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Abstract 9 

Understanding what makes food webs stable has long been a goal of ecologists. Topological 10 

structure and the distribution and magnitude of interaction strengths in food webs have been 11 

shown to confer important stabilizing properties. However, our understanding of how variable 12 

species interactions affect food web structure and stability is still in its infancy. Anthropogenic 13 

stress, such as acid mine drainage, is likely to place severe limitations on the food web structures 14 

possible due to changes in community composition and body mass distributions. Here, we used 15 

mechanistic models to infer food web structure and quantify stability in streams across a gradient 16 

of acid mine drainage. Multiple food webs were iterated for each community based on species 17 

pairwise interaction probabilities, in order to incorporate the variability of realistic food web 18 

structure. We found that food web structure was altered systematically with a 32-fold decrease in 19 

the number of links and a 2-fold increase in connectance across the gradient. Stability generally 20 

increased 6-fold with increasing acid mine drainage stress, regardless of how interaction 21 

strengths were estimated. However, the distribution of the stability measure, s, for some 22 

impacted communities separated into clusters of higher and lower magnitude depending on how 23 

interaction strengths were estimated. Management and restoration of impacted sites needs to 24 

consider their increased stability, as this may have important implications for the re-colonization 25 

of desirable species. Furthermore, active species introductions may be required to overcome the 26 

internal ecological inertia of affected communities.  27 
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While research in the last four decades has significantly improved our understanding of food web 31 

stability, nearly all of the previous work assumes that network structure is static. Food webs, 32 

however, are dynamic. Pairwise species links are variable, and can change through space and 33 

time based on resource availability, indirect interactions, and abiotic conditions (Thompson and 34 

Townsend 1999, Poisot et al. 2012, Poisot et al. 2015, Poisot et al. 2016). In fact, this variability 35 

in trophic interactions has been theorized as promoting stability because consumers will allocate 36 

foraging effort differentially based on resource availability, potentially dampening environmental 37 

effects on population densities (Kondoh 2003). Likewise, larger predators are generally more 38 

mobile and can rapidly moderate their behavior in response to changing resource conditions, 39 

which can connect spatially-distant food webs and increase stability across the meta-webs 40 

(McCann et al. 2005).  41 

Body size has been shown to be a strong organizing factor in food webs, particularly in aquatic 42 

habitats (Cohen et al. 2003, Brose et al. 2006a, Petchey et al. 2008). Body size can determine 43 

who interacts with whom, as well as the strength of those interactions. Predators are generally 44 

larger than their prey (Brose et al. 2006a) and diet breadth also correlates with body size, 45 

resulting in the largest-sized predators consuming the greatest variety of prey body sizes (Brose 46 

et al. 2017). Interaction strengths also correlate with predator: prey body size ratios (Emmerson 47 

and Raffaelli 2004, Berlow et al. 2009) and these allometries contribute to local food-web 48 

stability (Brose et al. 2006b, Tang et al. 2014). Finally, a strong, negative correlation between the 49 

positive and negative interaction magnitudes (e.g., effect of resource on consumer, and consumer 50 

on resource, respectively) has also been shown to drive stability in natural food webs (Tang et al. 51 

2014).  52 
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One global stressor in freshwater ecosystems that may affect food web stability is Acid mine 53 

drainage (AMD). Acid mine drainage is often the result of mining activities in geologic strata 54 

with high sulfur content and affects stream habitats globally. AMD significantly impacts abiotic 55 

conditions with severely lowered pH (e.g., < 3) and high concentrations of dissolved trace metals 56 

(e.g., > 20 mg/l; Hogsden and Harding 2012b). AMD is known to decrease community diversity 57 

by removing sensitive taxa (Hogsden and Harding 2012b), alter size spectra (Pomeranz et al. 58 

2019b) and simplify food web structure (Hogsden and Harding 2012a). The restoration of AMD-59 

impacted streams remains an important goal for ecologists. However, to our knowledge, no 60 

studies of local community stability in AMD-impacted streams currently exist. 61 

Incorporating the variability in species interactions and network structure is an important next 62 

frontier in our understanding of food web stability. To determine how variation in species 63 

interactions and food web structure affects stability, we used mechanistic models to infer species 64 

pairwise interaction probabilities (see below) across a gradient of AMD stress. Here, we solely 65 

focus on predator-prey interactions and non-trophic interactions are not included in our analyses 66 

