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Exact solution of multiangle quantum many-body collective neutrino-flavor oscillations
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I study the flavor evolution of a dense neutrino gas by considering vacuum contributions, matter effects, and
neutrino self-interactions. Assuming a system of two flavors in a uniform matter background, the time evolution
of the many-body system in discretized momentum space is computed. The multiangle neutrino-neutrino
interactions are treated exactly and compared to both the single-angle approximation and mean-field calculations.
The monoenergetic two-neutrino beam scenario is solved analytically. I proceed to solve flavor oscillations for
monoenergetic cubic lattices and quadratic lattices of two energy levels. In addition I study various configurations
of 12, 16, and 20 neutrinos. I find that when all neutrinos are initially of the same flavor, all methods agree. When
both flavors are present, I find collective oscillations and flavor equilibration develop in the many-body treatment
but not in the mean-field method. This difference persists in dense matter with tiny mixing angle and it can be
ascribed to non-negligible flavor polarization correlations being present. Entanglement entropy is significant
in all such cases. The relevance for supernovae or neutron stars mergers is contingent upon the value of the
normalization volume V and the large N dependence of the timescale associated with oscillations. In future
work, I intend study this dependence using larger lattices and also include antineutrinos.
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I. INTRODUCTION

Neutrinos are some of the most abundant particles found
in nature, produced during the early universe [1–5], from
stars like the sun during their lifetime [6,7], and in copious
amounts during core collapse supernovae [8–15]. From solar,
atmospheric, and reactor experiments it is known that they
are massive, and the mass eigenstates are different from the
weak interaction eigenstates [16–18]. As a result, neutrinos
oscillate between their three flavors during their propagation
in vacuum [19]. For instance, the solar neutrino problem, the
discrepancy between the electron neutrino flux emitted from
the sun and observed on earth, was a longstanding problem
[20,21]. The resolution came from the modified dispersion
relation in matter, which induces resonant flavor conversions
commonly referred to as the Mikheyev-Smirnov-Wolfenstein
(MSW) effect [22–24]. Neutrino-matter interactions induce a
self-energy, which is the origin of this effect.

In this work I study flavor oscillations under the influence
of the self-energy induced by neutrino-neutrino interactions,
called collective oscillations. This type of oscillations has
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been studied extensively in the literature [25–35]. In core-
collapse supernovae and merging of neutron stars a very large
number of neutrinos are produced [36]. In such situations even
the average energies of different flavors are different since
only electron neutrinos participate in charged-current weak
interactions. Neutrino-neutrino scattering, being between par-
ticles of the same type, is of a different nature than neutrino-
matter scattering, and gives rise to forward-scattering terms
in the many-body Hamiltonian, which contribute to oscilla-
tions [37,38]. These terms are dependent only on the angle
between neutrinos and couple neutrinos of different energies
making flavor evolution a rather intricate many-body problem.
Neutrino transport and flavor oscillations are active areas of
research, and no exact treatment has yet been provided. Due
to the amount of energy neutrinos carry during a core collapse
supernova, they can have a significant impact on the explo-
sion. For instance, the kinetic energy of the material ejected is
only about 1% of the neutrino energy [39,40]. If the majority
of neutrinos are of electron flavor, they can be reabsorbed
by matter and provide the energy required for the explosion.
Knowing the flavor evolution is crucial in understanding the
role neutrinos play in this environment.

The mean-field method was first proposed in Refs. [37,38]
and has been widely applied subsequently. The time evolution
equations in this method become nonlinear and analytical
solutions are available only in special cases. However, the
method needs to be compared to exact solutions to test its
region of validity.

Seminal work on the role of neutrino-neutrino interactions
in flavor oscillations has been conducted in Refs. [41–43].
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However, at the time, only a part of the full Hamiltonian was
considered, that is a simplified version of neutrino-neutrino
interactions, which here I call single-angle approximation,
without the presence of the mass term, which causes flavor
mixing.

Later an algebraic approach was developed, which retains
the many-body nature of the Hamiltonian and where two-body
operators are not replaced by effective one-body counterparts
[44]. In this approach, the many-body system is formulated as
an SU(2) coherent state path integral of two flavors [SU(3)
for three flavors]. This approach, as demonstrated in this
paper, is particularly useful for finding exact solutions and
constants of motion. An alternative approximation to the
mean field is to replace the angular dependence in neutrino-
neutrino interactions by the average angle but keep the two-
body term; this is commonly referred to as the single-angle
approximation. This simplified Hamiltonian can be studied
within the Richardson-Gaudin framework [45,46] and one
can solve for the eigenvalues [47,48]. Using the single-angle
approximation, one can calculate the spectral split for a large
number of neutrinos [49]. However, there is no a priori
physical motivation for replacing the angular dependence
of neutrino-neutrino interactions by an average value. This
averaging replaces the complicated angular structure in the
two-body neutrino interactions with the squared total angular
momentum (in flavor space) of the system, which is not
present in the original Hamiltonian. This is the Casimir oper-
ator [50] of the SU(2) algebra and commutes with the SU(2)
generators, thus it introduces symmetries not present in the
original Hamiltonian. From this perspective, the single-angle
approximation also needs to be tested for validity.

In this work, I solve the many-body multiangle Hamilto-
nian and compare to the single-angle approximation and the
multiangle mean-field method. As a first step, I assume a
simplified scenario of electron neutrinos νe, and an additional
flavor, which can be considered as a superposition of tau and
muon neutrinos denoted by νx, in matter at constant density.
In addition, I discretize the momentum space, which allows
for the treatment of the many-body problem on the lattice.
This appears to be one of the first attempts at an exact treat-
ment of neutrino-neutrino interactions on the lattice. The role
of antineutrinos is postponed for future works. In addition,
time evolution for large lattices is computationally expensive
for classical computers as the degrees of freedom increase
exponentially with the number of lattice points. Hence, I
focus on smaller lattices. The Hamiltonian for two neutrino
flavors is an ideal candidate for quantum computing given its
resemblance to the Ising model [51]. This technology allows
one to overcome the limitations of classical computers and
explore much larger lattices than currently available. I plan to
explore this research direction in future work.

Section II describes the operator algebra required for a
treatment of neutrino oscillations in a discretized momentum
lattice. Then, Sec. III studies the equations of motion in all the
three methods outlined here. Throughout this work, the time
unit chosen for plotting results is �t = μ−1

0 = ( GF

2
√
2V

)−1. In
Sec. IV a system of two neutrino beams is analyzed, and in
Secs. V and VI cubic and two energy level quadratic systems
are studied, respectively. In Sec. VII a system of 12 neutrinos

is studied in vacuum and dense matter. In Sec. VIII two
different configurations of 16 neutrinos in dense matter are
studied. I conclude the analysis with a system of 20 neutrinos
in Sec. IX. Section X studies the entropy of entanglement of
each neutrino in the many-body wave function. The findings
are summarized and conclusions are drawn in Sec. XII.

II. TWO-FLAVOR OSCILLATIONS AS A LATTICE
OF SU(2) ALGEBRAS

By introducing creation and annihilation operators for one
neutrino with three-momentum p, the generators of an SU(2)
algebra can be written [44,52,53]:

J+(p) = a†e (p)ax(p), J−(p) = a†x (p)ae(p),

Jz(p) = 1
2 [a

†
e (p)ae(p) − a†x (p)ax(p)], (1)

where a†e (p) is the creation operator of an electron flavor neu-
trino and a†x (p) of a neutrino of flavor x, which can be thought
of as a superposition of muon and tau neutrinos. Indeed, there
is an SU(2) algebra associated with each momentum value, all
commuting with each other. To be mathematically rigorous,
I discretize the momenta using a box quantization so that I
get an SU(2) algebra instead of the usual current algebra. The
sum of these operators over all possible values of momenta
also generates a global SU(2) algebra. The Hamiltonian is
comprised of three contributions: the mass (vacuum) term,
matter interactions, and neutrino self-interactions. I start with
the first two terms, for which one needs to pick either the mass
or the flavor basis to express them. I opted to work in the flavor
basis,

Hν =
∑
p

ωpB · J(p) +
√
2GF

∑
p

Ne(p) Jz(p), (2)

where B = sin (2θ )x̂ − cos (2θ )ẑ, ωp = δm2/(2p), and
sin θ = 0.297 is the mixing angle between the mass basis
and the flavor basis in vacuum [62]. In Eq. (2), the first term
represents neutrino mixing and the second one represents
neutrino forward scattering off the background matter. The
electron density Ne in the second term of Eq. (2) is inside
the summation since electron densities encountered by
neutrinos traveling in different directions can be different,
but for simplicity from this point forward it is assumed to be
constant. While this assumption is obviously unacceptable
over large distances, here I focus on oscillations that happen
over very short ranges for which the approximation should
hold. Neutrino-neutrino forward-scattering contributions,
which are the basis of collective oscillations, are described by
the Hamiltonian

Hνν =
√
2
GF

V

∑
pq

(1 − cosϑpq) J(p) · J(q), (3)

where ϑpq is the angle between neutrino momenta p and q
and V is the normalization volume. The (1 − cosϑpq) term in
the integral above means that neutrinos traveling in the same
direction do not forward scatter off each other. Contributions
from collisions are proportional toG2

F and are subleading with
respect to forward scattering. The total Hamiltonian is H =
Hν + Hνν . In writing Hνν neutrino masses were set to zero.
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III. MANY-BODY HAMILTONIAN IN
MOMENTUM LATTICE

For practical computations, the SU(2) algebra operators
are represented by Pauli matrices, Jp ≡ 1

2σp. For notational
convenience, αvac = 2θ . Matter effects are equivalent to a
modified neutrino oscillation frequency and mixing angle,

sin(αvac)

sin(αp)
= ωp

ωp

=

√√√√sin2(αvac) +
(
cos(αvac) −

√
2GFNe

ωp

)2

. (4)

The Hamiltonian described in the previous section can be
written as a sum of operators at different lattice points. In
the Heisenberg picture, operators evolve in time due to their
commutation relation with the Hamiltonian,

dtO = i[H,O].

