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The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations

in low energy quantum gravity. This raises the question of whether the present practice

meets the Weinberg condition for Asymptotic Safety. I argue, with examples, that the

running of 3 and G found in Asymptotic Safety are not realized in the real world, with

reasons which are relatively simple to understand. A comparison/contrast with quadratic

gravity is also given, which suggests a few obstacles that must be overcome before the

Lorentzian version of the theory is well behaved. I make a suggestion on how a Lorentzian

version of Asymptotic Safety could potentially solve these problems.
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1. PREFACE

Asymptotic freedom describes the situation where the coupling constants of a quantum field theory
run to zero at asymptotically high energy. For renormalizeable theories, this running is logarithmic
in the momentum.

Asymptotic Safety (AS) describes the situation where the coupling constants run to an ultraviolet
fixed point where the couplings are finite but where the beta functions vanish. While this can
happen in a renormalizeable field theory [1] where the running is logarithmic, its most common
application is in the study of gravity [2–5]. In this case, the running is generically power-law,
because of the dimensional coupling constants. In this paper I am discussing only the gravitational
case with power-law running.

There is a conflict between the much of the present practice in AS and known explicit
calculations of quantum processes in quantum gravity. This was originally pointed out in work
with Anber [6]. At low energy calculations of quantum gravity processes can be carried out in
the rigorous Effective Field Theory (EFT) treatment [7, 8] and we can compare these observables
with the practice of Asymptotic Safety. The EFT is valid at low energies, which in this case means
below the Planck scale. The major action in Asymptotic Safety happens around the Planck scale.
Nevertheless, the AS techniques also apply below this scale, and predictions only emerge by running
the cutoff to zero energy. Therefore in the overlap region we can make this comparison. More
recently, explorations of quadratic gravity [9–21], which involves curvature-squared terms in the
action, also shed light on the connection to AS. Quadratic gravity is a renormalizeable theory for
quantum gravity in the ultraviolet. It is somewhat more tentative and needs further exploration
itself. However, it provides a calculational framework which is reasonably close to AS, such that it
provides an interesting lessons for AS.

The present paper is an attempt to explain many of the issues involved. It has been invited to
be part of a volume describing an overview of running couplings in gravity. It is meant both as a
summary of concerns aimed at the AS community, and as an explication of the core issues for an
outsider audience. As such it will contain comments which are unnecessary for an AS practitioner,
as well as occasional technical details aimed only at the experts. I hope that this document can serve
this dual purpose.
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The reader will also notice that I often use the phrase “present
AS practice.” This is because I want to differentiate between
what is often done in the present AS literature from what could
be the ultimate understanding of Asymptotic Safety. The AS
paradigm is potentially an attractive resolution to the puzzle
of quantum gravity. However, the present status is not yet a
successful resolution. This article is then an attempt to point out
shortcomings in the present practice as well as to point to future
directions which may be fruitful.

1.1. Key Contrasts: Euclidean vs.
Lorentzian, Powers vs. Logarithms, Cutoffs
vs. Dimensional Regularization
As a preview to the more technical discussion which follows, let
me mention some of the important issues which are central to
that discussion.

The foundational technique of AS practice is the Euclidean
functional integral. One studies this with an infrared cutoff and
integrates out quantum effect in an energy scale around the
cutoff. This is a variation of our usual way of using cutoffs in
that the cutoff is introduced to keep the quantum effects above
the cutoff and removes those with scales below the cutoff. The
variation of the coupling parameters with that scale gives the
renormalization group flow of the couplings. It is understood
that running the cutoff down from the UV fixed point down
to a zero value for the cutoff will then include all of the
quantum corrections.

However, it is also common practice in the community to
assign a meaning to the parameters at given values of the
cutoff. For example, the running Newton constant in AS is often
parameterized as

G(k) =
G

1+ Gk2/g∗
(1)

where k is the cutoff, and g∗ is related to the fixed point in a way
that will be described below. The use of the symbol k makes it
tempting to think of k as a momentum (in practice it is closer
to a mass cutoff) and to think of the resulting G(k) as one that
depends on the momentum scales in a reaction. This is incorrect,
as we will see from direct examples in section 3.1. Moreover, even
if it were a Euclidean momentum, its Lorentzian counterpart
would be ill-defined. A large Euclidean momentum can translate
to a massless on-shell Lorentzian particle if k20 − k2 = 0 or to
positive or negative values of the various kinematic invariants
in reactions (i.e., s > 0 or t < 0) The basic question then
is whether G(k) at finite values of the cutoff has any physical
meaning. Explicit calculations suggest that it does not.

A second point to watch is that the important features
of AS do not occur when dimensional regularization is used.
For example, if one truncates to the Einstein action, then the
Newton constant does not run in dimensional regularization,
contradicting Equation (1). At one level, this can be blamed on
a known weakness of dimensional regularization. Near d = 4 it
cannot identify quadratic divergences as it includes integrations
over all scales. So it is perfectly allowable to use cutoffs to
identify effects at a particular scale around the cutoff. But in the

end, real physics should not depend on the regularization scheme.
I take it as given that dimensional regularization provides an
acceptable regularization scheme to describe physical processes
in field theory. I know of no counter-example. Moreover, I use
dimensional regularization in the perturbative regime where it
use in scattering amplitudes is unquestioned. So in the end,
any scheme which uses cutoffs to define the theory should give
the same physical predictions in such reactions. We need to
understand how AS can do that. This is not a trivial constraint.
In fact, we can understand how this occurs, but the resolution
tells us that the running G(k) is not valid for physical processes.

The other feature to be aware of, before we start describing the
details, is the difference between logarithmic running constants
and power-law running. Our experience in renormalizeable field
theories is with logarithmic running. The need to use running
couplings comes from the existence of large logarithms. If we
measure the coupling at a renormalization scale µr and apply
it at an energy scale s, there will be large corrections of order
α(µr) log(s/µ

2
r ). Use of the renormalization group lets us take

that original measurement up to the scale µ2
r ∼ s, t, in

which case there are no longer any large logarithms. Note that
the signature of the kinematic invariants does not matter as
log s/µ2

r ∼ log t/µ2
r up to small factors as long as s and t are both

of order µ2
r , even though s and t have opposite signs. Moreover,

µr is an unphysical parameter. In the end, µr disappears from
physical processes.

However, AS applied to gravity requires something different,
which is power-law running. Because most of the couplings in the
most general Lagrangian are dimensionful, one multiplies them
by powers of the scale in order to define dimensionless variables.
For example the Newton constant is modified by

g(k) = Gk2 (2)

The running of this dimensionless coupling is that which defines
the fixed point. In this case

g →
k→∞

= g∗ , (3)

hence the notation of Equation (1). However, now we must make
contact with physical processes. If we imagine measuring G at
some scale µ2

r , one is faced with the question of making the
measurement of at some values of s or t of order µ2

r . But s and
t generally carry opposite signs, and g(s) and g(t) are wildly
different quantities in a way that does not occur in logarithmic
running. Moreover, as we will see, there is no reason to expect
that something like G(s) captures the actual effect of quantum
corrections toG. Higher order momentum dependence generally
refers to new operators, where the factors of s or t come from
extra derivatives on the fields. These new operators need not enter
reactions in the same way as the lowest order operator.

2. FOUNDATIONAL ISSUES

In this section, we discuss several issues associated with running
coupling constants. Therefore, let me be clear what I mean by a
running coupling constant. It is a coupling defined to depend on
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a scale which captures essential quantum corrections in physical
processes for physics around that scale. The fact that it is useful
in physical processes is important. We will see that this aspect
is also part of the original formulation of Asymptotic Safety by
Weinberg [2]. A useful running coupling should also apply to
more than one process—it should be universally valid. If there
is a scale dependence in some function which however does not
have a direct physical meaning, we do not refer to this as a
running coupling.

2.1. There Is No Gravitational Running of
Regular Coupling Constants
There are obviously gravitational corrections to ordinary
reactions which occur in the Standard Model. Robinson and
Wilczek suggested that it could be useful to define the
gravitational correction to the running coupling constants of the
theory [22]. For example, for the gauge couplings, this could take
the form

β(g,E) ≡
dg

d lnE
= −

b0

(4π)2
g3 + a0

E2

M2
P

g (4)

After a large number of papers in the literature [23–33], on
various sides of this issue, it has become clear that this does
not occur. The reasons are instructive for our discussion of
Asymptotic Safety.

