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ABSTRACT Research on the structural complexity of networks has produced many useful results in graph
theory and applied disciplines such as engineering and data analysis. This paper is intended as a further
contribution to this area of research. Here we focus on measures designed to compare graphs with respect
to symmetry. We do this by means of a novel characteristic of a graph G, namely an ‘‘orbit polynomial.’’ A
typical term of this univariate polynomial is of the form czn, where c is the number of orbits of size n of the
automorphism group of G. Subtracting the orbit polynomial from 1 results in another polynomial that has a
unique positive root, which can serve as a relative measure of the symmetry of a graph. The magnitude of this
root is indicative of symmetry and can thus be used to compare graphs with respect to that property. In what
follows, we will prove several inequalities on the unique positive roots of orbit polynomials corresponding
to different graphs, thus showing differences in symmetry. In addition, we present numerical results relating
to several classes of graphs for the purpose of comparing the new symmetry measure with existing ones.
Finally, it is applied to a set of isomers of the chemical compound adamantane C10H16. We believe that the
measure can be quite useful for tackling applications in chemistry, bioinformatics, and structure-oriented
drug design.

INDEX TERMS Quantitative graph theory, networks, symmetry, graphs, graph measures, data science.

I. INTRODUCTION
The structural analysis of graphs has been an active research
topic for half a century, stimulated in large part by the work
of Rashevsky [1] and Mowshowitz [2]. In recent decades,
the immense influence of the Internet has focused attention on
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complex networks [3], [4]. The structure of such networks has
been investigated by means of a variety of quantitative mea-
sures [5]. Features such as branching, symmetry, cyclicity,
and connectedness have been used to analyze the structural
complexity of graphs, see, e.g., [6]–[10]. Recent symmetry
measures, such as Kolmogorov-Sinai entropy [11], based on
the automorphism group of a graph, as well as other local
and global symmetry measures [12] have been investigated.
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In addition, various measures designed to compare or match
graphs according to quantitative similarity, or the distance
between them, have been studied extensively, see [13].

Measures that quantify indicators of graph complexity
have been defined and applied in several problem areas,
including structural chemistry, drug design, and computer
programming. In particular, characteristics of chemical struc-
tures [14] and hypertext graphs [15] have been explored.
Structural information about graphs is not easy to obtain.
To capture symmetry or cyclicity properties, for example,
it is necessary to craft measures that serve as proxies for
these properties. One approach is to compare the values
of a given measure with those of others whose structural
interpretation is well defined. Mathematical techniques for
making such comparisons might take account of correlation
or information-theoretic distance like the Kullback-Leibler
measures [16].

In this paper, we define a novel graph concept called the
orbit polynomial, see Section (II-A). A typical term of this
univariate polynomial is of the form czn, where c is the
number of orbits (of the automorphism group of G) of size
n. The coefficients are all positive, so subtracting the orbit
polynomial from 1 results in a related polynomial that has
a unique positive root (denoted by δ), which can serve as
a relative measure of the symmetry of a graph. The term
‘‘relative’’ signifies the use of the measure to compare two
graphs G1 and G2 with respect to symmetry. If δ(G1) >
δ(G2), it is reasonable to surmise that G1 is more symmetric
than G2 based on the numbers and sizes of their respective
automorphism group orbits. Starting with a set of graphs
G = {G1,G2, . . . ,Gn}, this symmetry measure can be used
to obtain a rank order

δ(G[1]) > δ(G[2]) > · · · > δ(G[n]), (1)

of the graphs according to their symmetry. This system of
inequalities (1) defines a partial order on the set of graphs.
The principal aim of this paper is to show the comparative
symmetry of graphs in several different classes by means
of their respective δ values. In particular, prove interrela-
tions between well-known graph classes based on δ values.
Moreover, we establish several properties of the roots δ,
and compute correlations between our novel measure and
other symmetry measures. The analysis shows that δ values
clearly reflect the symmetry and the system of inequalities (1)
induces a symmetry-based rank order on graphs. Computa-
tion of the orbit polynomial depends on knowledge of the
vertex orbits of a graph, which may be found by first comput-
ing the automorphism group. In general, the computational
complexity of determining the automorphism group is not
known [17], but for simple graphs such as trees, there exist
polynomial algorithms to calculate Aut(G).

Since the orbit polynomial offers a new way of measuring
symmetry. It is important to explain the motivation for intro-
ducing what is genuinely novel about it. Clearly, the entropy-
based symmetry measure Ia due to Mowshowitz [2] is also
based on the sizes of vertex orbits. More precisely, Ia is

the entropy of a finite probability scheme with values pi [2]
based on the relative size of the i-th orbit. That is to say,
Ia := −

∑
pi log(pi), which provides a quantitative measure

of the symmetry of a graph, see [2]. Our approach is different
in that we define a polynomial as described above. Therefore,
the Equations (2), (20) are graph polynomials and we claim
that the zero δ is a novel and useful symmetry measure.
Finally, our measure is an algebraic quantity inasmuch as
it represents a zero of a graph polynomial. As Ia and the
Equations (2), (20) are both based on orbit sizes, it is clear
that they are somehow related. However, an examination of
the relationship between the two measures for certain classes
of graphs is beyond the scope of this paper.