I start with the global SU(2) generators Jk = ∑
p J

k
p ,

dtJ =
∑
p

ωp(Bp × Jp), (5)

where Bp = sin (αp)x̂ − cos (αp)ẑ denotes the one-body con-
tribution with a mixing angle modified in the presence of
matter. Only the mass term is responsible for flavor oscil-
lations in either basis, as the neutrino self-interaction term
commutes with Jk . For a complete analysis the reader is
referred to Refs. [52,53]. One can also explore what happens
to a particular lattice point (direction),

dtJp = ωp(Bp × Jp) + μ
∑
q

(1 − cosϑp,q)(Jq × Jp). (6)

As I explore in this work, they lead to fast collective oscil-
lations, which can be observed by looking at oscillations of
individual lattice points. Equations (5) and (6) are derived
in Appendix A. As this is one of the first lattice treatments
of neutrino oscillations it is important to compare to the
approximations commonly used in literature.

Mean-field approximation

Neutrino flavor oscillations are commonly studied in the
mean-field approximation, in which products of two one-
body operators are approximated by the product of a one-
body operator and the expectation of the other. While this
approximation greatly simplifies calculations, its validity is
questionable. The underlying assumption upon which it is
based is that two or higher many-particle correlations are too
small to have a significant impact. In this work I find that
when this assumption fails, also the mean-field method fails to
provide the correct flavor evolution in time. For the moment,
let us describe the method. I will return to this issue later
in this paper. For the Hamiltonian under consideration, the

mean-field treatment is given as follows:

HMF =
∑
pq

ωp

Nν

[
sin(αp)J

x
pIq − cos(αp)J

z
pIq

]

+
∑
pq

μ(1 − cosϑpq)(Pp · Jq),

where Pp = 〈Jp〉. The time evolution of the SU(2) algebra
generators is,

dtJp = ωpBp × Jp + μ
∑
q

(1 − cosϑpq)Pq × Jp. (7)

As the expectation value of the polarization Pq also evolves
in time, an additional equation of motion is needed for com-
pleteness and consistency,

dtPp = ωpBp × Pp + μ
∑
q

(1 − cosϑpq)Pq × Pp. (8)

By solving this equation one studies neutrino oscillations in
the mean-field approximation. As I show in the next sections,
the underlying assumption for this approximation is valid
when only one flavor is initially present. I find that when
two flavors are initially present, fast collective oscillations
are obtained in the exact treatment but do not appear in the
mean-field method. In the recent literature, linear instability
analysis has been employed in collective flavor oscillations
and fast conversions have been found [54–59]. For these fast
conversions to develop, among many other criteria, antineutri-
nos must be present. An additional criterion for the two-beam
scenario is that the angle between the two neutrino modes
must be acute [60]. In my analysis fast oscillations develop
without the need for antineutrinos (for all lattices considered
here) and regardless of the angle in the two-beam case, which
is quite an interesting difference. I also compare to the single-
angle approximation on the lattice. For the mean-field method
I perform a multiangle treatment.

IV. ANALYTICAL SOLUTION FOR TWO
NEUTRINO BEAMS

If two neutrino beams with the same energy but different
directions are considered, one can solve the system exactly by
making use of the Dirac basis [61]

σμν
pq = σμ

p ⊗ σ ν
q , σμ = {I2, σ x, σ y, σ z}.

The subscripts denote the lattice points associated with the
Pauli matrices. Any four-dimensional matrix M can be de-
composed in this orthogonal basis as follows:

M =
∑
μν

cμνσμν, cμν = 1

4
Tr[Mσμν].

The Hamiltonian for this system is

H = H11 + H21 + H12 + H22
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and each term is given in terms of the elements of the Dirac
basis,

Hpq = ω

2

[
sin(α)σ 10

pq − cos(α)σ 30
pq

]
+ μ

4
(1 − cosϑp,q)

[
σ 11
pq + σ 22

pq + σ 33
pq

]
.

Since both beams have the same energy, ω1 = ω2 = ω, α1 =
α2 = α, and B1 = B2 = B. Any operator can be expressed
as a function of time, O(t ) = eiHtOe−iHt . In Appendix B,
the decomposition of the time evolution operator e−iHt in the
Dirac basis is provided. Once the evolution operator is known,
the generators (Jk = Jk1 + Jk2 ) of the SU(2) algebra can be
calculated at any moment in time (Appendix B),

Jx(t ) = 1

2

(
cos2

(
ω

2
t

)
− cos(2α) sin2

(
ω

2
t

))(
σ 01
12 + σ 10

12

)
+ 1

2
cos(α) sin(ωt )

(
σ 02
12 + σ 20

12

)
− 1

2
sin(2α) sin2

(
ω

2
t

)(
σ 03
12 + σ 30

12

)
,

Jz(t ) = 1

2
sin(α) sin(ωt )

(
σ 02
12 + σ 20

12

)
− 1

2
sin(2α) sin2(

ω

2
t )

(
σ 01
12 + σ 10

12

)
+ 1

2

(
cos(2α) sin2

(
ω

2
t

)
+ cos2(

ω

2
t )

)(
σ 03
12 + σ 30

12

)
.

From the time dependence of these operators one can verify
that B · J(t ) is a constant of motion,

B · J(t ) = sin (α)Jx(t ) − cos (α)Jz(t )

= 1
2 sin (α)

(
σ 01
12 + σ 10

12

) − 1
2 cos (α)

(
σ 03
12 + σ 30

12

)
.

As collective oscillations appear by looking at individual
points (directions) in the momenta lattice, I focus on point 1
and study the time evolution of the polarization for different
initial conditions,

〈νe1, νe2|JZ 1|νe1, νe2〉(t ) = −〈νx1, νx2|JZ 1|νx1, νx2〉(t )

= cos(2α) sin2
(

ω
2 t

) + cos2
(

ω
2 t

)
2

(9)

and,

〈νe1, νx2|JZ 1|νe1, νx2〉(t )
〈νe1, νe2|JZ 1|νe1, νe2〉(t )

= −〈νx1, νe2|JZ 1|νx1, νe2〉(t )
〈νe1, νe2|JZ 1|νe1, νe2〉(t )

= cos [2μ(1 − cosϑ12)t]. (10)

From these equations I find that the frequency of oscillations
is proportional to ω when only one flavor is present and
proportional to μ when both flavors are present. Collective
oscillations do not depend on the energy scale or the mixing
angle, provided α �= 0. In addition, the angle between the
two neutrinos does not prevent oscillations from developing
as long as they are not parallel to each other. To understand
the difference between these two initial conditions I study the
flavor polarization correlations. Here I define the correlation

between two operators as C(Oi,Oj, |	〉) = 〈	|OiOj |	〉 −
〈	|Oi|	〉〈	|Oj |	〉.

For the two beam scenario I find

C(Jz1, J
z
2, |νeνe〉) = C(Jz1, J

z
2, |νxνx〉) = 0,

C(Jz1, J
z
2, |νeνx〉)

〈νeνx|Jz1Jz2 |νeνx〉
= C(Jz1, J

z
2, |νxνe〉)

〈νxνe|Jz1Jz2 |νxνe〉
= sin2[2μ(1 − cosϑ12)t]. (11)

From these correlations I expect the mean-field approximation
to match the exact solution for initial conditions where only
one flavor is present, and maximal disagreement when the net
polarization is 0 (equal amounts of each flavor).

It is worth pointing out that when both neutrinos have
the same initial flavor, the wave function is an eigenstate
of the two-body term where both |νeνe〉 and |νxνx〉 have the
same eigenvalue. As a result, the time evolution is initially
impacted by the one-body term only. And since both neutrinos
have the same frequency ω, they will precess around B in a
synchronized fashion. Thus, they will be a superposition of
pure flavor eigenstates |νeνe〉 and |νxνx〉, and the two-body
term will play no role. If the initial wave function has both
flavors present, it is not an eigenstate of the two-body term
and the time evolution will depend on both terms in the
Hamiltonian.

