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Abstract—Weconsider a time-slotted energy-harvestingwireless
sensor transmitting delay-sensitive data over a fading channel. The
sensor injects captured data packets into its transmission queue
and relies on ambient energy harvested from the environment to
transmit them. We aim to find the optimal scheduling policy that
decides howmany packets to transmit in each time slot tominimize
the expected queuing delay. No prior knowledge of the stochastic
processes that govern the channel, captured data, and harvested
energy dynamics is assumed, thereby necessitating online learn-
ing to optimize the scheduling policy. We formulate this problem
as a Markov decision process (MDP) with state-space spanning
the sensor’s buffer, battery, and channel states, and show that
its optimal value function is non-decreasing and has increasing
differences, in the buffer state, and that it is non-increasing and has
increasing differences, in the battery state. We exploit this value
function structure knowledge to formulate a novel accelerated
reinforcement learning (RL) algorithm based on value function
approximation that can solve the scheduling problem online with
controlled approximation error, while inducing limited computa-
tional and memory complexity. We rigorously capture the trade-
off between approximation accuracy and computational/memory
complexity savings associated with our approach. Our simulations
demonstrate that the proposed algorithm closely approximates the
optimal offline solution, which requires complete knowledge of
the system state dynamics. Simultaneously, our approach achieves
competitive performance relative to a state-of-the-art RL algo-
rithm, at orders of magnitude lower complexity. Moreover, con-
siderable performance gains are demonstrated over the widely
popular Q-learning RL technique.

Index Terms—Energy harvesting, delay-sensitive remote
sensing, transmission scheduling, accelerated reinforcement
learning, structural properties, value function, post-decision state
learning, virtual experience learning.
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I. INTRODUCTION

ENERGY-CONSTRAINED wireless sensors are increas-
ingly used for emerging latency-sensitive applications such

as real-time remote visual sensing [1], [2], body sensor net-
works [3], smart grid monitoring, UAV-IoT, and mobile virtual
and augmented reality [4]–[6]. However, these sensors are sub-
ject to time-varying channel conditions and generate stochastic
traffic loads – arising due to the compression algorithms that
nodes apply before transmitting the sensed data [7] and due
to the event-driven nature of many sensor network applica-
tions [3], [8] – which makes it very challenging for them to
support such applications. This is further complicated by the
introduction of wireless sensors powered by energy harvested
from the environment (e.g., ambient light, vibration/motion, or
RF energy [9]). Although energy harvesting sensors (EHSs)
can operate autonomously without access to power lines and
without the need to change their batteries, the stochastic nature
of the harvested energy sources poses further challenges in
sensor power management, transmission power allocation, and
transmission scheduling due to the uncertainty in the amount
of energy available for communication. Therein arises a need
to study and optimize the transmission scheduling policies em-
ployed by these sensors.

A. Related Work

A lot of recent work focuses on offline computation of op-
timal transmission policies for EHSs [10]–[13]. For example,
Gurakan and Ulukus [10] consider a multiaccess channel with
two EHSs. Assuming that both energy and traffic arrive inter-
mittently over time, and that their arrival processes are known
a priori, they derive the optimal offline transmission power and
rate allocations that maximize a sum rate objective function.
Lu et al. [11] formulate a throughput-optimal channel selection
policy for EHSs operating as secondary users in a cognitive
radio network. Gunduz et al. [13] identify Markov decision
processes (MDPs [14]) as a useful tool for optimizing EHSs in
unpredictable environments with only causal information about
the past and present, and statistical information about the future
dynamics. Sharma et al. [12] formulate both throughput-optimal
and delay-optimal energymanagement policies asMDPs.While
these studies identify techniques for calculating optimal trans-
mission policies offline, they do not provide analytical insights
on the characteristics of the optimal solutions or methods to
solve the considered problems without a priori knowledge of
the energy and traffic arrival processes.
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Complementing the aforementioned research, another impor-
tant body of work focuses on characterizing optimal transmis-
sion policies for EHSs [3], [15]–[21]. For example, numerous
studies have shown that optimal power allocation policies for
EHSs are achieved using various water-filling strategies [15]–
[17]. Ozel et al. [15] consider two related problems: (i) max-
imizing the number of bits transmitted by a deadline and (ii)
minimizing the time to transmit a certain number of bits. They
identify that the transmission power over time that optimizes
the first objective is achieved through directional water-filling.
Ho and Zhang [16] consider the problem of throughput-optimal
power allocation over a finite horizon. If unlimited energy can
be stored in the battery and full state information is available
about past, present, and future slots, they prove that the optimal
energy allocation solution is based on water-filling, where the
water levels follow a staircase function. Yang and Ulukus [17]
consider a two-user multiple access channel. Their goal is to
minimize the required time by which all packets from both users
are transmitted, by controlling the users’ transmission powers
and rates. Under the assumption that the energy harvesting times
and amounts are known a priori, they prove that the optimal
power allocation policy can be found by backward water-filling.
Other characteristics of optimal transmission policies for

EHSs have also been studied [7], [18]–[20]. For example, Yang
and Ulukus [18] aim to adapt the transmission rate according to
traffic load and available energy to minimize the packet delivery
time. Assuming prior knowledge of data and energy arrivals,
they show that the optimal transmission rates increase in time.
Michelusi et al. [19] formulate the problem of maximizing
the average importance of transmitted data as an MDP. They
show that the EHS should only transmit data having importance
above a threshold that is a strictly decreasing function of the
energy level. Aprem et al. [20] formulate outage optimal power
control policies for EHSs. For the special case of binary power
levels, they show that the optimal policy for the underlyingMDP
represents a battery state threshold. Zordan et al. [7] formulate
optimal lossy compression policies for EHSs using constrained
MDPs. They demonstrate that the optimal compression policy is
non-decreasing in the battery, channel, and energy source states.
In practical scenarios, however, the stochastic processes gov-

erning the channel, captured data, and harvested energy dynam-
ics are unknown a priori. This necessitates online learning of
transmission scheduling policies to adapt to the experienced
dynamics on-the-fly. In this context, reinforcement learning
(RL [22], [23]) is an extremely useful tool. For instance, Blasco
et al. [24] propose the use of Q-learning [25] (the most widely
used RL technique) to maximize the throughput of an energy
harvesting transmitter that cannot store data in a buffer. Ortiz
et al. [26] use an approximate SARSA algorithm with linear
function approximation in a point-to-point energy harvesting
system with a finite battery to find a power allocation policy that
maximizes throughput.While Q-learning and SARSA can solve
problems with small action/state spaces, they exhibit very poor
convergence rates. This makes them inappropriate for problems
with large state spaces or tight timing constraints, such as the
one we consider herein. In [27], the authors propose a Bayesian
RL approach in an energy harvesting system to decide the
transmit power and the number of transmitted data packets that
will maximize the long-term expected reward. However, this
approach requires keeping track of the number of times that the
system transitions from one state to another under each action.
This makes it inappropriate for problems with large state spaces
and deployment on systems with limited memory.

While the aforementionedworkmakes great progress towards
demonstrating the utility of RL in energy harvesting systems, it
is limited to data-driven RL algorithms that do not incorporate
useful information from the underlying system model. Exploit-
ing such knowledge about the nature of the available actions
(e.g., scheduling actions), the system’s dynamics (e.g., packet
losses, packet queuing behavior, and battery state evolution), and
the system’s cost structure (e.g., delay and packet overflows) can
significantly increase the learning rate, decrease the complexity,
and reduce the memory requirements of RL algorithms, thereby
making them suitable for EHSs.We pursue this approach herein.

B. Contributions

We consider the delay-sensitive energy harvesting scheduling
(DSEHS) problem where an EHS aims to find the optimal
scheduling policy that minimizes the expected queuing delay
experienced by its captured data packets. We formulate the
DSEHS problem as a discrete-timeMDP that takes into account
the stochastic captured data traffic loads, harvested energy, and
channel dynamics. Our primary contribution is the development
of a novel RL framework to solve the DSEHS problem online
without a priori knowledge of these dynamics.
We leverage three techniques to accelerate the RL algorithm,

while limiting its computational and memory complexity. First,
we use post-decision states (PDS [22], [23], [28], [29]), which
capture the system state after an action is taken, but before the
unknown dynamics take place.1 PDSs allow us to decompose
the problem into known and unknown components, so that the
algorithm only needs to learn the latter. This is in contrast to
purely data-driven RL algorithms, such as Q-learning, SARSA,
and Bayesian RL, which do not take advantage of information
that is available about the system model. Using PDSs also
exposes that in the DSEHS problem, the system’s unknown
dynamics are independent of the action variable. This allows us
to avoid action exploration [22], which can degrade the run-time
performance of RL algorithms [23], [28].2 Second, we leverage
so-called virtual experience (VE [23], [28]), which allows us
to update the value function at multiple states in each time slot.
VE dramatically improves the learning algorithm’s convergence
rate at the cost of increased computational complexity. Lastly,
we propose a novel value function approximation to reduce the
complexity induced by VE and reduce the memory required to
store the value function.
Our proposed approximation is motivated by the structure

of the optimal value function.3 Specifically, we show that the
optimal value function is non-decreasing and has increasing
differences in the buffer state and that it is non-increasing and
has increasing differences in the battery state. Owing to these

1In the DSEHS problem, the unknown dynamics include the number of data
packet arrivals, the amount of harvested energy, and the next channel state
realization.

