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We present a new understanding of the unstable ghostlike resonance which appears in theories such
as quadratic gravity and Lee-Wick type theories. Quantum corrections make this resonance unstable, such
that it does not appear in the asymptotic spectrum. We prove that these theories are unitary to all orders.
Unitarity is satisfied by the inclusion of only cuts from stable states in the unitarity sum. This removes the
need to consider this as a ghost state in the unitarity sum. However, we often use a narrow-width
approximation where we do include cuts through unstable states and ignore cuts through the stable decay
products. If we do this with the unstable ghost resonance at one loop, we get the correct answer only by
using a contour which was originally defined by Lee and Wick. The quantum effects also provide damping
in both the Feynman and the retarded propagators, leading to stability under perturbations.
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I. INTRODUCTION

Theories such as quadratic gravity [1–21] and Lee-Wick
theories [22–30] have propagators which contain both
quadratic and quartic momentum dependence. In addition
to the pole at q2 ¼ 0, this combination will produce a high
mass pole, via

1

q2 − q4

μ2

¼ 1

q2
−

1

q2 − μ2
: ð1Þ

The negative sign for the second term implies that this
pole is ghostlike, i.e., with negative norm. One therefore
expects trouble with some combination of unitarity, sta-
bility, causality, etc. in such a theory. However, as Lee and
Wick originally noted, interactions in such a theory make
the heavy state unstable, with a width which can be
calculated in perturbation theory. This feature is a crucial
modification as it removes the ghost from the asymptotic
spectrum. Past experience with Lee-Wick theories indicates
that they can be stable and unitary, although causality does
seem to be violated on microscopic scales of order the

width of the resonance [22,26,28,31]. In this paper, we
describe further the unitarity and stability of such theories
and come to an understanding of how unitarity is satisfied
in the presence of unstable ghosts.

A. Unitarity with normal resonances

Unitarity describes the conservation of probability for
the S matrix. It states

hfjTjii − hfjT†jii ¼ i
X
j

hfjT†jjihjjTjii ð2Þ

where we used the definition of the transfer matrix T,
namely S ¼ 1þ iT. Here the associated states are the
asymptotic single and multiparticle states of the theory.
In processes that involve loop diagrams, the sum over real
intermediate states can be accomplished by the Cutkosky
cutting rules [32] which project out the on-shell states.
Procedurally, we often look first at the free-field theory

to identify the free particles. Then when we include
interactions, some of these particles become unstable
and no longer appear as the asymptotic states of the theory.
As far as the S matrix is concerned, this is a significant
change. The particles were originally needed in the Hilbert
space for completeness, but then are no longer present in
the interacting theory. The question then arises of how to
treat such unstable particles in unitarity relations. Should
one include them in the sums over states required for
unitarity?
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The answer was provided by Veltman in 1963 [33]; see
also [34–37]. He showed that unitarity is indeed satisfied by
the inclusion of only the asymptotically stable states. Cuts
are not to be taken through the unstable particles, and
unstable particles are not to be included in unitarity sums.
However, there is a corollary which is useful in practice.

In the narrow-width approximation, where the coupling to
the decay products is taken to be very small, the off-
resonance production becomes small and only resonance
production is important. As we demonstrate in Sec. VI, in
this limit a cut taken through the unstable particle with its
width set to zero reproduces the same result as a cut through
the decay products.
This combination reinforces our intuition. The full

calculation only requires the stable states, as unitarity
demands. But when particles are nearly stable, we may
approximate them as being stable in practical calculations.

B. Unstable ghostlike resonances

The ghostlike resonance in Lee-Wick type theories
should also not be treated as an asymptotic state. In
Sec. V, we will demonstrate how the Veltman’s procedures
can be employed for the calculation of cuts in diagrams
involving such unstable ghostlike states and show that the
usual cuts are obtained on the stable particles. Unitarity is
satisfied for such cuts, and no cuts should be taken for the
unstable ghost. There is no need for a modified contour in
calculating the discontinuity, and the momentum integra-
tion runs along the real axis just above the cut.
However, a slight difference arises in defining the

narrow-width approximation. While all the stable cuts
are treated with the usual iϵ prescription and are located
below the integration contour, the unstable ghost carries a
finite width and appears above the standard contour. If we
wish to treat the unstable ghost as if it were a stable particle
in the narrow-width approximation, we show that the
correct answer is reproduced if and only if the contour
is defined to pass above the location of the unstable pole.
This is the origin of the Lee-Wick contour which was a
somewhat puzzling feature of such theories. It is only
invoked to reproduce the correct result of unitarity cuts
through the stable particles.

C. Why this matters

In path-integral treatments, the stable states of a theory
can generally be identified through the poles in the
propagators. These then form the Hilbert space of the
theory and are relevant for the unitarity relations. In
the theories which we are discussing, it is relatively easy
to identify that the ghostlike degrees of freedom are not part
of the asymptotic spectrum.
In contrast, using canonical quantization we traditionally

consider the free-field theory first. When trying to treat
ghosts as regular free particles, we need to develop new

quantization procedures. This task has occupied much of
the literature on Lee-Wick type theories. Indeed, such
procedures can be defined, although they appear somewhat
unusual, and involve new concepts like indefinite metric or
PT quantization [22,38–40]. One then debates whether to
include such states in the unitarity sum or to define the path
integration over such ghost variables.
While it is perhaps reassuring that canonical quantization

is possible, it is an unnecessary step. Since these effects do
not appear in the physical spectrum, we do not need to
canonically quantize the ghosts. The path integral is over
the physical field only, and the resonance appears as a
calculable dynamical effect in the propagator. The reso-
nance will have physical effects, but we do not need to
describe its free-field quantization. Only stable states
appear in the unitarity sum, and their cutting rules will
be the standard ones. Our proof of unitarity in the presence
of unstable resonances allows us to consider these theories
further without discussing the canonical quantization of the
unstable ghosts.

II. GHOST RESONANCES

The theories which we are studying have propagators of
the form

iDðqÞ ¼ i

q2 þ iϵ − q4

M2 þ ΣðqÞ
: ð3Þ

The pole at q2 ¼ 0 is the stable particle of the theory. The
function ΣðqÞ is the self-energy or vacuum polarization
function. At high energies, it picks up an imaginary part
due to coupling to light particles. At one-loop order, this
typically has the form

ΣðqÞ ¼ −
γ

π
log

�
−q2 − iϵ

μ2

�
¼

�
−
γ

π
log

�jq2j
μ2

�
þ iγθðq2Þ

�
ð4Þ

for some calculable quantity γ with dimensions of mass
squared. In general, γ can be a function of the momentum
and in quadratic gravity γ ∼Gq4. In our presentation here,
for clarity we will neglect any masses of stable particles and
the particles which appear in the vacuum polarization loop.
It would be simple to restore any such masses.
The quartic momentum dependence is the novel feature

in this propagator. It arises in theories which have four
derivatives in the fundamental Lagrangian. We have chosen
a particular sign for the quartic momentum dependence.
The opposite sign would produce a tachyonic pole on the
spacelike real axis, which appears to be fatal for the theory.
With the sign shown in Eq. (3), there is a massive resonance
for timelike values of q2. Expanding near that resonance,
we get the form
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iDðqÞjq2∼m2 ∼
−i

q2 −m2 − iγ
: ð5Þ

The minus sign in the numerator tells us that this is a
ghostlike resonance—it carries the opposite sign from the
usual case. Equally important is that the width also comes
with the opposite sign from normal. The resonance param-
eters are then m2

R ¼ m2 þ iγ.
The point here is that the normal resonances and

ghostlike resonances have the structure

iDðqÞ ∼ Zi
q2 −m2 þ iZγ

; ð6Þ

with Z ¼ þ1 for a normal resonance and Z ¼ −1 for the
ghost resonance. The change of the two signs together is
important. In particular, the imaginary part of the propa-
gator is independent of Z,

Im½DðqÞ� ∼ −γ
ðq2 −m2Þ2 þ γ2

: ð7Þ

Wewill show in Sec. II C that all viable (i.e., nontachyonic)
theories with quartic momentum dependence fall into
this class.
Note also that the stable particle and the resonance

appear in the same propagator, Eq. (3), so that we need not
be talking about two separate particles, but rather two
features in the same propagator. However, because of the
partial fraction relation, Eq. (1), it is equally possible to
separate the propagator into the equivalent of two particles.
It is also generally possible to do this by a field redefinition
at the level of the Lagrangian.