(i.e., non-trophic interactions are coded as zeros in the adjacency matrices, see below). 67 

Variability of possible food web topologies was incorporated by conducting multiple Bernoulli 68 

trials based on these probabilities, resulting in a distribution of response variables. We used a 69 

dataset of stream communities across an AMD stress gradient. AMD stress is known to reduce 70 

species richness (Hogsden & Harding, 2012a b), and alter local population densities, and 71 

biomass distributions (Pomeranz et al. 2019b). We expected food webs to become simpler (e.g., 72 

fewer links), and more connected (e.g., high proportion of potential links realized) with 73 

increasing AMD impact. Furthermore, we expected these structural changes to lead to food webs 74 

with higher stability.  75 
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Methods 76 

Study site and stream characteristics  77 

This study uses data originally published in Pomeranz et al. (2019b). Twenty five streams were 78 

sampled in the Buller-Grey region in the north-west of the South Island, New Zealand. The 79 

region has spatially-consistent climatic conditions, geology, and freshwater biota (Harding et al. 80 

1997, Harding and Winterbourn 1997), and has a history of coal mining. Thirteen of the streams 81 

sampled were known to be affected by AMD (which we refer to as “impacted” streams), there is 82 

no urbanization, farming or other significant land use activity in any of these catchments. To our 83 

knowledge, the other twelve streams were not affected by AMD inputs, and represented a natural 84 

gradient of pH (~ 4 – 7) and low metal concentrations. Although these un-impacted streams 85 

represent a wide range of pH values, these occur naturally due to the presence of leaching 86 

organic acids from the soil and decomposing vegetation (Hogsden and Harding 2012a, Collier et 87 

al. 2016). Furthermore, Collier et al. (1990) have shown that the native aquatic fauna is well-88 

adapted to these conditions, with many of the most widespread insect taxa occurring in streams 89 

with a natural pH of 4.5-5. These were sampled in order to capture the range of natural variation 90 

present.  91 

Water chemistry variables including pH, and conductivity were measured in the field using 92 

standard meters (YSI 550A and YSI 63, YSI Environmental Incorporated, Ohio, USA) and 93 

filtered (0.45 μm mixed cellulose ester filter) water samples were analyzed for dissolved metal 94 

concentrations (Appendix S1) from all 25 streams. These variables were analyzed using principal 95 

components to generate an AMD gradient (Appendix S1: Table S1, Figure S1; Pomeranz et al. 96 

2019b). Principal component (PC) axis 1 explained 78% of the variation among sites, and was 97 

strongly correlated with pH and dissolved metal concentrations. Site scores for PC axis 1 were 98 
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extracted and used as a proxy for the AMD gradient. Un-impacted sites have PC axis 1 scores 99 

from -3.6 to ~-0.8. Sites with PC axis 1 values > -0.8 are impacted by AMD, with increasing 100 

PC1 values indicating increasing levels of AMD stress.   101 

Community sampling and body mass estimation 102 

Benthic macroinvertebrates were randomly collected in three Surber samples (0.06 m2, 0.25 mm 103 

mesh) from riffle and run habitats at each site (Blakely and Harding, 2005). Individuals were 104 

identified to the lowest practical taxonomic level and the body mass (dry weight) of all 105 

individuals were estimated based on taxon-specific length-weight regressions (Towers et al. 106 

1994, Stoffels et al. 2003). Linear measurements of all individuals were measured according to 107 

the methods of Towers et al. (1994) and Stoffels et al. (2003). Body mass estimates were 108 

averaged by taxa for each site where they occurred.  109 

Fish were sampled using quantitative electrofishing techniques from a 20 m reach within each 110 

site (Hogsden and Harding 2012a). Stop nets were placed at the top and bottom of the reach and 111 

fish were removed during three successive passes (Bertrand et al. 2006, Reid et al. 2009). Fish 112 

population densities were estimated using the k-pass removal method of Seber and Le Cren 113 

(1967). All fish captured had their lengths measured and were converted to dry weight estimates 114 

using length-weight regressions for New Zealand fish (Jellyman et al. 2013). Mean dry weight 115 

estimates for each fish taxa were calculated as above.  116 

Previous analyses of this data set have shown that increasing AMD-stress has altered community 117 

structure consistently. Fish were completely absent in AMD impacted streams, and most large-118 

bodied invertebrate predators were also removed (Pomeranz et al. 2019b). Un-impacted 119 

communities were dominated by mayflies, stoneflies, and caddisflies. Communities across the 120 

