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Abstract

Understanding what makes food webs stabteltvag been a goal of ecologists. Topological
structure and the distribution and magnitude of interaction streimgtbed webshave been
shown to confeimportantstabilizing properties. Howevesur understanding of how variable
species interactions affect food web structure and stability is still in its infamtiyropogenic
stress, such as acid mine drainage, is likely to placeeskw@ations onthefood web structures
possible due teharges in community composition and body mass distributidese, we used
mechanistic models to infer food web structure quantify stability in streamsacross a gradient
of acid mine drainagéMultiple food webs were iterated for each community basegbecies
pairwise interactioprobabilities, in order to incorporate the variability of realistic food web
structure. We found th&bod web structure was aled systematicallyith a 32-fold decrease in
the number of links and afdld increase in conneataeacross the gradienBtability generally
increased @old with increasing acid mine drainage strasgardless of how interaction
strengths were estimatedowever, thalistribution ofthe stability measures, for some

impacted communitieseparate into clusters of higher and lower magnitwtipending on how
interaction strengthaere estimatedvianagement and restoration of impacted sites needs to
consider their increased stability, as tmay havamportant implications for the feolonization
of desirable species. Furthermore, active species introductions may be required to overcome the
internal ecological inertia of affected communities.
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While researchin the last four decades has significantly improved our understanding of food web
stability, nearly all of the previous work assumes that network structure is static. Food webs,
however, arelynamic Pairwise species links are variable, and can change through space and
time based on resource availability, indirect interactions, and abiotic condifioaspsorand
Townsend 199%Poisotet al.2012 Poisotet al.2015 Poisotet al.2016) In fact, this variability

in trophic interacthns has been theorized as promoting stability because consumers will allocate
foraging effort differentially based on resource availability, potentially dampening environmental
effects on population densiti@§ondoh 2003) Likewise, lager predators are generally more
mobile and can rapidly moderate their behavior in response to changing resource conditions,
which can connect spatiailyistant food webs and increase stability across the-welba

(McCannet al.2005)

Body sizehas been shown to laestrong organizingactorin food webs, particularly in aquatic
habitats(Cohenet al.2003 Broseet al.2006a Petcheyet al.2008) Body size can determine

who interacts with whom, as well as the strength ofdhinteractions. Predators are generally
larger than their prefBroseet al.2006a)and diet breadth also correlates with body size,

resulting in the largestized predatorsonsuming the greatest varietiypwey body size¢Brose

et al.2017) Interaction strengths also correlate with predator: prey body size (Etwserson
andRaffaelli 2004 Berlow et al.2009)and these allometries contribute to local faweb

stability (Broseet al.2006h Tanget al.2014) Finally, a strong, negative correlation between the
positive and negative interaction nmigdes €.g.,effect of resource on consumer, and consumer
on resource, respectively) has also been shown to drive stability in natural foo amdpst al.

2014)
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One global stressor in freshwater ecosystems thatffiest food web stability is Acid mine
drainage (AMD)Acid mine drainage is often the result of mining activities in geologic strata
with high sulfurcontent anaffects stream habitats globally. AMD significantly impacts abiotic
conditions with severely lowered pld.¢.,< 3) and high concentrations of dissolvea&ranetals
(e.g.,> 20 mg/l;HogsderandHarding 2012h)AMD is known to decrease community diversity
by removing sensitive tax@dlogsderandHarding 2012b)altersize spectr§Pomeranzt al.
2019b)and simplify food web structur@logsderandHarding 2012a)The restoration of AMP
impacted streams remains an important goal for ecologists. However, to our knowledge, no
studies of local community staityl in AMD -impacted streams currently exist