A. Single-angle approximation

The average angle for the two-beam scenario is 〈cosϑ〉 =
(1 + cosϑ12)/2. The respective time evolution of the expecta-
tion value of JZ 1 is identical to the multiangle results for initial
conditions of only electron or x flavor. When both flavors are
present the results are different,

〈νe1, νx2|JZ 1|νe1, νx2〉(t )
〈νe1, νe2|JZ 1|νe1, νe2〉(t )

= cos [μ(1 − cosϑ12)t]. (12)

Correlations vanish for a single-flavor and differ for mixed-
flavor initial conditions,

C(Jz1, J
z
2, νeνx )

〈νeνx|Jz1Jz2 |νeνx〉
= C(Jz1, J

z
2, νxνe)

〈νxνe|Jz1Jz2 |νxνe〉
= sin2[μ(1− cosϑ12)t].

The attentive reader might be puzzled as to why I am com-
paring multi- and single-angle calculations for a system of
two particles where indeed there is only one angle present
between them. As shown in Appendix B, the single-angle ap-
proximation allows for neutrinos to interact with themselves,
differently from the original Hamiltonian. Even for a small
system of two particles this causes a difference with exact
results. This difference seems mainly quantitative rather than
qualitative at this stage. However, as the number of particles
increases, so does the number of angles between them, and
one needs to compare with multiangle results.

B. Mean-field approximation

The total polarization and difference of polarizations are
defined as

Ptot =P1 + P2,

Pdiff =P1 − P2.
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This simplifies calculations as equations of motion partially
decouple,

dtPtot = ωB × Ptot,

dtPdiff = [ωB + μ(1 − cosϑpq)Ptot] × Pdiff. (13)

The first equation has the analytical solution,

Ptot(t ) = B × P0 + sin (ωt )
(
B · P0

)
B

− cos (ωt )B × (B × P0),

where P0 = Ptot(t = 0). More details can be found in Ap-
pendix C. The second equation is solved numerically for
generic initial conditions. However, here I am interested in
two specific cases: two neutrino beams of one flavor (|νeνe〉)
and one neutrino of each flavor (|νeνx〉).

Case: |νeνe〉
Initially both neutrino beams are of electron flavor,

Ptot(t = 0) = 2P1(t = 0) = ẑ,

Pdiff = 0.

Since the time evolution equations are of first order, once one
knows the initial conditions, the solutions can be found,

Pdiff = 0,

Pz
tot = [cos2(α) + sin2(α) cos(ωt )].

The expectation values for individual polarizations are,

Jz1(t ) = Jz2(t ) = 1
2 [cos

2(α) + sin2(α) cos(ωt )]. (14)

By trigonometric identities one can prove that Eqs. (14) and
(9) are identical. In this case all methods agree, there are no
correlations present, and the frequency of oscillations depends
on ω but not on μ.

Case: |νeνx〉
If the initial wave function has equal amounts of electron

neutrinos νe and x neutrinos νx,

Ptot(t = 0) = 0,

Pdiff = 2P1(t = 0) = ẑ.

The total polarization is a constant of motion and the differ-
ence of polarizations depends only on the mass term,

dtPdiff = ωB × Pdiff. (15)

Equation (15) is identical to Eq. (13) in the previous section
and, thus, has the same solution. The expectation values for
individual polarizations are,

Jz1(t ) = − Jz2(t ) = 1
2 [cos

2(α) + sin2(α) cos(ωt )]. (16)

The time evolution for individual modes depends only on the
mass term, in sharp contrast with the result from the exact
solution. For initial conditions without net polarization the
mean-field method shows no collective oscillations, which
is quite interesting, as from the previous section, this is the
scenario where correlations are present.

C. Numerical results for |νeνx〉
To simplify the numerical implementation of the equations

in the previous section, μ0 = √
2GF

V is set as the energy
(inverse time) unit. I focus on mode 1, and assume the initial
wave function is |	0〉 = |νe1νx2〉. Figure 1 assumes a vacuum
mixing angle between electrons and x. By varying the two
couplings and the angle between the two modes one can see
that fast collective flavor oscillations develop in vacuum. As
Eq. (10) shows, the mass term ω is responsible for the small
oscillation frequency, and the high frequency is linearly pro-
portional to μ. In other words, these are frequency modulated
oscillations where ω plays the role of the original frequency
and μ is the modulating frequency. Oscillations develop
regardless of the sign of cos (α). However, the mean-field
calculation fails to find any collective oscillatory behavior and
only displays the usual vacuum oscillation with frequency ω.

Next I turn my attention to flavor oscillations in the pres-
ence of matter. While a detailed study is beyond the scope
of this work, I focus on the adiabatic approximation (constant
matter density). In other words, I study length scales for which
matter density does not vary drastically. As Eq. (4) shows, the
effective mixing angle in dense media is much smaller than in
vacuum and the effective mass coupling increases. In Fig. 2
I used α = 0.01 as an illustration. Collective oscillations
develop for both multi- and single-angle calculations while
the mean-field approximation shows no oscillations at all.
It seems that as long as there is some mixing, no matter
how small the mixing angle, fast oscillations develop and
the frequency of oscillations in this case depends only on μ.
The explanation for the mean-field result can be found by
analyzing Eq. (15). If the mixing angle is very small and there
is no net polarization initially, Ptot(0) = 0 and Pdiff(0) = ẑ.
Then, the rate of change of the polarization difference is

dtPdiff ≈ − ωẑ × Pdiff = 0.

This is a rather interesting finding as collective oscillations
in dense media could have quite dramatic implications for
core collapse supernovae and neutron star binary mergers.
One can perform an order of magnitude estimate of the ratio
between the neutrino mean-free path from charged reactions
and for collective oscillations. To estimate the ratio of these
two length scales, I assume the normalizing volume in the
two-body term to be V ∝ n−1

ν ,

λνe+n→p+e

λosc
∝

√
2GFnν

G2
Fω2nb

=
√
2nν

GFω2nB

= 1.2 × 103
(
nν/nB
10−6

)(
10 MeV

ω

)2

.

This result seems to suggest that once collective oscilla-
tion develop they will effectively equilibrate neutrino flavors
between collisions with matter. However, the result depends
on the numerical value of V , which I discuss in Sec. XI. I also
consider the case for which the initial wave function is only
electron flavor. From Eqs. (9) and (12) the single-angle ap-
proximation gives the same result as the multiangle treatment
and they both show ordinary vacuum oscillations. In addition,
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FIG. 1. Multiangle (solid blue line), single-angle (dashed red line), and mean-field (dashed-dotted orange line) calculations of the flavor
polarization as function of time for two beam neutrinos with cosϑ12 = ± 1

2 and initial wave function |	0〉 = |νeνx〉 in vacuum from Eqs. (10),
(12), and (16), respectively. (a) ω/2 = μ0, μ/4 = μ0, cosϑ12 = 1

2 , (b) ω/2 = μ0, μ/4 = μ0, cosϑ12 = − 1
2 , (c) ω/2 = μ0/5, μ/4 =

μ0, cosϑ12 = − 1
2 , and (d) ω/2 = μ0/5, μ/4 = μ0, cosϑ12 = − 1

2 .

no correlations are present, and the mean-field approximation
result in Eq. (14) agrees with the exact solution.

V. CUBIC LATTICE RESULTS

While the results in the previous section were obtained
analytically, for systems of more than two neutrinos I proceed
to solve numerically for the wave function as function of
time,

|	(t )〉 = e−iHt |	0〉. (17)

In this section I consider a three-dimensional cube as depicted
in Fig. 3. The basis used in this case is a direct product of eight
Pauli matrices, which allows for the exact computation of the
time evolution operator. I study oscillations in matter with
an equal number of electron and x flavor in the initial wave

function. Figure 4 shows the correlation of all points and the
polarizations for two lattice points with initial flavors νe and
νx, respectively, for a mixing angle αp = 0.01. The mean-field
shows no flavor evolution, while the many-body methods
depict rapid flavor equilibration. In the single-angle approxi-
mation, as correlations change between maximal and minimal
values, so does the flavor mixing. The multiangle calculation
shows strong correlations, and the flavor polarization oscil-
lates close to zero as a result. The presence of correlations
explains the difference between exact calculations and mean
field similarly to the two-beam case. As before, correlations
disappear when all neutrinos start with the same flavor and all
methods agree. I verified numerically that Bp · J is a constant
of motion. Flavor evolution in the vacuum with no net initial
polarization and alternatively with only one flavor initially is
provided in Appendix D.

FIG. 2. Multiangle (solid blue line), single-angle (dashed red line), and mean-field (dashed-dotted orange line) calculations of the flavor
polarization as function of time for two beam neutrinos with initial wave function |	0〉 = |νeνx〉 in medium where cosϑ12 = 1

2 and α = 0.01
from Eqs. (10), (12), and (16), respectively. (a) ω/2 = μ0, μ/4 = μ0 and (b) ω/2 = μ0/5, μ/4 = μ0.
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FIG. 3. Cubic lattice structure of eight neutrino momenta, which
share the same magnitude.