The first significant reason is kinematic. In Lorentzian
reactions, the variable E2, can have either a positive or negative
sign. For example, if the reaction e+e− → µ+µ− has the
gravitational correction

M ∼
e2(1− aGs)

s
(5)

where s = (p1+p2)
2 > 0 and a is some constant. For the reaction

e+µ− → e+µ−, related to it by crossing symmetry, will have
the form

M ∼
e2(1− aGt)

t
(6)

with t = (p1 − p3)
2 < 0 having the opposite sign from

s. The gravitational corrections will go in different directions
in the two reactions. If the first reaction has a decreasing
coupling, the second one will have an increasing coupling. In
more complicated QED reactions, there will be many kinematic
invariants which span the range of sizes and signs. These
effects cannot be captured by a running coupling constant.
If one attempts to measure the effective electric charge at
a renormalization scale s = µ2

r using e+e− → µ+µ−,
such as e2(µR) = e2(1 − aGµ2

r ) that coupling will not be
useful in describing the crossed reaction or in other more
complicated reactions.

The other significant reason is universality. The gravitational
corrections carrying powers of the energy are not actually a
renormalization of the electric charge, but are described by new

operators with extra derivatives. For example, if we take the bare
QED Lagrangian to be

L =
1

4e20
FµνF

µν (7)

then after loop corrections the energy dependent terms would be
reflected in operators such as

L =
1

4e2
FµνF

µν + aGFµν2F
µν + bGψ̄σµν i /Dψ∂µAν

+cGψ̄ i /DD2ψ + . . . (8)

These operators can enter different reactions in different ways,
depending on the particle content and kinematics of those
processes. Their contribution is not generally in the samemanner
as the original renormalized charge, and then is not generally able
to be described by a running charge.

It should be noted that because the graviton is massless, not
all the gravitational corrections are described by local operators.
There can be non-local effects reflecting the long distance
propagation of the graviton. However, this feature does not
change the discussion above.

This brief discussion follows most closely Anber et al. [29]
where further examples are given, but is also reflected in different
ways in Pietrykowski [23], Toms [24], Ebert et al. [25], Tang and
Wu [26], Rodigast and Schuster [27], Daum et al. [28].

2.1.1. Using a Cutoff Does Not Imply the Running of a

Coupling Constant
In response to criticisms such as the above, some authors
suggested that using a cutoff regularization scheme would
produce a running coupling [30–32]. This is not correct, and
again it is useful for our purposes to understand why.

We first note that using dimensional regularization there is
no gravitational renormalization of the electric charge when
neglecting the masses of the fermions. This follows from power-
counting with a dimensional coupling G. Temporarily neglecting
the fermion masses, the only dimensional factor in dimensional
regularization comes from the factor µ4−d inserted in Feynman
integrals in order to keep the dimensions correct. This yields
factors of logµ2 in intermediate steps in calculations but could
never produce a factor Gµ2 in gravitational calculations. With
fermion masses, the gravitational corrections are of the form

L =
1+ aGm2

4e20
FµνF

µν + . . . (9)

where a is some constant and the ellipses refer to the momentum
dependent corrections discussed above. When measuring the
electric charge one finds

1+ aGm2

4e20
=

1

4e2r
(10)

and one expresses predictions in terms of the renormalized
charge er . One is left only with the momentum dependent
operators described above.
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Real physics does not depend on the nature of the
regularization scheme. However, the authors [30–32] suggested
that the use of a cutoff regularization could be used to
define a running coupling which would capture the quantum
gravitational effects at a given scale. That is, by using a cutoff 3

one would define the beta function

β(g,3) ≡
dg

d ln3
= −

b0

(4π)2
g3 + a0

32

M2
P

g (11)

This would get around the kinematic and universality problems
of the Robinson-Wilczek suggestion. The reasoning is vaguely
Wilsonian—by using a cutoff one includes effects which occur
below that scale. One rebuttal is that one must also include
effects which occur above that scale, and the overall physics
is independent of the separation scale. However, even if one
neglects this, the cutoff effect disappears in renormalization
procedure. The introduction of a cutoff does lead to a
renormalization of the bare electric charge, of the form

L =
1+ a0G32

4e20
FµνF

µν + . . . (12)

with the suggestion that

1+ a0G32

4e20
=

1

4e(3)2
(13)

However when one calculates a physical process, this effect enters
the amplitude just like the renormalized charge, and the correct
identification is

1+ aG32

4e20
=

1

4e2r
(14)

and this manifestation of 3 disappears from the physical
amplitude [33]. In the end, cutoff regularization and dimensional
regularization do agree in physical amplitudes.

Here we have seen the definition of a coupling constant
which depends on a scale—the cutoff 3. In that sense it is a
truism that it “runs.” However, it does not qualify as a “running
coupling constant” because that running is not relevant for
physical processes at energies around that scale. Indeed the
cutoff dependence is completely unphysical—it disappears from
all amplitudes. If we wish to describe its scale dependence we
should come up with a different name for it. Perhaps “incomplete
coupling constant” is appropriate, as it is defined to include only
quantum corrections below the cutoff scale. When used as a
UV regulator, we do not care about the incompleteness, as the
true physics beyond is unknown and in any case irrelevant for
low energy processes. But if we are trying to use the cutoff as
a running parameter at the scale of the energies being studied,
we do care about the incompleteness. The full coupling constant
does not have such a division.

2.1.2. Log Running vs. Power-Law Running
The above sections illustrate a truism—There are no power-
law running coupling constants in 4D Minkowski quantum
field theory.

Logarithmic running works because the logarithm is directly
tied to renormalizaton. In the QED case, photon exchange with
the vacuum polarization leads to a factor of

M ∼
e20

q2[1+ 6(q)]+ iǫ
(15)

where 6(q) is scalar part of the vacuum polarization. No matter
how one chooses to regularize it, the vacuum polarization
contains a divergent term and a logarithm of q2. The divergence
and the logarithm share the same coefficient. If we measure the
charge using e+e− → µ+µ− at a renormalization scale s = µ2

R
with s = (p1 + p2)

2 >> m2
e , this result becomes

e2(µR)

s[1− α
3π log −s

µ2
R

]+ iǫ
(16)

Because the logarithm comes along with charge renormalization,
it occurs in every reaction in the same fashion. And because
of the properties of the logarithm, the same running coupling
would apply to the crossed reaction e+µ− → e+µ− with the
change s → t.

Power-law effects do not share these features. There is
no universal connection of power-law corrections to the
renormalization of the charge. And because of Minkowski
kinematics, the effects in different channels can go in
opposite directions.

That being said, it is possible in any one calculation to define a
running coupling for that particular process. This may be a useful
procedure. However, in field theory, a coupling constant has
multiple duties. It not only describes that one particular process,
but also must describe a multitude of others. These can differ in
the arguments, i.e., λ(φ) vs. λ(q2), and also on the nature of the
process. The same coupling needs to describe not only space-
like vs. time-like reactions such as we have used as examples
above, but alsomulti-particle reactions which involve manymore
particles than the simplest reaction. It is this multiplicity of uses
where attempts to define power-law running couplings fail. The
same definition which works in one setting will in general fail in
the these other settings. The logic and mathematics which tell us
that logarithmic running coupling constants are useful does not
apply to power-law running.

The reader may object that Wilson has taught us the value
of coarse-graining as a way to define couplings at different
scales, and that this procedure has been verified in condensed
matter systems even including power-law re-scalings. However,
the couplings in these condensed matter examples do not have
as many applications as the couplings in scattering processes.
And the 3D setting for condensed matter systems does not
display the kinematic variety of Minkowski reactions. It is easy
to understand how the Wilsonian rescaling in condensed matter
may be useful, while correspondingMinkowski QFT applications
are more complicated.

2.2. Weinberg Formulation of Asymptotic
Safety
The vision for Asymptotic Safety for gravity was formulated by
Weinberg [2]. He invokes a situation where all the coupling
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constants run to fixed values at high energy. This includes the
dimensionful couplings, when rescaled by a universal dimension.
He defines dimensionless variables gi by multiplying by a scale
µ. For example, one would have gG = Gµ2 and g3 = 3vac/µ

4,
where 3vac is the vacuum energy density1.