AMD gradient were dominated by aquatic worms (Oligachaete) and true-fl ies, predominantly the 121 
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families Chironomidae and Empididae. Although previous work on AMD-impacted streams in 122 

this region of New Zealand have shown declines in species richness (Hogsden & Harding, 123 

2012a), explicit analyses of species richness in the dataset presented in Pomeranz et al., (2019b) 124 

were not previously conducted. Therefore, we analyzed how species richness responds to AMD-125 

stress here (see Bayesian analyses below) 126 

Inferring food-web structure 127 

To estimate food web structure at each of the 25 sites, we used a mechanistic model that 128 

estimates the probability of pairwise species interactions based on niche and neutral processes 129 

(Figure 1; Bartomeus et al. 2016, Pomeranz et al. 2019a). To achieve this, we used the 130 

Traitmatch  package (Bartomeus et al. 2016) in the R statistical language (R Development 131 

Core Team, 2017) to infer niche processes (Appendix S2). Specifically, we used empirical 132 

predator-prey body sizes from Broadstone Stream and Tadnoll Brook, (Woodward et al. 2010) to 133 

estimate the probability that species would interact based on their body sizes. The parameterized 134 

Traitmatch  model correctly assigned high probabilities (> 0.7) to 57% of the realized 135 

interactions in the data from Broadstone Stream and Tadnoll Brook, indicating adequate fit. Only 136 

25% of the realized interactions received probabilities < 0.5. Af ter parameterizing the model, we 137 

inferred the probability of all pairwise interactions at each site based on local species average 138 

body sizes. Species interaction probability vectors were converted to square (S x S, where S = 139 

the number of taxa present) interaction probability matrices, P (Figure 1A). Columns and rows of 140 

P represent species in their role as consumers and resources, respectively. Therefore, Pij 141 

represents the probability that species j consumes species i. The matrices were ordered by 142 

increasing body size from left to right, and top to bottom.  143 
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After inferring the probabilities of all possible pairwise interactions, we further refined these 144 

possible interactions by restricting niche forbidden links (sensu Morales-Castilla et al. 2015, 145 

Pomeranz et al. 2019a). Niche forbidden links were defined as in Pomeranz et al. (2019a). We 146 

restricted predatory interactions between animals which are known to be non-predatory, or which 147 

lacked morphological adaptations for the consumption of animal prey (e.g., set P●j to 0, 148 

Appendix S2: Figure S2). For example, members of the mayfly genus, Deleatidium, have 149 

mouthparts modified for “brushing” diatoms off benthic surfaces, and lack the ability to consume 150 

animal prey. Conversely, net-spinning caddisflies in the family Hydropsychidae construct nets to 151 

filter feed, but retain chewing mouthparts and are able to consume animal prey they capture, so 152 

their predation probabilities were not modified. These designations were based on morphology 153 

as opposed to traditional functional feeding group classifications, in order to prune predatory 154 

interactions conservatively. Niche forbidden taxa in this study are presented in Appendix S2: 155 

Table S1.  156 

To account for neutral effects (sensu Canard et al. 2014) we scaled these probability estimates 157 

based on local relative abundances. This simply takes into account that two rare species are less 158 

likely to interact than two abundant species. The modified interaction probabilities for each site 159 

were calculated as Pij’ = Pij * Nij, where Nij  is the product of relative abundances of species i and 160 

j, scaled from 0.5 to 1 respectively (Figure 1A-C). Abundant species pairs = 1 and are assumed 161 

to interact based on niche probabilities, while rare species pairs = 0.5 and are less likely to 162 

encounter one another, so their overall interaction probabilities are reduced (see Appendix S2 for 163 

a discussion on selection of scaled values). The modified probabilities in Pij’ were rescaled from 164 

0.01 to 0.99 (Figure 1D) in order to put them on a meaningful scale for inferring adjacency 165 

matrices (see below).   166 
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Finally, the probability matrices for each stream were converted to 250 binary adjacency 167 

matrices A (Figure 1E). We chose 250 trials because this generally captured all observed 168 

interactions in an empirical stream food web from New Zealand without over predicting the 169 

number of links (Appendix S2: Fig. S7). Adjacency matrices are square matrices with taxa in 170 

their role as predators in columns and their role as prey in rows as in the probability matrices (P), 171 

where Aij = 1 when taxa j consumes taxa i, and 0 otherwise. This was done by conducting 172 