Incorporating the variability in species interactions and network structure is an important next
frontier in our understanding of food web stabilify, determine how variation in species
interactions and food @b structure affects stability, we used mechanistic models to infer species
pairwise interaction probabilitigsee belowpcross a gradient of AMD stres¢ere, we solely
focus on predateprey interactions and nenophic interactions are not includedaaor analyses
(i.e., nontrophic interactions are coded as zeros in the adjacency matrices, see below)
Variability of possible food web topologies was incorporated by conductiritjple Bernoulli

trials based orthese probabilities, resulting in a distribution of response variabesised a
dataset of stream communiti@sross an AMD stress gradieAMD stress iknown toreduce
species richneg$logsden & Harding, 2012a,lBnd altedocal population densities, and

biomass distributionPomeranzt al.2019b) We expectefbod websto become simplge.g.,
fewer links), andnoreconnected€.g.,high proportion of potential links realized) with
increasing AMD impact. Furthermore, we expected these structural changes to lead to food webs

with higher stability.
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Methods

Study site and stream characteristics

This studyusesdata originally published iRomeranzt al.(2019b) Twenty fivestreams were
sampledn the BullerGrey region in the nortlvest of the South Island, New Zealand. The
region has spatiallgonsistent climatic conditions, geology, and freshwater Ifid@adinget al.
1997, Harding andWinterbourn 1997)and has a history of coal mininphirteen of the streams
sampled wer&nown to be affected bk MD ( whi ch we refer ,thereims
no urbanization, farming or other significant land use activity in arlyesfe catchmestTo our
knowledge, the othdwelve streamsvere not affected by AMD inputs, amepresented a natural
gradient of pH (~ 4 7) and low metal concentratiomslthough thesein-impactedstreams
represent a wide range of pH values, theseiocaturally due to the presence of leaching
organic acids from the soil and decomposing veget@tiogsderandHarding 2012aCollier et
al. 2016) Furthermore, Collieet al.(1990) have showthat the native aquatic fauna is well

adapted to these conditions, with many of the most widespread insect taxa odolgtiegms

with a natural pH of 45. These were sampled in order to capture the range of natural variation

present.

Water chemistry variableacluding pH, and conductivity were measured in the field using
standard meter®&' S| 550AandYSI 63, YSI Environmental Incorporated, Ohio, U$And
filtered(0O. 45 pm mi xed ¢watet sanpleswere anslyzedrfor dissolved enetal
concentrationsAppendix S) from all 25 streamsThese variablesereanalyzedusing princil

component$o generate an AMD gradie(ppendix S1Table 9, Figure &; Pomeranzt al.

2019b) Principal component (PC) axis 1 explained 78% of the variation among sites, and was

strongly correlated with pH and dissolved metal concentratiitesscores for PC axis 1 were

my



99 extracted and used as a proxy for the AMD gradigntiimpacted sites have PC axisdores
100 from-3.6 to ~0.8. Sites with PC axis 1 values®:8 are impacted by AMD, with increasing
101 PCl1 values indicating increasing levetsAd/ID stress.
102  Community sampling and body mass estimation
103 Benthic macroinvertebrates were randomly collected in three Surber samples{000BMm
104  mesh) from riffleand runhabitats at each si{8lakely andHarding, 2005)Individualswere
105 identified to the lowest practical taxonomic level and the bodgs(dry weight)of all
106  individuals wereestimated based daxonspecific lengthweight regressionélowersetal.
107 1994 Stoffelset al.2003) Linear measurements of afidividuals were measured according to
108 the methods of owerset al.(1994) andStoffelset al.(2003) Body mass estimates were
109 averaged by taxa for each site where they occurred.
110  Fish were sampled using quantitative electrofishing techniques from a 20 m reacleagthin
111  site(HogsderandHarding 2012a)Stop nets were placed at the top and bottom afeiheh and
112 fish were removed during three successive pg&arsrand et al. 2006, Reid et al. 2008sh
113 population densities were estimated usirektipass removal method 8eberandLe Cren
114 (1967) All fish capturedhad their lendts measured and were converted to dry weight estimates
115 using lengthweight regressions for New Zealand fish (Jellyman et al. 2013). Mean dry weight
116  esimates for each fish taxa were calculated as above.
117  Previous analyses of this data set have shown that increasingsétel3 has altered community
118  structure consistentlfish were completely absent in AMD impacted streams, and most large
119  bodied invertekate predators were also remo@®meranzt al.2019b) Un-impacted
120 communities were dominated by mayflies, stoneflies, and caddisflies. Communities across the