Initial conditions with partial polarization

In the previous sections I have studied the case when all
neutrinos start with one flavor, or both flavors are present
in the same amount. However, an intermediate scenario is
needed where there is some flavor polarization in the initial
wave function, but not all neutrinos are of the same type. As
an illustration, I performed the flavor evolution for the cubic
lattice with an initial wave function of six electron neutrinos
and two x neutrinos, |	0〉 = |ν (6)

e ν (2)
x 〉. Figure 5 displays the

flavor evolution for two lattice points, which start oscillations
with νe and νx, respectively. Collective oscillations still
develop but are not as pronounced as in the previous cases.
Similar to previous results, the mean-field method does not
show any collective behavior. In addition, both the single-
angle and mean-field approximations display oscillations with
a contrary phase with respect to the exact solution when it

FIG. 4. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the lattice in Fig. 3 and initial wave function
|	0〉 = |ν (4)

e ν (4)
x 〉 in medium with ω/2 = μ = μ0 and αp = 0.01.

These results were obtained based on Eq. (17).

FIG. 5. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) calculations of the
flavor polarization as function of time for the cubic lattice in Fig. 3
and initial wave function |	0〉 = |ν (6)

e ν (2)
x 〉 in vacuum. These results

were obtained based on Eq. (17). (a) ω/2 = μ0, μ/4 = μ0 and
(b) ω/2 = μ0/5, μ/4 = μ0.

comes to the flavor of lower concentration. In the multiangle
lattice treatment, the x flavor quickly synchronizes in phase
with the electron flavor, but this does not happen for the two
other methods.

Since in this section I have studied systems of neutrinos
with the same frequency ωp, a few remarks are needed. First,
from Eq. (8) one can conclude that initially the cross products
vanish since the polarizations are aligned along the z axis.
As all neutrinos have the same frequency, in the mean-field
approximation they will precess around B with the same
frequency, remaining parallel, and thus the two-body term
will never impact the flavor evolution regardless of particle
number. On the other hand, in the many-body case the result
is qualitatively different. The mean-field initial state with both
flavors present is not an eigenstate of the two-body interaction
in Eq. (3), and its time evolution will be affected by this term
in the Hamiltonian as shown in Figs. (4) and (5).

VI. TWO ENERGY LEVELS: QUADRATIC LATTICE

So far monoenergetic flavor oscillations have been con-
sidered. Due to their interactions with matter during a core
collapse supernova, electron neutrinos decouple in lower den-
sity regions with respect to other flavors and the resulting
energy spectrum is lower [40,63,64]. To account for this dif-
ference in spectrum, in this section I work with two quadratic
lattices of different momenta values as shown in Fig. 6. I
pick a momentum magnitude ratio of three as a conservative
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FIG. 6. Two quadratic lattice structures in momentum space. The
smaller lattice is initially of electron flavor and the larger lattice of x
flavor.

representation of the mean energy ratio found in numerical
simulations [40,63]. I denote by ωp and ω3p for the frequen-
cies respectively.

A. Initial conditions without polarization

Qualitatively, oscillations agree with previous results in
this work. The presence of two energy levels is seen in the
pattern of oscillations, which is rather complicated as shown
in Fig. 7. Polarization correlations among all neutrinos are
also displayed in this figure.

B. Initial conditions with partial polarization

I verified that if the initial wave function contains only
one neutrino flavor, no collective oscillations occur and the

FIG. 7. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the lattice in Fig. 6 and initial wave function
|	0〉 = |ν (4)

e ν (4)
x 〉 in vacuum with ωp/2 = μ/4 = μ0. These results

were obtained based on Eq. (17).

FIG. 8. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
for the lattice in Fig. 6 and initial wave function |	0〉 = |ν (6)

e ν (2)
x 〉 in

vacuum with ωp/2 = μ/4 = μ0. These results were obtained based
on Eq. (17).

mean field agrees with the lattice calculation. In addition,
correlations vanish as well.

Next I consider a mixture of 75% electron flavor, |	0〉 =
|ν (6)

e ν (2)
x 〉 like in the case of the cubic lattice. From Fig. 8

one can see that collective oscillations develop and from
Fig. 9 that correlations are present. Lattice points 4 and 8
show flavor oscillations for the larger lattice with νx and
νe flavors initially; lattice point 1 is a representative from
the smaller lattice. The amplitude of collective oscillations
is less pronounced and it oscillates close to zero. The mean
field still differs from the exact solution. As a final check, I
study oscillations in a dense medium in Fig. 10. The effective
frequencies increase while the mixing angles decrease result-
ing in αp/α3p ≈ 3, ωp/ω3p ≈ 1 with αp = 0.01 and ωp/2 =
μ/4 = μ0. The mean field shows no oscillations for any of the
neutrinos, while the multi- and single-angle develop collective
oscillations. This is more evident for the x flavor neutrinos
in Fig. 10. This confirms the presence of correlations among
neutrinos of different energies even in a dense medium as
shown in Fig. 11. The two energy level neutrino systems in the
following sections have the same momenta values in vacuum
and respective frequencies and mixing angles in medium as
described here.

FIG. 9. Multiangle (solid blue line), single-angle (dashed red
line) correlations for the lattice in Fig. 6 and initial wave function
|	0〉 = |ν (6)

e ν (2)
x 〉 in vacuum with ωp/2 = μ/4 = μ0. These results

were obtained based on Eq. (17).
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FIG. 10. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
for the lattice in Fig. 6 and initial wave function |	0〉 = |ν (6)

e ν (2)
x 〉 in

medium. These results were obtained based on Eq. (17).

VII. SYSTEM OF 12 NEUTRINOS

In this section I consider a system of 12 neutrinos with two-
thirds initially of electron flavor. The configuration chosen
is depicted in Fig. 12. Electron neutrinos have a momentum
magnitude three times smaller than x flavor neutrinos follow-
ing the same rationale of the previous section.

Figure 13 shows the flavor polarization for two neutrinos
in the lattice and overall correlation as functions of time
in vacuum while Fig. 14 displays the time evolution for
the same initial conditions in a dense matter medium. The
results depicted in these figures agree with previous section:
there is rapid flavor equilibration in the many-body methods,
particularly in the multiangle case, while the mean field shows
no such behavior. Not surprisingly, correlations are significant
when this happens. Especially in a dense matter medium, the
qualitative difference is quite visible as the mean field shows
subdued oscillations. However, the multiangle shows rapid
flavor equilibration, more so for the flavor initially present in
smaller amount. The single angle shows a result in between
the multiangle and mean field.

VIII. SYSTEMS OF 16 NEUTRINOS

In this section I continue the many-body study of the
neutrino flavor oscillations by considering two different

FIG. 11. Multiangle (solid blue line), single-angle (dashed red
line) correlations for the lattice in Fig. 6 and initial wave function
|	0〉 = |ν (6)

e ν (2)
x 〉 in medium. These results were obtained based on

Eq. (17).

FIG. 12. Cubic lattices with initially electron neutrinos (smaller
lattice) and quadratic lattice of x flavor neutrinos (greater lattice).

configurations of 16 neutrinos. At first, I consider two cubic
lattices of electron and x flavor, respectively, as depicted in
Fig. 15, with the same momentum ratio as in the previous sec-
tions. In Fig. 16 I plot the flavor polarization and correlation
in a dense medium. The mean-field treatment shows the usual
oscillations due to the one-body term. Both many-body calcu-
lations show an almost immediate flavor equilibration; quali-
tatively the opposite outcome. Correlations are significant as
the plot shows. The second configuration shown in Fig. 17 has
three times more electron neutrinos. The flavor polarization
and correlations depicted in Fig. 18 show a similar trend; with
oscillations not present in the mean-field approximation and
flavor equilibration in the many-body calculation.

FIG. 13. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the lattice in Fig. 12 and initial wave function
|	0〉 = |ν (8)

e ν (4)
x 〉 in vacuum with ω/2 = μ/4 = μ0. These results

were obtained based on Eq. (17).
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FIG. 14. Multiangle (solid blue line), single-angle (dashed red
line), and mean field (dashed dotted orange line) flavor polarization
and correlations for the lattice in Fig. 12 and initial wave-function
|	0〉 = |ν (8)

e ν (4)
x 〉 in medium. These results were obtained based on

Eq. (17).

IX. SYSTEM OF 20 NEUTRINOS

I conclude the many-body study with a system of 20 neutri-
nos. The configuration is shown in Fig. 19 with four neutrinos
on the smaller lattice and 12 on the larger lattice. Similarly to
previous sections, the ratio of the momenta magnitude is three.

Figure 20 shows the flavor polarization for 20 neutrinos
in the lattice and overall correlation as functions of time in
vacuum while Fig. 21 displays the time evolution for the
same initial conditions in a dense matter medium. The trend
found in previous sections is also present here. One would
expect the mean field to approach the many-body results as
the particle number is increasing, but this does not happen
here. However, given the relatively small number of particles
considered in this work, no statements can be made regarding
large particle number behavior. Larger lattices will be studied
in future work.

FIG. 15. Two cubic lattices with initially electron neutrinos
(smaller lattice) and x flavor neutrinos (greater lattice).

FIG. 16. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the lattice in Fig. 15 and initial wave function
|	0〉 = |ν (8)

e ν (8)
x 〉 in medium. These results were obtained based on

Eq. (17).