Bernoulli (i.e. binomial) trials, where the probability that Aij = 1 = P’ij. This allowed us to assess 173 

the effect of variable food-web structure on network measurements and stability (see below).  174 

Food-web measures 175 

We calculated a suite of standard food-web measures including the number of links (L), 176 

connectance (C = L / S2, where S = the number of species), normalized vulnerability (mean 177 

number of consumer species per resource species) and normalized generality (mean number of 178 

resource species per consumer species) for all 6250 Adjacency matrices (25 sites x 250 Bernoulli 179 

trials). Vulnerability and generality for each iteration were normalized to the size of the food web 180 

by dividing by S which makes the measures comparable across networks of different size 181 

(Williams and Martinez 2000). 182 

Interaction strength 183 

The adjacency matrices Aij calculated above, were transformed into Jacobian matrices, where the 184 

element Jij quantifies the effect that species j has on species i growth rate. For antagonistic (e.g., 185 

predatory) interactions assessed here, Jij > 0 (positive effect of resource on consumer) and Jji < 0 186 

(negative effect of consumer on resource). The magnitude, distribution, and correlation of 187 

interaction strengths are known to be an important component of food-web stability (Tang et al. 188 

2014). In order to assess the effects of network structure (presence/absence of links), and the 189 
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effects of interaction strength distributions and correlations, we estimated interaction strengths in 190 

four ways: 1) Random interaction strength to test the effects of network topology. Using the 191 

methods of Sauve et al. (2016), we estimated all non-zero elements of J by sampling them from 192 

a half normal distribution |(µ = 1, σ2 = 0.1)| and multiplied the positive and negative interactions 193 

by 1 and -1, respectively; 2) Scaling interaction strengths by body size. Interaction strength is 194 

known to scale with predator: prey body size ratios, and this has been suggested as a key process 195 

increasing stability in natural food webs (Brose et al. 2006b). To examine these effects, we again 196 

sampled interaction strengths from a half normal distribution, but scaled them by predator:prey 197 

body size ratios (e.g., smallest positive and greatest negative effects between large predators and 198 

small prey); 3) Correlating the top-down (negative effect of predator on prey) and bottom-up 199 

(positive effect of prey on predator) interaction strengths. The correlation between positive and 200 

negative interactions has been shown to have important implications in local stability (Tang et al. 201 

2014), with the magnitude of negative effects being greater than the magnitude of positive 202 

effects. For this, we sampled the negative interactions from a half normal distribution, and 203 

correlated the corresponding positive interactions by a factor of 0.7 correlated (e.g., positive 204 

interactions = 0.7 × negative interactions). This can be interpreted as a 70% conversion 205 

efficiency of prey biomass by predators from stream habitats as estimated from empirical studies 206 

(Woodward et al. 2005, Montoya et al. 2009). 4) Interaction strengths scaled by body size and 207 

positive and negative interactions correlated. Here, we sampled the negative effects as in (3), and 208 

scaled them by predator:prey body size ratios. We then calculated the corresponding positive 209 

effects by multiplying the scaled negative effect by 0.7. This takes into account the scaling of 210 

interaction strengths by body size and the correlation of positive and negative effects. For all 211 
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interaction strength estimates, we used a modified version of the jacobian_binary()  function 212 

available in the supplemental information from Sauve et al. (2016) 213 

Stability 214 

For each adjacency matrix (25 streams × 250 trials = 6,250 matrices), interaction strengths were 215 

estimated in one of four ways (see above) and a stability analysis was conducted. Here, a 216 

network is defined as stable if all of the real parts of its eigenvalues are negative. The stability 217 

metric, s, was defined as the minimum amount of intraspecific competition (e.g., the diagonal of 218 

the Jacobian matrix, Jii) necessary for a food-web iteration to be stable (Neutel et al. 2002, Tang 219 

et al. 2014, Sauve et al. 2016). Smaller values of s are considered to be more stable (Neutel et al. 220 