A. Quadratic gravity

In quadratic gravity, the interesting case involves the
spin-two propagator. The general Lagrangian has the form

Squad ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
2

κ2
Rþ 1

6f20
R2 −

1

ξ2

�
RμνRμν −

1

3
R2

��
:

ð8Þ

Here κ2 ¼ 32πG. We have dropped the cosmological
constant and will be expanding about Minkowski space-
time, gμν ¼ ημν þ κhμν. For more detail on this theory, see,
for instance, [1,7,8].
The spin-two propagator only depends on κ and ξ. The

vacuum polarization diagram adds a logarithmic term to the
inverse propagator that is given by

D−1
2 ðqÞ ¼ � � � − κ2q4Neff

640π2
ln

�
−q2 − iϵ

μ2

�
; ð9Þ

where Neff is contribution of the light matter fields
and normal gravitons, normalized to the contribution of

massless vector fields. For timelike momenta, it generates
an imaginary part

Im½D−1
2 ðqÞ� ¼ þ κ2q4Neff

640π
θðq2Þ: ð10Þ

This generates the width for the ghost state. Our previous
paper [8] on quadratic gravity has a detailed discussion of
this feature.
The overall scalar part of the spin-two propagator is

D2ðqÞ ¼
�
q2 þ iϵ −

κ2q4

2ξ2ðμÞ

−
κ2q4Neff

640π2

�
ln

�jq2j
μ2

�
− iπθðq2Þ

��
−1

ð11Þ

for real values of the four momentum. This is shown for
timelike momenta in Fig. 1. The unstable ghost resonance
is visible. The peak occurs at momentum

q2r ¼ m2
r ¼

2ξ2ðμÞ
κ2

þ ξ2ðμÞNeff

320π2κ2
ln

�jm2
r j

μ2

�
¼ 2ξ2ðmrÞ

κ2
:

ð12Þ

Evaluating the imaginary part at this momentum, one finds
that the pole close to the real axis is located at

M2 ¼ m2
r þ iγ γ ¼ ξ2m2

r
Neff

320π
; ð13Þ

valid for weak coupling. Weak coupling ξ ≪ 1 implies that
mr is smaller than the Planck mass, and that the width is
narrow compared to the mass. The residue at the pole is −1
in weak coupling. For large values of ξ, the solutions for the
mass, width, and residue must be found numerically.

0.0 0.5 1.0 1.5 2.0
0
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FIG. 1. The absolute value of the spin-two propagator for
ξ2 ¼ 1, showing the high mass resonance. The x-axis is the
momentum jqj in the timelike region, in units where κ ¼ 1. The
imaginary parts have been calculated with loops of Standard
Model particles and gravitons.

UNITARITY, STABILITY, AND LOOPS OF UNSTABLE GHOSTS PHYS. REV. D 100, 105006 (2019)

105006-3



B. Lee-Wick QED

Lee and Wick initiated a finite theory of QED, roughly
by considering the Pauli-Villars regulator as a dynamical
field. Because it enters with a minus sign, it also is
ghostlike. The photon propagator in this case becomes

iDFμνðq2Þ ¼ −igμνDðq2Þ; ð14Þ

with

Dðq2Þ ¼ 1

ðq2 þ iϵÞ½1þ Π̂ðq2Þ − q2

Λ2�
; ð15Þ

with

Π̂ðq2Þ¼q2
α

3π

Z
∞

4m2
f

ds
1

sðs−q2− iϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
f

s

s �
1þ2m2

f

s

�
:

ð16Þ

Here Π̂ðq2Þ is the finite part of the vacuum polarization
function for a fermion of mass mf, written in a dispersion
theory representation. At large q2, the vacuum polarization
becomes logarithmic. Near the resonance, it is more
convenient to renormalize the theory using a running
coupling. In this case, the result is

αDðq2Þ ∼ αðΛÞ
q2½1 − α

3π logðq2=Λ2Þ − q2

Λ2 þ i α
3
�

ð17Þ

to first order in the coupling. The large logarithm has been
absorbed into the coupling, and the remaining logarithmic
running is weak near the pole.
This has the structure of our basic propagator, with

γ ∼ αΛ2=3.

C. Generic quartic propagators

More generally, our work applies to other theories with
four derivatives in the Lagrangian. Consider, for example, a
scalar field ϕ which is coupled to other light fields χ, with

L ¼ 1

2
½∂μϕ∂μϕ −m2ϕ2� − 1

2M2
□ϕ□ϕ −

g
2
ϕ
X
i

χ2i ð18Þ

for N light χi fields. The self-energy in this case proceeds
through loops of the χ fields. It produces a residual self-
energy after mass renormalization

Σ ¼ −
Ng2

32π2
½log ðjq2j=M2Þ − iπθðq2Þ�: ð19Þ

This matches our general form with γ ¼ Ng2=ð32πÞ if we
neglect the mass of the ϕ field.

A slightly better variant, which can serve as a good
scalar proxy for quadratic gravity, is defined by the
Lagrangian

L ¼ 1

2
∂μϕ∂μϕ −

κ2

4ξ2
□ϕ□ϕ −

κ

2
ð□ϕÞ

�
ϕ2 þ

X
i

χ2i

�
:

ð20Þ

This variant does not need a mass for renormalization,
because the interaction terms vanish on shell using the
massless equations of motion. In addition, the momentum-
dependent interaction mimics the effect of the two deriv-
atives of the gravitational interaction. Here, the residual
self-energy is

Σ ¼ −
κ2q4ðN þ 1Þ

32π2
½log ðjq2j=M2Þ − iπθq2�: ð21Þ

Indeed, the parameters have been chosen such that the
resulting propagator is identically equal to the spin-two
propagator of quadratic gravity, Eq. (11), with the identi-
fication of Neff ¼ 20ðN þ 1Þ. We will use this variation
below in order to avoid the tensorial complications of
real gravity.
We can take this last model and add an auxiliary field in

order to accomplish at the Lagrangian level the factoriza-
tion of the propagator that one sees using partial fraction
relations. To do this, we introduce the auxiliary field η,
using the Lagrangian

L ¼ 1

2
∂μϕ∂μϕ −□ϕηþ ξ2

κ2
η2 −

κ

2
ð□ϕÞ

�
ϕ2 þ

X
i

χ2i

�
:

ð22Þ

Integrating out η returns us to our original Lagrangian,
Eq. (20). Now if we perform a field redefinition ϕ ¼ h − η,
a little algebra turns this into

L ¼
�
1

2
∂μh∂μh −

κ

2
□h

X
i

χ2i

�

−
�
1

2

�
∂μη∂μη −

2ξ2

κ2
η2
�
−
κ

2
□η

X
i

χ2i

�

−
κ

2
ð□h −□ηÞðh − ηÞ2: ð23Þ

Note in particular the overall minus sign in the second line.
From these examples, one is able to see that all theories

with four derivative kinetic energies, ∼□ϕ□ϕ will fall into
the class of theories which we are discussing, as long as one
avoids the tachyonic pole at spacelike momenta. The logic
is as follows. Ordinary resonances arise when there is a
coupling to the light states of the theory. The structure of
the resonance propagator is
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iDrðqÞ ¼
i

q2 −m2 þ ΣðqÞ : ð24Þ

The imaginary part of the self-energy must be positive,
that is

Im½ΣðqÞ� ¼ γðqÞθðq2Þ > 0; ð25Þ

such that the resonance mass m2 − Re½Σ� − iIm½Σ� ¼
ðM − iΓ=2Þ2. Now if the Lagrangian is modified with a
□