In this paper, we have used the Nauty-package due to
McKay [18], [19], which calculates the automorphism group
as well as the orbits of our graphs efficiently. Note that we
calculated the orbit polynomial on exhaustively generated
trees; Colbourn and Booth [20] developed algorithms with
linear time complexity to determine the automorphism group
of trees and related graph classes. So, Aut(G), as well as the
vertex orbits, are needed to infer the orbit polynomial, which
can be calculated here efficiently. The orbit polynomial can
be computed in linear time once the orbits and their sizes
are known. In order to compute or approximate δ, a standard
algorithm with average time complexity log2(n) can be used,
see [21], [22].

II. METHODS AND RESULTS
In this section, we define the orbit polynomial and derive
some of its properties. Note that this polynomial, whose coef-
ficients derive from the automorphism group of the graph, can
be said to represent the structure of the graph [23]. We will
derive closed forms for special orbit polynomials and prove
some properties related to their roots. In addition, we generate
and interpret numerical results on the correlation between
the novel symmetry measure and other such measures, see
Section (II-D).

A. THE ORBIT-POLYNOMIAL AND SPECIAL EXPRESSIONS
The focus of this paper is to use the orbits [24] of the
automorphism group defined on the vertices of a graph to
define a novel graph polynomial. An automorphism is an
edge-preserving bijection of the vertices of a graph [24]. The
set of automorphisms under the composition of mappings
forms the automorphism group of the graph and is usually
denoted by Aut(G), consisting of |Aut(G)| elements. The
equivalence classes of the vertices of a graph under the action
of the automorphisms are called vertex orbits [24].

Now, let G = (V ,E) be a graph with |V | < ∞ and
let V1,V2, . . . ,Vρ be its vertex orbits, where ρ is the total
number of vertex orbits ofG. Let k be the number of different
sizes among the orbits, and suppose the number of orbits of
size ij is aij for 1 ≤ j ≤ k , so that

∑k
j=1 ija(ij) = |V |.∑k

j=1 a(ij) = ρ. Now, we state the definition of the orbit
polynomial.
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Definition 1: The orbit polynomial of G is defined as
follows:

OG(z) :=
k∑
j=1

aijz
ij . (2)

Definition (1) is also valid for directed graphs and graphs
with weights associated with vertices or edges. The auto-
morphism group is defined for such graphs as an obvious
extension of the case for simple undirected graphs, and orbits
can be determined as equivalence classes of vertices under
the actions of the automorphisms [25], [26]. For example,
the orbit polynomial can be calculated for a molecular graph
(see Section (II-E)) with so-called hetero atoms and multiple
bonds [26].

By definition, OG(z) is a real polynomial, but its zeros can
be complex-valued as well. By applying the Descartes’ rule
of signs [27], we see that Equation (2) does not possess any
positive zeros as there are no sign changes in its sequence of
coefficients. With the substitution z := −z in Equation (2),
Descartes’ rule of signs can also be used to determine the
number of negative zeros. In this paper, we are only con-
cerned with the positive zeros of our novel graph polynomial.

For example, consider the path graph P5 with five vertices
numbered consecutively. The vertex orbits are {1, 5}, {2, 4}
and {3}. This gives OP5 (z) = 2z2 + 1z.
In the following, we establish explicit expressions for

special orbit polynomials for simple graph classes such as
paths, stars, and other branched trees. The reason for con-
sidering these graph classes stems from the fact that these
structures have been proven useful in many disciplines like
chemistry and bioinformatics, see [26], [28], [29]. They often
act as building blocks to understand network-based complex
systems. Also, linear and branched trees such as linear and
branched alkanes play a major role in chemistry, drug design,
and related disciplines [30], [31]. Hence it’s important to
characterize them using quantitative measures [14], [30], [31]
such as δ and to prove interrelations between several classes
of graphs.
Theorem 2: Let Pn be the path graph with n vertices. Then

OPn (z) :=
n
2
z2 (n is even), (3)

OPn (z) :=
(⌈n

2

⌉
− 1

)
z2 + z (n is odd). (4)

Proof: For simplicity, let n be even. Numbering the
vertices of Pn consecutively (from left to right), the set of
vertex orbits is

SPn =
{
{1, n}, {2, n− 1}, . . . ,

{
n−

n
2
, n−

n
2
+ 1

}}
. (5)

Hence |SPn | =
n
2 , if n is even, which establishes Equation (3).

If n is odd, we obtain

SPn = {{1, n}, {2, n− 1},

. . . , {n−
n− 1
2
− 1, n−

n− 1
2
+ 1}, {n−

n− 1
2
}},

(6)

and |SPn | =
⌈
n
2

⌉
. Also, we see that there exist

⌈
n
2

⌉
−1 vertex

orbits of size two and only one with a single element. Hence,
we obtain Equation (4). �
Theorem 3: Let Pb1n be the first branched path with n ver-

tices. We obtain

O
P
b1
n
(z) := z2 + (n− 2)z. (7)

Proof: Consider the branched path Pb1n labeled consecu-
tively, see Figure (1). For it’s orbit set, we obtain

S
P
b1
n
= {{1, 3}, {2}, . . . , {n− 1}, {n}} . (8)

This implies |S
P
b1
n
| = n − 1. So, there exist n − 2 orbits

of size one and only one of size two. From this, we obtain
Equation (7). �

FIGURE 1. Path graph P6 and branched paths P
b1
n , P

b2
n , and P

b3
n (see

also [32]). Note that, P
bi
n is the tree formed by attaching an end vertex to

an ’inner’ vertex on the original path. Here, we have n = 6 and add an
edge to the first, second, and third inner vertex. The remaining vertices
are end vertices.