121 AMD gradient were dominated laguatic worms (Oligachaetahdtrue-flies, predominantly the
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families Chironomidae and Empididaglthough previous work on AMBmpacted streams in

this region of New Zealand have shown declines in species rictih@gsden & Harding,

2012a) explicit analyses of species richness in the dataset preseftecheranzt al, (2019b)

were not previously conducted. Therefore, we analyzed how species richness responds to AMD
stress here (see Bayesian analyses below)

Inferring foodweb structure

To estimate food westructureat each of the 25 sitese used anechanistic model that

estimates the probability of pairwise species interactions basagtib@ and neutral processes
(Figure 1;Bartomeuset al.2016 Pomeranzt al.2019a) To achieve this, @ used the

Traitmatch packaggBartomeuset al.2016)in the R statistical languag® Development

Core Team, 201 7p infer niche processé8ppendix S2) Specifically we used empirical
predatofpreybody sizegrom Broadstone Stream and Tadnoll BrofKoodwardet al.2010) to
estimate the probability that species would interact based on their bodyl siegmramierized
Traitmatch model correctly assigned high probabilities (> 0.7) to 57% of the realized
interactions in the data from Broadstone Stream and Tadnoll Brook, indicating adequate fit. Only
25% of the realized interactions received probabilities <Affer parameterizing the model, we
inferred the probability of all pairwise interactions at each site based on local species average
body sizesSpecies interaction probability vectors were converted to square (S x S, where S =
the number of taxa presentjenaction probability matrice®, (Figure JA). Columns and rows of

P represent species in their role as consumers and resources, respectively. Tlitgrefore,
represents the probability that spegiesnsumes specieésThe matrices were ordered by

increasing body size from left to right, and top to bottom.
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After inferring the probabilities of all possible pairwise interactions, we further refined these
possible interactions by restricting niche forbidden lirdenéuMoralesCastillaet al.2015
Pomeranzt al.2019a) Niche forbidden links were defined as in Pomeratral.(20193. We
restricted predatory interactions between animals which are kitwlbenorpredatory, or which
lacked morphological adaptations for the consumption of animal prgydet R jto O,

Appendix S2Figure ). For example, members of thyfly genus Deleatidium have

mout hparts modi f i edfbenhicsutfacgsandsldck time@lility tb icamsumen s
animal prey. Conversely, nepinning caddisflies the familyHydropsychi@deconstruct nets to
filter feed, but retain chewing mouthparts and are able to consume animal prey they capture, so
their predabn probabilities were not modifiedhese designations were based on morphology
as opposed to traditional functional feeding group classifications, in order to prune predatory
interactions conservativeliiche forbidden taxa in this study are presentefigpendix S2:
TableS1.

To account for neutral effectsgnsuCanardet al.2014)we scaled these probability estimates
based on local relative abundancBsis simply takes into account that two rare species are less
likely to interact than two abundant species. The modified interaatadrapilities for each site
were calculated aBj’ = Pjj * Njj, whereN; is the product of relative abundances of spaciesl

j, scaled from 0.5 to 1 respectivéBigure JA-C). Abundant species pairs = 1 and are assumed
to interact based on niclpeobabilities, while rare specipsairs = 0.5 andre less likely to
encounter one another, so their overall interaction probabilities are rdeedgpendix SZor

a discussion on selection of scaled valu€sg modified probabilities il;* were resaled from
0.01 to 0.99 (Figure 1D) in order to put them on a meaningful scale for inferring adjacency

matrices (see below).

