appears
in front of robot i, i.e., (exi)T ej∗i < 0 as Figure 2, robot i
needs to slow down or even turn around, i.e., vi ≤ v∗i|j∗ . Then
a candidate for vi is vAi , the linear velocity term of Ai(qi),
which indicates the optimal linear velocity for robot i to
reach its goal region at qi. If choosing vAi does not result in
collision, choose vAi ; otherwise, choose the critically evasive
linear velocity v∗i|j∗ . This process is summarized as repulsive
controller RR,1i :

vi =

{
max{vAi , v∗i|j∗}, if (exi)T ej∗i > 0;

min{vAi , v∗i|j∗}, if (exi)T ej∗i < 0;

ωi = ki(φ
R
i − θi),

(2)

where φRi , Arg(rj∗i) is the desired steering angle for
robot i. When (exi)T ej∗i < 0 and v∗i|j∗ < 0, vi is negative,
indicating that robot i needs to turn back. See Algorithm 2
for the corresponding pseudo codes.

Notice that computing (2) requires the control of robot j∗.
We introduce a procedure receivei,j∗ ∈ {TRUE, FALSE}
to indicate the reception of the control of robot j∗. If the
control is received, receivei,j∗ returns TRUE; otherwise,
it returns FALSE. See line 5 in Algorithm 1.

C. Evasion of robots when (exi)T ej∗i = 0

Notice that the aforementioned repulsive controller RR,1i

requires (exi)T ej∗i 6= 0; in other words, when robot j∗ is
approaching robot i at a direction perpendicular to the ori-
entation of robot i, no matter what control robot i takes, the
distance between these two robots ‖rij∗‖ keeps decreasing
and robot i cannot actively avoid the collision. Hence, a
solution is to alert robot i in advance and command it to steer
away. Since robot i can instantly evade robot j∗ by applying
(2) once the condition (exi)T ej∗i = 0 does not hold, robot
i can take a linear velocity larger than (vj∗e

x
j∗)T exi when

the distance of two robots is larger than the safety distance.
More specifically, the repulsive controller RR,2i fixes robot
i’s angular velocity ωi = 0 and commands the linear velocity
as

vi =(vj∗e
x
j∗)T exi + δi(vj∗e

x
j∗)T eyi , (3)

where δi , 1/
√

(
‖rj∗i(Ti)‖

ds
)2 − 1 + 1 is the piecewise

constant evading coefficient and Ti is the last time when
robot i begins to apply (3). In the second term, δi ensures that
the distance from robot j∗ to the ray of viexi −vj∗exj∗ is larger
than the safety distance ds. See Figure 3 for illustration.
Denote the angle between vie

x
i − vj∗e

x
j∗ and −ej∗i by ψ

and the distance from robot j∗ to viexi − vj∗exj∗ by D > ds.

Then δi should satisfy that sinψ =
‖δi(vj∗exj∗)

T eyi ‖
‖viexi−vj∗exj∗‖

=
D

‖rj∗i(Ti)‖ > ds
‖rj∗i(Ti)‖ , where the strict inequality is for

theoretic completeness.

228

Authorized licensed use limited to: Penn State University. Downloaded on June 26,2020 at 14:21:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Robot i evades robot j∗ when (exi)T ej∗i = 0.

The corresponding pseudo codes are shown in Algorithm
3. In the algorithm, a variable singularity∈ {TRUE,
FALSE} indicates whether the condition (exi)T ej∗i = 0 is
activated. When robot i executes controller RR,2i , it checks
the value of singularity. If singularity==FALSE,
i.e., the condition (exi)T ej∗i = 0 is not active before, RR,2i

calculates δi and sets singularity as TRUE for record;
otherwise, i.e., the condition is already active, RR,2i simply
keeps the last δi and proceeds to apply (3). This variable is
set FALSE as long as condition (exi)T ej∗i = 0 is invalid.

Algorithm 1 Distributed optimal controller for robot i ∈ V
1: while ri /∈ XG

i do
2: Measure the states of robots Ni(r);
3: (vAi , ω

A
i) = Ai(qi);

4: if N+
i (r) 6= ∅ then

5: if receivei,j∗(uj∗)==TRUE then
6: if (exi)T ej∗i 6= 0 then
7: singularity=FALSE;
8: (vi, ωi) = RR,1i (qi, v

A
i , j

∗, qj∗ , uj∗);
9: else

10: (vi, ωi) = RR,2i (qi, j
∗, qj∗ , uj∗);

11: end if
12: end if
13: else
14: singularity=FALSE;
15: (vi, ωi) = (vAi , ω

A
i);

16: end if
17: Broadcast ui to Ni(r);
18: end while

D. Discussion

Algorithm 1 is distributed. On one hand, the attractive
controllers solve single-robot optimal motion planning prob-
lems and are synthesized in parallel. On the other hand,
each robot makes decisions based on states and controls of
nearby robots with larger indices and obstacles, which can
be obtained locally. The distributed nature contributes to the
scalability of Algorithm 1 and removes the dependency of
computations on robot number.