Theorem 4: Let Sn be the star graph with n vertices.
We obtain

OSn (z) = zn−1 + z (9)

Proof:Consider the star graphwith n vertices and denote
the hub vertex by 1 and the remaining ones by 2, 3, . . . , n,
respectively. The set of vertex orbits of Sn is

SSn = {{1}, {2, 3, . . . , n}} . (10)

There are two orbits, one consisting of the hub alone, and the
other containing the remaining vertices. �

B. ANALYTICAL RESULTS
In this section, we define another graph polynomial based on
the orbit polynomial represented by Equation (2).
Definition 5: We define the graph polynomial

O?G(z) := 1− OG(z). (11)

Now we investigate the positive roots of this polynomial for
the purpose of obtaining information about the symmetry of
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a graph. It is important to note that the aim of this paper
is to establish the existence of roots and provide general
bounds and inequalities for them. It is not our purpose here to
give precise bounds, and therefore we do not calculate roots
numerically using iterative methods, see [33].

Before proving more general results, we state two lemmas,
which give the values of δ for vertex-transitive and asymmet-
ric graphs. First, the following general lemma is needed for
subsequent development.
Lemma 6: Let H (z) be an arbitrary real polynomial

defined by

H (z) = akzk + ak−1zk−1 + · · · + a0, ai > 0, 1 ≤ i ≤ k.

(12)

The polynomialH?(z) := 1−H (z) has a unique positive zero
δ < 1 if a0 < 1 and

ak + ak−1 + · · · + a0 > 1. (13)

Proof: By definition

H?(z) :=1−H (z)=1−(akzk+ak−1zk−1+· · ·+a0). (14)

Since H?(z) has only one sign change in its sequence of
coefficients, we conclude from Descartes’ rule of signs that
H?(z) has a unique positive zero. Moreover H?(0) = 1− a0.
The case 1 − a0 > 0 is equivalent to a0 < 1. Let δ be the
unique positive zero of H?(z). We obtain δ < 1 if

H?(1) :=1− H (z)=1− (ak+ak−1+· · ·+a0)<0. (15)

This inequality is equivalent to inequality (13). The case of
H?(0) = 1 − a0 < 0 would lead to a contradiction namely
H?(0) < 0. This follows from the fact that limz→∞H?(z) =
−∞ implies thatH?(z) has more than one or no positive zero,
which contradicts the finding above that H?(z) has a unique
positive zero δ. �
Lemma 7: δ(G) = 1 if and only if G is vertex-transitive.
Proof: Let G = (V ,E) be a graph and |V | = n.

According to the Definitions (5), (1), we obtain

O?G(z) :=1−OG(z)=1−
(
ai1z

i1+ai2z
i2+· · ·+aik z

ik
)
. (16)

We assume that δ(G) > 0 is a zero of O?G(z). Now,

O?G(δ) = 1−
(
ai1δ

i1 + ai2δ
i2 + · · · + aik δ

ik
)
. (17)

Thus, limδ→∞ O?G(δ) = −∞ and O?G(0) = 1. For a general
graph G with given vertex orbits, Equation (18) allows us to
conclude that

O?G(1) = 1−
(
ai1 + ai2 + · · · + aik

)
≤ 0. (18)

This means that δ(G) < 1. To demonstrate that δ(G) = 1,
we need only observe the aij must be natural numbers and set
ai1 = 1 and ai2 = · · · aik = 0. Hence,

O?G(δ) = 1− δn. (19)

So,O?G(δ) = 0 gives δ = 1. Finally, note that the specification
of the coefficients given above requires having all n vertices
in the same orbit, which implies the graph is vertex transitive.

Now suppose that G is vertex-transitive. This means
{v1, . . . , vn} is the only vertex orbit of G. From Defini-
tions (5), (1), it follows that O?G(z) = 1− zn. Hence, O?G(z) =
0 gives z = δ = 1. �
Lemma 8: Let G = (V ,E) be a graph of order n. If G has

the trivial automorphism group, then δ(G) = 1
n .

Proof: IfG has the trivial automorphism group, all vertex
orbits are singleton sets. So, we obtain {v1}, {v2}, . . . , {vn}
and, finally, O?G(z) = 1− nz. O?G(z) = 0 gives z = δ = 1

n . �
Lemma (7) shows vertex-transitive graphs attain the max-

imum value of δ. The more asymmetric the graph is,
the smaller is the value of δ which tends to δ = 1

n . Now we
are able to prove the following statement.
Theorem 9: The graph polynomial

O?G(z) := 1− OG(z), (20)

has a unique positive zero δ < 1.
Proof:

O?G(z) :=1−OG(z)=1−(akz
k
+ak−1zk−1+· · ·+a1z). (21)

Definition (1) implies a0 = 0. We see that O?G(0) = 1 and
claim

O?G(1) = 1− (ak + ak−1 + · · · + a1) < 0. (22)

But if k > 1, ak , . . . , a1 6= 0, inequality (22) is satisfied.
From Lemma (6), we conclude that Equation (21) has a
unique, positive root which we denote by δ. �

1) PROPERTIES AND RELATIONS INVOLVING δ

In this section, we prove properties and relations between the
unique, positive roots of polynomials O?G(z) := 1 − OG(z)
corresponding to various graphs. To this end, we state a
general result.
Theorem 10: Let G = (V ,E) be a graph and |V | = n

which is not vertex-transitive. Then, δ(G) ≥ 1
n .