Specifically, in his 1979 paper [2] Weinberg formulates the
hypothesis using scattering processes and other reactions. Using
these dimensionless coupling he suggests that these rates could
have the form

R = µD
R f

[

E

µR
,X, gi(µR)

]

(17)

where X stands for all the other dimensionless physical variables.
Here µR is meant to be a renormalization point, as used above.
Because physics cannot depend on the arbitrary choice of the
renormalization point, one can choose µR = E and have the
result that the rate behaves as

R = EDf
[

1,X, gi(E)
]

(18)

Aside from the pre-factor (which would involve D = −2 for a
total cross-section) the rates would then depend on the couplings
gi(E) as E → ∞. Asymptotic safety is defined by the condition
that the running couplings go to constant values gi(E) → gi∗ at
high energy, or equivalently that their beta functions vanish

β(gi) = E
∂

∂E
gi = 0 (19)

This is the UV fixed point. The implication here is that instead
of blowing up with the energy, as GE2 would, these factors go
to constant values. I will refer to Equations (17)–(19) as the
Weinberg conditions for Asymptotic Safety.

We can see from the discussion of coupling constants in the
previous subsection that this needs to be generalized somewhat,
as there is no unique energy E in Minkowski reactions. We
do not want to include the kinematic variables in the running
parameters, such as gi(s), gi(t), . . . because of the kinematic
ambiguity and differing signs. The best that we can hope for is to
choose all of the kinematic variables of order the renormalization
point, |s| ∼ |t| ∼ . . . ∼ µ2

R and write the rate as

R = µD
R f

[

s

µ2
R

,
t

µ2
R

, . . .X, gi(µR)

]

. (20)

In this formulation it is not clear how the renormalization scale
µR drops out of physical observables. However, that can work out
in a given process by explicitly performing the renormalization
and demanding that the result is independent of µR. That
demand then identifies the renormalization group flow of the
couplings. The larger question is whether, having done this
renormalization in one process, the result generalizes to other
processes and is useful in describing the quantum effects of
the full theory. This raises the possibility that the Weinberg

1I will try to keep separate the vacuum energy density 3vac (which much of

the particle physics community refers to as the cosmological constant) from

other definitions of the cosmological constant. Much of the Asymptotic Safety

community uses the symbol 3 for a different version 3 = −3vac/8πG = −3red .

For this combination, I will use 3red (with red standing for “reduced”).

conditions themselves are unworkable when applied to a full set
of reactions with many kinematic variables of differing signs. Our
comparison with explicit reactions below will be discouraging in
this respect when applied to G and 3. However, if Asymptotic
Safety is to be successful there must be a modified version of these
conditions which applies for the high energy limit of physical
processes. I will continue to use the Weinberg formulation as the
vision for the AS program.

In our discussion of the present practice of Asymptotic Safety,
it is important to point out that the Weinberg proposal is for
true running couplings in the sense that we are using that phrase
in this paper. That is, these are couplings that apply in physical
reactions (in particular as functions of energy) and which in a
useful way capture relevant quantum corrections appropriate for
those energies.

2.3. The Practice of Asymptotic Safety
This section is clearly meant primarily for readers outside the
AS community. It tries to very briefly explain the formalism
and physics of the calculations. However, there are important
comments toward the end of section 2.3.1 that are intended for
all readers.

The present practice of Asymptotic Safety does not study
reaction rates, but rather evaluates the flow of the Euclidean
functional integral in a background field formulation—the
Euclidean functional renormalization group (FRG). That is, the
functional integral is a function of the metric, curvatures and
covariant derivatives. The logic here is that once all quantum
corrections are included in the Euclidean functional integral, the
result can be continued to Lorentzian spaces, and the metric and
curvatures expanded in the external fields in order to obtain the
amplitudes that the Weinberg criterion envisions. I will call this
the “ideal FRG program.”

However, for the most part in present applications this logic
is not followed in practice2. Rather rather than evaluating the
full functional integral, one evaluate the evolution from the UV
fixed point down to some cutoff k including quantum corrections
above k. Without evaluating the quantum corrections below
the cutoff, it is then assumed that the resulting gi(k) are the
appropriate couplings to use in something like the Weinberg
criterion in real world applications at the scale k. That is, gi(k) ∼
gi(E ∼ µR ∼ k). There is also necessarily a truncation of the
basis (to be discussed soon) in such applications. There is an extra
logical step required if these assumptions are to be true. This can
be called the practical AS program.

One complication of the AS program is that the basis set
of operators is infinite, with a corresponding infinite number
of coupling constants. The renormalization flow for a theory
such as gravity mixes operators of all dimensions, with the only
restriction being that of general covariance. In the action, there
will be local terms of the form

L =
√

−g

[

−3vac −
1

16πG
R+ c1R

2 + c2CµναηC
µναη

2Codello et al. [34] have pursued the ideal FRG program to reproduce some of

the results of chiral perturbation theory. The chiral logs emerge in the IR limit as

k → 0.
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+d1R
3 + d2R2R+ . . .

]

(21)

This series can be ordered by powers of derivatives, such that only
the operators with few derivatives are relevant for the low energy
limit. This is what is done in the effective field theory treatment.
However, Asymptotic Safety concerns the high energy limit and
all operators become active as the energy goes to infinity. The
ideal FRG program then would involve all possible operators
with their coefficients3. However in the ideal FRG program these
coefficients are not all independent. The infinite set of couplings
would be described by a few relevant couplings and only special
values of the parameters would be consistent with the Asymptotic
Safety hypothesis.

Practicality requires that this be truncated at some order.
The AS community has explored a remarkable range of such
truncations, and the overall picture that emerges has so far been
independent of the truncation. For the purposes of this paper,
I will assume that the truncation problem is not a fundamental
obstacle. Nevertheless, we can examine truncations to see what
might be issues for the full program, as in sections 4.1 and 4.2.

The fundamental equation of AS practice, the Wetterich
equation [35], describes the change of the Euclidean functional
integral Ŵk, again defined to include quantum fluctuations above
the scale k, under a change in scale4.

k
∂

∂k
Ŵk =

1

2
Tr









1

δ2Ŵk
δgδg + Rk



 k
∂

∂k
Rk



 (22)

Here Rk is the cutoff function which suppresses momentum
modes below k. Conceptually, it is like a mass below the scale k
and zero above k, chosen in some smooth way so that there is not
a discontinuity. An example is

Rk = (k2 − D2)θ(k2 − D2) (23)

In understanding the variation δ2Ŵk/δgδg, one notes that g
schematically represents the metric and any other fields in the
theory. If the functional contained DµgD

µg then the variation
would be −D2. So conceptually, this equation is similar to
k∂kTr log(D

2 + m2
k
). Of course the real case is very much more

complicated by the interactions and all the indices. A positive
feature of the flow equation is that the flow only depends on the
physics near the cutoff scale k. Higher scales have already been
included and no longer enter because of the vanishing of ∂kRk at
high k, while lower scales are suppressed by the cutoff. Qualitative
results have so far been independent of the choice of the function,
although numerical results do depend modestly on the choice.

Weinberg in his Erice lectures on critical phenomena [36] also
expressed a similar structure for the running coupling.

Much work has gone into exploring the existence and
properties of the UV fixed points. To do this one first identifies

3There are also non-local contributions to the functional integral. It is assumed

that these are fully parameterized by the coefficients of the local operators.
4The Wetterich equation is more general than its application to AS, and

Asymptotic Safety could in principle be addressed without the Wetterich equation

(i.e., see section 4.3 for a possibility). However, present practice in AS involves

this equation.

a truncation in the basis. One starts at finite k and uses the
Wetterich equation to flow to higher scales. In the infinite
dimensional space of coupling constants, the fixed points live
on finite dimensional “critical surface.” Common expectation is
that this is two or three dimensional. This leaves a two or three
dimensional family of solutions. When one flows from the fixed
point to the IR at k = 0, one will have two or three undetermined
constants. In particular 3vac and G at k = 0 are not predicted.
But in principle there are predictions for an infinite number of
other constants in the local effective Lagrangian.

2.3.1. AS at One-Loop
In order to see the FRG machinery at work, we can look at the
illuminating calculation of Codello and Percacci [37], which is
described as a one-loop evaluation including terms up to the
order curvature-squared. This example also allows a comparison
with a conventional treatment of quadratic gravity, which will be
given in section 4.