2In RL, there is an important tradeoff between “exploiting” the action that has
the best known expected value and “exploring” alternative actions to discover
those with even better values. In practice, action exploration results in frequently
taking sub-optimal actions, thereby degrading the system’s performance during
the learning process.

3By structure we refer to specific mathematical properties of the optimal
value function. In prior literature, structural properties of the optimal value
function include, for example, integer convexity/concavity [30] and supermod-
ularity/submodularity [14], [29]. Such properties are important because they
can be exploited via value function approximation methods, wherein the value
function is represented, computed, and/or learned in a memory/computationally
efficient manner.
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TABLE I
LIST OF NOTATION

Fig. 1. System block diagram.

structural properties, we are able to develop a value function
approximation and correspondingRL algorithm that can quickly
learn a near-optimal value function with provably bounded and
controllable error. We refer to this structure-aware algorithm as
grid learning.
Finally, we demonstrate through MATLAB simulations that

our approach achieves competitive performance to a state-
of-the-art RL algorithm, at potentially orders of magnitude
lower computational and memory complexity. Additionally, it
achieves considerable performance gains over Q-learning.
The rest of the paper is organized as follows. We introduce

our system model in Section II, formulate the DSEHS problem
in Section III, and introduce our RL framework in Section IV.
We analyze the structural properties of the DSEHS problem in
Section V-A and formulate the proposed structure-aware accel-
erated RL algorithm in Section V-B. We present our simulation
results in Section VI and conclude in Section VII.

II. DELAY-SENSITIVE ENERGY-HARVESTING MODEL

We consider a time-slotted single-input single-output (SISO)
point-to-point wireless communication system in which an en-
ergy harvesting sensor transmits latency-sensitive data over a
fading channel. The system model is depicted in Fig. 1. The
system comprises two buffers: a data packet buffer that can hold
up to Nb data packets and an energy buffer (battery) that can
hold up to Ne energy packets, where Nb and Ne are possibly
infinite. We assume that time is divided into slots with fixed
length ΔT (seconds) and that the system’s state in the n-th
time slot is denoted by sn � (bn, en, hn) ∈ S, where bn ∈ Sb =
{0, 1, . . . , Nb} is the packet buffer state (i.e., the number of data

packets in the buffer), en ∈ Se = {0, 1, . . . , Ne} is the battery
state (i.e., the number of energy packets in the battery), hn ∈ Sh

is the channel fading state, and S = Sb × Se × Sh is the set of
system states.
At the beginning of each time slot, the EHS observes the state

of the system sn and takes a scheduling action an ∈ A(s) ⊆
{0, 1, . . . , Na}, where an denotes the number of transmitted
packets, A(s) denotes the set of feasible scheduling actions
in state s, and Na denotes the maximum number of packets
that can be transmitted in one time slot. Informally, the goal
of the EHS is to learn a policy π : S → A, which maps states
to feasible actions in each time slot in order to minimize the
average packet queuing delay given the scarce harvested energy.
The notation used throughout the paper is summarized in Table I.
Note that we omit the time index n from our notation when it is
not an essential component of an equation or when we are not
referring to a specific value of a variable in a specific time slot.
We now introduce the detailed systemmodel before formalizing
the problem in Section III.
Channel model: We assume a block-fading channel that is

constant during each time slot and may change from one slot to
the next. Similar to prior work [7], [23], [31]–[33], we assume
that the channel fading coefficient hn ∈ Sh is known to the
transmitter at the start of each time slot, that Sh denotes a finite
set of Nh channel states, and that the evolution of the channel
state canbemodeled as afinite stateMarkov chainwith transition
probability function Ph(hn+1|hn).

Physical layer model: We assume that the physical layer
transmits at a data rate βn/Ts (bits/s), where βn is the number
of bits per symbol determined by the modulation scheme and
Ts (s) is the symbol duration. Therefore, in order to transmit an

packets of size L (bits) inΔT (s), a modulation scheme must be
selected such that

βn = �anLTs/ΔT � (bits/symbol), (1)

where �x� denotes the ceiling operator, which rounds x up to
the nearest integer.
Similarly to [7], [23], [28], we set a target bit error probability

(BEP) for all transmissions, which we denote by BEPtarget. We
further assume that, given the channel state and target BEP,
the transmission power is a non-decreasing function of the
scheduling action an, i.e.,

Pn
TX = PTX(h

n, an;BEPtarget) (Watts). (2)
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This assumption holds for typical modulation schemes, such as
M -ary PSK and M -ary QAM [34, Table 6.1]. Also similarly
to [7], [23], [28], we do not consider coding; however, it can be
integrated by appropriately modifying (1) and (2).
Energy harvesting model: Similar to [24], we assume that

battery energy is stored in the form of energy packets. Let enH ∈
E = {0, 1, . . . ,MeH} denote the number of energy packets that
are available for harvesting in the nth time slot, where MeH is
the maximum number of energy packets that can be harvested
in one time slot. Additionally, let P eH (eH) denote the energy
packet arrival distribution. Intuitively,MeH and P eH depend on
the technology used (e.g., solar, piezoelectric, or RF), the energy
packet size, the time slot duration, and the ambient environment.
Energy packets are assumed to arrive at the end of each time slot
such that those that arrive in time slotn cannot be used until time
slots n′ > n. Therefore, the battery state at the start of time slot
n+ 1 can be found through the following recursion:

en+1 = min(en − enTX + enH , Ne), (3)

where enTX = eTX(h
n, an;BEPtarget) denotes the number of en-

ergy packets consumed in time slot n given the channel state hn,
scheduling action an, and target BEP. For simplicity, we assume
that the transmission energy enTX is an integer multiple of energy
packets, such that

enTX = eTX(h
n, an;BEPtarget)

= �PTX(h
n, an;BEPtarget)ΔT � (energy packets). (4)

Note that we only allow transmission actions an such that
eTX(h

n, an;BEPtarget) ≤ en because the EHS cannot consume
more energy than it has available. For notational simplicity, we
will omit the transmission energy’s dependence on the target
BEP in the remainder of the paper.
Given the energy arrival distribution P eH , the battery state e,

and the action a, the probability of observing battery state e′ in
the next time slot can be computed as:

P e(e′|[e, h], a) = EeH I{e′=min(e−eTX(h,a)+eH ,Ne)}, (5)

where EeH denotes the expectation over the harvested energy,
and I{·} is an indicator function that is set to 1 when {·} is true
and is set to 0 otherwise.
Trafficmodel:Let ln ∈ L = {0, 1, . . . ,Ml} denote the num-

ber of data packets generated by the sensor in the nth time slot,
whereMl denotes the maximum number of packets that can be
generated in one time slot. Additionally, letP l(l) denote the data
packet arrival distribution. Intuitively,Ml and P l depend on the
sensing modality, data compression strategy, data packet size,
time slot duration, and sensing environment. The buffer state at
the start of time slot n+ 1 can be found through the following
recursion:

bn+1 = min(bn − fn + ln, Nb), (6)

where fn = f(an;BEPtarget) is the number of packets that are
correctly received at the receiver in time slot n. By definition,
0 ≤ f(an;BEPtarget) ≤ an because the number of correctly
received packets cannot be more than the number of transmitted
packets. We also only allow transmission actions an such that
an ≤ bn because the EHS cannot transmit packets that are not
in its buffer. Note that new packet arrivals cannot be transmitted
in time slot n. Additionally, packets that are not successfully
received by the receiver in time slot n remain in the front of
the buffer so that they can be retransmitted in a future time slot
n′ > n. Retransmissions are scheduled based on the policy π,
just like any other transmission.

Assuming independent and identically distributed (i.i.d.) bit
errors, fn can be modeled as a binomial random variable with
conditional probability mass function P f (f |a;BEPtarget) =

Bin(a, 1− q) =
(
a
f

)
(1− q)fqa−f , f = 0, 1, . . . , a, where q =

1− (1−BEPtarget)
L is the packet loss rate (PLR) for a packet

of size L (bits). We refer to P f (f |a;BEPtarget) as the goodput
distribution because it denotes the distribution over the number
of correctly received packets in a time slot. Note that, although
we assume that the goodput has a binomial distribution, within
our proposed framework it may follow any distribution that
depends on the scheduling action and the target BEP. For no-
tational simplicity, hereafter we omit the goodput distribution’s
dependence on the target BEP.
Given P f , the arrival distribution P l, the buffer state b, the

action a, and the BEPtarget (omitted from the notation), the
probability of observing buffer state b′ in the next time slot can
be calculated as follows:

P b(b′|[b, h], a) = Ef,lI{b′=min(b−f+l,Nb)}. (7)

III. THE DELAY-SENSITIVE ENERGY-HARVESTING

SCHEDULING (DSEHS) PROBLEM

Letπ : S → A denote a policy thatmaps states to actions. The
objective of the DSEHS problem is to determine the optimal
policy π∗ that minimizes the average packet queuing delay
given the available energy. However, this does not mean that
the policy should greedily transmit packets whenever there is
energy to do so. On the contrary, it may be beneficial to abstain
from transmitting packets in bad channel states and wait to
transmit them in good channel states to avoid wasting scarce
harvested energy. At the same time, the policy should not be
too conservative. For instance, if the battery is (nearly) full,
transmitting packets will make room for more harvested energy,
which otherwise would be lost due to the finite battery size.
We formulate this challenging sequential-decision problem, in
which present scheduling actions affect the EHS’s future perfor-
mance, as an MDP [14].