X. ENTANGLEMENT ENTROPY

From the configurations studied in this work a common
feature emerges; whenever polarization correlations are sig-
nificantly present, the mean-field approximation fails to cap-
ture the time evolution described by the many-body method.
To have a better understanding, in this section I study the
entanglement entropy of each neutrino in the many-body
wave function versus the rest. Since the initial wave functions
considered in this work are eigenstates of flavor, they are pure
states. And, as they time evolve due to the Hamiltonian, they
remain pure, although not eigenstates of flavor anymore. For
such wave functions, the von-Neumann entanglement entropy
serves as a measure of entanglement between the neutrinos.
For a given density matrix it is defined as,

S = − Tr(ρ ln ρ), ρ = |	〉〈	|. (18)

FIG. 17. Configuration with initially 12 electron neutrinos
(smaller lattice) and four x flavor neutrinos (greater lattice).
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FIG. 18. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the lattice in Fig. 17 and initial wave function
|	0〉 = |ν (12)

e ν (4)
x 〉 in medium. These results were obtained based on

Eq. (17).

Here I focus on a bipartition of the wave function with one
neutrino in one subspace, and the rest of the neutrinos in
the other. For an in depth description of entanglement and
its various measures used in quantum computing, the reader
is referred to Refs. [65–68]. The bipartition chosen allows
one to study whether one neutrino can be factored out from
the rest of the wave function. If this is possible, the single-
particle mean field should describe the many-particle system.
The wave function can be decomposed based on this partition,

|	ν (N )〉 = |νe〉 ⊗
∑
i

cei
∣∣	 i

ν (N−1)

〉 + |νx〉 ⊗
∑
i

cxi
∣∣	 i

ν (N−1)

〉
.

(19)

The label i denotes some basis of orthonormal wave functions
of N − 1 neutrinos.

FIG. 19. Configuration with initially four electron neutrinos
(smaller lattice) and 16 x flavor neutrinos (greater lattice).

FIG. 20. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the initial wave function |	0〉 = |ν (4)

e ν (16)
x 〉 in

vacuum with ω/2 = μ/4 = μ0. These results were obtained based
on Eq. (17).

The reduced density matrix is obtained by tracing out
the N − 1 neutrinos, ρν = Tr	 i

ν(N−1)
(ρ	

ν(N ) ) and the respective
entanglement entropy is Sν = −Tr(ρν ln ρν ). This quantity
is zero when there is no entanglement and ln(2) when the
neutrino is maximally entangled with the other neutrinos in
the wave function. Thus, if Sν = 0 one expects a single-
particle mean-field description to be appropriate. As the en-
tropy increases, the mean-field result should get further away
from the exact calculation. In Appendix D in Fig. 25 I find
both correlations and entanglement entropy vanish when the
mean-field approximation agrees with the many-body result.
This happens when only one flavor is initially present.

When both flavors are initially present, correlations and en-
tanglement develop. For two neutrino beams, one can obtain
analytical results:

Smulti-angle
νe

(t ) = Smulti-angle
νx

(t )

= 1

2

[
log

(
1

4
sin2(2μ(1 − cosϑ12)t )

)
+ |cos(2μ(1 − cosϑ12)t )|

× log

(
1 + |cos(2μ(1 − ϑ12)t )|

1 − |cos(2μ(1 − cosϑ12)t )|
)]

Ssingle-angleνe
(t ) = Ssingle-angleνx

(t )

= 1

2

[
log

(
1

4
sin2(μ(1 − cosϑ12)t )

)
+ |cos(μ(1 − cosϑ12)t )|

× log

(
1 + |cos(μ(1 − ϑ12)t )|

1 − |cos(μ(1 − cosϑ12)t )|
)]

. (20)
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FIG. 21. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) flavor polarization
and correlations for the initial wave function |	0〉 = |ν (4)

e ν (16)
x 〉 in

medium. These results were obtained based on Eq. (17).

For all lattices studied in this work, when both flavors are
initially present, I find that neutrinos get rapidly entangled.
Figure 22 displays the entanglement entropy for systems of 8,
12, 16, and 20 particles as function of time for initial electron
and x flavor, respectively. In Ref. [41] the authors find that
entanglement does not develop when only the single-angle
two body term in the Hamiltonian is considered. Later, in
Ref. [42], entanglement was found for that Hamiltonian when
systems of 14 particles were studied. In the case at hand, I am
studying the full multiangle Hamiltonian and I find entangle-
ment when both flavors are initially present. Due to the fact
that the Hamiltonian dimensions increase exponentially with
the particle number, it is very computationally expensive to
study much larger systems. While the main focus of this work
is the multiangle Hamiltonian, it is worth pondering what
happens for larger and larger systems. A simple assumption
would be that correlations would decrease as the number of
particles increases, thus entanglement would decrease as well.
Unfortunately, if this question is posed for the transverse Ising
spin chain the answer contradicts this assumption. In Ref. [69]
the authors find that the entanglement entropy increases with
time until it reaches a maximal value. This value of the en-
tanglement depends on the initial state and does not decrease
and the particle number increases. A conclusive statement
about the multiangle Hamiltonian can be made once larger
systems are studied, which is to pursued in the future. In the
meantime, I will focus on the effects of the two-body operator
only, and for simplification, I will consider the single-angle
approximation and compare it to the mean-field result in the
next section.

FIG. 22. Bipartite entanglement entropy for the individual neu-
trinos in medium for the configurations described in the previous
sections. These results were obtained based on Eq. (17). (a) 	0〉 =
|ν (4)

e ν (4)
x 〉, (b) |	0〉 = |ν (8)

e ν (4)
x 〉, (c) |	0〉 = |ν (8)

e ν (8)
x 〉, and (d) |	0〉 =

|ν (4)
e ν (16)

x 〉.

XI. INFINITELY LARGE SYSTEMWITH ONLY
NEUTRINO-NEUTRINO INTERACTIONS

A. Many-body treatment

In this section, in order to study infinitely large systems,
I will ignore the mass term in the Hamiltonian, and study
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the system in the single-angle approximation. This is the
Hamiltonian studied in Ref. [43],

H = μ
∑
i, j

Ji · J j = μ(
∑
i

Ji )2 = μJ2,

H |J,mj〉 = μJ (J + 1)|J,mj〉 = EJ |J,mj〉,
where,

|νe〉 = ∣∣ 1
2 ,

1
2

〉
, |νx〉 = ∣∣ 1

2 ,− 1
2

〉
.

Here I follow the same steps as in Ref. [43], and proceed
to calculate the polarization and entanglement entropy as
functions of time. The initial wave function chosen is

|	0〉 = ∣∣ν (N )
e ν (N )

x

〉 =
∣∣∣∣N2 ,

N

2

〉
⊗

∣∣∣∣N2 ,−N

2

〉
.

Based on Ref. [43] one can express the wave function at a
given time as a direct product of a single neutrino state and
the rest,

|	(t )〉 = e−iHt |	0〉

= |νe〉 ⊗
N−1∑
J=0

e−iEJ t + e−iEJ+1t

2
η(N, J )

×
∣∣∣∣J + 1

2
,−1

2
; (2N − 1)

〉

+ |νx〉 ⊗
N−1∑
J=0

(−1)N−J e
−iEJ t − e−iEJ+1t

2
η(N, J )

×
∣∣∣∣J + 1

2
,
1

2
; (2N − 1)

〉
,

where η(N, J ) is the Clebsch-Gordan coefficient [70],

η(N, J ) =
〈
N − 1

2
,
N − 1

2
;
N

2
,−N

2

∣∣∣∣J + 1

2
,−1

2

〉

=
√
2(J + 1)

√
(N − 1)!N!

(−J + N − 1)!(J + N + 1)!

The reduced density matrix is obtained by tracing over the
subspace of 2N − 1 neutrinos,

ρν =
(
N−1∑
J=0

η2(N, J )

2

[
1 + cos(2μ(J + 1)t )

])|νe〉〈νe|

+
(
N−1∑
J=0

η2(N, J )

2

[
1 − cos(2μ(J + 1)t )

])|νx〉〈νx|

= 1

2
[1 + A(N, μ, t )]|νe〉〈νe| + 1

2
[1 − A(N, μ, t )]|νx〉〈νx|.

