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The composition of neutron stars at the extreme densities reached in their cores is currently unknown.
Besides nuclear matter of normal neutrons and protons, the cores of neutron stars might harbor exotic
matter such as deconfined quarks. In this paper we study strong hadron-quark phase transitions in the
context of gravitational wave observations of inspiraling neutron stars. We consider upcoming detections of
neutron star coalescences and model the neutron star equations of state with phase transitions through the
Constant-Speed-of-Sound parametrization. We use the fact that neutron star binaries with one or more
hadron-quark hybrid stars can exhibit qualitatively different tidal properties than binaries with hadronic
stars of the same mass, and hierarchically model the masses and tidal properties of simulated populations of
binary neutron star inspiral signals. We explore the parameter space of phase transitions and discuss under
which conditions future observations of binary neutron star inspirals can identify this effect and constrain
its properties, in particular the threshold density at which the transition happens and the strength of the
transition. We find that if the detected population of binary neutron stars contains both hadronic and hybrid
stars, the onset mass and strength of a sufficiently strong phase transition can be constrained with 50–100
detections. If the detected neutron stars are exclusively hadronic or hybrid, then it is possible to place lower
or upper limits on the transition density and strength.
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I. INTRODUCTION

The detection of the gravitational wave (GW) signal
GW170817 [1] by the LIGO [2] and Virgo [3] detectors,
followed by electromagnetic (EM) observations [4], opens
up the possibility of multimessenger astronomy as a probe
of ultra-dense matter on the quantum chromodynamics
(QCD) phase diagram. Estimates of the tidal properties of
the binary neutron star (BNS) source of GW170817 [5,6]
are inconsistent with too stiff hadronic matter, and lead to
NS radii that are consistent with previous X-ray binary
observations [7–10]. With further future BNS detections
and improved detector sensitivity [11], GW observations
will yield stringent constraints on the NS interior properties
[12–18] that are expected to encounter smaller systematic
uncertainties than those from X-ray binaries [19].
An interesting feature of the QCD phase diagram that

can be tested with future BNS observations is the potential
for phase transitions, drastic transitions from normal
hadronic matter to exotic matter such as deconfined quarks
that may appear in the inner cores of NSs [8]. Possible
effects from nonhadronic degrees of freedom complicate
the analyses of GW data through LIGO detection of BNSs,

as they can alter assumptions under which certain obser-
vational constraints are derived; a fully comprehensive
framework with proper treatment of phase transitions is
required as we observe more BNS signals. Recently there
have been emerging investigations on the role of a possible
hadron-quark phase transition in extracting tidal parameters
and constraining the equation of state (EoS) of NS, by
utilizing either physical models or generic parametriza-
tions; see e.g., [20–34]. The primary quantity that charac-
terizes the transition is the onset density for deconfined
quarks, as it determines whether the densities encountered
within stable NSs or transient supernova and merger
remnant stars can possibly access the phase of quark
matter. A low onset density implies that most NSs in the
Universe could harbor quark cores, while a high onset
density would mean that most NSs remain hadronic
throughout.
The unknown nature of the hadron-quark transition,

being of first-order (either with a sharp transition or in
mixed phases depending on the surface tension [35–38]) or
a smooth crossover [22,39–42], further complicates its
study. Formally, quarks—if they exist—are expected to be
strongly interacting at the typical NS densities, so the EoS
of quark matter could resemble that of very dense hadronic
matter; this scenario would lead to almost negligible
differences between hadronic stars and hybrid stars with
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a quark core in the mass-radius diagram [43]. In this case
the hybrid branch looks roughly like a continuation of the
purely hadronic branch, making the experimental verifica-
tion of the existence of hybrid stars challenging. One
exception would be the emergence of a disconnected
branch, the “third-family” of hybrid stars with significantly
smaller radii, which is characteristic of sharp, sufficiently
strong first-order phase transition and could be distinguish-
able from normal hadronic stars [44,45]. As an example of
how this effect complicates the interpretation of astrophysi-
cal data, it has been argued that allowing for strong first-
order phase transitions in the EoS decreases the inferred
radii from observations of eight quiescent low-mass X-ray
binaries in globular clusters, and in that case, the radius is
likely smaller than 12 km [10].
In this paper, we study the effect of a sharp phase