A. MDP Preliminaries

An MDP is defined by a tuple (S,A, c, P, γ), where
� S is a finite set of states;
� A is a finite set of actions;
� c : S ×A → R is a cost function, which defines the ex-
pected cost of taking action a ∈ A in state s ∈ S;

� P : S ×A× S → [0, 1] is a transition probability func-
tion, which defines the probability of transitioning to state
s′ ∈ S after taking action a ∈ A in state s ∈ S; and

� γ ∈ [0, 1) is a discount factor, which determines howmuch
weight is given to the future costs when deciding which
action to take in each state.

A value function, V π(s), estimates how good (or bad) it is to
be in each state while following the policy π. Formally, V π(s)
is defined as,

V π(s) = E

[ ∞∑

n=0

(γ)nc(sn, π(sn))|s = s0

]

, (8)

where (γ)n denotes the discount factor to the nth power and
the expectation is taken over the sequence of states, which is
governed by the controlled Markov chain with transition prob-
abilities P (s′|s, a). In words, V π(s) is the expected discounted
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cost when starting in state s and following policy π, where the
cost incurred n time slots in the future is discounted by (γ)n.
We can rewrite V π(s) recursively by taking advantage of the
transition probability function:

V π(s) = c(s, π(s)) + γ
∑

s′∈S
P (s′|s, π(s))V π(s′). (9)

In (9), it is clear that the action π(s) taken in state s not only
affects the immediate cost, i.e., c(s, π(s)), but also the expected
future cost, i.e.,

∑
s′∈S P (s′|s, π(s))V π(s′).

The objective of an MDP is to find a policy that optimizes the
value function. Since we aim to minimize the discounted cost,
we have:

V ∗(s) = min
π

V π(s), ∀s ∈ S. (10)

The solution to (10) satisfies the following Bellman equation,
∀s ∈ S [14], [22]:

V ∗(s) = min
a∈A

{
c(s, a) + γ

∑

s′∈S
P (s′|s, a)V ∗(s′)

}
(11)

= min
a∈A

Q∗(s, a), (12)

where V ∗ is the optimal value function and Q∗ is the optimal
action-value function. In words, Q∗ is the value obtained by
taking action a in state s and then following the optimal policy
thereafter. Given V ∗ or Q∗, the optimal policy π∗ can be de-
termined by taking the action in each state that minimizes the
right-hand side of (11) or (12). We are now ready to formulate
the DSEHS problem as an MDP.

B. Formulation of the DSEHS Problem as an MDP

In the DSEHS problem, the set of states S = Sb × Se × Sh

is defined as the Cartesian product of the sets of buffer states
Sb, battery states Se, and channel states Sh. The set of feasible
actions A(b, e, h) depends on the buffer, battery, and channel
states. Specifically,

A(b, e, h) =

{
a ∈ {0, . . . , Na} : a ≤ b and eTX(h, a) ≤ e

}
.

(13)
This means that the EHS cannot schedule more packets than are
available in the buffer (i.e., a ≤ b) and that there is sufficient
energy in the battery to transmit the desired number of packets
(i.e., eTX(h, a) ≤ e).

We define the cost function, denoted here as the buffer cost,
such that it penalizes large buffer states. Formally, we define the
buffer cost as the sum of the holding cost and the expected over-
flow cost with respect to the arrival and goodput distributions,
i.e.,

c([b, h], a) = b+ ηEf,l{max(b− f + l −Nb, 0)}. (14)
Note that the buffer cost does not directly depend on the battery
state e, though the set of feasible actions does. The holding cost
is simply the buffer state (i.e., the first term on the right-hand
side of (14)).Meanwhile, the overflow cost (i.e., the second term
on the right-hand side of (14)) imposes a large penalty η for each
expected packet overflow,where the expectation is taken over the
arrival and goodput distributions (i.e., P l and P f , respectively).
We discuss our choice of cost function, and its relation to the
queuing delay, in more detail in Appendix A.
We define the transition probability function as the product

of the conditionally independent buffer state transition proba-
bilities (7), battery state transition probabilities (5), and channel

state transition probabilities: i.e.,

P (s′|s, a) = P b(b′|[b, h], a)P e(e′|[e, h], a)Ph(h′|h). (15)

Finally, the DSEHS problem’s objective is to find a schedul-
ing policy that minimizes the value function as in (10). The
resulting optimal value function satisfies the standard Bellman
equation (11), but with the generic cost function c(s, a) and
transition probability function P (s′|s, a) replaced respectively
with the buffer cost c([b, h], a) defined in (14) and the transition
probabilities defined in (15).
As the channel, energy arrival, and traffic arrival dynamics

are unknown a priori, the optimal policy cannot be computed
offline using standard dynamic programming techniques, such
as value iteration and policy iteration [22], [35]. Instead, it
must be learned online as the EHS operates in its environ-
ment. Existing online approaches in EHSs typically rely on
Q-learning [24]. However, Q-learning exhibits extremely slow
convergence rates for problems with many states and actions.
In our prior work [23], we proposed a fast RL algorithm that
achieves up to three orders of magnitude faster convergence
rates than Q-learning. However, its complexity is too high for
EHSs. In Section V, we adapt the solution in [23] to create a
fast and low-complexity RL algorithm based on value function
approximation,which is better suited for EHSs.However, before
wepresent the newalgorithm,wemust review theRL framework
developed in [23].

IV. REINFORCEMENT LEARNING FRAMEWORK

In this section, we introduce fundamental RL concepts that
we build on in Section V-B. In Section IV-A, we review the
post-decision state (PDS) concept. In Section IV-B, we describe
PDS learning, which learns a value function defined over the
PDSs. In Section IV-C,we prove that the PDS learning algorithm
converges. In Section IV-D, we introduce the concept of virtual
experience.

A. Post-Decision State Based Dynamic Programming

A PDS, denoted by s̃ � (b̃, ẽ, h̃) ∈ S , is a state of the system
after all controllable/known system dynamics have occurred
after taking an action, but before the unknown system dynamics
occur [22], [23], [31]. Herein,

s̃n = (b̃n, ẽn, h̃n) = ([bn − fn], [en − eTX(h
n, an)], hn)

(16)
is the PDS in time slot n. The buffer’s PDS b̃n = bn − fn

characterizes the buffer state after packets are transmitted (if
any), but before any new packets arrive; the battery’s PDS
ẽn = en − eTX(h

n, an) characterizes the battery state after en-
ergy packets are consumed (if any), but before any new energy
packets arrive; and the channel’s PDS h̃n = hn is the same as
the channel state at time n. In other words, the PDS incorporates
all of the known information about the transition from state sn

to state sn+1 after taking action an. Note that, although the
realization of fn is not known at the time the action is taken,
its distribution P f is known. As will become clear in (19), this
is sufficient to include it in the buffer’s PDS. Meanwhile, the
unknown dynamics in the transition from state sn to sn+1, i.e.,
the channel state transition from hn to hn+1∼Ph(·|hn), the
data packet arrivals ln∼P l(·), and the energy packet arrivals
enH ∼P eH (·) are not included in the PDS because Ph, P l, and
P eH are unknown a priori. The next state can be expressed in

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 15:34:02 UTC from IEEE Xplore.  Restrictions apply. 



1414 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

terms of the PDS as follows:

sn+1 = (bn+1, en+1, hn+1)

=
(
min(b̃n + ln, Nb),min(ẽn + enH , Ne), h

n+1
)
. (17)

Just as we defined a value function over the conventional
states, we can define a PDS value function over the PDSs. Let Ṽ ∗

denote the optimal PDS value function. Ṽ ∗ and V ∗ are related
by the following Bellman equations:

Ṽ ∗(s̃) = ηEl max(b̃+ l −Nb, 0) + γEl,eH ,h′V ∗

× ([min(b̃+ l, Nb),min(ẽ+ eH , Ne), h
′]) (18)

V ∗(s) = min
a∈A(b,e,h)

{
b+ Ef Ṽ

∗(b− f, e− eTX(h, a), h)
}
.

(19)

Given Ṽ ∗(s̃), the optimal policyπ∗(s) can be found by taking the
action in each state that minimizes the right-hand side of (19).
Note that, since the goodput distribution P f is known, we can
take an expectation of the PDS value function over the buffer’s
PDS b− f in (19). In Appendix B, we derive (18) and (19), and
show that they are equivalent to the standard Bellman equation
in (11).

B. Post-Decision State Learning

PDS learning is a stochastic iterative algorithm for learning
the PDS value function Ṽ ∗(s̃) without prior knowledge of the
data arrival distribution P l, energy arrival distribution P eH , and
channel transition probabilities Ph.