(21)

The function A(N, μ, t ) is given as follows:

A(N, μ, t ) = 1

(N + 1)
[e−2iμt

2F1(2, 1 − N ;N + 2;−e−2iμt )

+ e2iμt 2F1(2, 1 − N ;N + 2;−e2iμt )], (22)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.
The expression in front of |νe〉〈νe| is the so-called survival
probability for the neutrino to remain in the initial flavor [43],
while the expression in front of |νx〉〈νx| is the probability for it
to change flavor. In the full Hamiltonian B · J is a constant of
motion while for this Hamiltonian Jz is. This means that the
coefficients for |νe〉〈νx| and |νx〉〈νe| are zero in this case by
symmetry, but not in the full Hamiltonian. The entanglement
entropy is,

Sνe = ln 2 + A(N, μ, t )

2
ln

(
1 − A(N, μ, t )

1 + A(N, μ, t )

)
. (23)

In addition, one can also study the polarization of individual
neutrinos from the expressions above,

Pz
νe
(t ) = −Pz

νx
(t ) = A(N, μ, t )

2
. (24)

The complete derivation of |	(t )〉 can be found in
Appendix E. The derivation of the survival probability has
already been performed in Ref. [43]. The authors did not study
entanglement entropy or compare the polarization from the
exact solution with the mean field in that article. Their focus
was on the time scale associated with flavor equilibration, and
found it to be τ−1 ∝ μ0

√
N . As μ0 depends on the normaliza-

tion volume V , the authors took V ∝ cm3, and concluded that
the time scale was too large to be significant for supernovae
(τ ∝ 1022 s). However, one could argue that this quantity
should be related to the neutrino density, V−1 ∝ nν . If

nν

n0
∝

10−10, where n0 = 0.16 fm−3 is the nuclear saturation density
which is reached at the core of protoneutron stars, the time
scale becomes relevant (τ ∝ 10−6 s). As the goal of this work
is the mathematical solution for the time evolution due to the
multiangle Hamiltonian, I refrain from making any conclusive
statements as to which choice is appropriate. I proceed in
the next subsection to compare to the mean field result for
the same Hamiltonian and initial wave function.

B. Mean-field method

The equations of motion are derived from Eq. (8) by setting
ωp = 0,

dtPp = μ0

∑
q

Pq × Pp. (25)

In Fig. 23 I plot the polarization and the entanglement entropy
as functions of time for the system of 1000 neutrinos. The
many-body result is provided by the analytical expression if
Eq. (24) and the mean field is solved numerically. The quali-
tative difference between the many-body result and the mean
field is quite striking. The mean field shows no oscillations
at all, while the exact result shows rapid flavor equilibration.
This is agreement with all the configurations studied so far.
The lack of oscillations in the vacuum predicted by the mean
field can be explained by comparing this system with the
two-particle system in Sec. IVB. All the 500 initial electron
neutrinos are equivalent for the given Hamiltonian, and the
same can be said for the x flavor ones. The system of equations
in (24), then, can be written in terms of the sum of the
polarizations, and the difference between electron and x flavor.

065805-13



ERMAL RRAPAJ PHYSICAL REVIEW C 101, 065805 (2020)

FIG. 23. Single-angle (dashed red line), and mean-field (dashed-
dotted orange line) flavor polarization and bipartite entanglement
entropy for the initial wave function |	0〉 = |ν (500)

e ν (500)
x 〉 in vacuum

with μ/4 = μ0.

From Sec. IVB, the equations of motion for the 1000 neutrino
system can be written as,

dtPtot = dtPdiff = 0. (26)

The mass term, responsible for the time evolution of these two
quantities is zero, so they are both constants of motion. No
matter how large the system, if the initial wave function has
equal numbers of both flavors, the mean field will show no
oscillation,

P(mean-field)z
νe
(t ) = −P(mean-field)z

νx
(t ) = 1

2 . (27)

On the other hand, limt→∞ F (
√
Nμt ) = 0, so

lim
t→∞Pz

νe
(t ) = lim

t→∞Pz
νx
(t ) = 0. (28)

Actually, the asymptotic value is reached very quickly as
Fig. 23 shows. Not surprisingly, neutrinos get rapidly entan-

gled with each other and this quantity reaches its maximum
rather quickly as shown in the same plot. This result agrees
qualitatively with what I have found in the previous sections.

XII. CONCLUSION

Neutrino flavor oscillations are important for the thermo-
dynamic evolution of core collapse supernovae and neutron
star mergers, and also impact the nucleosynthesis of heavy
elements in these environments. Due to the complicated na-
ture of this many-body system, the mean-field approximation
is widely used in numerical simulations. However, it needs
to be compared to an exact many-body treatment in order to
assess its region of validity. By considering uniform matter
and discretized momentum space, I am able to solve exactly
the time evolution of flavor oscillations. I provide analytical
results for the two neutrino beam scenario and numerical
results for cubic and quadratic lattices of 8, 12, 16, and
20 particles. I find that when both flavors are present, fast
collective oscillations develop and there is flavor equilibra-
tion but these are not observed in the mean-field treatment.
This qualitative difference can be ascribed to correlations
developing among neutrinos for the mixed flavor scenario
as neutrinos rapidly entangle in time units μ−1

0 = ( GF

2
√
2V

)−1.
When only one flavor is present, correlations vanish, there
is no entanglement, oscillations vanish, and the mean field
agrees with the exact solution. While the single-angle approx-
imation on the lattice does show fast collective oscillations,
there are differences from the multiangle result when the two
neutrino flavors are initially present but not in equal amounts.
To confirm my findings I calculate the flavor polarization and
entanglement entropy in the large N limit by studying only
the two-body contribution in the single-angle approximation
based on Ref. [43].

The implications for supernovae might be quite interesting
as the neutrino mean-free path due to weak reactions could
be larger than the mean-free path for collective oscillations
depending on the choice of the normalization volume V . To
give a more definitive answer, antineutrinos must be included
and larger lattices need to be considered. I plan to follow up
on this in future work.
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APPENDIX A: TIME EVOLUTION OF FLAVOR POLARIZATION

Equation (5) is derived by employing the commutation relations of the Pauli matrices,

−idt J
k = [H, Jk]

=
[∑
p1,q1

ωp1

2Nν

(
sin(α)σ x

p1σ
0
q1 − cos(α)σ z

p1σ
0
q1

) + μ

4
(1 − cosϑp1q1 )(σ

x
p1σ

x
q1 + σ y

p1σ
y
q1 + σ z

p1σ
z
q1 ),

1

2

∑
p2,q2

σ k
p2σ

0
q2

]
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= 1

2

∑
p1,q1

ωp1

2Nν

(
sin(α)

[
σ x
p1 , σ

k
p1

]
σ 0
q1 − cos(α)

[
σ z
p1 , σ

k
p1

]
σ 0
q1

) + μ

4
(1 − cosϑp1q1 )

([
σ x
p1 , σ

k
p1

]
σ x
q1

+ [
σ y
p1 , σ

k
p1

]
σ y
q1 + [σ z

p1 , σ
k
p1 ]σ

z
q1

)
= i

∑
p1,q1

ωp1

2Nν

(
sin(α)ε1k jσ j

p1σ
0
q1 − cos(α)ε3k jσ j

p1σ
0
q1

) + μ

4
(1 − cosϑp1q1 )

(
ε1k jσ j

p1σ
x
q1 + ε2k jσ j

p1σ
y
q1 + ε3k jσ j

p1σ
z
q1

)

= i
∑
p1,q1

ωp1

2Nν

(
sin(α)ε1k jσ j

p1σ
0
q1 − cos(α)ε3k jσ j

p1σ
0
q1

)

= −i
∑
p

ωp
(
sin(α)εk1 jJ j

p − cos(α)εk3 jJ j
p

) = −i
∑
p

ωp
(
B × Jp

)k →

dtJ =
∑
p

ωp
(
B × Jp

)
, (A1)

where σ 0
p is the identity matrix at momentum p. Similarly, for the individual lattice point I find

dt J
k
p = i

[∑
p1,q1

ωp1

2Nν

(
sin(α)σ x

p1σ
0
q1 − cos(α)σ z

p1σ
0
q1

) + μ

4
(1 − cosϑp1,q1 )

(
σ x
p1σ

x
q1 + σ y

p1σ
y
q1 + σ z

p1σ
z
q1

)
,
1

2

∑
q

σ k
pσ 0

q

]

= −ωp

Nν

∑
q1

(
sin(α)ε1k jJ j

pσ
0
q1 − cos(α)ε3k jJ j

pσ
0
q1

) − μ
∑
q1

(1 − cosϑp,q1 )
(
ε1k jJxpJ

j
q1 + ε2k jJypJ

j
q1 + ε3k jJzpJ

j
q1

)

= ωp
(
sin(α)εk1 jJ j

p − cos(α)εk3 jJ j
p

) + μ
∑
q

(1 − cosϑp,q)
(
εk1 jJxpJ

j
q + εk2 jJypJ

j
q + εk3 jJzpJ

j
q

)

= ωp
(
B × Jp

)k + μ
∑
q

(1 − cosϑp,q)
(
Jq × Jp

)k
. (A2)

APPENDIX B: EXACT TIME EVOLUTION FOR TWO NEUTRINO BEAMS

The elements of the Dirac basis are Kronecker products of Pauli matrices. Using the bilinear property of the Kronecker
product [71] and the commutation identities of the Pauli matrices,

[σ i j, σ kl ] = [σ i ⊗ σ j, σ k ⊗ σ l ] = σ iσ k ⊗ σ jσ l −
= (σ iσ k ⊗ σ jσ l − σ iσ k ⊗ σ lσ j ) + (σ iσ k ⊗ σ lσ j − σ kσ i ⊗ σ lσ j ) = σ iσ k ⊗ [σ j, σ l ] + [σ i, σ k] ⊗ σ lσ j

=
(
i
∑
r

εikrσ r

)
⊗

(
2i

∑
s

ε jlsσ s

)
+

(
2i

∑
r

εikrσ r

)
⊗

(
i
∑
s

εl jsσ s

)
= −2

∑
r,s

(
εikrε jls + εikrεl js

)
σ rs. (B1)