2 term, the propagator gets modified to be

iDðqÞ ¼ i
q2 −m2 þ ΣðqÞ − q4=Λ2

; ð26Þ

where the sign on the new term has been chosen to avoid
the tachyonic pole. If we set Λ → ∞, we get a normal
resonance where near the pole the propagator has the
structure given in Eq. (6) with Z ¼ þ1. However, for large
finite Λ, there is inevitably a high mass resonance, when
q2 ∼ Λ2. For illustration, we can neglect m2 and Re½Σ�,
and look at the structure near this resonance, such that

iDðqÞ ¼ i

q2 − q4

Λ2 þ iγðqÞ

¼ i
q2

Λ2 ½Λ2 − q2 þ iγðqÞðΛ2=q2Þ�

∼
−i

q2 − Λ2 − iγ
: ð27Þ

The residue at this pole is always negative—it is ghostlike.
In addition, the sign of the width is always opposite from
normal. That is, we find the correlated negative signs which
we described in Eq. (6) with Z ¼ −1. Indeed, for both finite
m and Λ, there will be resonances of both types contained
in the same propagator. In both cases, the imaginary part of
the self-energy arising from the coupling to stable states is
the same, yet it manifests itself differently near the
resonance because of the sign of the q4 term.

III. STABILITY AND ENERGY FLOW

Because of the change in sign in front of the width in the
denominator of the propagator, one might worry that there
are exponentially growing modes. We show here that this is
not the case. The stability of quadratic gravity has also been
addressed using the equations of motion in curved back-
grounds, although without including the decay width. The
conclusion of [41] has been that the theory is stable in a
curved background, at least for curvatures that are below
the ghost mass. In [42], this was extended as at least
metastability to curvatures beyond the scale of the
ghost mass in the weakly coupled limit. Our treatment is
somewhat different, remaining in Minkowski space but

including the very important effect coming from the fact
that the ghost decays.
An important feature also emerges from this analysis.

The energy flow associated with the ghostlike terms in
the propagator is different from the usual case. What we
normally refer to as “positive energy” is seen to be
propagating backward in time rather than the usual forward
propagation.1 Indeed, the ghost propagator is the time
reversed propagator of a normal resonance.
Let us study the coordinate space time dependence of the

propagator by taking the Fourier transform, using the scalar
part of the spin-two graviton propagator as our example

iD2ðxÞ ¼
Z

d4q
ð2πÞ4 e

−iq·xiD2ðqÞ: ð28Þ

A little algebra allows us to write

D2ðqÞ ¼
�
1

q2
−

1

q2 − μ2ðqÞ
�

ð29Þ

without any approximation, and

μ2ðqÞ ¼ m4
r ½m2

r þ iγθðq2Þ þ ðγ=πÞ logðjq2j=m2
rÞ�

ðm2
r þ γ

π lnðjq2j=m2
rÞÞ2 þ ðγθðq2ÞÞ2 : ð30Þ

In the weak coupling limit, γ is a small number, so that we
may approximate this by dropping the logarithmic term
and keeping only the leading imaginary part. In this case,
the propagator becomes

D2ðqÞ ¼
�
1

q2
−

1

q2 −m2
r − iγθðq2Þ

�
: ð31Þ

The propagator can be broken up into terms with forward
propagation in time and backward,

D2ðt;  xÞ ¼ ΘðtÞDforðxÞ þ Θð−tÞDbackðxÞ; ð32Þ

with x0 ¼ t. First consider t > 0. In doing the q0 integral,
we need to close the contour in the lower half plane in order
to have the contour at infinity give a vanishing contribution.
There is the massless pole at

q20 −  q2 þ iϵ ¼ 0; ð33Þ

which corresponds to q0 ¼ �ðωq − iϵÞ with ωq ¼ j  qj.
There are massive poles at

q20 −  q2 −m2
r − iγ ¼ 0 ð34Þ

or

1In [31], we refer to these as “Merlin modes” in honor of the
wizard in the Arthurian tales who ages backward in time.
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q0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
q þ iγ

q
∼�

�
Eq þ i

γ

2Eq

�
; ð35Þ

with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 q2 þm2

r

p
, which produces the pole structure

shown in Fig. 2 . Performing the contour integral, we pick
up the poles below the real axis. This yields the forward
propagator

Dforðt;  xÞ ¼ −i
Z

d3q
ð2πÞ3

�
e−iðωqt−  q·  xÞ

2ωq
−

eiðEqt−  q·  xÞ

2ðEq þ i γ
2Eq

Þ e
− γt
2Eq

�
;

ð36Þ
which shows the decaying exponential for the massive
term, with the identification

γ ¼ mrΓ: ð37Þ
Also we note that the energy flow of the two terms is
different, with the massless pole carrying what we normally
call positive energy, while the massive resonance carries
negative energy. The term describing propagation back-
ward in time is obtained for t < 0 by closing in the upper
half plane, with the result

Dbackðt;  xÞ ¼ −i
Z

d3q
ð2πÞ3

�
eiðωqt−  q·  xÞ

2ωq
−

e−iðEqt−  q·  xÞ

2ðEq þ i γ
2Eq

Þ e
− γjtj
2Eq

�
:

ð38Þ
Again we see exponential decay and the reversal of the
energy flow between the two terms. We emphasize here that
we are employing the usual contour for the propagator; we

did not resort to any modified contour in order to obtain
the above results.
One can also calculate the Green function with retarded

and advanced boundary conditions. In the retarded case, the
loop integrals going into the vacuum polarization need to
be calculated using the in-in formalism. This has been done
in Ref. [43]. The result is the same functional dependence,
but with a different iϵ prescription. In particular, the
logarithm becomes

log ð−½ðq0 þ iϵÞ2 −  q2�Þ
¼ log ð−q2 − iϵq0Þ
¼ log jq2j − iπθðq2Þðθðq0Þ − θð−q0ÞÞ: ð39Þ

This shifts the location of the poles to the positions
indicated in Fig. 3.
For t > 0, we pick up only the usual massless poles

Dretðt > 0;  xÞ ¼ Dð0Þ
ret ðt > 0;  xÞ: ð40Þ

However, here the unusual feature is that there is a
contribution to the retarded Green function also for t < 0,

Dretðt < 0;  xÞ≡D<
retðt;  xÞ

¼ i
Z

d3q
ð2πÞ3

�
e−iðEqt−  q·  xÞ

2ðEq þ i γ
2Eq

Þ e
− γjtj
2Eq

−
eiðEqt−  q·  xÞ

2ðEq − i γ
2Eq

Þ e
− γjtj
2Eq

�
: ð41Þ

FIG. 2. The location of poles in the complex q0 plane for the
Feynman propagator.

FIG. 3. The location of poles in the complex q0 plane for the
retarded Green function.
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This also contains decaying exponentials. If we choose to
use this as a classical Green function giving the response to
an external source,

hμνðt; xÞ ¼
Z

d3x0
�Z

t

−∞
dt0Dð0Þ

ret ðt − t0; x − x0Þ

þ
Z

∞

t
dt0D<

retðt − t0; x − x0Þ
�
Jμνðt0; x0Þ; ð42Þ

it would correspond to the propagation of the effect
backward in time. This is related to the microcausality
violation on scales of order of the resonance width, known
to be a feature of Lee-Wick type theories.
Finally, let us briefly comment on the formulation of our

results in curved spacetime. One way to proceed is to
consider the usual local momentum representation of the
Feynman propagator, which employs Riemann normal
coordinates [44,45]. But the straightforward expansion
of the action is not enough. Here the loop diagram is also
an essential ingredient since it generates the width for the
ghost state. The associated expansion in curvature of this
result can be relatively complicated. Indeed, one of us has
calculated the full one-loop diagram for the photon propa-
gator [46,47]. Such considerations can be carried out for
Lee-Wick type theories, but that would take us a bit far
from the scope of the present work. We plan to return to this
topic in a future publication.