2002, Sauve et al. 2016), however, there is no known value or threshold of s which separates 221 

networks from being stable or not. Lower values of s simply imply that that network is more 222 

stable than high values of s. We calculated the s metric using the stability()  function 223 

available in the supplementary information of Sauve et al. (2016). Specifically, values on the 224 

diagonal of the Jacobian matrices (i.e. intraspecific competition), were varied until the individual 225 

matrix was stable (e.g., all of the real parts of the eigenvalues were negative). The same value for 226 

intraspecific competition was used for each element of the diagonal (e.g., Jii = s). This method is 227 

equivalent to that used by Allesina and Tang, (2012) and Tang et al. (2014) as discussed in 228 

Appendix S1 of Sauve et al. (2016).  229 

Bayesian analyses 230 

We tested the relationship between response variables (species richness, food web measures, 231 

stability) and the AMD stress gradient using generalized linear mixed models in R (R 232 

Development Core Team 2017). All models used a gamma likelihood with a log link and 233 

included site identity as a random intercept. We used weakly informative priors for the intercept 234 
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and slope, both of which were normal with a mean of 0 and a standard deviation of 1 [N(0,1)]. 235 

The prior for the shape parameter of the gamma distribution was a default prior of 236 

gamma(0.01,0.01).  237 

Models were fit using Bayesian inference with posterior distributions generated using 238 

Hamiltonian Monte Carlo method in rstan  (Stan Development Team 2018) via the brms 239 

package (Bürkner 2018) in R. For each model, we ran four chains each with 2000 iterations, with 240 

the first 1000 iterations discarded as warm-up. Convergence was checked by ensuring that all r-241 

hats were < 1.1, and by visually assessing trace plots (Gelman and Rubin 1992). All models 242 

achieved convergence. To assess model performance, we used posterior predictive checks in 243 

which we simulated ten datasets from the posterior distribution and graphically compared them 244 

to the original dataset. Differences between the original and simulated data would indicate 245 

structural problems in the model (Gabry et al. 2018). To assess the influence of the prior, we 246 

plotted the prior and posterior distributions. All plots indicated little influence of the prior on the 247 

posterior (Appendix S3: Figs. S1-9).  248 

All data used in this analysis are available at [Data Dryad DOI here upon article acceptance]. An 249 

example dataset and R script to run the methods presented here are available at 250 

10.5281/zenodo.3754676. Annotated R scripts for the full analysis presented here are available 251 

from the corresponding author upon request.  252 

Results 253 

Species richness and food-web measures 254 

Total species richness and all food-web measures responded to the AMD gradient (Table 1, 255 

Figure 2). Total taxonomic richness declined by 19% (CrI: 14-24%) with each unit increase in 256 

PC axis 1 (e.g., increasing AMD stress). For example, reference sites had a median of 7.4 (CrI 257 
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4.2-13.8) times as many species compared to sites with high AMD stress. The number of inferred 258 

links decreased by a median of 30% (CrI: 22-39%) with each unit increase in PC axis 1 (e.g., 259 

increasing AMD stress). For example, reference sites had a median of 2.7 (CrI: 2-3.9) times 260 

more links compared to sites with moderate AMD stress, and 32.1 (CrI: 10.7-115.8) times more 261 

links compared to the sites with high AMD stress. The median number of links in sites with 262 

moderate AMD stress was 12 (CrI: 5.5-30) times that observed in sites with high AMD stress 263 

(Table 1). In contrast, the median value for connectance increased by 7% (CrI: 3-11%) across the 264 

AMD stress gradient. Likewise, both  normalized generality and vulnerability increased by 9% 265 

(CrI: 5-13%) and 14% (CrI: 10-19%), respectively. 266 

Stability 267 

Stability increased (lower s indicates higher stability) with increasing AMD stress (Table 2, 268 

Figure 3). The value of s decreased by ~ 23% with each unit increase in the AMD stress gradient 269 

(Table 2). This finding was consistent across all methods of estimating interaction strengths (i.e. 270 

sampling interaction strengths randomly, scaling interaction strengths by body size, correlating 271 

positive and negative interaction strengths, and the combination of scaling and correlating 272 

interaction strengths). While the response of s across the gradient had the same general shape 273 

regardless of how interaction strengths were estimated, there are some key differences between 274 

them. First, the range of s when scaling the interaction strengths by body size was lower for all 275 

networks than all other interaction strength estimations (Figure 3B). Second, when interaction 276 

strengths were correlated (e.g., positive interactions = 0.7 × negative interactions), the 277 

distribution of s for some of the impacted streams separates into distinct clusters (Figure 3, lower 278 

panel) indicating that impacted sites can have more and less stable structures, whereas the 279 

stability of un-impacted food web structures are more evenly distributed.  280 
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Discussion 281 