transition on static NS observables, in particular the
measurement of tidal properties from the inspiral stage
of BNS coalescences, and examine how well future BNS
observations can possibly constrain the properties of the
phase transition.1 We employ hybrid EoSs constructed with
the generic “Constant-Speed-of-Sound” (CSS) parametri-
zation [55], which allows us to systematically consider the
detectability of sharp phase transitions with different onset
density and of different strength. Our analysis hinges on the
chirp radius parameter R [56] which is a combination of
the best measured tidal parameter, the weighted-average
binary tidal deformability Λ̃, and the best measured mass
parameter, the chirp mass M, with GW signals. We show
that the chirp radius for binaries involving hybrid stars can
exhibit a qualitatively different behavior than binaries of
hadronic stars only. The latter follows a unique RðM; RÞ
curve, where R is the typical hadronic radius, while the
former deviates from this curve.
We simulate populations of potential future BNS detec-

tions with different mass distributions and employ a
hierarchical model that takes advantage of the dependence
of the chirp radius R on the nature of the binary
components. The GW signal from each BNS results in
an estimate of its chirp mass, mass ratio, and chirp radius to
within some statistical measurement uncertainty. Our
hierarchical model then assumes that binaries of NSs below
a certain transition mass Mt approximately obey a theo-
retical relation RðM; RÞ, while heavier binaries exhibit
smaller (chirp) radii and tidal effects. This allows us to
obtain an estimate of the population properties of the
simulated BNSs, namely the NS mass Mt at which the

phase transition occurs and the typical radius R of the
hadronic stars.
We find that both the NSmass distribution and the details

of the phase transition play an important role in whether the
phase transition is detectable. If the detected population of
BNSs contains both hybrid and hadronic stars and the
transition is sufficiently strong, the onset mass and strength
of the transition can be determined with ∼50–100 detec-
tions, while the hadronic radius can simultaneously be
reliably measured. Such strong phase transitions (that are
compatible with Mmax ≥ 2M⊙) can be realized when the
energy density jump is large enough and the subsequent
quark phase is stiff. If, on the other hand, the transition
happens at high masses, or it happens at masses that are
higher than the detected population, then we will be able to
place a lower limit on the onset mass as well as an upper
limit on the transition strength. On the opposite extreme, if
the transition happens at densities lower than the central NS
densities, all detected NSs are hadron-quark hybrids and
the underlying EoS is degenerate with a softer hadronic
EoS. In that case it might still be possible to determine that
a phase transition has occurred if we consider the recent
heavy pulsar detections, which rule out very soft hadronic
EoSs and break the degeneracy [57–60]. This leads to an
upper limit on the transition mass, while the hadronic radius
is unmeasurable since our detected population contains no
purely hadronic NSs.
The rest of the paper presents the details of our study and

it is organized as follows. Section II describes the basics of
the CSS parametrization and its applicability to identify the
observable features of sharp first-order phase transitions. In
Sec. III, we illustrate EoS models with a strong transition
that induce potential bias in the radius estimates inferred
from BNS observations. In Sec. IV we present a mapping
onto chirp mass-chirp radius relation for selected EoSs with
and without a strong phase transition, and provide a fit
using EoS-insensitive relations that assume no phase
transitions. We then describe a method to identify hadronic
and hybrid EoSs within a mixed population of BNS signals
detected. In Sec. V we apply this method to simulated BNS
observations and discuss the prospects of inferring phase
transition parameters. In Sec. VI we summarize our main
conclusions.
We work in units where ℏ ¼ G ¼ c ¼ 1.

II. THE CONSTANT-SOUND-SPEED
PARAMETRIZATION

To conduct a model-independent survey of the observ-
able signatures of a first-order phase transition, we combine
a plausible hadronic matter EoS at low densities with a
generic parametrization of such a transition into a higher-
density phase. One example of this is the CSS para-
metrization [55] which contains only three parameters to
relate the NS pressure p and energy density ε. The three
CSS parameters specify the critical pressure at which the