of
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Finally, the probability matrices for each stream were converted to 250 binary adjacency
matricesA (Figure 1E) We chose 250 trials because this generally capturethsdirved
interactions in an empirical stream food web from New Zealdgtitbut overpredictingthe
number of linkg§Appendix S2: Fig. S)7 Adjacency matrices are square matrices with taxa in
their rde as predators in columns and their role as prey in rows as in the probability m#ices (
whereAj = 1 when tax@ consumes taxg and O otherwise. This was done by conducting
Bernoulli (i.e. binomial) trials, where the probability tiagt= 1 =P’;. This allowed us to assess
the effect of variable foedeb structure on network measurements and stability (see below).
Foodweb measures

We calculated a suite of standard fesdb measures including the number of links (L),
connectance (C = L /Swhere S = the number of species), normalized vulnerability (mean
number of consumepeciesper resourcapeciey andnormalized generality (mean number of
resourcespeciesper consumespecieyfor all 6250 Adjacency matricef25 sites x 250 Bernoulli
trials). Vulnerability and generality for each iteration were normalipetthe size of the food web
by dividing by S whichmakes the measures comparaiiess networks of different size
(Williams andMartinez 2000)

Interaction strength

The adjacency matrices; calculated above, were transformed into Jacobian matrices, where the
elementlj quantifies the effect that specidsas on specidsgrowth rate. For antagonistie.@.,
predatory) interactions assessed h&re, O (positive effect of resource on consumampJji < 0
(negative effect of consumer on resourddje magnitude, distribution, and correlation of
interaction strengths are known to be an important componémaiveb stability(Tanget al.

2014) In order to assess the effects of network structure (presence/absence of links), and the
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effects of interaction strettydistributions and correlations, we estimated interaction strengths in
four ways: 1) Random interaction strength to test the effects of network topology. Using the
methods oSauveet al.(2016) we estimated all nerero elements of by sampling them from

a half nor mal d # 0s1)| and moultiplieddhe poksitfverand-nedatjve iateractions
by 1 and-1, respectively; 2) Scaling interaction stgéhs by body size. Interaction strength is
known to scale with predator: prey body size ratios, and this has been suggested as a key process
increasing stability in natural food we{Broseet al.2006b) To examine these effects, we again
sampled interaction strengths from a half normal distribution, but scaled them by predator:prey
body size ratiosg.g.,smallest positive and greatest negative effects between large predators and
small prey); 3) Correling the topdown (negativeffect of predator on prgwynd bottoraup
(positiveeffect of prey on predatpmteraction strengths. The correlation between positive and
negative interactions has been shown to have important implications in local s(@hitiget al.

2014) with the magnitude of negative effects being greater than the magnitude of positive
effects. For this, we sampled thegative interactions from a half normal distribution, and
correlatedhe corresponding positive interactionsabfactor of0.7 correlated €.g.,positive
interactions = 0.7 x negative interactianBiis can be interpreted as a 70% conversion

efficiency d prey biomass by predators from stream habitats as estimated from empirical studies
(Woodwardet al.2005 Montoyaet al.2009) 4) Interaction strengths scaled by body size and
positive and negative interactions correlated. Here, we santipé negative effects as in (3), and
scaled them by predator:prey body size ratios. We then calculated the corresponding positive
effects by multiplying the scaled negative effect by 0.7. This takes into account the scaling of

interaction strengths by Hg size and the correlation of positive and negative effects. For all

10
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interaction strength estimates, we used a modified version @dbleian_binary() function
available in the supplemental information from Saetval.(2016)

Stability

For each adjacey matrix (5 streams x 250 trials =250 matrices), interaction strengths were
estimated in one of four ways (see above) and a stability analysis was conducted. Here, a
network is defined as stable if all of the real parts of its eigenvalues are negative. The stability
metric,s, was defined athe minimum amount of intraspecific competitiend.,the diagonal of
the Jacobian matrid;i) necessary for a foedeb iteration to be stab(®eutelet al.2002 Tang

et al.2014 Sauveet al.2016) Smaller vales ofs are considered to be more stafeutelet al.
2002 Sauveet al.2016) howeverthere is no known value or thresholdsafhich separates
networks from being stable or not. Lower values simply imply that that network ishore
stable than high values sfWe calculated themetric using thestability() function
available in the geplementary information of Saue al.(2016).Specifically, values on the
diagonal of the Jacobian matrices (i.e. intraspecific competition), were varied until the individual
matrix was stableeg(g.,all of the real parts of the eigenvalues were negatiMee same value for
intraspecific competition was used for each element of the diagmgalli = s). This method is
equivalent to that used BllesinaandTang, (2012and Tanget al.(2014)as discussed in
Appendix S1 of Sauvet al.(2016)