We used mechanistic models to infer the structure and stability of food webs across an acid mine 282 

drainage (AMD) stress gradient based on interaction probabilities determined by the local 283 

distribution of macroinvertebrate and fish body sizes and population densities. Our results show 284 

that AMD impacts lead to small, simple, and stable food webs. Furthermore, this study adds to 285 

our understanding of the stabilizing attributes of food webs, including topological structure, 286 

distribution of body sizes, and interaction strengths.   287 

Inferred network structure 288 

Species richness declined across the AMD gradient. Likewise, community structure was 289 

simplified, namely due to the loss of the largest sized taxa (e.g., fish, large-bodied invertebrates) 290 

Pomeranz et al. 2019b). This is consistent with the findings of several studies showing a decline 291 

in species richness and trophic levels in response to AMD inputs (reviewed in Hogsden and 292 

Harding 2012b). The number of inferred pairwise interactions (e.g., feeding links) also decreased 293 

across the AMD gradient. A reduction in links may translate to less energy pathways available 294 

(Hogsden and Harding 2013), reducing ecological efficiency or functional diversity (Petchey and 295 

Gaston 2002). Likewise, the interaction magnitude in food webs with fewer links may increase 296 

relative to webs with many links. Having a few strong links is generally considered to be 297 

destabilizing (Wootton and Stouffer 2015). On the other hand, because interaction strengths are 298 

related to body size and AMD inputs cause the loss of the largest-sized predators (Pomeranz et 299 

al. 2019b), the links present in impacted streams may be weak, possibly increasing stability. 300 

Indeed, when interaction strengths were scaled based on body size (see below) the stability 301 

metric, s, was lower (i.e. more stable) across all networks when compared to randomly sampled 302 

interaction strengths (e.g., scale of y-axis in Fig. 3A and 3B).  303 
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Connectance increased across the AMD gradient, which means that a high proportion of the 304 

possible links in the food web were realized. This is in agreement with previous work which has 305 

shown a negative relationship between network size and connectance (Schmid‐Araya et al. 306 

2002). Normalized generality and normalized vulnerability also increased across the AMD 307 

gradient, meaning that each resource taxa was exploited by a high proportion of the consumer 308 

taxa present, and also that each consumer taxa was exploiting a high proportion of the resource 309 

taxa available. These results support findings of previous studies on food webs in AMD 310 

impacted streams (Hogsden and Harding 2012a), and indicate a re-organization of food web 311 

structure resulting in small, simple, and well-connected communities.  312 

Distribution of interaction strengths 313 

Scaling interaction strengths based on body size increased stability (lower values of s) for all 314 

streams across the AMD gradient compared with sampling interaction strengths randomly, which 315 

is in agreement with previous studies (Emmerson and Raffaelli 2004, Otto et al. 2007). When 316 

positive and negative interaction strengths were correlated, the distribution of the stability metric 317 

across all sites was similar to that observed when sampling interaction strengths randomly. 318 

However, in some impacted streams, the distribution of the stability metric clustered into two or 319 

more distinct magnitudes e.g., an individual stream has configurations which were more or less 320 

stable. The configurations that were less stable have stability metric distributions similar to un-321 

impacted streams, potentially making them good candidates for restoration. For example, stable 322 

communities generally have high resistance to species introductions, but a typical goal of 323 

restoration is often the re-establishment of the pre-disturbance community composition, or the 324 

return of sensitive species (Lockwood and Pimm 1999). Therefore, focusing restoration actions 325 

on impacted communities that are less stable may provide a higher likelihood of re-colonization 326 
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by desirable species. Communities which are less stable may have lower biological resistance 327 