Proof: If G is not vertex-transitive, it is clear that there
exist vertex orbits V1,V2, . . . ,Vρ , where ρ > 1 is the total
number of vertex orbits of G. Again, k denotes the number of
different sizes among the orbits; and the number of orbits of
size ij is denoted by aij for 1 ≤ j ≤ k , so that

∑k
j=1 ija(ij) =

|V | = n. Taking account of equation (16), consider

O?G

(
1
n

)
:= 1− OG(z)

= 1−

[
ai1

(
1
n

)i1
+ai2

(
1
n

)i2
+· · ·+aik

(
1
n

)ik]
.

(23)

Assuminge δ(G) > 1
n , we need to investigate the inequality

O?G

(
1
n

)
=1−

[
ai1

(
1
n

)i1
+ai2

(
1
n

)i2
+· · ·+aik

(
1
n

)ik]
<0,

(24)

or

−
ai1
ni1
−
ai2
ni2
− · · · −

aik
nik
+ 1 < 0. (25)
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From Inequality (25), we see that

ai1
ni1
+
ai2
ni2
+ · · · +

aik
nik
− 1 > 0. (26)

Now, reordering the first k-terms of inequality (26), and
assuming i[1] ≥ i[2] > · · · i[k], we obtain,

ai1
ni[1]
+

ai2
ni[2]
+ · · · +

aik
ni[k]
− 1 > 0. (27)

Multiplying inequality (27) by ni[1] gives

ai1 + ai2n
i[1]−i[2] + · · · + aikn

i[1]−i[k] − ni[1] > 0. (28)

Clearly, Inequality (28) leads to a contradiction for large
values of n. Hence, the statement of the theorem holds.
According to Lemma (8), δ = 1

n only for the graph with the
trivial automorphism group. �
Now, we continue our analysis by proving interrelations

between δ values for special graph classes.
Theorem 11: Let OPn (z) and OPb1n

(z) be the orbit polyno-

mials of Pn and Pb1n , respectively; and denote the unique,

positive roots of O?Pn (z) and O?
P
b1
n
(z) by δ(Pn) and δ(Pb1n ),

respectively. The inequality

δ(Pn) > δ(Pb1n ), (29)

is satisfied.
Proof: Suppose n is even. We need to determine the

unique positive root δ(Pn) of the equation

O?Pn (z) = 1−
n
2
z2 = 0, (30)

and find δ(Pn) =
√

2
n . Note that the symmetry of the path

graph, measured by δ decreases as the length n of the path
increases. This results from the fact that as n increases,√

2
n decreases. This relationship also holds for the branched

trees defined above.
Similarly, determining the unique positive root δ(Pb1n ) of

the equation

O
P
b1
n
(z) = 1− [z2 + (n− 2)z] = 0, (31)

produces the two candidates

z1,2 = −
n− 2
2
±

√(
n− 2
2

)2

+ 1. (32)

So, we set

δ(Pb1n ) := −
n− 2
2
+

√(
n− 2
2

)2

+ 1, (33)

and assume δ(Pb1n ) > 0. According to Inequality (29),
we have to show that√

2
n
> −

n− 2
2
+

√(
n− 2
2

)2

+ 1. (34)

However, direct calculation shows that the last inequality is
satisfied if n > 2. If n is odd we first solve (see Equation (4)),

O?Pn (z) = 1−
[ (⌈n

2

⌉
− 1

)
z2 + z

]
= 0. (35)

Clearly,

δ(Pn) = −
1

2
(⌈

n
2

⌉
− 1

)
+

√√√√√
 1

2
(⌈

n
2

⌉
− 1

)
2

+
1(⌈

n
2

⌉
− 1

) . (36)

For n is odd, Inequality (29) implies

−
1

2
(⌈

n
2

⌉
− 1

) +
√√√√√
 1

2
(⌈

n
2

⌉
− 1

)
2

+
1(⌈

n
2

⌉
− 1

)
> −

n− 2
2
+

√(
n− 2
2

)2

+ 1. (37)

Direct calculation shows that Inequality (37) is satisfied
if n ≥ 4. Note that Pb14 is the smallest branched path,
so n = 4. �
In the following, we prove properties of the unique, pos-

itive root δ(Sn) of the equation O?Sn (z) = 0 where Sn is the
star graph with n vertices. We compute δ(S4) using Cardano’s
formula [34], and obtain

δ(S4) =
3

√
1
2
+

√
31
108
−

3

√√
31
108
−

1
2
.
= 0.6823. (38)

Now we prove our main result for the unique, positive root
of the star graph Sn.
Theorem 12: Let Sn be the star graph with n vertices,

n > 4, and δ(Sn) the unique, positive root of

O?Sn (z) = 1− OSn (z) = 1− (zn−1 + z) = 0. (39)

Then

δ(Sn) ∈ (δ(S4), 1), n > 4. (40)

The value of δ(S4) is given by Equation (38).
Proof:We know thatO?S4 (δ(S4)) = 0. Also, Theorem (9)

implies δ(Sn) < 1. To conclude the proof of the theorem, we
first show that O?Sn (z) is strictly decreasing. Assuming

(O?Sn (z))
′
= −(n− 1)zn−2 − 1 < 0, (41)

we now consider

zn−2 > −
1

n− 1
. (42)

Inequality (42) is satisfied if z > 0. In our case, this is
satisfied as we only consider positive zeros. Hence, O?Sn (z) is
strictly decreasing. Now, taking δ(S4) given by Equation (38)
as a lower bound, we show