V. ANALYSIS

In this section, we show that the proposed algorithm in
Section IV guarantees collision avoidance and finite-time

Algorithm 2 Repulsive controller RR,1i when (exi)T ej∗i 6= 0

Input: Robot index i ∈ V and state qi, the optimal linear
velocity vAi , robot j∗ and its state qj∗ and control uj∗

Output: Control ui
1: v∗i|j∗ =

vj∗ (e
x
j∗)

T rj∗i

(exi)
T rj∗i

;
2: if (exi)T rj∗i > 0 then
3: vi = max{vAi , v∗i|j∗};
4: else
5: vi = min{vAi , v∗i|j∗};
6: end if
7: φRi = Arg(rj∗i);
8: ωi = ki(φ

R
i − θi);

Algorithm 3 Repulsive controller RR,2i when (exi)T ej∗i = 0

Input: Robot index i ∈ V and state qi, the nearest superior
robot j∗ and its state qj∗ and control uj∗

Output: Control ui
1: if singularity==FALSE then
2: δi = 1/

√
(
‖rj∗i(Ti)‖

ds
)2 − 1 + 1;

3: singularity=TRUE;
4: end if
5: vi = (vj∗e

x
j∗)T exi + δi(vj∗e

x
j∗)T eyi ;

6: ωi = 0;

arrivals at goal regions. Due to the space limitation, only
the statements of theorems are be provided. The following
theorem ensures collision avoidance for each robot.

Theorem 5.1: If Assumption 3.1 holds and ∀i 6= j,
‖rij(0)‖ > ds, then for every i ∈ V , Algorithm 1 guarantees
collision avoidance between robot i and other objects.

The following theorem formally guarantees the finite-time
arrivals of all robots at their goal regions.

Theorem 5.2: If Assumptions 3.1 and 3.2 hold true, then
every robot can reach its goal region safely within finite time
without causing any collisions.

VI. SIMULATIONS

In this section, we demonstrate the scalability and near-
optimality of Algorithm 1 through simulations.

The simulation environment consists of a single circular
obstacle with radius do = 1 positioned at the origin. At the
beginning of each simulation, N unicycle robots modeled
as disks with radii dr = 0.25 are uniformly distributed
on a circle with radius 10 centered at the origin and the
orientation of each robot points to the origin. Each robot
can communicate with other robots and sense objects within
range dc = 0.55 and is desired to reach another robot’s
initial position s.t. the total displacement spans over 2π/3
counter-clockwise w.r.t. the origin. Once a robot arrives at its
goal region, it is immediately removed from the scene. Five
different scenarios are considered, where the only controlled
variable is the number of robots N ∈ {5, 10, 15, 20, 25}.

229

Authorized licensed use limited to: Penn State University. Downloaded on June 26,2020 at 14:21:06 UTC from IEEE Xplore. Restrictions apply.

A. Implementation of Algorithm 1

Algorithm 1 requires the attractive controller Ai to solve
a single-robot optimal motion planning problem. Essentially,
this is a constrained optimal control problem of a nonlinear
system, and no analytical solution can be derived. Hence,
numerical algorithms are necessary; e.g., the algorithm in
Section 3.2.4 of [28], where a continuous-time dynamic
system in a continuous state space is approximated by a
set-valued dynamic system over a discrete grid. Since each
attractive controller Ai is independent of others, we compute
them parallelly. The maximum linear velocity and angular
velocity generated by the attractive controller are restricted
by 0.5 to satisfy the assumptions imposed in [28]. A regular
grid of 77×77×20 nodes with uniform spatial resolution 0.3
is adopted for each robot. Throughout the computations, the
discrete grid and state transitions are shared among robots.

Collision avoidance in [28] is theoretically guaranteed if
allowable computation times are infinite or sufficiently large.
In contrast, allowable computation times in practical scenar-
ios are always finite, dynamic and uncertain. To address this
practical issue, we slightly revise the control strategy when
a robot contacts a static obstacle.