(sensu Frost et al. 2006) or internal ecological inertia (sensu Gray et al. 2016) to the re-328 

colonization of previously extirpated sensitive taxa. Indeed, alternations between more and less 329 

stable food web configurations has been observed during community succession in soil food 330 

webs (Neutel et al. 2007). Stability decreased as the biomass of the top trophic level increased, 331 

and stability increased when the addition of a new top predator alleviated predation pressure on 332 

the lower trophic levels. Although stability was not directly measured, this is similar to the 333 

observed re-organization of food web structure with the re-colonization of successively larger 334 

sized predators in Broadstone Stream (Layer et al. 2011, Gray et al. 2014).  335 

Conclusions 336 

Our results indicate that AMD inputs consistently alter food-web structure, and that some AMD-337 

impacted streams may be more receptive to restoration than others. When interaction strengths 338 

are estimated with more biologically-relevant values (e.g., scaling and correlating magnitude) 339 

some of the impacted streams have stability values similar to un-impacted streams. For 340 

successful restoration of all streams, the chemical conditions need to be returned to a pre-341 

disturbance state. Impacted streams which are less stable may lack internal inertia and have low 342 

resistance to species invasions and only require chemical remediation to place them on a 343 

trajectory of community succession. However, in impacted streams with high food web stability, 344 

beneficial disturbances (e.g., scouring flood) or active species reintroductions may need to occur 345 

to overcome the internal ecological inertia of these communities. This is because small, stable 346 

communities have high resistance to changes in community composition and may inhibit the 347 

successful colonization of desirable species. However, because of their lower stability, it may 348 
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also be necessary to actively monitor the sites to ensure that non-desirable (e.g., exotic invasive) 349 

species do not colonize the site.  350 

Further work is needed to understand the effect of species introductions. If the goal of a 351 

restoration activity is for community composition to be similar to a pre-disturbance state, or the 352 

return of species with commercial value (e.g., fisheries), it may be necessary to set the 353 

community on a trajectory of community assembly, rather than introduce the desired species at 354 

the outset (i.e. the “myth of fast-forwarding” sensu Hilderbrand et al. 2005). For example, it may 355 

be necessary to introduce primary or secondary consumers (e.g., grazers, filter-feeders) in order 356 

to increase ecological efficiency and make more energy available for the successful 357 

establishment of higher trophic levels (Pimm 1982, Thompson and Townsend 2005). Likewise, it 358 

may be necessary to introduce medium sized predators (e.g., as occurred naturally in Broadstone 359 

Stream, Layer et al. 2011) in order to restructure the food web architecture before larger 360 

predators (e.g., fish) can successfully colonize the site.   361 
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Tables  515 

Table 1. Parameter estimates and 95% credible intervals for the effects of the AMD mining 516 

gradient on food web measures. Slope estimates < 1 indicate a negative response, and those > 1 517 

indicate positive response (e.g., slope estimate of 0.7 indicates that the value of y decreases by 1-518 

0.7 = 0.3 with every unit increase in the AMD gradient). Shape parameters are excluded from the 519 

table. The relative change values were calculated from the posterior distributions of each model. 520 

AMD impacts start at ~ -0.8 on PC axis 1, and maximum impacts are represented by values of ~-521 

6 on PC axis 1  522 
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 523 

  Model  Relative change 

Food Web 
Measure 

Parameter Median 2.5% 97.5% Derived quantity Median 2.5% 97.5% 

 Intercept 13 11 16 
Reference / 

Moderate AMD 
1.77 1.5 2.1 

Species Richness Slope 0.81 0.76 0.86 
Reference / High 

AMD 
7.4 4.2 13.8 

     
Moderate / High 

AMD  
4.2 2.8 6.5 

Links 

Intercept 16.4 11.0 24.0 
Reference / 

Moderate AMD 
2.7 2.0 3.9 

Slope  0.7 0.6 0.8 
Reference / High 

AMD 
32.1 10.7 115.8 

  
Moderate / High 

AMD  
12.0 5.5 30.0 

Connectance 

Intercept 0.1 0.1 0.1 
Reference / 

Moderate AMD 
0.8 0.8 0.9 

Slope  1.1 1.0 1.1 
Reference / High 

AMD 
0.5 0.4 0.7 

  
Moderate / High 

AMD 
0.6 0.5 0.8 

Normalized 
Generality 

Intercept 0.22 0.20 0.25 
Reference / 

Moderate AMD 
0.79 0.72 0.87 

Slope  1.09 1.05 1.13 
Reference / High 

AMD 
0.44 0.31 0.62 

  
Moderate / High 

AMD 
0.55 0.31 0.71 

Normalized 
Vulnerability 

Intercept 0.18 0.16 0.21 
Reference / 

Moderate AMD 
0.69 0.62 0.77 

Slope  1.14 1.1 1.19 
Reference / High 

AMD 
0.27 0.18 0.40 

  
Moderate / High 

AMD 
0.39 0.30 0.52 
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Table 2. Parameter estimates and 95% credible intervals for the effects of the AMD mining 529 

gradient on the stability metric s, when interaction strengths are estimated in one of four ways. 530 