IV. CUTS WITH STABLE AND
UNSTABLE PARTICLES

Unitarity is realized by including only the stable particles
in the unitarity sum. Because the all-orders proof of this
including the unstable ghost, given in the next section using
the methods of Veltman, is somewhat contrived and non-
intuitive, we here give some simple examples to explore
how this works. These examples also are useful in the
discussion of the narrow-width approximation, which
follows in Sec. VI.
In calculating the discontinuity of a process or a

Feynman diagram, one cuts the diagram(s) in all possible
ways. For the propagators in the cut, one replaces the
propagator by an on-shell delta function

i
q2 −m2 þ iϵ

→ 2πδðq2 −m2Þθðq0Þ: ð43Þ

One also replaces all propagators on the far right-hand side
of the cut (typically represented by a shaded region) by
their complex conjugate.2 This amounts to replacing þiϵ
by −iϵ,

i
q2 −m2 þ iϵ

→
−i

q2 −m2 − iϵ
; ð44Þ

for these propagators.
In Ref. [8], we discussed the scattering in the spin-two

partial wave in quadratic gravity and found it to be unitary.
Specifically, we found

T2ðsÞ ¼ −
Neffs
640π

D̄2ðsÞ: ð45Þ

This is normalized such that in order to satisfy elastic
unitarity, we must have ImT2 ¼ jT2j2. This is satisfied
when the amplitude has the form

T2ðsÞ ¼
AðsÞ

fðsÞ − iAðsÞ ¼
AðsÞ½fðsÞ þ iAðsÞ�
f2ðsÞ þ A2ðsÞ ð46Þ

for any real functions fðsÞ, AðsÞ. This relation is satisfied
with

AðsÞ ¼ −
Neffs
640π

: ð47Þ

Because this example is essentially just scattering through
the spin-two propagator, we start with the calculation of the
discontinuity in propagators.

A. Two-particle cut

For simplicity, we here study a scalar propagator, using
the scalar proxy for quadratic gravity, Eq. (20). The vacuum
polarization enters the propagator through the bubble sum.
The cuts available in the bubble sum are shown in Fig. 4.
The calculation of the basic cut is straightforward,

Disc2ΣðqÞ ¼
κ2q4ðN þ 1Þ

2

Z
d4k
ð2πÞ4 2πδðk

2Þθðk0Þ

× 2πδððq − kÞ2Þθððq − kÞ0Þ: ð48Þ

The result is

Disc2Σðq2Þ ¼
ðN þ 1Þκ2q4

32π
: ð49Þ

Here the (N þ 1) factor counts the number of massless
states that the resonance can decay into.

FIG. 4. The two-particle cuts in the propagator.

2Not all textbooks include this latter rule, although it is
important in multiloop diagrams.
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We can also repackage the discontinuity in terms of the two-body decay width. This can be done by inserting a factor of

Z
d4p
ð2πÞ4 ð2πÞ

4δ4ðq − k − pÞ ¼ 1 ð50Þ

and identifying the matrix element M2 ¼ κq2, to write

Disc2ΣðqÞ ¼
ðN þ 1Þ

2

Z
d4k
ð2πÞ4

d4p
ð2πÞ4 ð2πÞ

4δ4ðq − k − pÞjM2j22πδðk2Þθðk0Þ2πδððq − kÞ2Þθððq − kÞ0Þ: ð51Þ

The on-shell delta functions can be used to do the integration over the energy variables, leaving

Disc2ΣðqÞ ¼
ðN þ 1Þ

2

Z
d3k

ð2πÞ32ωk

d3p
ð2πÞ32ωp

ð2πÞ4δ4ðq − k − pÞjM2j2: ð52Þ

This latter relation can be recognized as the two-body
decay width at the overall center of mass momentum q, up
to an initial normalization factor of 1=2q, resulting in

Disc2ΣðqÞ ¼ 2qΓ2ðqÞ; ð53Þ

which is another statement of the unitarity relation.
When we take cuts in diagrams with multiple bubbles,

the bubbles on each side of the cut can be summed to yield
the dressed propagator. Recall that on shaded regions, the
bubbles are calculated with a −iϵ prescription, which
results in the complex conjugate of the usual bubble
diagram. Performing this bubble sum, the result is

DiscDðqÞ ¼ DðqÞ2qΓ2ðqÞD�ðqÞ ¼ −2Im½DðqÞ�; ð54Þ

with

DðqÞ ¼ 1

q2 − κ2q4

2ξ2ðμÞ −
ðNþ1Þκ2q4

32π2
½logðq2=μ2Þ − iπ�

; ð55Þ

which is the expected discontinuity relation for the
propagator.

B. Three-particle cut

More interesting is the three-particle cut, such as that
shown in Fig. 5. Here the basic cut is in a two loop integral.

Disc3 ΣðqÞ ¼ κ2q4
Z

d4k1
ð2πÞ4

d4k2
ð2πÞ4

1

ðq − k1Þ2 − κ2ðq−k1Þ4
2ξ2

ðN þ 1Þκ2ðq − k1Þ2
2

× 2πδðk21Þθðk10Þ2πδðk22Þθðk20Þ2πδððq − k1 − k2Þ2Þθððq − k1 − k2Þ0Þ
1

ðq − k1Þ2 − κ2ðq−k1Þ4
2ξ2

: ð56Þ

Here again there are bubble diagrams on each side of the cut, and these can be summed to yield the dressed propagator,
with the propagators on the shaded regions being complex conjugated. We can package this more compactly, using the
matrix element

M3 ¼ κq2κðq − k1Þ2Dðq − k1Þ; ð57Þ

with the propagator D being given by Eq. (55). Using this, we have

Disc3 ΣðqÞ ¼
N þ 1

2

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4 jM3j22πδðk21Þθðk10Þ2πδðk22Þθðk20Þ2πδððq − k1 − k2Þ2Þθððq − k1 − k2Þ0Þ: ð58Þ

We can add an extra integration and an extra delta function by using momentum conservation to write k3 ¼ q − k1 − k2,
such that
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Disc3 ΣðqÞ ¼
N þ 1

2

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

d4k3
ð2πÞ4 ð2πÞ

4δ4ðq − k1 − k2 − k3ÞjM3j22πδðk21Þθðk10Þ2πδðk22Þθðk20Þ2πδððk3Þ2Þθððk30Þ:

ð59Þ

Now the on-shell delta functions can be performed by doing the energy integral in each case,

Disc3 ΣðqÞ ¼
N þ 1

2

Z
d3k1

ð2πÞ32ω1

d3k2
ð2πÞ32ω2

d3k3
ð2πÞ32ω3

ð2πÞ4δ4ðq − k1 − k2 − k3ÞjM3j2: ð60Þ

At this stage, we recognize the formula for the three body
decay width Γ3, such that

Disc3 ΣðqÞ ¼ 2qΓ3ðqÞ; ð61Þ

which is the desired unitarity relation.
Besides the cut which we just calculated there is another

one which does not involve the ghost in any way. It is
shown in Fig. 6. It is simple to evaluate and just gives an
extra term in the matrix element M.

C. Heuristic proof of unitarity

The above calculations allow us to get a feel for why
such theories satisfy unitarity even beyond these simple
examples. We have seen that unitarity works with the stable
particles as external states in the unitarity sum. The ghost
resonance does not occur as an external state. This is the
same pattern as normal resonances, and the above
calculation could be performed identically for normal
resonances.
We also know from the analysis of Sec. II C that normal

resonances and ghost resonances can be described in the
same propagator using the coupling to the stable states
described by the same ΣðqÞ.