The Euclidean action is parameterized by five couplings, in
the form

S =
∫

d4x
√
g

[

1

8πG
3red −

1

16πG
R+

1

2λ
C2 −

ω

3λ
R2 +

θ

λ
E

]

.

(24)
Here C2 is the Weyl tensor squared, and E is the Gauss-Bonnet
term. The vacuum energy is defined by 3vac = − 1

8πG3red. In
four dimensions, E is a total derivative and does not influence any
local physics. This will be evidenced in the flow as the parameter
θ does not influence any of the other physical parameters. The
dimensionful parameters are 3red and G, while λ, ω, θ are
dimensionless. To create dimensionless parameters one defines
G̃ = Gk2 and 3̃ = 3red k

−2.
The evolution of the curvature-squared coefficients is

exactly the same as was previously calculated in dimensional
regularization [10, 11].

βλ = −
1

(4π)2
133

10
λ2

βω = −
1

(4π)2
25+ 1098ω + 200ω2

60
λ

βθ =
1

(4π)2
7(56− 171θ)

90
λ

(25)

These run only logarithmically in the usual way. In particular, the
coefficient of the Weyl-squared term is asymptotically free and
runs logarithmically to zero. The coefficient ω runs to a fixed
point ω∗ = −0.023. Note however that in this evaluation the
coefficient of the R2 term ω/3λ is also indicative of asymptotic
freedom because λ is asymptotically free.

The remaining two couplings have an evolution

β3̃ = −23̃ +
1

(4π)2

[

1+ 20ω2

256πG̃ω2
λ2 +

1+ 86ω + 40ω2

12ω
λ3̃

]

−
1+ 10ω2

64π2ω
λ +

2G̃

π
− q(ω)G̃3̃

βG̃ = 2G̃−
1

(4π)2
3+ 26ω − 40ω2

12ω
λG̃− q(ω)G̃2 (26)
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with q(ω) = (83+70ω+8ω2)/18π . The initial factor in each beta
function (±2) is due to the explicit factor of k used to make the
couplings dimensionless. The remaining are due to perturbative
interactions and these need to be large in order to cancel the ±2
if the beta function is to vanish. These perturbative terms are not
found in dimensional regularization because they require powers
of the cutoff.

If we follow Codello and Percacci [37] and set ω and λ to their
fixed point values, the flow can be solved exactly. Expressing the
result in terms of the Newton constant G and vacuum energy
density 3vac0 defined at k = 0, one finds,

G(k) =
G

1+ Gk2

g∗

(27)

with g∗ ≈ 1.4 and

3vac(k) = 3vac0 −
1

16π2
k4 (28)

The quartic k dependence of 3vac is particularly striking.
Evaluated at LHC energies, it would imply

3vac(10TeV) ∼ −1014ρN ∼ −10613vac0 (29)

where ρN is the density of the nucleus and 3vac0 ∼ (10−3eV)4

is the present experimental vacuum energy. It is also notable
that the vacuum energy itself does not run to a UV fixed point.
It increases without bound, and only the rescaled value 3̃ ∼
3vac(k)/k

4 stays finite.
However, this dependence is k4 is actually illusory when it

comes to applications of this parameter. Recall that 3vac(k =
0) = 3vac0 is meant to describe the vacuum energy density
with all quantum corrections included, and 3vac(k) is meant to
describe that parameter with only quantum effects above the scale
k included. This implies that when we use3vac(k) we need also to
add in the quantum corrections below k. For the vacuum energy
this is seen to be related to

∫ k d3p

(2π)3
1

2
ωp =

4π

(2π)3

∫ k

0
p2dp

1

2
p =

1

16π2
k4 (30)

If we add this back into Equation (28) we get the full vacuum
energy5. The running value is seen to be the full value with the
effects of the momentum scales up to k removed.

Similar considerations apply for the running G(k). When
using G(k) one is instructed to also add in the quantum
corrections from scales 0 up to k. When this is done, one obtains
the full G, which is the measured value.

The functions G(k) and 3(k) by default “run” because they
depend on the scale k. However, we will see in the next section
that they do not behave as gravitational running couplings in

5The apparently missing factor of 2 in Equation (30)—for the 2 graviton helicity

states—appears to come from the fact Equation (30) involves a non-covariant

cutoff, while the Wetterich equation is a (Euclidean) covariant treatment. See also

Ossola and Sirlin [38] and Akhmedov [39]. Nevertheless, the principle remains the

same. I thank Roberto Percacci for this observation.

the sense of Weinberg, because they do not apply to physical
processes. We will also explain the reason for this. Instead, 3(k)
andG(k) are incomplete coupling constants. From their definition
they include physics above the cutoff scale but not below. Indeed,
insights from effective field theory indicate that the lower energy
physics is the region that is dynamically important. Because
of the uncertainty principle, physics from high energy scales
beyond the active scale k appears as local effects, parameterized
by coefficients in a local action. Low energy physics can influence
those local coefficients also (such that the cutoff scale disappears
from physical observables) but also include dynamical effects
from low energy propagation. The momentum dependence that
we will see in the reactions to be described in section 3.1 all
comes from low energy, as the high energy effects are only seen in
the occasional unknown coefficient, such as d1 in Equation (37).
Because they are incomplete, parameters such as 3(k) and G(k)
do not know about this low energy physics, and it is therefore not
surprising that they do not capture the quantum physics seen in
physical observables.

The AS running is an iterated one-loop calculation. The
renormalization group is used to iterate the the matching at the
scale k, which is itself performed at one loop order. For example,
the full program has been performed in the quadratic truncation
approximation of this section in Benedetti et al. [40]. This is an
appropriate way to improve on the one-loop result of Codello and
Percacci, but it does not change the fundamental interpretation of
the cutoff dependence.

3. THE CASE AGAINST A RUNNING GN

AND 3

Quantum corrections and matter effects will clearly modify the
physical value of G and of the other parameters. However it is
not a requirement that these organize themselves in a functional
form that is usefully described by a running coupling. We can
look at observables to see if this is the case.

The function G(k) is defined to include all of the quantum
effects above the cutoff scale k. In principle, it is designed to
be supplemented by including all of the quantum effects below
the scale k also when using it to calculate some observable. The
matching scale k is unphysical and should drop out from physical
observables once all quantum effects are included. Nevertheless,
it is common AS practice to use Gk as if it were the effective
Newton constant at an energy of order k. However, one can see
by direct calculations that this is not the case [6]. The attempt
to compare the form of G(k) to low energy results is a valid test
because the FRG predicts not only a UV fixed point but also the
approach to the fixed point at lower energies with effective field
theory calculations are performed. The same techniques which
predict the fixed point also predict running at lower energies
which overlaps with the validity of the EFT calculations.

3.1. Explicit Calculations
Let us start by listing a series of physical amplitudes which
have been calculated to one loop order. All of these have been
calculated with the assumption that the value of the cosmological
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constant at low energy can be neglected. The results are then
functions of G and in some, but not all, cases contain coupling
constants which are equivalent to a four-derivative truncation
of the effective action. These reactions are observables. The
question is whether we can define a useful running G from
these observables.

The most elemental quantum gravity process is the scattering
of two gravitons. The lowest order scattering amplitude involves
a large number of individual tree diagrams but is given by the
simple form

Atree(++;++) = i
κ2

4

s3

tu
, (31)

where the signs +,− refer to helicity indices and s, t, u are
the usual Mandelstam variables. In power counting, this is a
dimensionless amplitude of orderGE2. This was calculated at one
loop order with the result. The one loop amplitudes have been
calculated by Dunbar and Norridge [41]. These are of order G2E4

and take the form

A
1−loop(++;−−) = −i

κ4

30720π2

(

s2 + t2 + u2
)

,

A
1−loop(++;+−) = −

1

3
A

1−loop(++;−−)

A
1−loop(++;++) =

κ2

4(4π)2−ǫ

Ŵ2(1− ǫ)Ŵ(1+ ǫ)

Ŵ(1− 2ǫ)
A

tree(++;++) × (s t u) (32)

×





2

ǫ

(

ln(−u)

st
+

ln(−t)

su
+

ln(−s)

tu

)

+
1

s2
f

(

−t

s
,
−u

s

)

+2

(

ln(−u) ln(−s)

su
+

ln(−t) ln(−s)

tu
+

ln(−t) ln(−s)

ts

)



 ,

where

f

(

−t

s
,
−u

s

)

=
(t + 2u)(2t + u)

(

2t4 + 2t3u− t2u2 + 2tu3 + 2u4
)

s6

(

ln2
t

u
+ π2

)

+
(t − u)

(

341t4 + 1609t3u+ 2566t2u2 + 1609tu3 + 341u4
)

30s5
ln

t

u

+
1922t4 + 9143t3u+ 14622t2u2 + 9143tu3 + 1922u4

180s4
. (33)

Other amplitudes can be obtained from these by crossing. I have
discarded some purely infrared effects, including the expected
IR radiative divergence. As noted by ‘t Hooft and Veltman, this
reaction and all pure graviton processes will be independent
of any coupling constants other than G at this order, because
the possible terms in the action vanish by the equations of
motion Rµν = 0.