PDS learning is presented in Algorithm 1. At the start of
time slot n, PDS learning takes the greedy action an that
minimizes the right-hand side of (20). After observing the un-
known dynamics (comprising the data packet arrivals ln∼P l(·),
energy packet arrivals enH ∼P eH (·), and the next channel state
hn+1∼Ph(·|hn)), the algorithm evaluates the PDS (b̃n, ẽn, h̃n)
as defined in (16). The core of the PDS learning algorithm is
the PDS value function update defined in Algorithm 2 (up-
date_PDSV). When update_PDSV is called in Algorithm 1,
it takes as input the current PDS value function estimate Ṽ n,
the current PDS (b̃n, ẽn, h̃n), the current realization of the
dynamics (ln, enH , hn+1), and the learning rate parameter αn ∈
[0, 1]. It then uses (22) to compute a new PDS value function
estimate as a weighted average of (i) the current PDS value
function estimate Ṽ n(b̃n, ẽn, h̃n) and (ii) a new sample esti-
mate of the PDS value function, i.e., ηmax(b̃n + ln −Nb, 0) +
γV n(bn+1, en+1, hn+1), derived based on the observed dynam-
ics and the next state’s estimated value V n(bn+1, en+1, hn+1)
as computed in (21).

C. The Convergence of Post-Decision State Learning

In this section, we prove that the sequence of PDS value func-
tions Ṽ n generated by the PDS learning algorithm converges
to Ṽ ∗ with probability 1 as n → ∞. We begin by introducing
the concept of a “well-behaved” stochastic iterative algorithm,
which is known to converge under mild conditions [36]. In the
remainder of this section, we let ‖X‖ denote the L∞ norm of
the vector X , i.e., ‖(X(1), X(2), . . . , X(k))‖ = maxi X(i).

Algorithm 1: Post-Decision State Learning.

1: initialize Ṽ 0(b̃, ẽ, h̃) = 0 for all (b̃, ẽ, h̃) ∈ S
2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = argmin
a∈A(bn,en,hn)

{
bn +

∑a

f=0
P f (f |a)

Ṽ n(bn − f, en − eTX(hn, a), hn)
}

(20)

4: Observe ln, enH , and hn+1

5: Evaluate b̃n, ẽn, h̃n using (16)
6: Calculate Ṽ n+1(b̃n, ẽn, h̃n) using Algorithm 2:

update_PDSV
(
Ṽ n, [b̃n, ẽn, h̃n], [ln, enH , hn+1], αn

)

7: end for

Algorithm 2: Post-Decision State Value Function Update
(update_PDSV).

1: input Ṽ , [b̃, ẽ, h̃], [l, eH , h′], and α

2: Evaluate b′ = min(b̃+ l, Nb) and
e′ = min(ẽ+ eH , Ne)

3: Evaluate the next state’s value:

V (b′, e′, h′) = min
a∈A(b′,e′,h′)

{
b′ +

∑a

f=0
P f (f |a)×

Ṽ (b′ − f, e′ − eTX(h′, a), h′)

}
(21)

4: Update the PDS value function:

Ṽ (b̃, ẽ, h̃) ← (1− α)Ṽ (b̃, ẽ, h̃)+

α[ηmax(b̃+ l −Nb, 0) + γV (b′, e′, h′)] (22)

5: return Ṽ (b̃, ẽ, h̃)

Consider a stochastic iterative algorithm of the form:

Xn+1(i) = (1− βn)Xn(i) + βn[(HnXn)(i) + wn(i)],
(23)

where wn is a bounded random variable with zero expectation
and Hn belongs to a family of contraction mappings. The
iteration in (23) constitutes a well-behaved stochastic algorithm
if it satisfies the following conditions:

Definition 1: (Well-behaved stochastic iterative algo-
rithm [36]): A stochastic iterative algorithm is well-behaved
if:
1) Stochastic approximation: The non-negative step sizes βn

satisfy
∑∞

n=0 β
n = ∞ and

∑∞
n=0(β

n)2 ≤ ∞.
2) Bounded noise: There exists a constant G that bounds

wn(i) for any history Fn, i.e., |wn(i)| ≤ G,∀n, i.
3) Contraction mapping: There exists a γ ∈ [0, 1) and a

vectorX∗ such that for anyX we have ||HnX −X∗|| ≤
γ||X −X∗||.

Proposition 1: The PDS learning algorithm defined in Algo-
rithm 1 is a well-behaved stochastic iterative algorithm.

Proof: The proof is given in Appendix C. �
Note that PDS learning converges relatively slowly because

it only updates the value of one PDS in each time slot. In the
next subsection, we introduce the concept of virtual experience,
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Algorithm 3: Virtual Experience Learning (T = 1).

1: initialize Ṽ 0(b̃, ẽ, h̃) = 0 for all (b̃, ẽ, h̃) ∈ S
2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = argmin
a∈A(bn,en,hn)

{
bn +

∑a

f=0
P f (f |a)

Ṽ n(bn − f, en − eTX(hn, a), hn)
}

(24)

4: Observe ln, enH , and hn+1

5: for all (b̃, ẽ) ∈ Sb × Se do
6: Calculate Ṽ n+1(b̃, ẽ, hn) using Algorithm 2:

update_PDSV
(
Ṽ n, [b̃, ẽ, hn], [ln, enH , hn+1], αn

)

7: end for
8: end for

which allows us to update multiple PDSs in each time slot
thereby dramatically improving the convergence rate.

D. Virtual Experience Learning

Virtual experience learning is a state-of-the-art reinforcement
learning algorithm that we proposed in our prior work [23]. The
key idea is that it is possible to update the value of multiple
PDSs in each time slot. In the DSEHS problem, virtual expe-
rience learning is enabled by the fact that the unknown data
arrival and energy packet arrival dynamics (i.e., ln∼P l(·) and
enH ∼P eH (·), respectively) are independent of the post-decision
buffer and battery states (i.e., b̃n and ẽn, respectively). This
enables us to update all PDSs with the same post-decision
channel state h̃n, butwith different b̃ and ẽ given the observations
of ln, enH , and hn+1. Updating |Sb × Se| PDSs in every time
slot significantly improves the convergence rate at the cost of
increased computational complexity. Specifically, if the update
is applied every T time slots, then the average number of PDSs
updated in each time slot is |Sb × Se|/T . Algorithm 3 provides
pseudo-code for virtual experience learning with an update
period of T = 1.

V. VALUE FUNCTION APPROXIMATION-BASED

REINFORCEMENT LEARNING

Virtual experience learning is too complex to implement on
EHSs because it requires updating |Sb × Se| PDSs every T time
slots. Although T can be increased to further reduce the average
learning complexity, this comes at the expense of a significant
decrease in the convergence rate [23]. In this section, we pursue
a more effective approach to reduce the complexity of virtual
experience learning, while still reaping its benefits. Specifically,
we propose to learn an approximate value function instead of
the true value function. To this end, we first present several
structural properties of the optimal PDS value function Ṽ ∗(s)
(SectionV-A).Then,motivatedby these properties,wepropose a
novel RL algorithm that learns a near-optimal piece-wise planar
approximation of the PDS value function (Section V-B).

A. Structural Properties of the Optimal Value Function

Integer convexity is key to understanding the structure of the
optimal PDS value function.

Definition 2. (Integer Convex): An integer convex function
f(n) : N → R on a set of integers N ∈ {0, 1, . . . , N} is a
function that has increasing differences in n, i.e.,

f(n1 +m)− f(n1) ≤ f(n2 +m)− f(n2) (25)

for n1 < n2 and n1, n2, n1 +m,n2 +m ∈ N .
The following propositions establish the key structural prop-

erties of the PDS value functionwith respect to the post-decision
buffer state b̃ and the post-decision battery state ẽ, respectively.
The proofs are given in [37].

Proposition 2: The optimal PDS value function Ṽ ∗(b̃, ẽ, h̃)

has the following structural properties with respect to b̃:
1) Ṽ ∗(b̃, ẽ, h̃) is non-decreasing in b̃, i.e.,

Ṽ ∗(b̃, ẽ, h̃) ≤ Ṽ ∗(b̃+ 1, ẽ, h̃).

2) Ṽ ∗(b̃, ẽ, h̃) has increasing differences in b̃, i.e.,

Ṽ ∗(b̃, ẽ, h̃)− Ṽ ∗(b̃− 1, ẽ, h̃) ≤ Ṽ ∗(b̃+ 1, ẽ, h̃)

− Ṽ ∗(b̃, ẽ, h̃).

Proposition 3: The optimal PDS value function Ṽ ∗(b̃, ẽ, h̃)
has the following structural properties with respect to ẽ:
1) Ṽ ∗(b̃, ẽ, h̃) is non-increasing in ẽ, i.e.,

Ṽ ∗(b̃, ẽ, h̃) ≥ Ṽ ∗(b̃, ẽ+ 1, h̃).

2) Ṽ ∗(b̃, ẽ, h̃) has increasing differences in ẽ, i.e.,

Ṽ ∗(b̃, ẽ, h̃)− Ṽ ∗(b̃, ẽ− 1, h̃) ≤ Ṽ ∗(b̃, ẽ+ 1, h̃)

− Ṽ ∗(b̃, ẽ, h̃).

Proposition 2 implies that the cost to serve an additional data
packet increases with the buffer state. Proposition 3 implies that
the benefit of an additional energy packet decreases with the
available battery energy.