1It is worth mentioning that dynamical NS properties such as
NS cooling and spin-down [46–48], global oscillation modes
[49,50], and the GWevolution of merger products [51,52] that are
sensitive to transport properties would potentially provide more
distinct signatures of possible phase transition in NSs [53].
However, some of these signals are more challenging to observe
than BNS inspirals; see e.g., [54].
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transition occurs ptrans (or equivalently the critical baryon
number density ntrans), the strength of the transition
Δε=εtrans, and the “stiffness” of the high-density phase,
where the speed of sound c2QM (that characterizes how
rapidly pressure rises with energy density) is assumed
independent of density. The CSS form can be viewed as the
lowest-order terms of a Taylor expansion of the high-
density EoS about the transition pressure

εðpÞ ¼
�
εHMðpÞ; p < ptrans

εHMðptransÞ þΔεþ c−2QMðp− ptransÞ; p > ptrans;

ð1Þ
where εHMðpÞ is the hadronic matter EoS. If the surface
tension at the hadron-quark interface were low enough,
such a transition would be smoothed out by the appearance
of charge-separated mixed phases (Gibbs construction).
However, given the uncertainty in the estimates of surface
tension [35–38] we will assume a sharp interface (Maxwell
construction).
The CSS parametrization can be used as a generic

language for relating different models to each other, and
for expressing experimental and observational constraints.
There are two restrictive and commonly used observational
constraints on the stiffness of EoS (or, equivalently, the
speed of sound). First, EoSs that are too soft at high
densities are being eliminated by the progressively more
stringent discovery of massive pulsars [57–60]. Secondly,
EoSs that are very stiff at the relevant mass range are
inconsistent with the premerger GW signal from the BNS
merger GW170817, which disfavored a large tidal defor-
mation (and large radii) [1,5]. Both constraints lead to
constraints on the CSS parameter space [31,61] which are
obeyed by the example EoSs considered in this study.
Besides, the CSS parametrization can be naturally com-
bined with other parametrizations for the hadronic matter

EoS εHMðpÞ, such as the spectral one [62], to enable a more
complete analysis in the future.
First-order phase transition(s) can produce qualitative

and quantitative features in the mass-radius relation for
NSs. Qualitatively, a sharp transition to quark matter leads
to a branch of hybrid stars with central pressures exceeding
ptrans [63–65]. Depending on the energy density disconti-
nuity and the speed of sound, there may or may not be a
stable branch of hybrid stars, which may or may not be
disconnected from the hadronic branch [55]. If the phase
transition is sufficiently strongly first-order (with large
enough Δε) and occurs at low enough pressure ptrans, then
there will be a disconnected hybrid branch. This “third
family” of stars with significantly smaller radii (and hence
smaller tidal deformability) is separated by an unstable
branch where no NSs with these radii should be detected;
see, e.g., the dotted part of the brown, purple, and red
curves in the left panel of Fig. 1. If there is a second first-
order phase transition, then there might be a fourth-family
of hybrid stars with even smaller radius and tidal deform-
ability [31,66].
We choose two representative hadronic matter models,

DBHF [67] and SFHo [68], with large L ¼ 69.4 MeV and
small L ¼ 45.7 MeV values, respectively, for the sym-
metry energy slope parameter L at saturation, to illustrate
the dependence of our results on the choice of low-density
EoS. Both EoSs satisfy current constraints from the nuclear
experiments, although DBHF lies on the upper side of
stiffness consistent with GW170817. We assume the NS
crust is as described in [69,70]. In addition, to fulfill the
observational constraint on the maximum NS massMmax ≳
2 M⊙ [57–60], strong first-order phase transitions that
substantially soften the transition region require a relatively
large speed of sound elsewhere in the star. Preferably,
c2QM ≳ 0.5 is needed for softer hadronic EoSs and c2QM ≳
0.4 is needed for stiffer hadronic EoSs [55]; if c2QM ≈ 1=3

FIG. 1. Mass-radius relation for the EoSs considered in this study. The EoSs are based on the hadronic baseline EoSs DBHF (left) and
SFHo (right). They are constructed by choosing different values of the CSS parameters (ntrans, Δε=εtrans) and setting maximal stiffness in
quark matter (c2QM ¼ 1). Solid lines (dotted lines) correspond to the stable (unstable) part of each EoS. Grey bands denote the measured
masses of heavy pulsars from [58] (light grey) and [60] (dark grey) at the 68% level.
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which is characteristic of weakly interacting massless
quarks, even with sufficiently stiff hadronic EoSs nearly
no detectable hybrid configurations could exist (except for
ultra-low (≲1.5n0) transition densities) [61,71]. We there-
fore assume that quark matter is maximally stiff (c2s ¼ 1)
throughout this paper to explore the largest parameter space
available.
For each hadronic matter EoS, we vary the other two