O?Sn (δ(S4)) > 0, (43)
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if n > 4. So,

O?Sn (δ(S4)) = 1− (δ(S4))n−1 − δ(S4) > 0, (44)

leads immediately to

ln (1− δ(S4)) > (n− 1) ln (δ(S4)) , (45)

or

n >
ln (1− δ(S4))
ln (δ(S4))

+ 1. (46)

If we now plug in the value of δ(S4) given by Equation (38),
Inequality (46) gives n > 4. Thus we have proven that
1 > δ(Sn) > δ(S4), if n > 4 and Relation (40). �
Lemma (7) states that δ(G) = 1 if and only if G is vertex-

transitive. Now, let’s consider the class of star graphs with
n vertices. We are able to show that δ(Sn) goes to 1 in the
limiting case. According to Theorem (12), we obtain δ(Sn) ∈
(0.6823, 1) for n > 4. As n increases, δ(Sn) tends to one.
Starting fromO?Sn (z) = 1−(zn−1+z) and by fixing δ ∈ (0, 1),
we obtain limn→∞O?Sn (δ) = limn→∞[1−(δn−1+δ)] = 1−δ.
So, 1− δ = 0 implies δ = 1. In summary, δ(Sn) tends to one
if n gets sufficiently large. In summary, we have shown
Corollary 13: Let Sn be the star graph with n vertices.

δ(Sn) ∈ (0.6823, 1) is the unique, positive zero of O?Sn (z) =
1− (zn−1 + z). δ(Sn) tends to one if n gets sufficiently large.
Next we turn to edge-transitive graphs. In particular we

consider complete bipartite graphs Ks,t for s 6= t . These
graphs contain two vertex orbits. The corresponding polyno-
mial is given by

O?Ks,t (z) = 1− zs − zt . (47)

The above statement allows for studying the behavior of
δ(Ks,t ), if t is taken to vary while s is fixed but arbitrary.
Theorem 14: Let Ks,t , s 6= t be a complete bipartite graph.

δ1(Ks,t ) be the zero of the polynomial given by Equation (47)
with fixed s and t . δ2(Ks,t2 ) be the zero of polynomial

O?Ks,t2 (z) = 1− zs − zt2 . (48)

Then

δ2(Ks,t2 ) > δ1(Ks,t ), (49)

and

t2 >
ln(1− (δ1(Ks,t )s)

ln(δ1(Ks,t )
. (50)

Proof: Fix s and t with s 6= t . By assumption δ1(Ks,t ) is
the zero of O?Ks,t (z), so we get

1− δ1(Ks,t )s − δ1(Ks,t )t = 0. (51)

First of all, observe that O?Ks,t (z) is strictly decreasing for
z > 0 as

O?Ks,t (z)
′
= −szs−1 − tzt−1 < 0. (52)

Finally, we infer δ2(Ks,t2 ) > δ1(Ks,t ) if

O?Ks,t2 (δ1(Ks,t )) = 1− (δ1(Ks,t ))s − (δ1(Ks,t ))t2 > 0. (53)

But this yields inequality (50). �

To illustrate Theorem (14), we consider the edge-transitive
graph K2,3 and note that

O?K2,3
(z) = 1− z2 − z3 = 0. (54)

Solving this equation numerically gives δ1(K2,3)
.
=

0.754878. Now, from inequality

t2 >
ln(1− (0.754878)2)

ln(0.754878)
, (55)

we see that t2 > 3. So, we choose t2 = 4 and now
consider K2,4. Finally, calculating the root of

O?K2,4
(z) = 1− z2 − z4 = 0, (56)

gives δ2(K2,4)
.
= 0.786151. So, |δ2(K2,3) − δ2(K2,4)| =

0.031273 and we obtain δ2(K2,4) > δ1(K2,3). Furthermore,
the graph K2,20 has root δ2(K2,20)

.
= 0.913827. Applying the

same argument as in Corollary (13), we conclude that the zero
δ2(Ks,t ) tends to one if s, t gets sufficiently large.
Finally we examine the roots associated with graphs of the

form Ks,t .
Corollary 15: z = − 1

2+
√
5
2 is the smallest zero ofO?Ks,t (z)

if s = 1 and t = 2. It holds δ(Ks,t ) > − 1
2 +

√
5
2
.
= 0.61803,

s > 1, t > 2.
Proof:Weobtain z = − 1

2+
√
5
2 as the root of the equation

O?K1,2
(z) = 1− z− z2 = 0, (57)

by direct calculation. To prove that δ(Ks,t ) > − 1
2 +

√
5
2 ,

we need to show

O?Ks,t

(
−
1
2
+

√
5
2

)
=1−

(
−
1
2
+

√
5
2

)s
−

(
−
1
2
+

√
5
2

)t
>0,

(58)

which, according Equation (52), says that O?Ks,t (z) is strictly
decreasing for z > 0. However, we consider instead(

−
1
2
+

√
5
2

)s
+

(
−
1
2
+

√
5
2

)t
< 1. (59)

and give a proof by induction over t . Let s be fixed but
arbitrary. We start the induction by setting t = 3. This yields(

−
1
2
+

√
5
2

)s
+

(
−
1
2
+

√
5
2

)3

< 1. (60)