Bayesiamnalyses

We tested the relationship between response variagesi€s richnesfpod web measures,
stability) and théAMD stress gradientising generalized linear mixed models iR
Development Core Team 201A)I models used a gamma likelihoadth a loglink and

includedsite identity as a random intercefdte used weakly informative priors for the intercept

11
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and slope, both of which were normméth a mean of 0 and a standard deviation dfi(D[1)].

The prior for the shape parameter of the gamma distributiorawlaault prior of
gamma(0.01,0.01).

Models werdit using Bayesian inferene®th posterior distributions generated using
Hamiltonian Monte Carlo methad rstan (Stan Development Team 2018 thebrms
packaggBurkner 2018)n R. For each model, we ran four chains each with 2000 iterations, with
the first1000iterations disarded as warmp. Convergence washeckedyy ensuring that alkr
hats were < 1.1, and by visually assessing trace (@a@snanandRubin 1992) All models
achieved convergenc€o assess model performance, we ysesterior predictive checks in
which wesimulated ten datasets from the posterior distribution and graphically compared them
to the original dataseRifferences between the original and simulated dettald indicate
structural problems in the mod@babryet al.2018) To assess the influence of the prior, we
plotted the prior and posterior distributio#gl plots indicated little influence of the prior on the
posterior(Appendix S3: Figs. S9).

All data used in this analysis are availabl@Catta Dryad DOI here upon article acceptanéei
exampledataset and R script to rtime methods presented here are available
10.5281/zenodo.375467Annotated R scripts for the full analysis presented hee available
from the corresponding author upon request.

Results

Speciesichness andoodweb measures

Total species richness anitifaod-web measureesponded to thaMD gradient(Table 1,
Figure2). Total taxonomic richness declined by 19% (Q#:24%) with each unit increase in

PC axis 1 (e.g., increasing AMD stress). For example, reference sites had a median of 7.4 (Crl

12
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4.2-13.8) times as many species compared to sites with high AMD sStressumber of inferred
links decreased bg medianof 30% (Crl: 22-39%%) with each unit increase in PC axisely(,
increasing AMD stress). For example, reference siteahagtlianof 2.7 (Crl: 2-3.9)times
morelinks compared to sites witnoderateAMD stress, and 32.1 (Crl: 161715.8) timesnore
links conpared to the sitesith high AMD stressThe mediannumber of links in sitewith
moderate AMD streswas 12 (Crl: 5.830) times that observed in sites witigh AMD stress
(Table 1) In contrastthe median value faronnectance increased by 7% (CrlL B%) across the
AMD stressgradient Likewise, both normalized generality and vulnerability increaseby
(Crl: 5-13%) and14% (Crl: 10-19%), respectively

Stability

Stability increased (lowes indicates higher stability) with increasing AMDesgs Table 2,
Figure 3). The value ok decreased by ~ 23% with each unit increase in the AMD stress gradient
(Table 2).This finding was consistent across all methods of estimating interaction strengths (i.e.
sampling interaction strengths randomly, scalingraction strengths by body size, correlating
positive and negative interaction strengths, and the combination of scaling and correlating
interaction strengths). While the responss afross the gradient had the same general shape
regardless of how intaction strengths were estimated, there are some key diffelestvesen
them First, the range cfwhen scaling the interaction strengths by body size was lower for all
networks than all other interaction strength estimat{@igure3B). Second, when istaction
strengths were correlatee.§.,positive interactions = 0.7 x negative interactions), the
distribution ofs for some of the impacted streaseparates into distinct clust€fsgure3, lower
pane) indicating that impacted sitesin have more and lessble structuresvhereas the