Finally, we know from Veltman’s work that normal
resonances satisfy unitarity to all orders. It then follows that
any discontinuity calculated with normal resonances in the
intermediate states, can be converted into a discontinuity
with ghost resonances by using Eq. (26). If the normal
resonance satisfies the unitarity relation, the ghost reso-
nance will also.
The above heuristic argument appears to be correct in

direct calculations. Comparison with the formal proof of
Veltman however superficially appears to indicate some
differences between the two cases. This has to do with the
differences with energy flow in the different parts of the
propagators, a feature that we have explored in Sec. III.
We will see that this difference can be accounted for
and unitarity holds. Other perspectives on unitarity with
ghosts are given in [2,5,6,8,14,18]. We turn to the formal
proof next.

V. PROOF OF UNITARITY WITH
UNSTABLE GHOSTS

In this section, we give a proof that theories with unstable
ghosts are unitary to all orders. The demonstration follows
Veltman’s argument [33]. For such purposes, we will derive
the so-called cutting equation which implies unitarity, as
we will discuss. The cutting equation contains terms
associated with the imaginary part of propagators, given
by the cut propagators. Essentially, the cutting equation is
to be identified with the generalized optical theorem
associated with an arbitrary process a → b,

iMða → bÞ − iM�ðb → aÞ

¼ −
X
f

Z
dΠfM�ðb → fÞMða → fÞð2πÞ4δ4ða − fÞ;

ð62Þ

which is just Eq. (2) with the definition hfjTjii ¼
ð2πÞ4δ4ðpi − pfÞMði → fÞ. The quantity dΠf is the
Lorentz-invariant phase space [48] and the sum runs over
all possible sets f of intermediate states (single and
multiparticle states), and there is an overall delta function
assuring energy-momentum conservation. In the above
expression, the M’s are the invariant scattering matrix

FIG. 5. The three-particle cuts in the propagator.

FIG. 6. Another three-particle cut in the self-energy function.
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elements which are the nontrivial part of the S matrix. On
the other hand, the usual physical interpretation of the
Lehmann-Symanzik-Zimmermann (LSZ) formula is that
the S matrix projects out one-particle asymptotic states
from the time-ordered product of fields [48]. Since the
spectral function contains contributions from multiparticle
intermediate states with a continuous mass spectrum, this
implies that the contribution coming from the cut propa-
gators in the cutting equation should only contain the terms
associated with the one-particle states. This also implies
that the contributions coming from unstable particles are
expected to be absent in Eq. (62). This is what we wish to
prove here for models with unstable ghosts.

A. Lehmann representations

We begin by establishing our assumptions and some
basic definitions. We assume that an expression for the
propagator in terms of a Lehmann representation [49,50] is
available, that is

Gðp2Þ ¼ 1

π

Z
∞

0

ds
σðsÞ

p2 − sþ iϵ
ð63Þ

for stable particles, and

G̃ðp2Þ ¼ 1

π

Z
∞

0

ds
ρ̃ðsÞ

p2 − sþ iϵ
ð64Þ

for normal unstable particles. As remarked above, we
neglect any masses of stable particles.
For stable particles, there should be an isolated delta-

function contribution due to one-particle states,

σðsÞ ¼ ZπδðsÞ þ ρðsÞ: ð65Þ

On the other hand, for unstable particles, the “one-particle
pole” is right on the branch cut; interactions essentially
move the “pole” off the branch cut, but at the cost of
introducing an imaginary part into it. In this case, one does
not verify the presence of an asymptotic state according to
the LSZ reduction formula and it is in this sense that such a
particle is said to be unstable: There cannot be a isolated
delta-function contribution to the spectral function since
there are no one-particle states in the usual sense. In this
case, in the narrow-width approximation, the spectral
function has a Breit-Wigner shape,

ρ̃ðsÞ ≈ MΓ
ðs −M2Þ2 þM2Γ2

; ð66Þ

where Γ is the width of the resonance. For the normal
unstable particle, the Lehmann representation has ρ̃ðsÞ > 0
and ϵ > 0.
For theories with unstable ghosts, such as Lee-Wick

QED and our scalar proxy for quadratic gravity given by

Eq. (20), as discussed above, the positive energy flow
associated with the ghost propagates backward in time.
Moreover, the residue at the pole associated with the
unstable ghost is always negative and the sign of the width
is always opposite from normal resonances. For such
reasons, for the ghost field we propose the following
Lehmann representation:

G̃GHðp2Þ ¼ −
1

π

Z
∞

0

ds
ρ̃ðsÞ

p2 − s − iϵ
: ð67Þ

This amounts to considering a “anti time-ordered product”
in the definition of the propagator. This full spectral
representation for the LW propagator can be easily obtained
from the modified Lehmann representation presented in
Refs. [28,51]—one just needs to employ a spectral function
with a Breit-Wigner shape (in the narrow-width approxi-
mation) for both complex-conjugate poles.
In setting up the above Lehmann representations, we are

clearly resorting to the partial fraction relation given by
Eq. (1) for the case of the unstable ghost. We use this
equivalent form for convenience and also for clarity of
presentation. In any case, it is important to bear in mind that
the stable particle and the ghostlike resonance are both parts
of the same propagator, so the consideration of both entities
as two separate particles cannot be pivotal to the procedure
undertaken here. As such, all the arguments and results
obtained in this section can be generalized for a single
propagator such as the one given by Eq. (26).
In the Lehmann representation for the stable particle

presented above, Z ¼ 1 for the free theory. In such a case,
field operators can only create a single particle from the
vacuum. Hence, the contributions from multiparticle inter-
mediate states, encoded in the spectral functions ρðsÞ and
ρ̃ðsÞ, are only present in the full interacting theory. In other
words, the information about interactions are contained in
Z as well as in the spectral functions. This implies that the
Lehmann representation for unstable particles will never
contain a “free-field” contribution. We will return to this
topic in due course.

B. Cut propagators

In what follows, an important ingredient in our dis-
cussion of unitarity is the decomposition of the propagator
into terms with forward and backward propagation in time.
For the stable particle, one gets

iGðx − x0Þ ¼ Θðx0 − x00ÞGþðx − x0Þ
þ Θð−x0 þ x00ÞG−ðx − x0Þ; ð68Þ

where, using the spectral representation

G�ðx − x0Þ ¼
Z

d4p
ð2πÞ3 e

−ip·ðx−x0Þθð�p0Þ
σðp2Þ
π

: ð69Þ
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The Green’s functions G� are also known as cut propa-
gators. Using that

iG�ðx − x0;m2Þ

¼ �2π

Z
d4p
ð2πÞ4 e

−ip·ðx−x0Þθð�p0Þδðp2 −m2Þ; ð70Þ

one can also write

G�ðx − x0Þ ¼ � 1

π

Z
∞

0

dsσðsÞiG�ðx − x0; sÞ: ð71Þ

Hence, in momentum space

G�ðp2Þ ¼ 2πθð�p0Þ
Z

∞

0

dsδðp2 − sÞ σðsÞ
π

: ð72Þ

For the normal unstable particle, one finds a similar
representation in terms of cut propagators, namely

iG̃ðx − x0Þ ¼ Θðx0 − x00ÞG̃þðx − x0Þ
þ Θð−x0 þ x00ÞG̃−ðx − x0Þ; ð73Þ

where

G̃�ðx − x0Þ ¼ � 1

π

Z
∞

0

dsρ̃ðsÞiG�ðx − x0; sÞ: ð74Þ

In momentum space,

G̃�ðp2Þ ¼ 2πθð�p0Þ
Z

∞

0

dsδðp2 − sÞ ρ̃ðsÞ
π

: ð75Þ

The case of unstable ghostlike resonance is more subtle
since here energy flow is backward, among other features
discussed above. Following the prescription proposed
above, we write

iG̃GHðx − x0Þ ¼ Θðx0 − x00ÞG̃−
GHðx − x0Þ

þ Θð−x0 þ x00ÞG̃þ
GHðx − x0Þ; ð76Þ

where

G̃�
GHðx − x0Þ ¼∓ 1

π

Z
∞

0

dsρ̃ðsÞiG�ðx − x0; sÞ: ð77Þ

In momentum space,

G̃�
GHðp2Þ ¼ −2πθð�p0Þ

Z
∞

0

dsδðp2 − sÞ ρ̃ðsÞ
π

: ð78Þ

For all cases above, in view of the reality of the spectral
functions, one has G� ¼ ðG∓Þ�. Hence, one finds that