If s = 2, we obtain
(
−

1
2 +

√
5
2

)2
+

(
−

1
2 +

√
5
2

)3 .
=

0.61803 < 1. This relation is still valid for s > 2. By the
induction hypothesis, equation (59) is satisfied, but it is easier
to examine(

−
1
2
+

√
5
2

)t
< 1−

(
−
1
2
+

√
5
2

)s
. (61)
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We conclude by using the induction hypothesis expressed in
inequality (61)(
−
1
2
+

√
5
2

)t+1
=

(
−
1
2
+

√
5
2

)t (
−
1
2
+

√
5
2

)

<

(
1−

(
−
1
2
+

√
5
2

)s)(
−
1
2
+

√
5
2

)

< 1−

(
−
1
2
+

√
5
2

)s
. (62)

�

C. GENERAL INTERPRETATION OF δ
In this section, we elaborate briefly on interpretations of the
measure δ. As already mentioned, δ = 1 if and only if the
corresponding graph is vertex-transitive. So, all graphs in
this are identical from the standpoint of this measure. The
result is independent of the size of a graph. For example,
all complete graphs are transitive and thus have δ = 1. If a
graph is asymmetric, then δ = 1

n . Consequently, if a graph
is not vertex-transitive, it is clear that δ ≥ 1

n . Note also
that all graphs with the same number of vertex orbits of the
same sizes form an equivalence class. Graphs G2,G4 and
G5,G7 offer two examples. Another equivalence class can
be obtained by considering all graphs with the same positive
root δ ofO?G(z) = 1−OG(z). Any set of graphs with the same
δ would constitute an equivalence class. Differences in the
value of the measure become arbitrarily small as the size of
the graph increases. This is a consequence of the monomials
azn of which the polynomial 1− OG(z) is composed.

D. NUMERICAL RESULTS
1) CALCULATING δ FOR SPECIAL GRAPHS
In [32], a set of test graphs was used to investigate cyclicity
and branching of graphs [32] (see also [35]). These test graphs
are used here to evaluate the symmetry measure δ, see the
Figures (2) - (8) introduced in this paper. The positive zeros
of the polynomials O?G(z) = 1 − OG(z) have been calcu-
lated using the programming language R [36]. In particular,
we have used the R-packages igraph [37] and Rmpfr [36],
see also [32]. In order to calculate the vertex orbits of our test
graphs, we again assume that they are labeled consecutively
from left to right.

FIGURE 2. Left: O?G1
(z) = 1− z − 2z2 and vertex orbits: {1,5}, {2,4}, {3}.

δ(G1) = 1
2 . Right: O?G2

(z) = 1− 3z − z2 and vertex orbits:

{1,3}, {2}, {4}, {5}. δ(G2) .= 0.3028.

FIGURE 3. Left: O?G3
(z) = 1− z − 2z2 and vertex orbits: {1,5}, {2,4}, {3}.

δ(G3) = 1
2 . Right: O?G4

(z) = 1− 3z − z2 and vertex orbits:

{1}, {2,3}, {4}, {5}. δ(G4) .= 0.3028.

FIGURE 4. Left: O?G5
(z) = 1− 3z − z2 and vertex orbits: {1}, {2,3}, {4}, {5}.

δ(G5) .= 0.3028. Right: O?G6
(z) = 1− z − z4 and vertex orbits:

{1}, {2,3,4,5}. δ(G6) .= 0.7245.

FIGURE 5. Left: O?G7
(z) = 1− 3z − z2 and vertex orbits: {1}, {2,3}, {4}, {5}.

δ(G7) .= 0.3028. Right: O?G8
(z) = 1− 2z − z3 and vertex orbits:

{1,2,3}, {4}, {5}. δ(G8) .= 0.4534.

FIGURE 6. Left: O?G9
(z) = 1− z5 and vertex orbits: {1,2,3,4,5}.

δ(G9) = 1. Right: O?G10
(z) = 1− z − 2z2 and vertex orbits: {1,3}, {2}, {4,5}.

δ(G10) = 1
2 .

Now we interpret the results shown in Figures (2) - (8).
For the graphs in these figures, the distance matrixD suffices
to determine the orbits. The i, j-th entry of D is the number
of vertices at distance j from vertex i. The maximum value
of j is the diameter of the graph. Vertices in the graphs shown
here with the same row values are similar. In general, having
the same row values in the distance matrix is a necessary but
not a sufficient condition for vertices to be similar (see [41])..
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FIGURE 7. Left: O?G11
(z) = 1− z − 2z2 and vertex orbits: {1}, {2,5}, {3,4}.

δ(G11) = 1
2 . Right: O?G12

(z) = 1− z − z3 and vertex orbits: {1,3,4}, {2,5}.

δ(G12) .= 0.7245.

FIGURE 8. O?G13
(z) = 1− z5 and vertex orbits: {1,2,3,4,5}. δ(G13) = 1.

All the graphs under consideration possess the same number
of vertices. To begin we compare the results for G1 and G2.
We see that δ(G1) > δ(G2) which is expected from Theo-
rem (11). So, it is clear that the set of vertex orbits of G2
contains more singleton sets and, hence,G2 is less symmetric
thanG1. The extreme case of an asymmetric graph is one with
the identity group, see [2], [38]. We proved in Lemma (8)
that when G is asymmetric, δ = 1

n . Further, we observe
that the measure δ fails to distinguish two different graphs
with the same sets of vertex orbits. An example of this is
δ(G2) = δ(G4) and δ(G9) = δ(G13). Another case is G7
andG8. The vertex orbits of these two graphs (see Figure (5)),
indicate that G8 is more symmetric than G7. This relation
of symmetry is reflected by the inequality δ(G8) > δ(G7).
Note that G9 and G13 have transitive groups, meaning there
is only one vertex orbit with n elements. Hence, in this case
O?G(z) = 1 − zn. According to Lemma (7), we obtain δ = 1.
Following Theorem (10), wee see that all other values of δ are
less than one and δ(G) > 1

5 . Finally, we showed by using our
test graphs that the greater the value of δ, the more symmetric
is the graph based on the vertex orbits.