CSS parameters (ntrans, Δε=εtrans) while fixing c2QM ¼ 1 to
specify phase transitions of different onset density and
strength. Table I lists some properties of the obtained
hybrid EoSs, such as their transition mass Mt (the maxi-
mum hadronic NS mass), the transition radius Rt (the radius
of the heaviest hadronic NS), a typical radius R1.4 (the
radius of a 1.4 M⊙ star), and the maximum mass supported
Mmax. Mass-radius plots for all the EoSs considered are
presented in Fig. 1.

III. DETECTABILITY ESTIMATES

The presence of deconfined quarks in a NS core causes
its pressure to decrease, leading to a reduction in the radius
of the star compared to that of a purely hadronic NS of the
same mass. GW inference of the properties of NSs could
then lead to a systematic error in the radius extraction if a
phase transition is not taken into consideration. In this
section we introduce the basic elements of inferring NS
properties from GWs and present estimates for the potential
systematic errors. The magnitude of these errors also offers
some indication of whether the effect of phase transitions is
measurable: a negligible systematic error would suggest
that the effect is weak enough that extracting it would be
challenging.
The main finite-size effect on GW signals comes from

the tidal deformation the stars experience during the
late stages of the coalescence [72]. The dominant tidal
contribution to the phase of the GW enters at the fifth

post-Newtonian (5PN) order2 and it is proportional to the
effective tidal deformability parameter [73,74]

Λ̃≡ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
; ð2Þ

where mi are the component masses, Λi the component
tidal deformabilities, and i ∈ f1; 2g enumerates the two
binary components. The component tidal deformabilities
are defined as Λi ≡ 2=3k2iR5

i =m
5
i , where k2i and Ri are

each star’s tidal Love number and radius, respectively. The
tidal deformability quantifies how easily the NS is
deformed under the influence of its companion and is,
thus, related to its size and internal structure. The effective
tidal parameter Λ̃ is the best measured tidal parameter, and
perhaps the only measurable tidal parameter given the
detector sensitivities expected in the coming years [56]. It is
therefore reasonable to expect that a GW detection of a
BNS will result in a posterior estimate of Λ̃, and that this
estimate is independent of whether the EoS contains a
phase transition or not.
Once an unbiased measurement of Λ̃ and the individual

masses has been achieved from the GW data, further
assumptions about the EoS need to be employed in order
to arrive at an estimate of the NS radii. Commonmethods to
achieve this involve the use of EoS-insensitive relations
[75–78], or representations of the EoS directly [15,62,79].
The EoS-insensitive relations, specifically, are certain
relations between macroscopic NS properties that do not
depend strongly on the EoS assuming the latter is hadronic
[80]. They can be used to translate an estimate of the BNS

TABLE I. Properties of the EoSs we consider, including the transition density ntrans=n0, the transition strength
Δε=εtrans, the transition mass Mt, the transition radius Rt, the radius of a 1.4 M⊙ star R1.4, and the maximum mass
supportedMmax. The last column denotes which of the characteristic cases discussed in Sec. Veach EoS belongs in
for a BNS population with masses uniformly distributed in ½1 M⊙;Mmax�.
EoS ntrans=n0 Δε=εtrans Mt=M⊙ Rt=km R1.4=km Mmax=M⊙ Case

DBHF N/A N/A N/A N/A 13.41 2.31 A
DBHF_1032 1.0 3.2 0.34 14.66 8.96 2.0 B
DBHF_2010 2.0 1.0 1.13 13.51 11.02 2.07 C
DBHF_2507 2.5 0.7 1.49 13.37 13.41 2.05 C
DBHF_3004 3.0 0.4 1.78 13.14 13.41 2.14 C
DBHF_3504 3.5 0.4 1.99 12.85 13.41 2.08 D
SFHo N/A N/A N/A N/A 11.97 2.06 A
SFHo_1031 1.0 3.1 0.20 17.81 8.78 2.0 B
SFHo_2009 2.0 0.9 0.69 12.32 10.09 2.10 B
SFHo_2506 2.5 0.6 1.01 12.13 10.67 2.07 B, C
SFHo_3003 3.0 0.3 1.31 12.02 11.73 2.15 C
SFHo_3502 3.5 0.2 1.55 11.88 11.97 2.13 C