−iG�ðx − x0Þ ¼ Θðx0 − x00ÞG−ðx − x0Þ
þ Θð−x0 þ x00ÞGþðx − x0Þ

−iG̃�ðx − x0Þ ¼ Θðx0 − x00ÞG̃−ðx − x0Þ
þ Θð−x0 þ x00ÞG̃þðx − x0Þ

−iG̃�
GHðx − x0Þ ¼ Θðx0 − x00ÞG̃þ

GHðx − x0Þ
þ Θð−x0 þ x00ÞG̃−

GHðx − x0Þ: ð79Þ

C. Largest time equation

Let us construct the so-called largest time equation.
Consider an arbitrary connected diagram with n vertices.
All such vertices carry a spacetime coordinate xi. We
represent the diagram by the function Fðx1; x2;…; xnÞ.
As usual, each line connecting any two vertices xi and xj in
F is associated with a propagator. Suppose there is a
coordinate xm associated with a given stable particle with
the largest time component. Then clearly iGðxm − xjÞ ¼
Gþðxm − xjÞ and iGðxk − xmÞ ¼ G−ðxk − xmÞ for all xk,
xj ∈ F. Now consider the operation of circling the vertices
of the diagram. Feynman rules can be introduced in order to
take into account such an action.

(i) A line joining two uncircled (circled) vertices is
associated with G (G�).

(ii) A line connecting a circled (uncircled) vertex xk to
an uncircled (circled) vertex xi is to be associated
with Gþðxk − xiÞ (G−ðxk − xiÞ).

(iii) For any circled vertex, one associates an overall
minus sign.

For a thorough discussion, see Ref. [34]. The first two
rules are summarized in Fig. 7. To understand the third rule,

FIG. 7. Circling rules. The last two expressions are valid for
stable particles and normal unstable particles. The arrow in
the thick line connecting vertices represents the (positive)
energy flow, whereas the arrow in the dashed line represents
the flow of time.
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consider, for instance, a generic diagram given by the
expression

Fðx1; x2; x3Þ ¼ ðigÞ3Gðx1 − x2ÞGðx2 − x3ÞGðx3 − x1Þ:

If we circle the vertices corresponding to x2 and x3, then the
circling rules tell us that

Fðx1; x2; x3Þ ¼ ð−igÞ2ðigÞG−ðx1 − x2Þ
×G�ðx2 − x3ÞGþðx3 − x1Þ;

where the coordinates related to the circled vertices were
underlined. The ð−igÞ2 in the above equation is the
consequence of the usage of the third rule. Observe that
one of the most important features of such rules is that
energy flows from uncircled to circled vertices due to the
presence of the theta function θð�p0Þ in the definition of
G�ðx − x0;m2Þ; see Fig. 7. This feature is valid for all three
cases, stable particle, normal unstable particles, and unsta-
ble ghosts. The crucial difference is that for the latter the
time flows in the opposite direction of the (positive) energy
flow; see Fig. 8.
An immediate consequence of the above circling rules

is that, if one considers an arbitrary circling of Fðx1;
x2;…; xnÞ and add to it the same resulting diagram but
with the opposite circling of xm, then the result is zero. In
particular, if one considers all the 2n−1 possible circlings
which keeps xm, say, uncircled, and then sum up with all
their possible counterparts which have xm circled, then the
result is zero. But this is just the sum of all possible
circlings of F, X

circlings

Fðx1; x2;…; xnÞ ¼ 0: ð80Þ

This is the so-called largest time equation. Notice that in a
theory containing unstable ghosts Eq. (80) can only be
found by using the largest time of the stable particles.

D. The cutting equation

Observe that the energy conservation in each vertex
together with the energy flow dictated by the theta
functions appearing in the cut propagators imply that many
diagrams in Eq. (80) will be zero. In fact, the only

nonvanishing diagrams are the ones in which circled
vertices form connected regions that comprise one or more
outgoing lines. For such nonvanishing diagrams, one is
allowed to drop the circles and mark such regions using a
boundary line, which intersects one or more lines connect-
ing uncircled and circled vertices. A typical example is
illustrated in Fig. 9. The circling rules quoted above implies
that such cut lines are represented by cut propagators Gþ.
Moreover, inside such connected regions (now represented
by shaded parts in the diagram), all lines that were not
cut should be represented by the complex conjugate of
the propagator since they joined two circled vertices. In
addition, all propagators associated with external lines
connected to the diagram under consideration inside the
shaded region should also be complex conjugated. Vertices
inside such regions also carry an overall minus sign on the
account of the circling rules. Notice that the shaded region
in Fig. 9 satisfies a similar rule as compared to the shaded
regions drawn in Figs. 4–6 in the sense that the propagators
inside them are complex conjugated.
In this procedure, only the fully uncircled diagram

[denoted by Fðx1; x2;…; xnÞ] and the fully circled diagram
[denoted by F̄ðx1; x2;…; xnÞ] can both be drawn without a
cut since they will not contain any cut propagators.
Equation (80) can thus be rewritten as

Fðx1; x2;…; xnÞ þ F̄ðx1; x2;…; xnÞ
¼ −

X
cuttings

Fðx1; x2;…; xnÞ: ð81Þ

This equation is also known as the cutting equation, or
Cutkosky’s cutting rule. Observe that energy is forced to
flow toward the shaded region.

E. Proof of unitarity to all orders

Now we would like to compare Eqs. (62) and (81).
First let us consider the left-hand sides of such equations.
On the account of the circling rules, note that F̄ is obtained
from F by complex conjugation of all propagators and
multiplication by −1 of each vertex. In momentum space,
this means that one must consider the replacement of
every propagator with its complex conjugate in addition to
reversing the direction of its momentum,GðkÞ → G�ð−kÞ. In
general, the usual Feynman rules attach an imaginary unit to

FIG. 9. A pictorial representation of a diagram with three cut
lines. Dashed lines represent incoming and/or outgoing stable
particles.

FIG. 8. Circling rules for the unstable ghost. Observe that
energy flows in the opposite direction of the flow of time, in
accordance with the description in the text.
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each vertex (times possibly a coupling constant). From the
third circling rule quoted above, one finds that every vertex in
F̄ should be complex conjugated if the coupling constants are
real. The latter requirement is fulfilled if the Hamiltonian is
Hermitian and contains only real fields. All such consider-
ations imply that if F is a diagram contributing to the process
a → b, then F̄ describes the complex conjugate of the
reversed process. In other words,X
diagrams

½Fa→bðk1; k2;…; knÞ þ F̄a→bðk1; k2;…; knÞ�

¼
X

diagrams

½Fa→bðk1; k2;…; knÞ þ F�
b→aðk1; k2;…; knÞ�

¼ iMða → bÞ − iM�ðb → aÞ; ð82Þ

where we summed over all possible diagrams contributing
to the process a → b, and Fðk1; k2;…; knÞ and F̄ðk1;
k2;…; knÞ are the Fourier transforms of Fðx1; x2;…; xnÞ
and F̄ðx1; x2;…; xnÞ, respectively. On the other hand, if there
are any complex fields, then the coupling constants can be
complex. In this case, one should also consider the complex
conjugate of each interaction term, if one assumes that the
Hamiltonian should be Hermitian. Again, the circling rules
will imply that F̄ represents the complex conjugate of
reversed processes [35].
Now let us compare the right-hand sides of Eqs. (62)

and (81). Following Ref. [35,36], first consider the case in

which only one internal line is being cut (we do not specify
in particular whether such a line is associated with a stable
or unstable particle). In this case, the diagram can bewritten
as, in momentum space