The repulsive controller ROi treats the static obstacle `∗ ∈
VO as a stationary robot and follows the idea of RR,1i in (2)
to compute the evasive linear velocity when robot i senses
the static obstacle `∗ nearby; i.e., ‖r`∗ − ri‖ ≤ dno for some
dno > dso. This procedure is summarized below:

vi =


max{vAi , veo}, if (exi)T e`∗i > 0;

min{vAi ,−veo}, if (exi)T e`∗i < 0;

vAi , if (exi)T e`∗i = 0,

ωi = ωAi ,

where veo > 0 is the minimum evasive velocity from the
obstacle so as to avoid oscillation and (vAi , ω

A
i) = Ai(qi) is

the control of attractive controller. Compared to the original
attractive controller in Section IV-A, the revised control
strategy differs in the sensing range dno and the lower bound
of the evasive linear velocity veo.

B. Two competitors

To verify the performance of Algorithm 1, two competitors
are constructed.

Centralized coupled algorithm (CC): This type of algo-
rithms, e.g. Algorithm 1 in [29], treats the entire robot team
as an entity and computes a central controller to command all
the robots. CC is only tested for N = 2 robots and adopts a
coupled regular grid of 538, 752 nodes with spatial resolution
1.5 since CC is heavy in computations.

Centralized decoupled algorithm (CD): As Section IV-
A, CD contructs an attractive controller for each robot
which ignores all other robots. Different from Algortihm
1, CD sequencially computes decoupled controllers with a
centralized computer and directly implements the computed
controllers without coordination among the robots. In the
simulations, the settings of attractive controllers follow those
in Section VI-A.

C. Scalability

Figure 4 exhibits the computation times for five scenarios
of Algorithm 1 and CD. The computation times of CD are
linear w.r.t. the number of robots while those of Algorithm
1 are independent of the number of robots. Notice that the
computation time for CC exceeds the computation time limit
6, 000 seconds and is not shown in Figure 4.

Fig. 4: Computation times of Algorithm 1 and CD w.r.t.
different numbers of robots.

D. Near-optimality

To verify the optimality of Algorithm 1, the ideal bench-
mark is CC, whose optimality and collision avoidance are
simultaneously guaranteed. However, this algorithm is not
scalable as it takes over 6, 000 seconds to compute for two
robots, and therefore cannot be used for a large number of
robots. Instead, CD is chosen as the benchmark. Notice that
the total traveling times of CD are less than those of CC.

Throughout the simulations, Assumption 3.1 is never
violated and Algorithm 1 can successfully drive all robots
to their respective goal regions without causing collisions.
The travelling times are summarized in Figure 5, where the
total traveling times of Algoritm 1 are higher than those of
CD, but the differences are small; both traveling times are
almost linear w.r.t. the number of robots.

Fig. 5: The total traveling times under the guidance of
Algorithm 1 and CD.

In particular, the trajectories of N = 25 robots driven
by Algorithm 1 are shown in Figure 6. In this simulation,
evasions of the static obstacle and moving robots are acti-
vated and 10 out of 25 robots apply more than one mode of
Algorithm 1. The corresponding minimum distances between
any two robots and any pair of a robot and the obstacle over
time are shown in Figure 7. It is shown that the minimum

230

Authorized licensed use limited to: Penn State University. Downloaded on June 26,2020 at 14:21:06 UTC from IEEE Xplore. Restrictions apply.

distances are always beyond the safety distances and thus
the collision avoidance is accomplished.

VII. CONCLUSION

In this paper, a distributed multi-robot coordination algo-
rithm is proposed. The algorithm formally guarantees colli-
sion avoidance and goal region arrival. A set of simulations
are conducted to assess the scalability and near-optimality.

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10
1

2

3

4

5

6

7

8

9

10

11

12
13 14

15

16

17

18

19

20

21

22

23

24

25
Initial Positions

Terminal Positions

Fig. 6: Trajectories of 25 robots under the guidance of
Algorithm 1.

0 50 100 150 200 250 300 350 400

Time/sec

0

1

2

3

4

5

6

7

8

9

10

D
is

ta
n

c
e

Min. inter-robot distance

d
s

Min. robot-obstacle distance

d
so

Fig. 7: Minimum distances between two robots and any
robot-obstacle pair.

REFERENCES

[1] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in 20th Annu. Symp. Found. Comput. Sci., Oct. 1979, pp. 421–427.