By way of conclusion, we call attention to an important
property of the orbit polynomial as well as of δ. The Def-
initions (1), (5) indicate clearly that the orbit polynomials
OG(z),O?G(z) only depend on the vertex orbits of G and their
size. Once the graphG and the vertex orbits are given, wemay

compute δ. So, we see that the Definitions (1), (5) do not
rely on the size of the automorphism group. For instance,
the graph G9 depicted in Figure (6) has the same value of
δ as a complete graph, which has a much larger automor-
phism group. We see that this characteristic is not captured
by δ. We emphasize that there exists another example for
this situation. The well-known entropy measure Ia due to
Mowshowitz [2] given by Equation (63) is based on vertex
orbits of a given graph to determine the partitions needed to
compute the probability values and, finally, the entropy of a
graph, see [2]. In fact, Ia does not depend on |Aut(G)|. That’s
the reason why Mowshowitz and Dehmer [39] defined the
so-called symmetry index S to overcome this problem, see
Equation (64). So, S possesses another term to incorporate
|Aut(G)|. The reason for doing this was to lower the degener-
acy of Ia. Ameasure is said to be degenerate if it fails to distin-
guish between non-isomorphic graphs. We aimed to improve
the discriminating power of the measure [39]. Finally, similar
measures could also be developed to relate δ to |Aut(G)|.
Lemma (7) states that not all vertex-transitive graphs can
be distinguished by δ. Also, vertex-transitive graphs cannot
be discriminated by Ia (see Equation (63)) as the measure
vanishes. So, we can characterize vertex-transitive graphs
(and others) in terms of equivalence classes as explained in
Section (II-C); all graphs in a given equivalence class have
the same value of δ. Similiarly, graphs can be characterized
by Ia in terms of other equivalence classes, where all graphs
in a given class have the same value of Ia. This is not a
shortcoming of the since we did not set out to produce a
measure with zero degeneracy. Had we aimed to do this,
we would have had to find a complete set of graph invari-
ants, see [40]. The degeneracy problem can be overcome,
for all practical purposes, by constructing a so-called super
index [40], [41] that combines several measures based on the
same or different graph invariants, thus producing a measure
with high discrimination power.

2) CORRELATION ANALYSIS
In this section, we investigate the correlation between δ

and other known symmetry measures for graphs, see [42].
To perform our analysis, we take two other known symmetry
measures for graphs into consideration namely [2], [38], [39]

Ia(G) =
k∑
i=1

|Vi|
|V |

log
(
|Vi|
|V |

)
, (63)

and

S(G) = [log(|V |)− Ia(G)]+ log(Aut(G)). (64)

Ia is the well-known topological information content [2] of
graphs representing a graph entropymeasure. LetG = (V ,E)
be a graph, where |Vi| the size of the i-th vertex orbit of
Aut(G), and k is the number of different orbits. We note
that the symmetry index S [39] has been defined similarly
but takes the size of the automorphism group Aut(G) into
account. Evidently, Ia and S are graph entropy measures
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based on Shannon’s entropy [43]. The probability values to
define the entropy are inferred from vertex partitions defined
by the vertex orbits, see [2], [38], [39]. Thus, the difference
between Ia, S and δ is immediate; δ is an algebraic graph
measure as it is a zero of a polynomial where the polynomial
coefficients rely on the vertex orbits. So, it would be fruitful
to show interrelations between the two measures.

TABLE 1. Pearson correlation coefficient between δ and Ia as well as δ
and S on exhaustively generated trees.

Table (1) shows the results from calculating the Pear-
son correlation coefficient r [44]. Before interpreting the
results, note that all graph measures have been applied on
exhaustively generated trees. We generated these trees using
Nauty [18], [19]. The sizes of these tree classes are |T14| =
3159, |T15| = 7741, |T16| = 19320, |T17| = 48629,
|T18| = 123757, |T19| = 317955, respectively. The reason
for using trees in the analysis here is that they are useful
for many concrete applications in disciplines such as chem-
istry, bioinformatics and computer science. That means we
have used graphs with a distinct topology rather than ran-
dom graphs whose applicability is quite limited. To make
sure that our results are meaningful, we have generated the
graphs exhaustively to generalize the findings as much as
possible.

Table (1), shows that the symmetry index representing
Equation (64) is very little correlated with δ. Ti is the class
of all pairwise non-isomorphic trees with i vertices. Note that
δ ≤ 1 is the unique, positive root of O?T (z) = 1 − OT (z),
T ∈ Ti, 14 ≤ i ≤ 18, see Section (II-B). Recall that δ is
an algebraic measure for which the symmetry property of an
underlying tree is given by the orbit polynomial. By contrast,
S and Ia are information-theoretic graph complexity mea-
sures based on Shannon’s entropy and they rely on partitions
representing vertex orbits [2], [38]. Given the fact that all
the tree measures are based on vertex orbits, we see clear
differences in Table (1). First, we observe in general that δ
and S, Ia belong to different categories of topological graph
measures (information-theoretic vs. algebraic). When com-
paring δ and S, we also see that S depends on |Aut(G)|.
Especially the latter propertymight be the reason for the weak
correlation between δ and S shown in Table (1). Nevertheless
δ and Ia belong to different categories, we see by Table (1)
that the correlation between them is stronger than in the
previous case; here we just neglect the sign of r . This seems
plausible as the two measures have the same input namely
just the vertex orbits, and Ia does not rely on |Aut(G)|. The
scatter plots represented by the Figures (9) - (10) show-
ing the relation between δ and S indicate a rather weak
correlation.