B. Grid Learning

This subsection is organized as follows. We motivate our
proposed value function approximation, which is based on a
quadtree data structure, in Section V-B1; we formalize the
quadtree data structure and present relevant quadtree opera-
tions in Section V-B2; we present pseudocode for our pro-
posed reinforcement learning algorithm (called grid learning) in
Section V-B3; we detail how the value function can be approxi-
mated from the quadtree in Section V-B4; and we show how to
adaptively refine the quadtree to meet a target error tolerance in
Section V-B5.
1) Choice of Function Approximator: Different types of

function approximators, including linear function approxima-
tors and non-linear function approximators (e.g., neural net-
works), have been used to approximate value functions. Un-
fortunately, they lack some desirable properties. Though linear
function approximations are guaranteed to converge, there is
no way to systematically bound or control the approximation
error [22, Section 9.4]. Non-linear function approximations,
on the other hand, may converge to local minima, but are not
guaranteed to do so. In fact, in many cases, they are unstable
and fail to converge, even to within a bounded distance from the
optimal value function [22, Section 9.2].
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Fig. 2. Quadtree construction. Each leaf node is divided into a NW and SE
triangle in the piece-wise planar approximation.

Motivated by the fact that the optimal PDS value function has
increasing differences in the post-decision buffer and battery
states (see Propositions 2 and 3), we propose to approximate it
as a piece-wise planar function. We select this specific function
approximation because, owing to the PDS value function’s
aforementioned structural properties, it allows us to develop
a low-complexity reinforcement learning algorithm that can
quickly learn a near-optimal PDS value function with provably
bounded and controllable error. We refer to this structure-aware
algorithm as grid learning.

For each post-decision channel state h̃ ∈ Sh, grid learning
constructs a two-dimensional grid of post-decision buffer and
battery states on which to learn the PDS value function. How-
ever, rather than using a uniform grid, we propose to use a
quadtree data structure.4 We select this data structure so that
the value function approximation can be adaptively refined
in space (i.e., on the buffer-battery plane) and in time (i.e.,
from slot-to-slot) to meet a predetermined approximation error
threshold, δ, while requiring less memory than a uniform grid.
To construct the proposed piece-wise planar approximation from
the quadtree, we divide each leaf node in the quadtree into two
triangles, which lie on two intersecting planes. Together, the
planes of all leaf nodes compose the proposed piece-wise planar
approximation (see Fig. 2).
2) Quadtree Definition: Let T denote a quadtree defined on

the set of buffer-battery state pairs Sb × Se within a bounding

4A quadtree is a tree data structure in which each node has exactly four
children, or has no children. A node that does not have any children associated
with it is known as a leaf node. Quadtrees are often used to partition a two-
dimensional space by recursively subdividing it into four equal quadrants, sub-
quadrants, and so on.

box (BB) defined as follows (see Fig. 2(a)):

BB(T ) = {(b−, e−), (b+, e−), (b−, e+), (b+, e+)}, (26)

where 0 ≤ b− < b+ ≤ Nb and 0 ≤ e− < e+ ≤ Ne. In words,
BB(T ) comprises the extreme vertices of the quadtree. We say
that (b, e) lies inside T ’s bounding box if b− ≤ b ≤ b+ and e− ≤
e ≤ e+; otherwise, (b, e) lies outside T ’s bounding box.
If T is a leaf node, then it can be subdivided into four

sub-quadtrees (children) spanning its northwest (NW), north-
east (NE), southwest (SW), and southeast (SE) quadrants, i.e.,
subdivide (T ) = {TNW , TNE , TSW , TSE}, with bounding
boxes defined as follows (see Fig. 2(b)):

BB(TNW ) = {(b−, ē), (b̄, ē), (b−, e+), (b̄, e+)},

BB(TNE) = {(b̄, ē), (b+, ē), (b̄, e+), (b+, e+)},

BB(TSW ) = {(b−, e−), (b̄, e−), (b−, ē), (b̄, ē)},

BB(TSE) = {(b̄, e−), (b+, e−), (b̄, ē), (b+, ē)},
where b̄ = � b++b−

2 � ∈ Sb, ē = � e++e−
2 � ∈ Se, and �x� is the

floor operator, which rounds x down to the nearest integer. With
a slight abuse of notation, we write (b, e) ∈ T if (b, e) is an
element of T ‘s bounding box or one of its children’s bounding
boxes, recursively down to its leaf nodes.
3) Grid Learning: Let T n(h̃) denote the quadtree used to

approximate the PDS value function in channel state h̃ in time
slot n. We assume that BB(T n(h̃)) is defined as in (26) for all n.
Note that, as in Fig. 2(a), we do not require T n(h̃) to span the
entire buffer-battery plane (i.e., for b− = 0, b+ = Nb, e− = 0,
and e+ = Ne) becauseNb andNe may be very large (or infinite)
and it is often unnecessary to closely approximate the value at the
extremes of the state space (e.g., if there is an abundant energy
supply or very little data to serve).
Grid learning approximates the value of any PDS pair (b̃, ẽ) /∈

T n(h̃) using the values of PDS pairs (b̃, ẽ) ∈ T n(h̃). That is,
instead of operating directly on Ṽ , it operates on an approximate
PDS value function V̂ such that

V̂ n(b̃, ẽ, h̃) =
{
Ṽ n(b̃, ẽ, h̃), if (b̃, ẽ) ∈ T n(h̃)

approx
(
Ṽ n, T n(h̃), [b̃, ẽ, h̃]

)
, otherwise.

(27)

In Section V-B4, we describe how the function approx cal-
culates the approximate value of any buffer-battery state pair
(b̃, ẽ) /∈ T n(h̃)

Pseudocode for grid learning with update period T = 1 is
provided inAlgorithm4.At the start of the algorithm (n = 0),we
initialize T 0(h̃)with BB(T 0(h̃)) defined as in (26) and initialize
its child nodes to empty. In other words, T 0(h̃) serves as the root
of the quadtree and provides the minimum set of grid points
from which we can estimate the values of all (b̃, ẽ) ∈ Sb × Se

using the proposed piece-wise planar approximation. After ini-
tialization, the algorithmproceeds similarly to virtual experience
learning (Algorithm 3) with three key differences. First, as
noted above, the algorithm operates on an approximate PDS
value function V̂ instead of the actual PDS value function Ṽ .5

5In Algorithm 4 we slightly abuse the notation when we use V̂ n on the
right-hand side of (30) and as an argument to the update_PDSV function.
In practice, we have chosen to calculate values of V̂ n on-demand using the
approx function. In this way, we do not need to maintain a full tabular
representation of the (approximate) value function.
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Fig. 3. Associating the buffer-battery state pair (b, e) with the leaf node’s
closest triangle. If d1 < d2, then we use the NW triangle; otherwise, we use the
SE triangle.

Second, the function update_PDSV is only called for PDS
pairs (b̃, ẽ) ∈ T n(h̃), rather than all PDS pairs (b̃, ẽ) ∈ Sb × Se.
Since T n(h̃) is only a small subset of Sb × Se and Ṽ is only
defined on T n(h̃), ∀h̃ ∈ Sh, grid learning requires significantly
less computation and memory than exhaustive virtual experi-
ence learning operating on the full PDS value function (i.e.,
Algorithm 3). Third, since the approximate value function V̂
may not approximate all PDS pairs (b̃, ẽ) ∈ Sb × Se within the
target error tolerance δ, we use the update_grid function
(Algorithm 6) to adaptively refine the approximation over time.
We now describe the approx and update_grid functions
in detail.
4) PDS Value Function Approximation: Assume T (h) is the

root of the quadtree and that we want to find the approximate
value V̂ (b, e, h) of the buffer-battery state pair (b, e), which lies
inside of T (h)’s bounding box as defined in (26). The function
approx achieves this in roughly four steps: 1) associate (b, e)
with one of the quadtree’s leaf nodes; 2) further associate (b, e)
with the leaf node’sNWorSE triangle; 3) find the equation of the
plane defined by the selected triangle’s vertices (hereafter, we
will refer to this as the approximating plane); and 4) calculate the
approximate value of V̂ (b, e, h) from the approximating plane.

To be precise, we associate (b, e) with the quadtree’s nearest
leaf node using a recursive search from the root. We then
associate (b, e)with the leaf node’s nearest triangle as illustrated
in Fig. 3. Specifically, let d1 and d2 denote the distances between
(b, e) and the leaf node’s NW and SE vertices, respectively.
If d1 < d2, then we associate (b, e) with the NW triangle;
otherwise, we associate it with the SE triangle.
Denote the vertices of the selected triangle by xi =

(bi, ei, Ṽ (bi, ei, h)), for i = 1, 2, 3, as illustrated in Fig 4.
These three points define a plane with normal vector n =
(n1, n2, n3) = (x1 − x2)× (x1 − x3), where × denotes the
cross product. The equation of the approximating plane can
therefore be written as:

n1(b̃− b1) + n2(ẽ− e1) + n3(V − Ṽ (b1, e1, h)) = 0.

Finally, substituting (b, e) for (b̃, ẽ) and solving for V we get:

V = V̂ (b, e, h) = Ṽ (b1, e1, h)−
n1(b− b1) + n2(e− e1)

n3
.

(28)
Pseudocode for the function approx is given in Algorithm 5.