The shape parameter is excluded from this summary. Derived quantities were calculated from the 531 

posterior distributions of each model. AMD impacts start at ~ -0.8 on PC axis 1, and maximum 532 

impacts are represented by values of ~-6 on PC axis 1.  533 
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Model Relative Change 

Interaction 
Strength 
Estimate 

Parameter Median 2.5% 97.5% Derived quantity Median 2.5% 97.5% 

Random 

Intercept 0.03 0.02 0.05 
Reference / 

Moderate AMD 
2.1 1.4 3.3 

Slope 0.8 0.7 0.9 
Reference / High 

AMD 
14.2 3.0 64.1 

  
Moderate / High 

AMD 
6.7 2.2 19.6 

Scaled 

Intercept 0.01 0.01 0.02 
Reference / 

Moderate AMD 
2.0 1.3 2.9 

Slope 0.8 0.7 0.9 
Reference / High 

AMD 
11.8 2.8 43.2 

  
Moderate / High 

AMD 
5.8 2.1 14.8 

Correlated 

Intercept 0.04 0.03 0.07 
Reference / 

Moderate AMD 
2.0 1.3 3.2 

Slope 0.8 0.7 0.9 
Reference / High 

AMD 
12.0 2.3 59.4 

  
Moderate / High 

AMD 
5.9 1.8 18.6 

Scaled + 
Correlated 

Intercept 0.03 0.02 0.05 
Reference / 

Moderate AMD 
2.0 1.3 3.1 

Slope 0.8 0.7 0.9 
Reference / High 

AMD 
11.3 2.7 52.8 

  
Moderate / High 

AMD 
5.7 2.0 17.1 

 552 
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Figure Captions 553 

Figure 1. Conceptual figure of the food web inference process. The probability of pairwise 554 

interactions based on Niche processes (e.g., function of predator:prey body size) are inferred (A). 555 

Neutral probability matrices (B) are calculated as the pairwise product of species relative 556 

abundances (rescaled from 0.5 to 1). These are multiplied together to calculate the interaction 557 

probability matrices (C). The probability values in this matrix are rescaled from 0 to 1 (D) and 558 

multiple Bernoulli trials are conducted based on these probabilities to create binary adjacency 559 

matrices (E). Adjacency matrices are used to calculate distributions of food web measures and 560 

estimate stability. Red, yellow and blue in matrices A-D indicate low, medium and high 561 

probability of interactions, respectively. Blue and white in adjacency matrices (E) indicate the 562 

presence and absence of inferred links, respectively. 563 

Figure 2. Species Richness and inferred food web measures across the AMD gradient A) Species 564 

Richness; B) Links; C) Connectance; D) Normalized Generality; E) Normalized Vulnerability. 565 

AMD stress increases left to right. Points in Panel A are the total taxonomic richness for each 566 

site. Points in Panels B-D are individual values for each food web iteration and are jittered with 567 

an alpha value of 0.2 for visualization. Points are color-coded based on site. AMD impacts start 568 

at ~ -0.8 on PC axis 1, and maximum impacts are represented by values of ~-6 on PC axis 1. 569 

Blue lines are the median fitted-values and grey shading is 95% credible intervals. 570 

Figure 3. Inferred stability metric, s, across the AMD gradient when varying the estimate of 571 

interaction strengths (see methods). A) Random interaction strengths; B) random interaction 572 

strengths scaled by body size; C) Random interaction strengths, positive and negative 573 

interactions correlated; D) random interaction strengths, scaled by body size, and positive and 574 

negative interactions correlated. AMD stress begins at ~-0.8, and increases left to right. Points 575 
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are individual stability values for each food web iteration and are jittered with an alpha value of 576 

0.2 for visualization. Points are color-coded based on site. Note that in panel C and D the values 577 

of s cluster for some impacted sites (i.e. orange, yellow). Blue lines are the median fitted-values 578 

and grey shading is 95% credible intervals.  579 
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