Another core process is the gravitational potential for heavy
masses. Including the leading quantum correction the potential
has the form [42, 43]

V(r) = −G
Mm

r

[

1+
41

10π

G

r2

]

, (34)

This particular definition is derived from the low
energy limit of the scattering amplitude. I have
dropped the leading classical correction. The quantum
correction is universal, independent of the spin of the
heavy particles.

The bending of light around a massive object can also be
reliably calculated [44–46].

θ ≃
4GNM

b
+

15

4

G2
NM

2π

b2

+
(

8buS − 47− 64 log
b

2b0

)

h̄G2
NM

πb3
+ . . . . (35)

Here 1/b0 in the logarithm is the infrared cutoff which
removes the IR singularities of the amplitude. Here there is
not a universal behavior. The coefficient buS is a parameter
which depends on the intrinsic spin of the particle. It has
values 371/120, 113/120,−29/8 for scalars, the photon and the
graviton, respectively.

Dunbar and Norridge have also calculated the gravitational
scattering of a massless scalar particle, φ + φ → φ + φ [47].
At tree level, this has the form.

Mtree = i
κ2

4

[

st

u
+

su

t
+

tu

s

]

. (36)

with as usual κ2 = 32πG. In this process there is a higher order
operator which is needed to absorb the divergences which arise at
one loop. This is

L2 = d1(DµφDµφ)2 (37)
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Including the renormalization of this higher
order operator, the one loop hard amplitude is

Mh = i
κ4

(4π)2

{

(s4 + t4)

8st
ln(−s) ln(−t)+

(s4 + u4)

8su
ln(−s) ln(−u)+

(u4 + t4)

8tu
ln(−t) ln(−u)

+
(s2 + 2t2 + 2u2)

16
ln2(−s)+

(t2 + 2s2 + 2u2)

16
ln2(−t)+

(u2 + 2t2 + 2s2)

16
ln2(−u)

+
1

16

(

st

u
+

tu

s
+

us

t

)

(

s ln2(−s)+ t ln2(−t)+ u ln2(−u)
)

+
[

−
(163u2 + 163t2 + 43tu)

960
ln

(

−s

µ

)

−
(163u2 + 163s2 + 43us)

960
ln

(

−t

µ

)

−
(163s2 + 163t2 + 43ts)

960
ln

(

−u

µ

)

+ dren1 (µ)(s2 + t2 + u2)

]}

, (38)

where µ is an infrared scale. Again a purely infrared effect has
been removed.

Anber and I have used the Dunbar-Norridge method to find
the amplitudes for two different species of particles [6]. In the
reaction A+ B → A+ B we find that the hard amplitude is

Mh = i
κ4

(4π)2

[

1

8

(

s4 ln(−s) ln(−t)+ u4 ln(−u) ln(−t)
)

−
1

16t

(

s3 + u3 + tsu
)

ln(−t)

+
1

16

(

s2 ln2(−s)+ u2 ln2(−u)
)

+
us

16t

(

s ln2(−s)+ t ln2(−t)+ u ln2(−u)
)

+
1

240

(

71us− 11t2
)

ln(−t)

−
1

16

(

s2 ln(−s)+ u2 ln(−u)
)

]

, (39)

For the crossed process, A + Ā → B + B̄, one exchanges s ↔ t,
which yields a significantly different functional form.

It is easy to see by inspection that there are no common
factors for the power-law corrections to these processes. This is an
immediate indication that there will not be a useful definition of a
runningGwhich is useful in all processes. This is not a surprise as
these kinematic effects do not amount to a direct renormalization
of G. However, we can still proceed with an attempt to define a
renormalization of G at a higher renormalization scale µR and
look at the outcome.

First consider graviton-graviton scattering. If we wish to
renormalize this at high energy, we would like a kinematic
configuration where all the kinematic variables are of the same
large energy. In this case, we chose the central physical point
s = 2E2, t = u = −E2. If we use the amplitude A(++;++)
and use this point to determine G(E), we find

G2(E) = G2



1+
κ2E2

(

ln2 2+ 1
8

(

2297
180 + 63π2

64

))

8π2



 . (40)

We see that this definition leads to a growing running coupling
G(E), as opposed to the expectation from asymptotic safety of a

decrease in strength at high energy. Of course, since we are here
using perturbation theory, we only should be obtaining the first

order term in the expansion. Nevertheless the disagreement on
the sign is clear.

We could alternatively consider the crossed reaction
A(+,−;+,−) which is obtained from A(+,+;+,+) by the
exchange s ↔ t. This makes the quantum corrections somewhat
different, with the corresponding kinematic factor being

1+
κ2t

16π2

[

ln
−s

t
ln

−u

t
+

su

2t2
f

(

−s

t
,
−u

t

)]

= 1+
κ2E2

(

29
10 ln 2−

67
45

)

16π2
(41)

instead of the factor in Equation (40).
If we used identical scalar particle scattering at the same

kinematic point to identify a running coupling the result
would be

G(E) = G

[

1−
κ2E2

360 (4π)2
(42)

(

609 ln
E2

µ2
+

(

340π2 +
(

123− 340 ln 2
)

ln 2
)

)]

.

The single log term which appears in Equation (43) could
reasonably be associated with the higher order operator d1, and
perhaps should be removed from this expression. Using the
scattering of non-identical particles, one would find for A+B →
A+ B,

Mtotal =
iκ2E2

2

[

1−
κ2E2

10(4π)2

(

(

19+ 10 ln 2
)

ln

(

E2

µ2

)

+5
(

π2 − (ln 2− 1) ln 2
))]

. (43)

which would lead to yet a different running G(E). On the other
hand, using A+ Ā → B+ B̄ we would have

Mtotal =
iκ2E2

8

[

1+
κ2E2

10(4π)2

(

9 ln

(

E2

µ2

)

−5π2 +
(

19+ 5 ln 2
)

ln 2
)]

. (44)

The crossing problem is obvious here.
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FIGURE 1 | The tadpole diagram on the left has an insertion of an operator

involving the background field. When applied, this operator is expanded in

powers of the external field, as on the right-hand side. The momenta of the

external fields do not flow through the loop.

There is not much point to continue. It is clear that any
application to other processes will yield yet other discordant
results. Even if we have an operational definition of a running G
at a higher renormalization point in one process, this definition
does not apply to other reactions. This is not surprising, as the
quantum corrections here are not related to a renormalization
of G.

We note also that having set the cosmological constant to
zero at low energy, it stays zero in the scattering amplitudes.
All the corrections come in at higher powers in the energy, in
accord with the power counting theorems of the effective field
theory. The cosmological constant also does not run in these
scattering amplitudes.

The examples here are evidence that the Weinberg criterion
for AS is false, as applied to the parameters 3 and G. Even if we
do not attempt to use the FRG form of the running G, there is
no other form that does the job either. Nature does not organize
itself like that at low energy. Perhaps a revision of the Weinberg
criterion is possible in which other parameters more important
to the high energy limit have the flow envisioned by Weinberg.

It is possible that in one given process-say, FLRW cosmology
for example-it could be useful to define power-law running
parameters for use in that setting and those running parameters
might asymptote to an non-trivial UV fixed point. However, even
if this is the case it would not imply that this defines a consistent
quantum field theory of gravity. Such a field theory would have to
be broadly applicable to all observables, and we have seen above a
broad class of observables which do not share a useful running G.