stability of urimpacted food web structures are more evenly distributed

13
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Discussion

We used mechanistic modelsitder the structure and stability of food webs acrosac mine
drainagg/AMD) stress gradient based on interaction probabilities determined by the local
distribution of macroinvertebrate and fish body sizes@opllationdensities. Our results show
that AMD impacts lead to small, simple, and stable food webs. Furthermore, this sladyg ad
our understanding of the stabilizing attribute$anfd websincludingtopological structure,
distribution of body sizes, and interaction strengths.

Inferred network structure

Speciegichnesgledined across the AMD gradient. Likewise, commuyrstructure was

simplified, namelydue tothe loss of the largest sized taxay(,fish, largebodied invertebrates)
Pomeranzt al.2019b) This is consistent with the findings of several studies showing a decline
in species richness and trophigdésin response to AMD inputgeviewedin Hogsderand
Harding2012b) The number oinferredpairwise interactionse(g.,feeding links) also decreased
across the AMD gradient. A reduction in links may translate to less energy patwadgble
(HogsderandHarding 2013)reducing ecological efficiency or functional divergiBetcheyand
Gaston 2002)Likewise, the interaction magnitude in food webs with fewer links may increase
relative to webs with many links. Having a few strong links is generally considered to be
destabilizing(WoottonandStouffer 2015)On the other hand, because interaction strengths are
related tabody size and AMD inputs cause the loss of the largjest predatorPomeranzt

al. 2019b) the links present in impacted streamaybe weak, possibly increasing stability.
Indeed, when interaction strengths were scaled based on body size ¢gg¢Hetability

metric,s, was lower (i.e. more stablagross all networkehen compared to randomly sampled

interaction strengthe(g.,scale ofy-axis in Fig. 3Aand3B).
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Connectance increased across the AMD gradient, which means that a high proportion of the
possible links in the food web were realized. This is in agreement with previous work which has
shown a negative relationship between network size and connett&ceh mi detahr ay a
2002) Normalized gnerality andhormalizedvulnerability also increased across the AMD
gradient, meamig that each resource taxa was exploited by a high proportion of the consumer
taxa present, and also that each consuaxawas exploiting a high proportion of the resource
taxaavailable.These results support findings of previous studies on food weidn

impacted stream@logsderandHarding 20123)and indicate a rerganiationof food web
structure resulting in small, simple, and wabinnected communities.

Distribution of interaction strengths

Scaling interaction strengths based on body size increased stgdiliey values of) for all
streams across the AMD gradient comgabwith sampling interaction strengths randgmallrich

is in agreement with previous stud{@&@nmersorandRaffaelli 2004 Otto et al.2007) When
positive and negative interaction strengtlese correlated, the distribution of the stability metric
across all sites/as similar to that observed when sampling interaction strengths randomly.
However, in some impacted streams, the distribudfcthe stability metriclusteedinto two or
more disthct magnitudeg.g.,an individual stream has configurations whiatre more or less
stable Theconfigurationghatwere less stable have stability metric distributions similar to un
impacted streams, potentially making them good candidates for restofadioexample, stable
communities generally have high resistance to species introductions, but a typical goal of
restoration is often the festablishment of the pigisturbance community composition, or the
return of sensitive speci¢sockwoodandPimm1999) Therefore, focusing restoration actions

on impacted communitigbatare less stable may provide a higher likelihood afalenization

15
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by desirable specie€ommunities which are less stable may have lower biological resistance
(sensuFrostet al.2006) or internal ecological inertissénsuGrayet al.2016)to the re

colonization of previously ekpated sensitive tax#éndeed alternations between more and less
stable food web configuratiomss been observed during community succession in soil food
webs(Neutelet al.2007) Stability decreased as the biomass of the top trophic level increased,
and stabity increased when the addition of a new top predator alleviated predation pressure on
the lower trophic levelsAlthough stability wasot directly measured, this is similar to the
observed rerganization of food web structungth the recolonization é successively larger
sized predators in Broadstone Stre@mayeret al 2011 Grayet al.2014)