Fsingle cutða → bÞ ¼ Fleftða → kÞGþðk2Þ
× F̄rightðk → bÞð2πÞ4δ4ða − bÞ; ð83Þ

where a collectively represents the sum of the momenta
associated with the initial states and b that of the final
states. In addition, Gþ represents generically a cut propa-
gator, not necessarily associated with a specific kind of
particle (stable or unstable). In particular, for the unstable
ghost, one also has an overall minus sign in the expression
for Gþ; see Eq. (78). Notice that F̄right corresponds to the
part of the diagram inside the shaded region, and hence it
implies that all vertices in the region to the right of the cut
are circled. The momentum k of the cut line is equal to the
total incoming momenta and outgoing momenta.
The diagrams Fleftða → kÞ and F̄rightðk → bÞ cannot

represent contributions to scattering matrix elements as
they stand due to two main reasons:
(1) The absence of the Lorentz-invariant phase space.
(2) The momentum k is not on shell.
By rewriting Gþðk2Þ as

Gþðk2Þ ¼ 2πθðk0Þ
Z

∞

0

dsδðk2 − sÞ σðsÞ
π

¼
Z

∞

0

ds
σðsÞ
π

Z
d4q
ð2πÞ3 θðq0Þδðq

2 − sÞð2πÞ4δ4ðq − kÞ

¼
Z

∞

0

ds
σðsÞ
π

Z
d3q
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

p ð2πÞ4δ4ðq − kÞj
q0¼

ffiffiffiffiffiffiffiffi
q2þs

p ; ð84Þ

one obtains that

Fsingle cutða → bÞ ¼
Z

∞

0

ds
σðsÞ
π

Z
d3q
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s

p ½F�
rightðb → qÞFleftða → qÞ

× ð2πÞ4δ4ða − qÞ�j
q0¼

ffiffiffiffiffiffiffiffi
q2þs

p ð2πÞ4δ4ða − bÞ: ð85Þ

The generalization to multiple cuts is straightforward [35,36] (cf. Fig. 9),

Fcutða → bÞ ¼
�Y

i

Z
∞

0

dsi
σðsiÞ
π

Z
d3qi
ð2πÞ3

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
i þ si

p ��
F�
rightðb → fqigÞFleftða → fqigÞ

× ð2πÞ4δ4
�
a −

X
i

qi

��				
q0i¼

ffiffiffiffiffiffiffiffi
q2iþs

p ð2πÞ4δ4ða − bÞ: ð86Þ

We remark that here σðsÞ should be envisaged as representing the spectral function for any kind of particle, stable or
unstable.

UNITARITY, STABILITY, AND LOOPS OF UNSTABLE GHOSTS PHYS. REV. D 100, 105006 (2019)

105006-13



So we see that the Lorentz-invariant phase space
emerges, but q is not on shell. This will only happen if
the spectral function σðsÞ has a contribution from one-
particle states. Otherwise, Fcut will not represent a con-
tribution to the imaginary part of the scattering amplitude
and hence will not contribute to the right-hand side of
Eq. (62). From the Lehmann representations described
above, we notice that this is the case only for stable
particles. Unstable particles of any type, including the

ghostlike resonances that appear in Lee-Wick models and
quadratic gravity, will not contribute to unitarity sums.
Unitarity is satisfied by the inclusion of only cuts from
stable states in the unitarity sum. Finally, observe that the
sum over all possible cuttings is identical to the sum over all
possible sets of intermediate states.
The fact that only stable states should enter in the

unitarity sum can also be seen from a simple usage of
the LSZ reduction formula [48]

hbjSjai ¼
�
i
Z

d4x1e−ip1·x1ð□1 þm2Þ
�
� � �

�
i
Z

d4xneipn·xnð□n þm2Þ
�
hΩjTfϕðx1Þ � � �ϕðxnÞgjΩi ð87Þ

associated with a quantum field ϕðxÞ with mass m and vacuum state jΩi of the full theory. By writing S ¼ 1þ iT
and hbjiTjai ¼ ð2πÞ4δ4ðPpÞiM, one observes that the matrix element iM can be formally deduced from Eq. (87).
The exact n-point function will have the general structure [48]

hΩjTfϕðx1Þ � � �ϕðxnÞgjΩi ¼
Z

d4q1
ð2πÞ4 e

iq1·x1 � � �
Z

d4qn
ð2πÞ4 e

−iqn·xn iGðq21Þ � � � iGðq2nÞ ×Dðq1; q2;…; qnÞð2πÞ4δ4
�X

i

qi

�
;

ð88Þ

whereDðq1; q2;…; qnÞ represents the sum of all amputated
n-point diagrams. The exact propagators Gðq2jÞ depicting
the external legs can be written in terms of the Lehmann
representations discussed above. On the other hand, the
sum in Eq. (62) is over all possible sets of intermediate
states, which may include states associated with unstable
particles. However, when we use Eq. (87) to calculate, say,
the S-matrix elements hfjSjai and then extract from it the
associated scattering amplitude Mða → fÞ, one will get a
nonvanishing contribution only if the propagators Gðq2fÞ
have a term associated with one-particle states. In particu-
lar, this implies that the right-hand side of Eq. (62) will not
contain any contribution from intermediate unstable states.
There is one point that we have not discussed so far and

that deserves a careful attention. All the above derivations
were carried out for scalar fields. Does such a procedure
generalize to more general fields carrying additional
degrees of freedom? We know that, for the generalized
optical theorem to hold in general, the numerator of a
propagator must be equal to the sum over physical spin
states [48]. So, this sum must also be present in the
numerator of the cut propagators in order to identify the
right-hand sides of Eqs. (62) and (81). This is indeed
the case for fermions, and one can easily decompose the
fermionic propagator into positive- and negative-frequency
parts [34]. A Lehmann representation is also avail-
able [52,53]. On the other hand, for photons the argument
is more subtle. Indeed, the numerator of the propagator is
not just the sum over physical polarizations [48]: both have
a distinct longitudinal part. But also both carry a ημν factor.
So, using the Ward identity for the scattering amplitudes

(which contain a sum over physical polarizations) and
gauge invariance for the propagator (which allows us to
eliminate the longitudinal term by choosing, say, the
Feynman gauge), then it is easy to show that unitarity
holds. In particular, in the Feynman gauge, the photon
propagator can be decomposed into positive- and negative-
frequency parts [35]. A Lehmann representation can also be
derived for the photon propagator [52,53]. In turn, as above
a full spectral representation for the associated ghostlike
propagator can be easily obtained from the modified
Lehmann representation in the Feynman gauge [51]. The
Ward identity in Lee-Wick gauge theory has also been
demonstrated [54].
As one can note from the above discussion, the case of

quadratic gravity deserves a careful treatment. Details
concerning the Ward identity and the sum over physical
spin states should be taken into account. Moreover, when
considering an explicit expression for the spectral function,
one generally considers a resummation for internal propa-
gators and then extracts the imaginary part of the resulting
expression. But it is known that such a resummation
procedure may violate the Ward identity if not performed
with due care [35]. Hence, one must be careful in general-
izing the procedure adopted here for the case of quadratic
gravity. We hope to fully explore this issue in a future work.