FIGURE 9. (a) Correlation between δ and Ia based on T14. (b) Correlation
between δ and Ia based on T15.

E. APPLICATION TO CHEMICAL STRUCTURES
Chemical structures of carbon-containing compounds
(organic compounds) can be represented by colored graphs
with the atoms for the vertices and the chemical bonds for the
edges [45]. Although this representation is only approximate,
several graph invariants have been successfully used for
similarity searches of chemical structures [46], [47] or as
variables in multiple regression models for the prediction of
substance properties from chemical structures [48]. Molec-
ular symmetry and the concept of topologically equivalent
atoms or bonds (based on the automorphism group) are for
instance important in the interpretation of NMR spectra,
in automated synthesis planning, and for the generation of
isomers [49]–[52].

Based on the definition of symmetry measures here for
uncolored graphs we discuss examples for selected chem-
ical structures (graphs) as follows: (a) skeletons with car-
bon (C) atoms (H-depleted); (b) only C-C single bonds
present (unsaturation is covered by rings); (c) the maxi-
mum number of bonds per atom (vertex degree) is four.
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FIGURE 10. (a) Correlation between δ and S based on T16. (b) Correlation
between δ and S based on T17.

Complete sets of isomers have been generated by software
Molgen [50]. Note that not all generated isomers reflect stable
molecules.

First we discuss a real chemical compound belonging to
the defined restrictions, namely adamantane C10H16. See
Figure (11). The corresponding graph contains one orbit with
6 vertices {1, 3, 5, 7, 9, 10} and one orbit with 4 vertices
{2, 4, 6, 8}. In general, the symmetry measure δ has been
defined by the unique, positive root of O?G(z) := 1 − OG(z),
see Equation (11). Here, we obtain the equation

1− z4 − z6 = 0, (65)

and δ .= 0.869. The high value (maximum of δ equals 1) cor-
responds to the high topological symmetry of the adamantane
structure.

Next we discuss the complete set of 4875 isomers with the
molecular brutto formula of adamantane (C10H16). A sum-
mary of the symmetry measures δ, S, and Ia, applied to
these graphs is given in Table (2). The range of δ is 0.1 to

FIGURE 11. Skeleton of the chemical structure of adamantane C10H16.
The graph contains two vertex orbits, one with 6 atoms (in red), the other
with 4 atoms (in blue).

FIGURE 12. Probability density distribution of δ for the 4875 isomers of
C10H16. One of them is adamantane with the maximum value
of 0.869 marked by the vertical line.

FIGURE 13. Isomer with second highest δ-value (0.851) of the set C10H16.
The graph contains two vertex orbits, one with 8 atoms (in red), the other
with 2 atoms (in blue). The value of δ is obtained as the root of equation
1− z2 − z8 = 0. This graph does not correspond to a stable molecule.

0.869 with only 23 different values (rounded to 6 decimals).
The maximum value appears for only one graph, namely
for adamantane. 95 % of the graphs have a low symmetry
with δ< 0.309. The smoothed probability density distribution
of δ is shown in Figure (12), exhibiting maxima for the
frequently occurring values of δ. The second highest value of
δ is 0.851, again for only one graph (Figure (13)); however,
a corresponding molecule will probably not exist because of
the two quaternary C-atoms. The absolute Pearson correlation
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TABLE 2. Summary of the symmetry measures δ, S, and Ia, applied to the
4875 isomers of C10H16.

coefficients between δ and the two other symmetry measures
are higher than for the exhaustively generated trees (Table 1),
i.e., 0.746 between δ and S, and -0.940 between δ and Ia. See
Table (2). A reason for this could be the cyclic structure of the
molecular graphs which increase the symmetry, but makes δ
more degenerate.

III. SUMMARY AND CONCLUSION
This paper has introduced a novel quantitative measure of
symmetry based on the orbit polynomial defined in terms
of the orbits of the automorphism group of a graph. This
measure (i.e., δ, the unique positive root of oneminus the orbit
polynomial) offers a method for comparing graphs according
to their symmetry structure and can be used to establish a
partial order on a class of graphs. Properties of the measure
have been demonstrated, and the measure has been applied
to several classes of trees to analyze correlations between the
values of this measure and those of two other quantitative
measures of graph symmetry. The relation between δ and the
measure Ia warrants further study since both are defined rela-
tive to the number and sizes of the orbits of the automorphism
group of a graph. In addition, further research is needed to
determine the range of structural properties of a graph that
can be captured by the orbit polynomial.

In addition, we applied δ as a structural descriptor to
chemical structures. The newmolecular descriptor δ for topo-
logical symmetry is promising if used together with other
topological descriptors, for instance, for cluster analysis of
molecular skeletons. Further work is necessary for extending
this concept to colored graphs that are needed to model
general molecular structures.
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