3.2. The Driving Force of the Tadpole Graph
We can look beyond the formalism and identify what is going
wrong in the functional RG approach to the running G. The
diagram driving the flow for this operator is the tadpole diagram
of Figure 1. This diagram vanishes in dimensional regularization
for massless particles. It is non-vanishing when evaluated with
a cutoff. The issue is not really whether it vanishes or not, but
that is a symptom. Since physical processes can be regularized
dimensionally, we should not be surprised that there is not a
signal of this diagram in the physical amplitudes. The more
important feature is that this diagram does not feel the values
of the external momenta, and here cutoff and dimensional
regularization agree. Even with a cutoff, there is no external
momentum flowing in loop. This tells us that the diagram does
not know about the momentum scales of the physical reactions,
and so cannot correspond to the use of running coupling

depending on those scales. Once we identify how to treat this
diagram, we will be able to bring the cutoff regularized result into
agreement with dimensional regularization. To demonstrate this
we need to look at the physics of the background field method.

With background fieldmethods, one can capture the quantum
effects using the heat kernel [48–53], defined as

H(x, τ ) =< x|e−τD|x > (45)

for some differential operator D. For example the functional
determinant can be evaluated using

1S =
∫

d4xTr < x| logD|x > (46)

with

< x| logD|x >= −
∫ ∞

0

dτ

τ
< x|e−τD|x > + C (47)

The local heat kernel is expanded in powers of τ with the
Seeley-DeWitt coefficients ai, with the result

H(x, τ ) =
i

(4π)d/2
e−τm2

τ d/2

[

a0(x)+ a1(x)τ + a2(x)τ
2 + . . .

]

(48)
in an arbitrary dimension d. The contribution to the action
is then

< x| logD|x > =
−i

(4π)d/2

[

mdŴ(−d/2)a0(x)

+md−2Ŵ(1− d/2)a1(x)

+md−4Ŵ(2− d/2)a2(x)+ . . .

]

(49)

As an example which is simpler than the graviton itself consider
a scalar coupled to gravity with the Lagrangian

√

−gL =
√

−g
1

2

[

gµν∂µφ∂νφ −m2φ2
]

(50)

in which the coefficients have the form

a0(x) = 1

a1(x) =
1

6
R

a2(x) =
1

180
RµναβR

µναβ −
1

180
RµνR

µν +
1

72
R2 (51)

From this we see that a0 is associated with the cosmological
constant, a1 is associated with the renormalization of G and
a2 is asssociated with curvature-squared terms. In the AS beta
functions this dependence is convoluted with the influence of the
cutoff function, but this association remains true. I have included
both a mass and a dimension d in order to make the following
points. In dimensional regularization for the massless graviton,
we would set m = 0 and the coefficients of a0 and a1 would
vanish. The divergence in the coefficient a2 is non-vanishing in
the massless limit and is the usual divergence that one finds at

Frontiers in Physics | www.frontiersin.org 10 March 2020 | Volume 8 | Article 56

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Donoghue A Critique of the Asymptotic Safety Program

one loop order. But also, in this evaluation the massm serves as a
proxy for the IR cutoff of AS, withm2 ∼ k2. So we see that the k4

and k2 dependence of the running couplings comes form the a0
and a1 coefficients, respectively.

In 4D flat space, the Passarino-Veltman theorem [54] says
that all one loop diagrams can be reduced to scalar tadpole,
bubble, triangle and box diagrams. The “scalar” part of this
statement says that any momentum factors in the numerator
can be removed and replaced by external momenta, leaving
behind only the tadpole, etc diagrams with no momenta in the
numerator. The heat kernel performs this operation describing
the result using derivatives in the local operators, in our case
R, R2, RµνR

µν , etc. The scalar tadpole, bubble, etc diagrams
then contribute to the coefficients of the local operators. Each
is readily identifiable by its dimension and divergence structure.
In particular, in 4D the scalar tadpole has dimension E2 and
the scalar bubble is dimensionless, which is why they carry the
k2 and log k cutoff dependence. In curved spacetime, the use of
the equivalence principle means that the short distance behavior
of loops is equivalent to that of flat space. The use of Reimann
normal coordinates can be used to describe the heat kernel and
the AS RG flow using the same classification of tadpole, bubble,
etc. diagrams [53] including the non-local components of the
heat kernel. The k2 cutoff dependence of the a1 coefficient is
characteristic of the scalar tadpole diagram.

We can learn a bit more by looking at the ingredients to these
heat kernel coefficients. Working in flat space for simplicity, we
consider the differential operator as

logD = log[dµd
µ +m2 + σ (x)] = log[2+m2 + V(x)]

= log

[

(2+m2)(1+
1

2+m2
V)

]

= log[2+m2]+
1

2+m2
V

+
1

2

1

2+m2
V

1

2+m2
V + . . . (52)

where dµ = ∂µ + Ŵµ(x) and σ (x) describe some interactions.
Inserting a set of momentum eigenstates, we see that the first two
terms in the heat kernel expansion are tadpole loops

∼
∫

d4p

(2π)4
× log[2+m2] ∼

∫

dm2

∫

d4p

(2π)4
1

p2 +m2
(53)

and

∼
∫

d4p

(2π)4
1

p2 +m2
× V(x) (54)

These two are represented in Figure 1. The key point here is
that the tadpole has no external momenta flowing in these
loops. This implies that when matrix elements are taken of
the resulting effective Lagrangian, there will be no external
momentum dependence coming from the a0 and a1 coefficients.
This is already evident in the discussion of the one-loop running
contributions to 3 and G in section 2.3.1. In contrast, the
a2 term is given by a bubble diagram, with two vertices and

two propagators. It does involve the external momenta because
it involves the interaction V at different spacetime points. In
addition to the local divergence which is contained in a2 there
is a non-local log q2 dependence. This can also be identified by a
non-local version of the heat kernel method [52, 53].

Combined with the discussion of section 2.3.1, we arrive at
an understanding of how the cut-off regularization can agree
with dimensional regularization. The dimensional regularization
case integrates over all momenta with no separation of scales.
The result is that the physical values of 3vac and G are not
modified. In the cutoff regularization case, the so-called running
couplings of 3(k) and G(k) represent these parameters with
quantum effects only above the scale k included. They are actually
incomplete couplings, where the the physics below the scale
k is missing. Technically, they are described by the tadpole
diagram in which no momentum flows. When supplemented by
the rest of the loop below k we again get the physical values
of the parameters as the dependence on the separation scale
must vanish. There is no external momentum flowing through
these loops so that there is no net effect on the kinematic
features of scattering amplitudes. This confirms that the k
dependence in G(k) does not correspond to running in any
kinematic sense. In contrast, the bubble diagram, associated
with a2 will contain logarithmic momentum dependence. Both
dimensional regularization and cutoff regularization will agree on
this and logarithmically running couplings associated with the a2
coefficient will be physical.

4. COMPARISON WITH QUADRATIC
GRAVITY

In this section, I discuss the AS result for the truncation including
terms of order curvature squared, summarized above in section
2.3.1, with work on quadratic gravity, which uses the same
operator basis but which does not use the AS machinery.

There are three points to be made in this comparison. (1)
At least at one loop, this AS truncation is unsatisfactory in that
when continued to Lorentzian spaces it contains a tachyon. It
also contains a ghost state and violates causality on short time
scales, although these may be less disastrous. (2) Further analysis
of the ghost state indicates that there is an obstruction to the
continuation from Euclidean space to Minkowski space, as there
is a pole in the upper right quadrant of the complex q0 plane.
These are both problems that could could be due to the specific
truncation, but which could in principle surface at any order of
truncation in AS. (3) The third point is more positive: A focus on
higher order terms in the graviton propagator may be useful for
a Lorentzian variant of Asymptotic Safety.