VI. THE NARROW-WIDTH APPROXIMATION
AND THE LEE-WICK CONTOUR

Although the unitarity prescription is to include only cuts
on the stable particles and not on the resonances, in practice
we often ignore this when the resonances live long enough
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that we can treat them as stable in practical calculations.
For normal resonances, this narrow width approximation
(NWA) yields the correct answer in the limit that the
width can be neglected. In this section, we treat ghostlike
resonances in this limit. We will see that we get a correct
result if we take the Γ → 0 limit in the proper calculation,
with stable particle cuts. However, if we were to treat the
ghost as a stable particle from the start, we would get a
different and incorrect answer. This can be rescued by a
slight change of the integration contour, that proposed by
Lee and Wick.
Here is how the NWAworks. When studying loops with

the resonance inside the loop, we can calculate the cuts
using the usual cutting rules on the stable particles. We did
this explicitly for two- and three-particle cuts in Sec. IV. As
seen in Eq. (54), this yields

DiscDðqÞ ¼DðqÞ2qΓðqÞD�ðqÞ ¼ 2qΓðqÞ
ðq2 −m2

rÞ2 þ ðmrΓðqÞÞ2
ð89Þ

by the unitarity relation for the self-energy. In the limit that
the width goes to zero, the contribution becomes vanish-
ingly small except very close to the resonance. Using the
representation of the delta function

δðxÞ ¼ lim
ϵ→0

1

π

ϵ

x2 þ ϵ2
; ð90Þ

one finds that

lim
Γ→0

DiscDðqÞ ¼ 2πδðq2 −m2
rÞ; ð91Þ

which reproduces the cutting rule for a stable particle. We
note that, following from the work that we have presented
above, this result is true for both normal resonances and
ghost resonances. This implies that the usual cutting rules
also apply to ghosts if we wish to approximate them as
stable particles.
However, if one starts with the ghost field in a loop and

calculates naively, one does not get the correct result. This
can be demonstrated by exploring the three-particle cut,
which we calculated explicitly above. In this case, the NWA
for the process consists of one massless field with the usual
iϵ structure plus one massive ghost field with a small width.
Because the ghost is unstable and decays to two massless
fields, the actual intermediate state will be three massless
fields. We will show that this cut naively vanishes when
calculated in the standard manner.3

Consider the amplitude with one massless field and one
ghost

iM ¼ −
Z

d4k
ð2πÞ4

i
ðk − qÞ2 þ iϵ

−i
k2 −m2 − iγ

: ð92Þ

We will treat the width γ as a small parameter. By shifting
the poles in the normal Feynman propagator as illustrated
in Fig. 10, one write it in terms of the advanced propagator
with poles only above the real axis via

i
k2 þ iϵ

¼ iDAðkÞ þ
π

ωk
δðk0 − ωkÞ; ð93Þ

with ωk ¼ jkj, and

DA ¼ 1

2ωk

�
1

k0 − ωk − iϵ
−

1

k0 þ ωk − iϵ

�
: ð94Þ

Using the pole structure shown in Sec. III, one can do the
equivalent transformation for the ghost propagator

−i
k2 −m2 − iγ

¼ −iD“A”ðkÞ þ
π

Ek
δðk0 þ Ek−pÞ; ð95Þ

with Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, valid for infinitessimal γ, with

D“A”ðkÞ ¼
1

2Ek

�
1

k0 − Ek − iγ
−

1

k0 þ Ek − iγ

�
ð96Þ

using the shift of poles illustrated in Fig. 11. Here we have
put the A in quotes as one notes from the work in Sec. III
that this is not the actual ghost propagator with advanced
boundary conditions. However, it has poles only above the
real axis, and that is what is important in the present
calculation.

x

x

k0

FIG. 10. The shift in pole location relating the Feynman
propagator and the advanced propagator.

3There are many ways to obtain this result. Our presentation
closely follows that of Schwartz [48], and the reader can see there
how the cutting rules arise for nonghost fields.
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The amplitude then turns into

iM ¼ −
Z

d4k
ð2πÞ4

�
iDAðk − qÞ þ π

ωk−q
δðk0 − q0 − ωk−qÞ

�

×

�
−iD“A”ðkÞ þ

π

Ek
δðk0 þ EkÞ

�
: ð97Þ

If we work in the center of mass where q is purely timelike,
then ωk−q ¼ ωk ¼ jkj. The contour can be closed below the
real axis for the product of the two advanced propagators,
with a vanishing result. The two delta functions cannot be
simultaneously satisfied. Only the cross-terms remain.
Having discarded the vanishing terms, the advanced

propagators can be converted back into Feynman propa-
gators, such that

M ¼
Z

d4k
ð2πÞ4

�
DFðk − qÞ π

Ek
δðk0 þ EkÞ

þDg
FðkÞ

π

ωk
δðk0 − q0 − ωkÞ

�
: ð98Þ

Finally, we can pick out the imaginary part of this
amplitude

Im½M� ¼ −
Z

d4k
ð2πÞ4

�
πδððk − qÞ2Þ π

Ek
δðk0 þ EkÞ

−
π

ωk
δðk0 − q0 − ωkÞπδðk2 −m2Þ

�
: ð99Þ

In both cases, the delta functions cannot be simultaneously
satisfied. In the first term, we have k0 ¼ −Ek, while the

second one would then require ð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 k2 þm2

p
− q0Þ2 ¼  k2,

which is impossible. The second term also vanishes
because q0 > m. Calculated this way, the imaginary part

of the amplitude vanishes, in contrast with the direct
calculation in Eq. (61).
We note that the problem comes from the δðk0 þ EkÞ in

the first term of this expression, which can be traced back to
the same factor in Eq. (95). For a normal particle, this factor
is δðk0 − EkÞ, in which case both delta functions can be
satisfied, yielding the usual rule for the cut. This problem is
solved by a modification of the contour in doing the loop
momentum integration, as originally described by Lee and
Wick. The contour is chosen to run above the positive pole
and below the negative one, as illustrated in Fig. 12. Using
this contour, the shift in the pole location will now yield a
factor of δðk0 − EkÞ, and we get the usual cutting rule, as
required.
This modification of the contour is introduced in order to

reproduce the result of the correct discontinuity calculation
presented in Sec. IV. It is needed because one has attempted
to (improperly) take the cut across the unstable ghost as if it
were a stable particle.

VII. SUMMARY

The ghostlike modes which occur in theories with quartic
propagators require a re-evaluation of many of the basic
properties of quantum field theory. A crucial observation is
that these modes correspond to an unstable resonance,
because of their coupling to lighter states in the theory.
There are important consequences of this fact. This removes
these modes from the asymptotic spectrum, which consists
only of stable particle states. In a path integral treatment, one
does not have to perform free-field quantization for such
states as they appear only in intermediate state propagators.
We have shown that the energy flow is different than normal
particles: what is usually claimed as positive energy prop-
agates backwards in time. Nevertheless, the various Green
functions imply stability in Minkowski space. The propa-
gation in time is backward from normal particles, and this

x

x

k0

FIG. 12. Using the Lee-Wick contour.

x

x

k0

FIG. 11. The shift of a pole for the ghost particle.
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contributes to a violation of microcausality over timescales
of order the inverse width of these modes.4

Most importantly, building on the original work by Lee
andWick, we have given a proof that unitarity is satisfied to
all orders in such theories and provided explicit examples
of how this occurs. Discontinuities are calculated by only
including cuts on the stable particles of the theory. The
proof follows the technique of Veltman, which was
originally applied to reach the same conclusion about
normal resonances. However, the narrow-width approxi-
mation, in which cuts are applied to the unstable particles as
if they were stable, appears differently for these resonances,
and this can be accounted for in this limit by using the Lee-
Wick contour. It should be understood that the Lee-Wick
contour must be used only when one allows for the ghost as
a particle in a loop (and this can only be done in the narrow-
width approximation). Otherwise, the standard contour for
the Feynman propagator is to be used.
An important point that should be highly appreciated is

that the stable particle and the resonance appear in the same
propagator, which means that eventually we are discussing
two features of a single (quartic) propagator. The separation
into two propagators (or the introduction of an auxiliary
field at the level of the action) is to some extent artificial
and it should be envisaged only as a convenient procedure

in order to unveil in a manifest way the ghost feature of the
propagator.
Overall, we see that these higher derivative theories are

healthier than originally expected, as long as the micro-
causality violation occurs over short enough time scales
that it is unconstrained by present experiments. While one
can make higher derivative variants of any theory, the most
important physical application is to gravity. The gravita-
tional interaction requires higher derivatives in the action
for the renormalizaton of the theory, and indeed quadratic
gravity proves to be a renormalizable theory of quantum
gravity. It follows from our work here that it is also unitary
and stable near flat space. It is in this regard the most
conservative ultraviolet completion of quantum gravity and
deserves further exploration.
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