Fig. 4. Calculating the approximate value V̂ (b, e, h) of a buffer-battery state
pair (b, e) /∈ T (h) using a piece-wise planar approximation. V̂ (b, e, h) is
calculated as in (28).

The following proposition shows that the maximum error
resulting from a piece-wise planar approximation of the optimal
PDS value function is bounded.

Proposition 4: Let Ṽ ∗ denote the optimal PDS value func-
tion that satisfies the Bellman equation (18). Let V̂ denote the
approximate PDS value function (27). Let (b, e) be associated
with the triangle with vertices xi = (bi, ei, Ṽ

∗(bi, ei, h)), for
i = 1, 2, 3. It follows that

V̂ (b, e, h)− Ṽ ∗(b, e, h) ≤

max
i∈{1,2,3}

Ṽ ∗(bi, ei, h)− min
i∈{1,2,3}

Ṽ ∗(bi, ei, h). (29)

Proof: The result follows from the PDS value function’s
structural properties that are given inPropositions 2 and3. In par-
ticular, since Ṽ ∗ has increasing differences in b̃ and ẽ, the plane
defined by the approximating triangle provides an upper bound
on the true value function. Additionally, since Ṽ ∗ and V̂ are non-
decreasing in b̃ and non-increasing in ẽ, they are both bounded
by mini∈{1,2,3} Ṽ

∗(bi, ei, h) and maxi∈{1,2,3} Ṽ
∗(bi, ei, h) for

all (b, e) that lie in the approximating triangle. The result in (29)
immediately follows. �
5) Dynamic Grid Update: The function update_grid

adaptively refines the piecewise-planar approximation until a
predetermined maximum error threshold, δ, is met. The algo-
rithm finds the error δ� among all leaf nodes T� ∈ leaves (T ),
where δ� is calculated as the error defined on the right-hand side
of (29). Subsequently, if max� δ� > δ, then T� is subdivided
as described in Section V-B2. Pseudocode for the function
update_grid is given in Algorithm 6.

C. Complexity Analysis

Table II compares the action selection, learning update, and
grid update complexities of the proposedgrid learning algorithm
(Algorithm 4), Approximate SARSA [26], Q-learning [24], PDS
learning (Algorithm 1) and virtual experience learning (Algo-
rithm 3) in each time slot. Note that the grid update complexity
is only defined for grid learning because the other algorithms
do not include a grid update step. In what follows, let |S| and
|A| denote the set of states and actions, respectively; let |Sb|,
|Se| and |Sh| denote the number of buffer, battery, and channel
states, respectively; and let |L|, |E| and |F| denote the size of
supports for the data packet arrival, energy packet arrival, and
goodput distributions, respectively.
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TABLE II
ACTION-SELECTION AND ITERATION COMPLEXITY OF SEVERAL LEARNING ALGORITHMS

Algorithm 4: Grid Learning (Update Period T = 1).

1: initialize T 0(h̃) for all h̃ ∈ Sh as in (26),
Ṽ 0(b̃, ẽ, h̃) = 0 for all (b̃, ẽ) ∈ T 0(h̃) and h̃ ∈ Sh, and δ
to the desired error threshold

2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = argmin
a∈A(bn,en,hn)

{
bn +

∑a

f=0
P f (f |a)

V̂ n(bn − f, en − eTX(hn, a), hn)
}

(30)

4: Observe ln, enH , and hn+1

5: for all (b̃, ẽ) ∈ T n(hn) do
6: Calculate Ṽ n+1(b̃, ẽ, hn) using Algorithm 2:

update_PDSV
(
V̂ n, [b̃, ẽ, hn], [ln, enH , hn+1], αn

)

7: end for
8: Determine T n+1(hn) using Algorithm 6:

T n+1(hn) ← update_grid
(
Ṽ n, T n(hn), δ

)

9: end for

Algorithm 5: Approximate the PDS Value Function (Ap-
prox).

1: input Ṽ , T , and (b, e)
2: Associate (b, e) with T ’s nearest leaf node using a

recursive search
3: Further associate (b, e) with the leaf node’s closest

triangle as in Fig. 3
4: Calculate V̂ (b, e, h) from Ṽ as in (28)
5: return V̂ (b, e, h)

Q-learning and Approximate SARSA have action selection
and learning update complexities of O(|A|) as both algorithms
require evaluating the action-value function for all possible
actions during their action selection and learning update steps.
The PDS learning’s action selection complexity isO(|F||A|)

as, from (20), it needs to iterate over all possible goodputs, to
compute the right-hand side for one given action, and then over
all possible actions, to determine the best action. Its learning
update complexity as calculated from (21) is alsoO(|F||A|) for
similar reasons.
Virtual experience learning’s action-selection complexity is

the same as that of PDS learning, i.e.,O(|F||A|). To compute its
learning update complexity, we define |Π| = |Sb × Se|, which
denotes the total number of buffer-battery state pairs. Since
virtual experience learning proceeds similar to PDS learning,

Algorithm 6: Dynamic Grid Update (update_grid).

1: input Ṽ , T , and δ
2: for each leaf T� ∈ leaves(T ) do
3: Calculate the approximation error δ� as in (29)
4: end for
5: δmax ← max� δ� and �max ← argmax� δ�
6: if δmax > δ then
7: Subdivide quadtree T�max

and add to T
8: end if
9: return T

but updates all buffer-battery pairs in each iteration, its per-step
learning update complexity is O(|Π||F||A|).

The proposed grid learning algorithm features similar com-
plexity to virtual experience learning, save for the differences
mentioned in Section V-B4. Thus, the space of points directly
evaluated is reduced to the quadtree, T . Additionally, Algorithm
5 introduces a worst-case complexity of O(k) to determine the
approximate value of a (b̃, ẽ) pair in a quadtree with maximum
depth k. Thus, its per-iteration complexity is O(k|T ||F||A|),
and the additional complexity per call of the update_grid
method is O(k|T |) to check if the quadtree needs to be subdi-
vided further to meet the target error, δ.

VI. SIMULATION RESULTS

We now present our simulation results. In Section VI-A,
we describe the simulation setup. In Section VI-B, we com-
pare the proposed grid learning algorithm against Approximate
SARSA [26], Q-learning [24], PDS learning, virtual experi-
ence learning, and the optimal policy. Finally, in Section VI-C,
we explore how the approximation error threshold affects learn-
ing performance and study the behavior of our adaptive grid
refinement algorithm.

A. Simulation Setup

The simulation parameters used in our MATLAB-based
simulator are described in Table III. For illustration, we as-
sume that the buffer and battery have sizes Nb = 32 data
packets and Ne = 32 energy packets, respectively, and that
there are Nh = 8 channel states with SNRs h = {−13,−8.47,
−5.41,−3.28,−1.59,−0.08, 1.42, 3.18} dB, similar to [31].
This yields a large state space comprising a total of (Nb +
1)× (Ne + 1)×Nh = 8712 states.We assume that the channel
fading state is known to the transmitter at the beginning of each
time slot; however, theMarkovian channel transition probability
function, Ph, is unknown a priori. We further assume that the
data and energy packet arrival distributions,P l andP eH , respec-
tively, are Bernoulli, but are unknown a priori. Finally, we set the
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TABLE III
SIMULATION PARAMETERS

discount factor γ = 0.98 to balance present and expected future
costs and to optimize the long term behavior of the scheduling
policy. For our energy model, we considerM -PSK modulation.
In channel state h, the energy required to transmit a packets
with target BEP,BEPtarget, is given by (4), and the transmission
power PTX is approximated by [34, Table 6.1]:

PTX(h, a;BEPtarget) =
{ N0

2 hTs
[Q−1(BEPtarget)]

2, if β = 1,

N0

2 hβTs sin2(π/M)
[Q−1(β2 ·BEPtarget)]

2, if β > 1,
(31)

where Q−1(·) is the inverse of the Q-function; N0 is the noise
spectral density; and β is the number of bits per symbol, which
is determined using (1). The energy packet size is selected to
be the amount of energy required to transmit one packet in the
best channel state. Finally, the BEP target is set to achieve a 1%
PLR for packets with size L = 127 bytes.

B. Learning Algorithm Comparison

We implement Approximate SARSA as described in [26],
Q-learning as described in [22], PDS learning as described in
Section IV-B and Algorithm 1, VE learning as described in
Section IV-D and Algorithm 3, and grid learning as described
in Section V-B and Algorithm 4. Simulation results using the
parameters in Table III are presented in Fig. 5, where each curve
is obtained by averaging over eight 50,000 time slot simulations
with data packet arrival distribution P l(l) = Bern(0.4), energy
packet arrival distribution P eH (eH) = Bern(0.7), and initial
states b0 = e0 = 0.6 For grid learning, we use δ = 10 as the
approximation error threshold.
In Fig. 5, the curves labeled “Grid-T ” are obtained using grid

learningwith updates everyT = 10, 50, 100 time slots; the curve
labeled “VE-10” is obtained using VE learning with updates
every T = 10 time slots; the curves labeled “Q-learning” and
“PDS” are obtained from Q-learning and PDS learning, respec-
tively, with updates every time slot; and the curves labeled “Op-
timal” are obtained from the optimal policy, which is computed
offline using value iteration [22] assuming thatPh,P l, andP eH

are known a priori. Fig. 5(a) illustrates the cumulative average
queuing delay7 versus time; Fig. 5(b) illustrates the cumulative
average battery occupancy versus time; and Fig. 5(c) illustrates
the cumulative average buffer overflows versus time.