4.1. Tachyons and Ghosts
Because there are higher order terms in the most general action,
the gravitational propagator will contain higher powers of q2.
With a truncation at order of the curvature-squared, this implies
terms up to q4 in the propagator. Normally these are forbidden
by the Källen-Lehmann representation of the propagator,

Frontiers in Physics | www.frontiersin.org 11 March 2020 | Volume 8 | Article 56

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Donoghue A Critique of the Asymptotic Safety Program

D(q) =
1

π

∫ ∞

4m2
f

ds
ρ(s)

q2 − s+ iǫ
(55)

with the spectral function ρ(s) being positive definite, which says
that the propagator can fall by at most q−2 at high momentum6.
It then becomes clear that some of the usual assumptions of QFT
(which forms the basis of the KL representation) must be given
up in Asymptotic Safety (also in quadratic gravity). Some of the
dangers are evidenced in the partial fraction decomposition of
the propagator

iD(q) =
i

q2 − aq4/M2
=

i

q2
−

i

q2 −M2/a
. (56)

Here,M is the intrinsic scale of the higher order terms, and I have
included a parameter a = ±1 because the higher order behavior
can come with either sign. For both signs of a, the second term
in the partial fraction decomposition automatically comes with
the “wrong” overall sign—it is a ghost. For a = −1 the ghost
is also tachyonic in that it occurs for spacelike values of the
four-momenta7. As far as I know, there is no way to rescue this
situation. It leads to an unstable state with runaway production of
tachyons. The a = +1 ghost is non-traditional in QFT, but seems
to be more manageable. When treated properly, it can lead to a
unitary theory [16], but one which violatemicrocausality [17, 55].
However, these options are ones which any truncation of AS will
be forced to confront.

The parameters of the one-loop AS solution given in section
2.3.1 imply a tachyon in the spin-zero propagator and a a = +1
ghost in the spin-two propagator. Let us defer the discussion
of the spin-two ghost to the next subsection. The spin-zero
tachyon is a serious problem if it were to survive at higher
order truncations. There is a bit of history/physics to understand
concerning the tachyon. The first ingredient is that in this case,
the high mass state is not ghost-like. It is the massless pole in the
spin-zero channel which is ghost-like. That is, instead of Equation
(56), one has an overall minus sign,

iD0(q) =
−i

q2 − aq4/M2
=

−i

q2
+

i

q2 −M2/a
. (57)

That the massless pole is ghost-like is acceptable because the
massless spin-zero component can be shown to be a gauge artifact
[56]. The historical aspect is that several early works on the
renormalization of quadratic gravity use what is now recognized
to be the “wrong” sign without recognizing that this lead to
tachyons. Adopting a modern parameterization for the quadratic
terms, we have

S =
∫

d4x
√

−g

[

1

6f 20
R2 −

1

2f 22
CµναβC

µναβ

]

(58)

in Lorentzian space. These signs lead to a normal massive spin-
zero state, and the a = +1 spin two ghosts. Early work used

6There is the caveat that the KL representation does not necessarily apply to

gauge-variant fields because the spectral function then does not correspond to the

insertion of physical states.
7Reminder: my metric convention is (+,−,−,−).

the opposite sign on the 1/6f 20 term, and concluded that both f0
and f2 are asymptotically free [10, 11]. With the non-tachyonic
sign, f0 is no longer asymptotically free [14]. The Euclidean action
of section 2.3.1 shares yields asymptotic freedom for the overall
R2 coupling, and then would share the tachyonic property when
continued to Lorentzian space.

It is possible that the tachyonic state could be removed using
a higher order truncation or no truncation at all. There are a
few special functions whose Taylor expansion would show these
poles when truncated at a fixed order, but which is well-behaved
without the truncation. However, this is already an indication
that simply obtaining a UV fixed point in the Euclidean FRG is
not sufficient to claim that one has a well-behaved Lorentzian
theory. Each truncation must be checked separately. It is even
more difficult to understand the ideal case, with no truncation.

4.2. Obstacles to Analytic Continuation
The spin-two ghost in the quadratic truncation presents a more
generic problem. There can be unexpected obstacles to the
analytic continuation from Euclidean to Lorentzian spaces. There
has been some work on analytic continuation of the FRG in scalar
theories [57], which however does not address the issue raised in
this section.

The location of the poles in the propagator has been explored
in the quadratic gravity literature. I am particularly biased
toward my own recent work with Menezes [16, 17], which
is representative of the present status. The heavy ghost state
will necessarily be unstable due to the coupling with the light
gravitons and other light degrees of freedom. Including that
coupling leads to a self-energy term in the propagator

iD2(q) =
i

q2 + 6(q)− q4/M2
(59)

where 6(q) is the self energy. In gravity, there is a cut starting
at q2 = 0 where the self energy develops an imaginary part
Im 6(q) = γ (q). Unitarity requires γ (q) ≥ 0. The ghost
resonance then has the form near q2 = M2

iD2(q) =
i

q2 − q4

M2 + iγ (q)

=
i

q2

M2 [M
2 − q2 + iγ (q)(M2/q2)]

∼
−i

q2 −M2 − iγM
. (60)

This puts the resonance pole above the real axis

q2 = M2 + iγM (61)

rather than usual resonances which occur below the real axis. In
Donoghue and Menezes [17] we have labeled ghost resonances
with this pole location as Merlin modes as they propagate
backwards in time. We note that this construction would also
work for higher order ghosts in the spin two channel. The fact
that unitarity requires that γ (q) ≥ 0, implies that all further ghost
states would also live above the real axis.
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For the purposes of quadriatic gravity, this is an arguably
acceptable result. The resulting theory is unitary and stable near
Minkowski space [16], but violates microcausality on timescales
of order the width [17, 55], which is proportional to the inverse
Planck scale. A look at the underlying calculations shows that
this would appear to continue to happen if the propagator was
defined with yet higher order dependence even if there were
other unstable ghosts induced, as long as there were no tachyonic
states allowed. An AS theory defined in Lorentzian space would
presumably share these acceptable features.

The danger for the present program of Asymptotic Safety
is somewhat different. The original AS theory is defined
in Euclidean space. To reach the real world, this needs
to be continued to Lorentzian space. In amplitudes, this is
accomplished by a rotation of the momentum space contour
from the real axis to the imaginary axis, and is legitimate because
there are no poles crossed by the rotation. The usual QFT rotation
from Minkowski to Euclidean space is a tool which proves to be
useful because of the usual analyticity properties of amplitudes.
In the presence of higher derivatives, these analyticity properties
are upset. This implies that there is no longer any guarantee that
the Eucldean theory and the Minkowski theory share the same
properties. The spin-two ghost found above is such a problem as
would be any further ghosts.

There has been recent work which attempts to keep
the momentum dependence separate from the k dependence
and which addresses specific gravity amplitudes such as the
propagator [58–62]. It appears that the spin-two ghost state is not
just an artifact of the quadratic truncation. In a recent study by
Bosma et al. [61], the spin-two sector was parameterized much
more generally,

CµναβW(2)Cµναβ (62)

whereW(2) is an arbitrary function, referred to as a form-factor.
This directly impacts the spin-two propagator which becomes

iD2(q) =
i

q2 − q4W(q2)
(63)

Within the approximations of the calculation [61], the result is
approximated by

W(q2) = w∞ +
ρ

α − q2
(64)

where ρ ≃ 0.015 α ≃ 1.8 in Planck units and w∞ is a constant
which is not determined by the calculation. In writing this
result, I have made the continuation to Minkowski space in the
most naive fashion—just changing the sign on the momentum.
The result in Bosma et al. [61] is an approximate fit to the
Euclidean numerical results and its full analytic structure is not
precisely defined. Moreover, the comments above about analytic
continuation would also be applicable to this form-factor, and it
is not clear how open channels would influence this continuation.
In any case, this will have ghost poles when

q2W(q2) = 1 (65)

Assuming that there are no tachyonic states, this is still a
ghost pole. The form-factor description [61, 62] is a welcome
new direction, because the functions of 2 have direct physical
relevance, in contrast with the unphysical parameter k.

4.3. The Graviton Propagator and
Lorentzian Asymptotic Safety
The higher order momentum dependence in the graviton
propagator actually presents an opportunity for version of AS
which is defined from the start in Lorentzian space. Potentially
this could circumvent some of the problems which we have
been discussing. However, it would require a reinterpretation of
the program.

We have learned that low energy quantum effects involving
3 and G do not organize themselves in the way implied by
present AS practice, or indeed of that suggested by the general
Weinberg criterion.

However, we can also see that this may be irrelevant to the
high energy behavior of the theory. In quadratic gravity, the
propagator is modified by q4 terms, such that the effects of 3 and
G (of order q0 and q2) are sub-dominant at high energy, and the
result is a renormalizeable theory. So the fact that there is not a
good definition of a running 3 and G is not important for the
overall structure of the theory. The parameters of the quadratic
curvature terms are the essential ones for the renormalizablilty
and running of the theory. In an AS framework, one could
truncate at yet higher orders. This produces higher powers of
momenta in the graviton propagator which are determine its high
energy behavior.