Conclusions

Our results indicate that AMD inputs consistently alter fa@d structure, and that some AMD
impacted streams may be more receptive to restoration than othersinténaction strengths

are estimated witmore biologicallyrelevantvalues(e.g.,scaling and correlating magnitude)
some of the impacted streams have stahiityes similar to wimpacted streamg$-or

successful restoration of all streams, the chemical conditions need to be returned to a pre
disturbance statémpacted seams with are less stablmaylack internal inertia and have low
resistance to species invasions and only require chemical remediation to place them on a
trajectory of community succession. However, in impacted streams igitlidod web stability,
beneficial disturbanceg (.,souring flood or active species reintroductions may need to occur
to overcome the internal ecological inertia of these communities. This is because small, stable
communities have high resistance bagcges in community composition and may inhibit the

successful colonization of desirable species. However, because of their lower stability, it may

16



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

also be necessary to actively monitor the sites to ensure thdesoable €.g.,exotic invasive)
speciesio not colonize the site.

Further work is needed to understand the effect of species introductions. If the goal of a
restoration activity is for community composition to be similar to adsturbance state, or the
return of species with commercial val(e.qg.,fisheries), it may be necessary to set the
community on a trajectory of community assembly, rather than introduce the desired species at
the outset (i-f er wa ehsuHildpipriaridet al.2005) FFosexample, it may
be necessary to introduce primary or secondary consumgrgy(azers, filteiffeeders) in order
to increase ecological efficiency and make more energy available for the successful
establishment of higher trophic levélRimm 1982 ThompsorandTownsend 2005)Likewise, it
may be necessary to introduce medium sized pred&gysas occured naturally in Broadstone
Stream/ayeret al.2011) in order to restructure the food web architecture before larger
predators€.g.,fish) can successfully colonize theesi
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Tables

Table 1. Parameter estimates and 95% credible intervals for the effects of the AMD mining
gradient on food web measur&ope estimates < 1 indicate a negative response, and those > 1
indicate positive response.{.,slope estimate of 0.7 indicates tkfa value of y decreases by 1

0.7 = 0.3 with every unit increasetime AMD gradient).Shape parameters are excluded from the
table.The relative change values were calculated from the posterior distributions of each model.
AMD impacts start at ~0.8 on I axis 1, and maximum impacts are represkehtevalues of -~

6 on PC axis 1
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523

524

525

526

527

528

Model Relative change
Food Web . . . .
Parameter Median 2.5% 97.5% Derived quantity Median 2.5% 97.5%
Measure
Reference /
Intercept 13 11 16 Moderate AMD 1.77 1.5 2.1
Species Richness  Slope 081 076 0.86 RefereA”I\cAeD/ High 24 42 138
Moderate / High
AMD 4.2 2.8 6.5
Reference /
Intercept 16.4 11.0 24.0 Moderate AMD 2.7 2.0 3.9
Links Slope 07 06 og teference/High ., 150 1158
AMD
Moderate / High
AMD 12.0 5.5 30.0
Reference /
Intercept 0.1 0.1 0.1 Moderate AMD 0.8 0.8 0.9
Connectance Slope 1.1 1.0 1.1 Reference / High 0.5 0.4 0.7
AMD
Moderate / High
AMD 0.6 0.5 0.8
Intercept 022 020 025  Reference/ 079 072 087
P ) ' ) Moderate AMD ) ) )
Normalized Reference / High
Generality Slope 1.09 1.05 1.13 AMD 0.44 0.31 0.62
Moderate / High
AMD 0.55 031 0.71
Intercept  0.18  0.16 021 heference/ 069 062 077
P ' ' ' Moderate AMD ' ' '
Normalized Reference / High
Vulnerability Slope 1.14 1.1 1.19 AMD 0.27 0.18 0.40
Moderate / High
AMD 0.39 0.30 0.52
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529 Table 2. Parameter estimates and 95% credible intervals for the effects of the AMD mining
530 gradient on the stability metrg& when interaction strengths are estimated in one of four ways.
531 The shape parameter is excluded from this sumnasrved quantities were calculated from the
532  posterior distributions of each modAMD impacts start at ~0.8 on PC axis 1, and maximum
533 impacts are represented by values-& en PC axis 1.
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Model