6Px(x) = Bern(p) denotes that x is a Bernoulli random variable that takes
value 1 with probability p and value 0 with probability 1− p.

7Throughout the simulation results, we use “queuing delay” to refer to the
queuing delay experienced by packets that are admitted into the queue. Please
see Appendix A for more details.)

Fig. 5. Performance comparison of the grid, PDS, and virtual experience
learning algorithms.

Q-learning and Approximate SARSA perform worse than
the other algorithms. This is due to the fact that: 1) they
require action exploration [22], [35], so they frequently choose
sub-optimal actions even if they have found the optimal action;
and 2) they can only learn about one state-action pair in each
time slot. Although PDS learning outperforms Q-learning and
Approximate SARSA, it also takes an unacceptably long time
to converge to the optimal solution because it can only learn
about one PDS in each time slot. We observe that “Grid-10”
achieves comparable delay performance to “VE-10” and “Opti-
mal” in 10,000 and 50,000 time slots, respectively. Importantly,
grid learning achieves this by updating 86% fewer states at
a time compared to VE learning (at most 143 states for grid
learning versus (Nb + 1)× (Ne + 1) = 1089 for VE learning)
and without any a priori knowledge about the channel, data
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Fig. 6. PDS value functions and their associated policies for different error thresholds (h = −3.28 dB, P l(l) = Bern(0.2), and P eH (eH) = Bern(0.7)).

arrival, and energy harvesting dynamics as is required to com-
pute the optimal solution. Owing to this, a near-optimal trans-
mission policy can be efficiently learned online on an EHS.
Both “Grid-50” and “Grid-100” achieve slightly worse delay
performance than “VE-10” after 50,000 time slots. Intuitively,
grid learning performs better with more frequent updates.
Fig. 5 also reveals how the system evolves over time. Since the

learning algorithms have no a priori knowledge of the dynamics,
they operate with suboptimal policies until they gain sufficient
experience by interacting with the environment. This leads to
an initial surge in the queuing delay and buffer overflows as
the EHS harvests energy from the environment, but has not yet
learned how many packets to transmit. SARSA, Q-learning and
PDS learning perform particularly poorly in this “cold start”
phase because, unlikeVE and grid learning, they have to actually
experience large buffer states and packet overflows to learn how
to avoid them.

C. Effect of the Approximation Error Threshold

In this section, we investigate the effect of the approximation
error threshold δ on grid learning. All results in this section
were taken after 50,000 time slot simulations with grid learning
updates applied every T = 100 slots.

In Fig. 6, we compare several approximate PDS value
functions (δ = 10, 20, 30) against the optimal PDS value
function (δ = 0) in channel state h = −3.28 dB with data
packet arrival distribution P l(l) = Bern(0.2) and energy packet
arrival distribution P eH (eH) = Bern(0.7). We also compare
their associated policies. In Fig. 6 a, we observe that the optimal
PDS value function is non-decreasing and has increasing
differences in the buffer state and is non-increasing and has
increasing differences in the energy state (cf. Propositions 2
and 3). By design, relaxing the error tolerance leads to coarser
piece-wise planar approximations of the PDSvalue function. For
instance, at approximation error thresholds 0, 10, 20, and 30, the
PDS value function is represented by 1089, 23, 18, and 9 states,
respectively. Interestingly, we can also see that the policies in
Fig. 6 become more aggressive as we relax the error threshold,
i.e., they choose to transmit packets at lower and lower battery
states.
Fig. 7 illustrates how the approximation errors (left-hand

side of (29)) and error bounds (right-hand side of (29)) vary
for different error thresholds and data packet arrival rates. We
observe that the error bound becomes tighter with respect to the
true approximation error as the arrival rate increases, and that it is
always less than the error threshold δ. This demonstrates that the
grid learning algorithm achieves both bounded and controllable
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Fig. 7. Approximation error and Error bound for error thresholds δ =
10, 20, 30 (P l(l)∼Bern(p)).

Fig. 8. Number of grid points for different error thresholds δ (h = −3.28 dB,
and PeH = Bern(0.7)).

error, and validates our choice of the proposed quadtree-based
adaptive piece-wise planar approximation.
Fig. 8(a) illustrates the number of grid points used to approx-

imate the PDS value function versus the approximation error
threshold δ for several data packet arrival rates. The measure-
ments were taken from the approximate PDS value function
in channel state h = −3.28 dB. These results further highlight
that the number of grid points used in the PDS value function
approximation decreases as the approximation error threshold
increases. This intuitively follows from the fact that higher
(resp. lower) error thresholds can be met by coarser (resp. finer)
quadtree decompositions. We also observe that, for a fixed en-
ergy packet arrival rate, the number of grid points needed tomeet
a given error threshold roughly increases with the data packet
arrival rate. This happens because the PDSvalue function’s slope
increases with the data packet arrival rate, which results in a
larger approximation error at a fixed quadtree decomposition
level (cf. Proposition 4). For instance, when P l(l) = Bern(0.6),
the number of grid points needed to approximate the PDS value
functionwithin an error threshold of δ = 5 is close to 150 points,
which is almost twice the number of grid points needed to meet
the same error threshold when P l(l) = Bern(0.1). This demon-
strates that grid learning can adapt to the experienced dynamics.

Fig. 9. Queuing Delay vs. Average Battery Occupancy (P l(l) = Bern(p)
and PeH (eH) = Bern(0.7)).

Fig. 8(b) illustrates how the quadtree decomposition evolves
over time to meet the approximation error threshold. Measure-
ments were taken from the approximate PDS value function in
channel state h = −3.28 dB. As before, the terminal number of
grid points is lower for higher approximation error thresholds,
δ. From the figure, we can see that the grid undergoes a lot of
refinement in the first 4000 time slots tomeet the error threshold.
This manifests as a step-wise increase in the number of grid
points every Tgrid = 100 time slots. Note that, subdividing a
leaf node can introduce 1-5 new grid points depending on the
refinement level of the surrounding leaf nodes; therefore, the
step sizes are variable over time.
Finally, Fig. 9 illustrates the average queuingdelay andbattery

occupancy versus the data packet arrival rate at three different
error thresholds. As expected, for a fixed energy packet arrival
rate, the average queuing delay displays complementary behav-
ior to the average battery occupancy. This is because, at low data
arrival rates, the buffer can be kept small using a small fraction of
the available energy. However, at high data arrival rates, more of
the available energy is needed to keep the buffer occupancy from
growing. In parallel, as the data arrival rate increases towards
the channel’s maximum service rate, the average buffer state
increases. We also observe that tighter error thresholds yield
better delay-energy trade-offs. For instance, δ = 5 results in a
lower average queuing delay while maintaining a higher average
battery occupancy than δ = 10. This can be explained by the fact
that more accurate PDS value function approximations translate
to better transmission scheduling policies.

VII. CONCLUSION

Foresighted decision making is required to minimize packet
queuing delays on resource-constrained energy harvesting wire-
less sensors. In practice, however, the lack of a priori knowledge
about the system’s experienced dynamics presents a major chal-
lenge. Online RL represents a natural paradigm for overcoming
this challenge, but generic RL algorithms are often unable to
meet the stringent requirements of such systems in terms of
memory, complexity, and convergence speed. Evidently, this
requires carefully exploiting the structure of the problemat hand.
In this paper, we formulate the delay-sensitive energy har-

vesting scheduling problem as an MDP. We develop a low-
complexity RL algorithm based on value function approxima-
tion, which exploits the structural properties of the optimal value
function. The proposed algorithm allows us to learn an accurate
approximation of the optimal value function online – with both
bounded and controllable error – which in turn enables effective
minimization of the packet queuing delay. We demonstrate that
the proposed algorithm achieves near optimal performance.
Moreover, competitive performance is demonstrated relative to a
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state-of-the-art learning algorithm, at potentially orders of mag-
nitude lower computational complexity. Finally, our framework
enables considerable performance gains over the widely used
Q-learning algorithm.