The Hamiltonian is

H = ω

2

[
sin(α)σ 10

12 + cos(α)σ 30
12

] + ω

2

[
sin(α)σ 10

21 + cos(α)σ 30
21

]
+ μ

4
(1 − cosϑ1,2)

[
σ 11
12 + σ 22

12 + σ 33
12

] + μ

4
(1 − cosϑ2,1)

[
σ 11
21 + σ 22

21 + σ 33
21

]
. (B2)

The time evolution operator is defined as follows:

e−iHt = c1I + c2σ
11
12 + c3σ

22
12 + c4σ

33
12 + c5σ

10
12 +C6σ

01
12 + c7σ

03
12 + c8σ

30
12 + c9σ

13
12 + c10σ

31
12 . (B3)

Constraints from unitarity, ∑
i

c2i = 1

c1c5 + c2c6 + c10c8 = 0

c1c7 + c3C8 + c6c9 = 0

c2c5 + c1c6 + c7c9 = 0

c1c2 − c3c4 + c5c6 = 0
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c10c4 + c6c7 + c1c9 = 0

c10c5 + c3c7 + c1c8 = 0

c1c10 + c5c8 + c4c9 = 0

c1c3 − c2c4 + c7c8 = 0

c1c4 − c2c3 + c10c9 = 0. (B4)

From the Taylor series expansion of e−iHt and the commutator relations in (B1) one can find the coefficients,

c1 = 1

4
e−it (ω−μ/2(1−cos(ϑ12 )))(eit (ω+2μ(1−cos(ϑ12 ))) + eiωt + e2iωt + 1)

c2 = 1

8
e−it (ω+μ/2(1−cos(ϑ12 ))(−eit (ω+2μ(1−cos(ϑ12 )) − (1 − eiωt )2 cos(2α) + e2iωt + 1)

c3 = 1

4
e−iμ/2(1+3 cos(ϑ12 ))t (e2iμ cos(ϑ12 )t − e2iμt )

c4 = 1

16
e−i(t (ω+3/2μ(1+cos(ϑ12 )))+α)((1 − eiωt )2ei(2μ cos(ϑ12 )t+4α) + 2e2iα (eit (2ω+2μ cos(ϑ12 )) − 2e2it (ω+μ) + e2iμ cos(ϑ12 )t )

+ e2it (ω+μ cos(ϑ12 )) − 2eit (ω+2μ cos(ϑ12 )) + e2iμ cos(ϑ12 )t )

c5 = c6 = 1

4
(1 − e2iωt ) sin(α)e−it (ω+μ/2(1−cos(ϑ12 )))

c7 = c8 = i

2
cos(α) sin(ωt )e−iμ/2(1−cos(ϑ12 ))t

c9 = c10 = 1

2
sin(2α) sin2(ω/2t )e−iμ/2(1−cos(ϑ12 ))t . (B5)

Given this decomposition, one can compute any operator as function of time by working in the Heisenberg picture, O(t ) =
eiHtOe−iHt . In the main text I have provided Jx(t ) and Jz(t ). Here I also provide Jy(t ),

Jy(t ) = 1
2 cos(ωt )

(
σ 02
12 + σ 20

12

) − 1
2 cos(α) sin(ωt )

(
σ 01
12 + σ 10

12

) − 1
2 sin(α) sin(ωt )

(
σ 03
12 + σ 30

12

)
. (B6)

I also provide the flavor polarization for each lattice point,

JZ 1(t ) = − 1
2 sin

2(ω/2 t ) sin(2α)
(
cos2(μ(1 − cosϑ12)t )σ

10
12 + sin2(μ(1 − cosϑ12)t )σ

01
12

)
+ 1

2 sin(α) sin(ωt )
(
sin2(μ(1 − cosϑ12)t )σ

02
12 + cos2(μ(1 − cosϑ12)t )σ

20
12

)
+ 1

4

(
cos(2α) sin2(ω/2 t ) + cos2(ω/2 t )

)(
(1 − cos(2μ(1 − cosϑ12)t ))σ

03
12 + (1 + cos(2μ(1 − cosϑ12)t ))σ

30
12

)
− 1

4 sin(2μ(1 − cosϑ12)t )
(
cos(2α) sin2(ω/2 t ) + cos2(ω/2 t )

)(
σ 12
12 − σ 21

12

)
+ 1

4 sin(α) sin(μt ) sin(2μ(1 − cosϑ12)t )
(
σ 13
12 − σ 31

12

)
− 1

4 sin(2α) sin
2(ω/2 t ) sin(2μ(1 − cosϑ12)t )

(
σ 32
12 − σ 23

12

)
,

JZ 2(t ) = − 1

2
sin(2α) sin2(ω/2 t )

(
cos2(μ(1 − cosϑ12)t )σ

01
12 + sin2(μ(1 − cosϑ12)t )σ

10
12

)
+ 1

2 sin(α) sin(ωt )
(
cos2(μ(1 − cosϑ12)t )σ

02
12 + sin2(μ(1 − cosϑ12)t )σ

20
12

)
+ 1

4

(
cos(2α) sin2(ω/2 t ) + cos2(ω/2 t )

)(
(1 + cos(2μ(1 − cosϑ12)t ))σ

03
12 + (1 − cos(2μ(1 − cosϑ12)t ))σ

30
12

)
+ 1

4 sin(2μ(1 − cos(ϑ12))t )
(
cos(2α) sin2(ω/2 t ) + cos2(ω/2 t )

)(
σ 12
12 − σ 21

12

)
− 1

4 sin(α) sin(ωt ) sin(2μ(1 − cosϑ12)t )
(
σ 13
12 − σ 31

12

) + 1
4 sin(2α) sin

2(ω/2 t ) sin(2μ(1 − cosϑ12)t )
(
σ 32
12 − σ 23

12

)
.

(B7)

To calculate the correlation between individual lattice points, the following operator is needed as well:

JZ 1JZ 2(t ) = sin2(α) cos2(α) sin4(ω/2 t )σ 11
12 − cos(ω/2 t ) sin3(ω/2 t ) sin2(α) cos(α)

(
σ 12
12 + σ 21

12

)
− 1

16

(
2 sin(4α) sin4(ω/2 t ) + sin(2α) sin2(ωt )

)(
σ 13
12 + σ 31

12

) + 1

4
sin2(α) sin2(ωt )σ 22

12
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+ 1

32

(
2 sin(α) sin(ωt ) + 3 sin(α) sin(2ωt ) + 8 sin(3α) sin3(ω/2 t ) cos(ω/2 t )

)(
σ 23
12 + σ 32

12

)
+ 1

4

(
cos(2α) sin2(ω/2 t ) + cos2(ω/2 t )

)2
σ 33
12 . (B8)

Similar calculations can be performed for the two other directions. The two flavor eigenstates in the Pauli basis are,

|νe〉 =
(
1
0

)
, |νx〉 =

(
0
1

)
. (B9)

The wave function for the two neutrino beams is the direct product |νiν j〉 = |νi〉 ⊗ |ν j〉. Given the information above one can
calculate the time evolution for the expectation values of the flavor polarizations. Since 〈JZ 1〉 has already been provided in the
main text, here I provide the rest,

〈νe1, νe2|JZ 2|νe1, νe2〉(t ) = −〈νx1, νx2|JZ 2|νxx1, νx2〉(t ) = 1
2 (cos(2α) sin

2(ω/2 t ) + cos2(ω/2 t )),

〈νe1, νx2|JZ 2|νe1, νx2〉(t ) = −〈νx1, νe2|JZ 2|νx1, νe2〉(t ) = − 1
2 cos(2μ(1 − cosϑ12)t )(cos(2α) sin

2(ω/2 t ) + cos2(ω/2 t ))

〈νe1, νe2|JZ 1JZ 2|νe1, νe2〉(t ) = 〈νx1, νx2|JZ 1JZ 2|νx1, νx2〉(t ) = −〈νe1, νx2|JZ 1JZ 2|νe1, νx2〉(t )
= −〈νx1, νe2|JZ 1JZ 2|νx1, νe2〉(t ) = 1

4 (cos(2α) sin
2(ω/2t ) + cos2(ω/2 t ))2. (B10)

A similar procedure is employed for the single-angle approximation, but for every pair interaction I use the same angle, η =
(1 + cosϑ12)/2. The qualitative difference between the single- and multiangle results lies in the fact that in the multiangle case,
a particle can not interact with itself, while the single-angle approximation allows for this to happen:

HSA = ω

2

[
sin(α)σ 10

12 + cos(α)σ 30
12

] + ω

2

[
sin(α)σ 10

21 + cos(α)σ 30
21

] + μ

4
(1 − η)

[
σ 11
12 + σ 22

12 + σ 33
12

]
+ μ

4
(1 − η)

[
σ 11
21 + σ 22

21 + σ 33
21

] + μ

4
(1 − η)

[
σ 11
11 + σ 22

11 + σ 33
11

] + μ

4
(1 − η)

[
σ 11
22 + σ 22

22 + σ 33
22

]
= ω

2

[
sin(α)σ 10

12 + cos(α)σ 30
12

] + ω

2

[
sin(α)σ 10

21 + cos(α)σ 30
21

] + μ

2
(1 − η)

[
σ 11
12 + σ 22

12 + σ 33
12

] + 3

2
μ(1 − η)σ 00

12

= HMA + 3

2
μ(1 − η)σ 00

12 . (B11)

For the two-particle system this means an overall constant difference between the two Hamiltonians as there is only one angle
between the two neutrino beams. However, for a greater number of particles, there are many angles present, and the difference
between the two Hamiltonians is not a simple constant. For initial conditions with partial polarization, as shown in Secs. V and
VI, there are qualitative differences in the respective flavor evolution.