[2] J. T. Schwartz and M. Sharir, “On the piano movers problem. II. gen-
eral techniques for computing topological properties of real algebraic
manifolds,” Adv. Applied Math., vol. 4, no. 3, pp. 298–351, Sep. 1983.

[3] R. A. Brooks and T. Lozano-Perez, “A subdivision algorithm in
configuration space for findpath with rotation,” IEEE Trans. Syst.,
Man, Cybern., no. 2, pp. 224–233, Mar. 1985.

[4] J. Canny, The complexity of robot motion planning. MIT Press, 1988.
[5] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.
[6] Y. Koren and J. Borenstein, “Potential field methods and their inherent

limitations for mobile robot navigation,” in Proc. 1991 IEEE Int. Conf.
Robot. and Automat., 1991, pp. 1398–1404.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
2011.

[9] J. Canny and J. Reif, “New lower bound techniques for robot motion
planning problems,” in Proc. 28th Annu. Symp. Found. Comput. Sci.,
1987, pp. 49–60.

[10] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp.
72–89, 1986.

[11] T. Siméon, S. Leroy, and J.-P. Lauumond, “Path coordination for
multiple mobile robots: A resolution-complete algorithm,” IEEE Trans.
Robot. Autom., vol. 18, no. 1, pp. 42–49, 2002.

[12] S. J. Buckley, “Fast motion planning for multiple moving robots,”
in Proc. 1989 IEEE Int. Conf. Robot. and Automat., May 1989, pp.
322–326 vol.1.

[13] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1-4, pp. 477–521, 1987.

[14] M. Zhu, M. Otte, P. Chaudhari, and E. Frazzoli, “Game theoretic
controller synthesis for multi-robot motion planning part I: Trajectory
based algorithms,” in Proc. 2014 IEEE Int. Conf. on Robot. and
Automat., May 2014, pp. 1646–1651.

[15] D. K. Jha, M. Zhu, and A. Ray, “Game theoretic controller synthesis
for multi-robot motion planning part II: Policy-based algorithms,” in
5th IFAC Workshop Distrib. Estimation and Control in Netw. Syst.,
vol. 48, no. 22, 2015, pp. 168–173.

[16] F. Bullo, J. Cortés, and S. Martı̀nez, Distributed control of robotic net-
works: a mathematical approach to motion coordination algorithms.
Princeton University Press, 2009.

[17] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” Int. J. Adv. Robot. Syst., vol. 10, no. 12, p.
399, 2013.

[18] M. Zhu and S. Martı́nez, Distributed Optimization-Based Control of
Multi-Agent Networks in Complex Environments. Springer, 2015.

[19] M. Cao, A. S. Morse, and B. D. Anderson, “Reaching a consensus in
a dynamically changing environment: A graphical approach,” SIAM J.
Control and Optim., vol. 47, no. 2, pp. 575–600, 2008.

[20] W. Ren and R. W. Beard, Distributed consensus in multi-vehicle
cooperative control. Springer, 2008.

[21] D. Panagou and V. Kumar, “Cooperative visibility maintenance for
leader–follower formations in obstacle environments,” IEEE Trans.
Robot., vol. 30, no. 4, pp. 831–844, 2014.

[22] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” in Proc. 43rd IEEE Conf.
Decis. and Control, vol. 4, 2004, pp. 3357–3363.

[23] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. Robot. and Automat., vol. 20,
no. 2, pp. 243–255, 2004.

[24] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive
coverage control for networked robots,” Int. J. Robot. Res., vol. 28,
no. 3, pp. 357–375, 2009.

[25] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M.
Zavlanos, “A feedback stabilization and collision avoidance scheme
for multiple independent non-point agents,” Automatica, vol. 42, no. 2,
pp. 229–243, 2006.

[26] R. Olfati-Saber and R. M. Murray, “Distributed cooperative control
of multiple vehicle formations using structural potential functions,” in
the 15th IFAC World Congr., Jun. 2002, pp. 495–500.

[27] D. Panagou, “A distributed feedback motion planning protocol for
multiple unicycle agents of different classes,” IEEE Trans. Autom.
Control, vol. 62, no. 3, pp. 1178–1193, 2017.

[28] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, “Set-valued
numerical analysis for optimal control and differential games,” in
Stochastic and Differ. Games. Springer, 1999, pp. 177–247.

[29] G. Zhao and M. Zhu, “Pareto optimal multi-robot motion planning,”
arXiv:1802.09099, 2018.

231

Authorized licensed use limited to: Penn State University. Downloaded on June 26,2020 at 14:21:06 UTC from IEEE Xplore. Restrictions apply.