Let us look at the potential for divergences in diagrams with
these higher powers of the momenta. Consider the graviton
propagator with the high energy behavior 1/qn. For consistency,
we need to keep vertices with powers of momentum running up
to qn, as the same operator which gives momentum dependence
to the propagator will also give new vertices. The most divergent
diagrams are the ones with the highest powers of momentum
in the vertices, so we will consider that all vertices carry this
maximal momentum factor. Let NV be the number of vertices,
NI be the number of internal propagators, and NL be the number
of loops. Then the overall high- momentum dependence of the
diagram will be

(d4q)NL (qn)NV
1

(qn)NI
(66)

from loop momenta, vertices and propagators8. However, the
number of internal propagators can be eliminated in favor of the
number of vertices and loops. The relation is

NI = NL + NV − 1 . (67)

8The factors of q will in general involve external momenta, q − pi and after

integration the amplitude will be expressed in terms of these pi. Using dimensional

regularization is useful here as it does not introduce extra dimensionful

parameters, and the dimension in any divergence will be realized in terms of the

external momenta.
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This converts the high energy behavior into

qDn = (q)4NL (qn)NV
1

(qn)NL+NV−1
= q(n+NL(4−n)) (68)

which summarizes the divergence structure.
For two derivative actions, n = 2 and we recover the well

known power counting behavior of general relativity and chiral
perturbation theory [63]

qD2 = q(2+2NL) (69)

with tree level being q2, one loop having divergences at q4, two
loop at q6, etc. For n = 4, such as for quadratic gravity, we recover
power-counting renormalizability, with

qD4 = q4 (70)

independent of the number of loops. For larger values of n we
get super-renormalizable behavior, with the diagrams becoming
less divergent with higher loops. For example, for n = 6, the
power-counting gives

qD6 = q6−2NL (71)

As the loop order increases, the amplitudes are increasingly
focused on the infrared and are no longer divergent. Phrased
differently, tree-level amplitudes are always of order qn by
assumption. For any n there will be potential divergences at one
loop order involving effects at order q4. But then for larger n > 4
the diagrams become more convergent at higher loop order.

This allows a possible reinterpretation of the AS program.
Perhaps only some of the couplings need to be have the running
behavior implied by the Weinberg criterion. Sub-dominant
couplings such as 3 and G are not important for the program.
The important operators are those which dominate in the high
energy limit. While there are in general there are an infinite
number of these, the power counting above indicates that
the damping provided by the higher powers of the graviton
propagator may make a truncation at higher order feasible. This
inverts the present practice. Instead of a focus on low dimensional
operators, one is more interested in higher dimensional operators
that influence the graviton propagator. I note a similarity with the
“form-factors program” [62] in which the operators in the form
factor, such as Equation (64), are higher powers of momentum
in the graviton propagator. It would be interesting to see if this
program could be formulated in Lorentzian spacetime.

Of course, this suggestion is still somewhat vague and needs
to be better developed. One still needs to avoid tachyons and deal
with ghosts. But it does point to a form of Asymptotic Safety that
can be described from the start in Lorentzian spaces, and which
can be in agreement with explicit calculations at low energy.
Moreover, it is clear that the high momentum behavior of the
graviton propagator is of special significance as it determines the
UV properties of loop diagrams.

5. OVERALL ASSESSMENT

We have examined in particular the running Newton constant
G(k) within AS and argued that it is not valid for use in the real
world. The reasons for that include:

1. It does not capture the energy dependence in explicit
observables. There are kinematic and universality obstacles
to any such use. Note that these examples are also counter-
examples to the Weinberg conditions for Asymptotic Safety if
applied to G, 3. If the Weinberg vision for Asymptotic Safety
is to continue, the conditions need to be modified to exclude
the low energy parameters G, 3.

2. The definition of the G(k) and 3(k) are such that they
include quantum effects beyond the scale k. They should be
supplemented with the quantum effects below k. When this is
done, the intermediate scale k should disappear.

3. We can also see that the values of G(k) and 3(k) arise
from the tadpole diagram, which (a) vanishes in dimensional
regularization and (b) does not contain any external
momentumflow through the loop. This loopwill not influence
the kinematic behavior of reactions.

Points 2 and 3 indicate that these couplings are what I
have referred to as incomplete couplings rather than running
couplings in the sense of the Weinberg criterion. They become
complete only in the k → 0 limit. In this sense there is
a disconnect between essentially all of present AS practice
and the Weinberg conditions of Equations (17)–(19). It needs
to be recognized that the cutoff dependence of G(k), 3(k)
and likely many of the higher power couplings is not the
same as the running couplings in physical reactions. These
features are most problematic in attempts to apply Asymptotic
Safety in phenomenological settings. Some of the previous
phenomenological applications have been discussed in the
surveys of the subject [3, 5]. The use of these couplings is not
appropriate for phenomenological applications and does not
satisfy the goals of Asymptotic Safety.

In the process of making these comparison, it can be
recognized that at least a portion of Weinberg’s conditions
for Asymptotic Safety fails at the energies which we have
considered—that which applies to the proposed running of G
and 3. Not only does the FRG version of running fail to match
explicit calculations, but even operationally there is no form that
will work at scales belowMP. Nature does not organize itself this
way. This need not be a fatal flaw, as these couplings describe
operators which are sub-dominant in the high energy limit.
Higher powers of curvatures and derivatives will dominate at
high energy, and so it is possible that even if G and 3 do not run,
the important couplings at high energy do. This is what happens
in quadratic gravity, where the curvature squared terms make the
theory renormalizeable and their coefficients do have logarithmic
running. However, there still needs to be a reformulation of
the Weinberg criterion which takes into account the multiple
kinematic variables of different magnitudes and signs which
complicate to running of non-logaritmic power-law couplings.

This leaves the “ideal FRG program” as a possibility. Here
one integrates in Euclidean space down from the UV fixed point
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all the way to k = 0. The couplings have “run” in the theory
space of coupling constants not in the real space of energies
and momenta, and have completed their evolution by taking the
k → 0 limit. At intermediate values of k these couplings are
not considered to be physical, but their k = 0 limit defines an
action with an infinite number of terms, which is then to be
applied in Lorentzian space. The action is described by an infinite
number of parameters such as G and 3, which are themselves
just constants defined by their k → 0 limit. These couplings
are correlated—fixed by a smaller number defined at the fixed
point. This appears to be the situation advocated in section 6.18
of the Wetterich review [64]. However, it is a very different
situation than the Asymptotic Safety envisioned by theWeinberg
conditions in Equations (17)–(19), where the running couplings
were functions of energy applied in physical reactions. Here I
have raised two cautions:

1. Any truncation of this ideal action will have ghosts, and
possibly tachyons. These have to be understood and managed.

2. Any truncation without tachyons will likely have one or
more obstacles to the analytic continuation from Euclidean to
Lorentzian space. These are poles in the graviton propagator
that occur in the quadrants needed for the Euclidean rotation.

There can be a significant difference between a Euclidean theory
and a Lorentzian one in the presence of operators with higher
derivatives/curvatures.

It is possible that both of these points can be overcome.
However, even if this occurs, we do not have any indication on
why the resulting theory would satisfy the Weinberg criterion
or lead to finite results in physical observables. The Weinberg
criterion gave an intuitive rationale for the finiteness of the
theory. But if this ideal FRG program does not generate running
parameters in physical reactions, we need a new rationale. If the

cutoff dependence in G(k) etc is not the same as the running
of couplings in physical reactions, what reason do we have to
expect that we get finite high energy limits for such reactions?
The existence of a Euclidean UV fixed point is not sufficient by
itself for this result. Indeed, existing truncations do not satisfy
this despite all having such fixed points. One needs to obtain
finite results for an infinite number of processes at an infinite
number of kinematic points. One does have an infinite number
of couplings, but the mechanism for success is unknown.

On the more positive side, I have argued that maybe a
Lorentzian version of AS could occur through a focus on the
higher order terms contributing to the graviton propagator.
The basic point here is that 3 and G become unimportant at
high energy in the graviton propagator when higher powers
of of qn appear in the propagator. This is seen in quadratic
gravity where the inclusion of q4 terms in the propagator lead
to a renormalizeble theory, and is encountered in Euclidean AS
through the inclusion of form-factors [62]. I have used power
counting to argue that one could perhaps get a Lorentzian theory
with these higher order terms.
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