Relative Change

Interaction
Strength Parameter Median 2.5% 97.5%  Derived quantity = Median 2.5% 97.5%
Estimate
Reference /
Intercept 0.03 0.02 0.05 Moderate AMD 2.1 1.4 3.3
Random Slope 08 07 0o Reference/High o 35 641
AMD
Moderate / High
AMD 6.7 2.2 19.6
Intercept 001  0.01 0.02 Reference / 20 13 29
P ) ) ) Moderate AMD ) ) )
Scaled Slope 08 07 0o Reference/High o 58 43
AMD
Moderate / High
AMD 5.8 2.1 14.8
Intercept ~ 0.04 0.03 0.07 Reference / 20 13 32
P ) ) ) Moderate AMD ) ) )
Correlated Slope 08 07 o9 Reference/High 0 L3 g9y
AMD
Moderate / High
AMD 5.9 1.8 18.6
Intercept ~ 0.03  0.02 0.05 Reference / 20 13 31
P ) ) ) Moderate AMD ) ) )
Scaled + Reference / High
. . . 11. 2. 2.
Correlated Slope 0.8 0.7 0.9 AMD 3 7 52.8
Moderate / High 57 50 171

AMD

552
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553  Figure Captions

554  Figure 1.Conceptual figure of the food web inference process. The probability of pairwise

555 interactions based on Niche processeg.(function of predator:prelgody size) are inferred (A).
556  Neutral probability matrices (B) are calculated as the pairwise product of species relative

557 abundances (rescaled from 0.5 to 1). These are multiplied together to calculate the interaction
558  probability matrices (C). The probailbyl values in this matrix are rescaled from 0 to 1 (D) and
559  multiple Bernoulli trials are conducted based on these probabilities to create binary adjacency
560 matrices (E). Adjacency matrices are used to calculate distributions of food web measures and
561 estimae stability. Redyellow andbluein matrices AD indicate low, medium and high

562  probability of interactions, respectiveBlue and white in adjacency matrices (E) indicate the

563 presence and absence of inferred links, respectively.

564  Figure 2.Species Richnasand nferredfood webmeasuresacross the AMD gradi¢m\) Species

565 Richness; BlLinks; C) ConnectanceD) Normalized Generality; ENormalizedV ulnerability.

566 AMD stress increasdsft to right. Pointsin Panel A are the total taxonomic richness for each
567 dite. Points in Panels-B are individual values for each food web iteration and are jittered with
568 an alpha value of Rfor visualization. Points are colaoded based on sitMD impacts start

569 at~-0.8 on PC axis 1, and maximum impacts are represegtealies of ~6 on PC axis 1.

570 Bluelines arethe median fittedraluesand grey shading is 95%etlible intervals

571  Figure3. Inferred stability metrics, across the AMD gradient when varying the estimate of

572  interaction strengths (see methods). A) Random interaction strengths; B) random interaction
573  strengths scaled by body size; C) Random interaction strengths, positive and negative

574  interactions correlated) random interaction strengths, scaled by body size, and positive and

575 negative interactions correlated. AMD strbsgjins at -0.8, andncreaseseft to right. Points
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576 are individual stability values for each food web iteration and are jittered wélpha value of
577 0.2 for visualization. Points are colaoded based on sitdote that in panel C and D the values
578  of scluster for some impacted sites (i.e. orarygiow). Bluelines areghe median fitteevalues
579 and grey shading is 95%etlible intervals
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Figures

Figure 1
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