APPENDIX A
BUFFER COST DEFINITION

We explain here that our choice of buffer cost allows us to
minimize the expected delay of a packet admitted into the buffer,
while meeting an implicitly defined constraint on the packet
overflow probability.
Recall that we aim to find the policy π : S → A that is the

solution to the following optimization problem:

min
π

E

[ ∞∑

n=0

(γ)nc(sn, π(sn))

]

, (32)

where

c(sn, an) = bn + ηEf,l{max(bn − f + l −Nb, 0)}. (33)

Note that (32) and (33) are simply restatements of (10) and
(14), respectively. The above problem can be interpreted as an
unconstrained reformulation of the following constrained MDP
(CMDP [38]):

min
π

E

[ ∞∑

n=0

(γ)nbn

]

, (34)

s.t.: E

[ ∞∑

n=0

(γ)nEf,l{max(bn − f + l −Nb, 0)}
]

≤ 1

1− γ
P̄O, (35)

where the objective is tominimize the discounted queue backlog
subject to the packet overflow probability constraint P̄O. Note
that the 1

1−γ term is necessary to convert the packet overflow

probability constraint P̄O to a discounted packet overflow prob-
ability constraint, since the left-hand side of (35) represents
the discounted packet overflow probability under policy π.
Specifically, (32) reformulates the constrained MDP defined
in (34) and (35) as an unconstrained MDP via a Lagrangian cost
function defined in (33), with Lagrange multiplier η associated
with the packet overflow probability constraint. The optimal
Lagrange multiplier η that meets this constraint can be learned
online using stochastic subgradientmethods [23], [31]; however,
this lies beyond the scope of this paper. Instead, we choose to
directly select η.8

For an infinite data buffer, Little’s law [39] tells us that
the expected queue backlog Q̄ is proportional to the expected
queuing delay D̄ if the buffer is stable, i.e.,

Q̄ = λD̄,

where λ is the expected arrival rate. Note that Little’s law still
holds if we replace the expected queue backlog and the expected

8We select η according to a heuristic proposed in our prior work [23]
Specifically, we set η = 1/(1− γ), which penalizes each dropped packet by
the discounted cost that the packet would have incurred if it were to sit in the
buffer forever (i.e., the worst-case long-run holding cost for a packet). This
ensures that the policy will always prefer to leave space in the buffer to admit
packets, if possible, rather than to drop them.

queuing delay with their discounted equivalents. In the finite
data buffer scenario where overflows are inescapable, Little’s
law can be applied to calculate the expected delay experienced
by packets that are admitted into the buffer using the effective
arrival rate, i.e., (1− PO)λ, where PO is the packet overflow
probability.
The optimal policy that minimizes (32) will exactly meet the

implicit packet overflow probability constraint P̄O induced by
the choice of η. Thus, by solving (32), we are effectively min-
imizing the expected queue backlog Q̄ = (1− PO)λD̄, where
the packet overflow probability PO = P̄O does not depend on
the decision policy. Given the latter, it hence follows that our
choice of buffer cost allows us to minimize the expected delay
of a packet admitted into the buffer (i.e., D̄), while meeting an
implicitly defined constraint on the packet overflow probability
(i.e., P̄O, which depends on η).

APPENDIX B
PDS VALUE FUNCTION BELLMAN EQUATIONS

Using the PDS, we can factor the transition probabilities into
known and unknown components, where the known component
accounts for the transition from the current state to the PDS
(s → s̃) and the unknown component accounts for the transition
from the PDS to the next state (s̃ → s′) [23]:

P (s′|s, a) =
∑

s̃∈S
pu(s

′|s̃)pk(s̃|s, a), (36)

where subscripts k and u denote the known and unknown
components, respectively. We factor the cost function similarly:

c(s, a) = ck(s, a) +
∑

s̃∈S
pk(s̃|s, a)cu(s̃). (37)

In our problem, the known and unknown costs and transition
probabilities are defined as:

ck(s, a) = b, (38)

cu(s̃) = η
∑

l∈L
P l(l)max(b̃+ l −Nb, 0), (39)

Pk(s̃|s, a) = P f (b− b̃|a)I{ẽ=e−eTX(h,a)}I{h̃=h}, (40)

Pu(s
′|s̃) =

∑

l∈L

∑

eH∈E
I{b′=min(b̃+l,Nb)}

I{e′=min(ẽ+eH ,Ne)}Pl(l)PeH (eH)Ph(h
′|h) (41)

where I{·} is an indicator function that is set to 1 when {·}
is true and is set to 0 otherwise; s̃ denotes the PDS tuple
(b− f, e− eTX(h, a), h); and s′ denotes the next state tuple
(b̃+ l, ẽ+ eH , h′).
We can now rewrite equation (18) using the known and

unknown costs and transition probabilities as:

Ṽ ∗(s̃) = cu(s̃) + γ
∑

s′∈S
Pu(s

′|s̃)V ∗(s′)

= η
∑

l∈L
P l(l)max(b̃+ l −Nb, 0)

+ γ
∑

l,eH ,h′

P l(l)P eH (eH)Ph(h′|h)

× V ∗([min(̃b+ l, Nb),min(ẽ+ l, Ne), h
′]), (42)
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where the second equality follows from the definitions of cu(s̃)
and Pu(s

′|s̃) in (39) and (41), respectively. We can similarly
rewrite Eq. (19) as,

V ∗(s) = min
a∈A(s)

{

ck(s, a) +
∑

s̃∈S
Pk(s̃|s, a)Ṽ ∗(s̃)

}

= min
a∈A(b,e,h)

⎧
⎨

⎩
b+

a∑

f=0

P f (f |a)Ṽ ∗([b− f, e− eTX(h, a), h])

⎫
⎬

⎭

(43)

where the second equality follows from the definitions of
ck(s, a) and Pk(s̃|s, a) in (38) and (40), respectively.
Substituting (42) into (44), we get,

V ∗(s) = min
a∈A(s)

{
ck(s, a) +

∑

s̃∈S
Pk(s̃|s, a)Ṽ ∗(s̃)

}
.

= min
a∈A(s)

{

ck(s, a) +
∑

s̃∈S
Pk(s̃|s, a)[cu(s̃)

+γ
∑

s′∈S
Pu(s

′|s̃)V ∗(s′)]

}

= min
a∈A(s)

{

ck(s, a) +
∑

s̃∈S
Pk(s̃|s, a)cu(s̃)

+γ
∑

s′∈S

∑

s̃∈S
Pu(s

′|s̃)Pk(s̃|s, a)V ∗(s′)

}

= min
a∈A(s)

{
c(s, a) + γ

∑

s′∈S
P (s′|s, a)V ∗(s′)

}
,

where the final equality follows from (36) and (37). Thus, the
Bellman equations defined in (19) and (18) natural follow from
the definition of the PDS, and they are equivalent to the standard
Bellman equation defined in (11).

APPENDIX C
PROOF OF PROPOSITION 1

The first condition in Definition 1 is satisfied by assumption.
We only need to show that the PDS Learning algorithm satisfies
the second and third conditions.
To simplify the proof, we use the notation introduced in

Appendix B. For brevity, wewill omit the conditioning variables
in (40) and (41), i.e., we will write Pk(s̃) and Pu(s

′) instead of
Pk(s̃|s, a) and Pu(s

′|s̃), respectively. Plugging (43) into (42),
we can define a mapping HPDS that maps a Ṽ -vector to a new
Ṽ -vector HPDS Ṽ as

(HPDS Ṽ )(s̃) =

cu(s̃) + γ
∑

s′∈S
Pu(s

′)min
a∈A

{
ck(s

′, a)+
∑

s̃′∈S
Pk(s̃

′)Ṽ (s̃′)

}
,

(44)

where s̃, s′, and s̃′ denote the current PDS, next state, and next
PDS, respectively. Now, we can rewrite the PDS learning update

in (22) using HPDS :

Ṽ n+1(s̃n) = (1− βn)Ṽ n(s̃n) + βn

×
[
(HPDS Ṽ

n)(s̃n) + wn(s̃n)
]
,

wn(s̃n) = ηmax(b̃n + ln −Nb, 0) + γV n(sn+1)

−
[
cu(s̃

n) + γ
∑

s′∈S
Pu(s

′)V n(s′)

]
.

For any history Fn, it is easy to show that E[wn(s̃n)|Fn] = 0
and |wn(s̃n)| ≤ Vmax, where Vmax = max{c(s, a)}/(1− γ).
We need to show that HPDS satisfies the contraction property:
∣
∣
∣(HPDS Ṽ )(s̃)− Ṽ ∗(s̃)

∣
∣
∣

= γ
∑

s′∈S
Pu(s

′) |V (s′)− V ∗(s′)|

= γ
∑

s′∈S
Pu(s

′)

∣
∣
∣
∣
∣
min
a∈A

{
ck(s

′, a) +
∑

s̃′∈S
Pk(s̃

′)Ṽ (s̃′)

}

−min
a∈A

{
ck(s

′, a) +
∑

s̃′∈S
Pk(s̃

′)Ṽ ∗(s̃′)

}∣
∣
∣
∣
∣

≤ γ
∑

s′∈S
Pu(s

′)max
a∈A

∣
∣
∣
∣
∣

∑

s̃′∈S
Pk(s̃

′)Ṽ (s̃′)−
∑

s̃′∈S
Pk(s̃

′)Ṽ ∗(s̃′)

∣
∣
∣
∣
∣

= γ
∑

s′∈S
Pu(s

′)max
a∈A

∑

s̃′∈S
Pk(s̃

′)
∣
∣
∣
(
Ṽ (s̃′)− Ṽ ∗(s̃′)

)∣∣
∣

≤ γ
∑

s′∈S
Pu(s

′)max
a∈A

∑

s̃′∈S
Pk(s̃

′)||Ṽ − Ṽ ∗||

= γ||Ṽ − Ṽ ∗||,
where the first and second equalities follow by applying the
definition of (HPDS Ṽ )(s̃) in (44); the first inequality follows
from the fact that the difference of minimums is less than the
maximum of differences; the third equality follows by rearrang-
ing terms; the final inequality follows by definition of the L∞
norm; and the last equality follows from the fact that ||Ṽ − Ṽ ∗||
does not depend on the summation variables s′ and s̃′, andPu(s

′)
and Pk(s̃

′) sum to 1. �
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