APPENDIX C: TWO NEUTRINO BEAMS, MEAN FIELD

The equation of motion for the total flavor polarization of the system is

dtPtot = ωB × Ptot. (C1)

The solution is,

Ptot(t ) =B̂ × P0 + sin (ωBt )
(
B̂ · P0

)
B − cos (ωBt )B̂ × (B̂ × P0), (C2)

where, Ptot(t = 0) = P0 = (Sx0, Sy0, Sz0) = 1
2 (〈	0|(σ x

1 + σ x
2 )|	0〉, 〈	0|(σ y

1 + σ
y
2 )|	0〉, 〈	0|(σ z

1 + σ z
2 )|	0〉).

Since B is a unit vector, B = sin(α)x̂ − cos (α):

Ptot(t ) =B × P0 + sin (ωt )(B · P0)B − cos (ωt )B × (B × P0) ↔ (C3)

Ptot(t ) =

⎛
⎜⎜⎝

(
sin2(α) + cos2(α) cos(ωt )

)
Sx0 + cos(α) sin(ωt )Sy0 − 1

2 sin(2α)(1 − cos(ωt ))Sz0

− cos(α) sin(ωt )Sx0 + cos(ωt )Sy0 − sin(α) sin(ωt )Sz0

− 1
2 sin(2α)(1 − cos(ωt ))Sx0 + sin(α) sin(ωt )Sy0 + (

cos2(α) + sin2(α) cos(ωt )
)
Sz0

⎞
⎟⎟⎠. (C4)
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FIG. 24. Multiangle (solid blue line), single-angle (dashed red
line), and mean-field (dashed-dotted orange line) calculations of the
flavor polarization as function of time for the cubic lattice in Fig. 3
and initial wave function |	0〉 = |ν (4)

e ν (4)
x 〉 in vacuum with ω/2 =

μ = μ0. These results were obtained based on Eq. (17).

APPENDIX D: CUBIC LATTICE FLAVOR OSCILLATIONS

1. Initial conditions without polarization

Based on the insight of the previous sections, at first
I consider mixed polarization, with four lattice points of

electron flavor and the other four of x flavor. There are two
oscillation modes, each representing one of the two flavors.
In Fig. 24 I plot the polarization as function of time for
two lattice points, each starting with one of the two flavors.
As the figure shows, neutrino interactions dominate; these
are fast collective oscillations, in agreement with previous
sections. While there are two oscillation modes that develop,
representing the two subgroups in the lattice, the result is
qualitatively the same as in the two neutrino beam mode.
Mean-field approximation does not display any collective
oscillation, but it does distinguish between the two subgroups.

2. Electron flavor initial conditions

In the two-beam case I found complete agreement among
the exact solution and various approximations if only one
flavor is present initially. As Fig. 25 shows, the same happens
for a cubic lattice and only the usual vacuum oscillations are
present.

There are no correlations or entanglement entropy in agree-
ment with the result for the two neutrino beams.

APPENDIX E: INFINITELY LARGE SYSTEMS

The derivation here is based on the work in Ref. [43] and the reader is referred to that article for an in-depth setup of the
system at hand. The initial wave function can be decomposed by means of Clebsch-Gordan coefficients in the basis of total
angular momentum with zero z projection,

|	0〉 = ∣∣ν (N )
e ν (N )

x

〉 =
∣∣∣∣N2 ,

N

2

〉
⊗

∣∣∣∣N2 ,−N

2

〉
=

N−1∑
J=0

c(N, J )|J, 0〉ν (2N ) , (E1)

where,

c(N, J ) =
〈
N

2
,
N

2
;
N

2
,
N

2

∣∣∣∣J, 0
〉

= N!
√
2J + 1√

(N − J )!(N + J − 1)!
. (E2)

Since,

H |J, 0〉 = μJ (J + 1)|J, 0〉 = EJ |J, 0〉, (E3)

one can calculate the time evolution as follows:

|	(t )〉 = e−iHt |	0〉 =
N∑

J=0

c(N, J )e−iEJ t |J, 0〉ν (2N ) . (E4)

Since the goal is to understand what happens to a particular neutrino, here I focus on the first one, which happens to be initially
of electron flavor.

|	0〉 = |νe〉 ⊗
N−1∑
J=0

η(N, J )|J + 1

2
,−1

2
; (2N − 1)〉. (E5)

This is a bipartition of a system of 2N into a subsystem of 1 and a subsystem of 2N − 1 neutrinos. However, exactly the same
derivation can be performed for any other neutrino, for instance the last one, which is initially of x flavor. In addition, each of
the wave functions in Eq. (E4) can be decomposed as direct products,

|J, 0〉ν (2N ) =|νe〉 ⊗
(
aJ

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

+ bJ

∣∣∣∣J − 1

2
,−1

2

〉
ν (2N−1)

)
+ |νx〉 ⊗

(
cJ

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

+ dJ

∣∣∣∣J − 1

2
,
1

2

〉
ν (2N−1)

)
.

(E6)
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FIG. 25. Flavor polarization, correlations and entanglement entropy for a cubic lattice with an initial wave function of only electron flavor
and ωp/2 = μ/4 = μ0. These results were obtained based on Eq. (17). (a) Multiangle (solid blue line), single-angle (dashed red line), and
mean field (dashed dotted orange line) calculations of the flavor polarization, (b) Multiangle (solid blue line), single-angle (dashed red line)
correlations, and (c) Multiangle (solid blue line), single-angle (dashed red line) entanglement entropy.

As the minimal value of J is zero, b0 = d0 = 0, and the maximal value of J is N , aN = cN = 0. Due to parity under reflection
along the z axis (νe ↔ νx),

|J, 0〉ν (2N ) → (−1)N−J |J, 0〉ν (2N ) (E7)∣∣∣∣J ± 1

2
,±1

2

〉
ν (2N−1)

→
∣∣∣∣J ± 1

2
,∓1

2

〉
ν (2N−1)

. (E8)

Thus, cJ = (−1)N−JaJ , dJ = (−1)N−JbJ . Using these identities, Eq. (E4) can be written as,

|	〉(t ) =
N∑

J=0

c(N, J )e−iEJ t

[
|νe〉 ⊗

(
aJ

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

+ bJ

∣∣∣∣J − 1

2
,−1

2

〉
ν (2N−1)

)

+ |νx〉 ⊗
(
cJ

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

+ dJ

∣∣∣∣J − 1

2
,
1

2

〉
ν (2N−1)

)]

= |νe〉 ⊗
N−1∑
J=0

(
c(N, J )e−iEJ t aJ

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

+ c(N, J + 1)e−iEJ+1t bJ+1

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

)

+ |νx〉 ⊗
N−1∑
J=0

(−1)N−J

(
c(N, J )e−iEJ t aJ

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

− c(N, J + 1)e−iEJ+1t bJ+1

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

)
. (E9)

Since initially the first neutrino is of electron flavor,

c(N, J )aJ

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

= c(N, J + 1)bJ+1

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

. (E10)

By reflection along the z axis,

c(N, J )aJ

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

= c(N, J + 1)bJ+1

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

. (E11)
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Thus,

|	〉(t ) = |νe〉 ⊗
N−1∑
J=0

(e−iEJ t + e−iEJ+1t )c(N, J )aJ

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

= |νx〉 ⊗
N−1∑
J=0

(−1)N−J (e−iEJ t − e−iEJ+1t )c(N, J )aJ

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

. (E12)

By setting t = 0 in Eq. (E12) one should get the result in Eq. (E5), which means

c(N, J )aJ

∣∣∣∣J + 1

2
,−1

2

〉
ν (2N−1)

= η(N, J )

∣∣∣∣J + 1

2
,−1

2
; (2N − 1)

〉
, (E13)

and by reflecting along the z axis,

c(N, J )aJ

∣∣∣∣J + 1

2
,
1

2

〉
ν (2N−1)

= η(N, J )

∣∣∣∣J + 1

2
,
1

2
; (2N − 1)

〉
. (E14)

Putting it altogether,

|	(t )〉 = |νe〉 ⊗
N−1∑
J=0

e−iEJ t + e−iEJ+1t

2
η(N, J )

∣∣∣∣J + 1

2
,−1

2
; (2N − 1)

〉

+ |νx〉 ⊗
N−1∑
J=0

(−1)N−J e
−iEJ t − e−iEJ+1t

2
η(N, J )

∣∣∣∣J + 1

2
,
1

2
; (2N − 1)

〉
, (E15)

which concludes the derivation.
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