2The post-Newtonian series is an expansion in terms of the
characteristic velocity of the system u compared to the speed of
light. A term proportional to uN=2 compared to the leading order
term, is referred to as an NPN effect.
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masses and tidal deformabilities into estimates of the NS
radii that are valid under the assumption of a hadronic EoS.
If this assumption is violated, then the resulting radius
estimate will suffer from a systematic bias which we
explore below.
For this study we follow the approach of [1,77] and use

the two relations proposed in [75,76]. The first relation
connects the tidal deformability of one star Λ2 to the tidal
deformability of the other star Λ1 and the ratio of their
masses q ¼ m2=m1 [76,77]. This allows us to express the
effective tidal deformability Λ̃ðΛ1;Λ2; qÞ as a function of
the mass ratio and one component tidal deformability only
Λ̃ðΛ1ðΛ2; qÞ;Λ2; qÞ. The second relation expresses the
compactness of a star as a function of its tidal deformability

CiðΛiÞ]75 ] and can be used to compute the radius through
Ri ¼ mi=CiðΛiÞ. An improved fit with more data has been
presented in [81], the results of which are utilized in the
following. In summary, we use the GW data to measure the
component masses and the effective tidal deformability. We
then restrict to a purely hadronic EoS and use the relation
Λ1ðΛ2; qÞ to translate the measurement of Λ̃ into a
measurement of Λ2. The relation C2ðΛ2Þ is then used to
obtain an estimate of R2, and a similar procedure can be
used to obtain R1.
The above procedure applied to GW170817 results in a

radius measurement of R1 ∼ R2 ¼ 10.7þ2.0
−1.7 km at the 90%

credible level, for a radius uncertainty of about 3.7 km [1].
This uncertainty can be reduced if one takes into account
the existence of a 1.97 M⊙ star [58] through the spectral
EoS parametrization of [62,82,83], reducing the radius
uncertainty to 2.8 km at the 90% level. The uncertainty can
be further reduced by incorporating information from the

EM emission from GW170817 [84,85] or working within a
nuclear physics framework [86].
For this study we are interested in the effect of a sharp

phase transition in the EoS on the radius estimate. For each
CSS model of Fig. 1, we consider BNS systems with
different values of the component masses. Then for each of
these systems, we assume that analysis of the GW data can
return an unbiased measurement of Λ̃, and follow the steps
outlined above and compute R1 and R2 assuming the EoS is
hadronic through the relations of [76,81]. The assumption
of a purely hadronic EoS is obviously wrong here, so we
expect a biased estimate of the radii. We plot the difference
between the inferred and the true radius as a function of the
systems’ chirp mass M and mass ratio q.
The results are in Figs. 2 and 12 for different EoSs with

phase transitions. Each plot presents the difference ΔR
between the true and the inferred radius for each binary
component for a particular EoS (see plot title). The different
color maps correspond to different types of binaries with
each EoS: “HH”—two hadronic stars, “HQ”—one had-
ronic and one hybrid star, “QQ”—two hybrid stars. In all
cases, purely hadronic binaries (“HH”) have a radius bias of
less than 500 m, which is consistent with the quoted
systematic error in the EoS-insensitive relations [76,81].
This is most evident on the left panel for the purely
hadronic DBHF EoS: all BNSs have a radius error of less
than ∼0.4 km. We obtain similar radii errors in the “HH”
case when instead using the relations proposed in [78].
When the binary contains at least one hybrid star (“HQ”

and “QQ” cases) the systematic error in the inferred radius
can be much larger depending on the EoS and the masses of
the system. EoSs that lead to large deviations with respect
to their hadronic baseline in Fig. 1 are also expected to lead

FIG. 2. Absolute value of the difference between the true radius and the inferred radius for different EoSs with and without phase
transitions when analyzed with EoS-insensitive relations that assume hadronic EoSs. Different color maps correspond to different binary
combinations of hadronic and hybrid stars. In all cases here and in Fig. 12, the radius error is less than ∼2.5 km.
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to large values of ΔRi. For example, DBHF_2010 (purple
line in the left panel of Fig. 1) contains a hybrid branch that
leads to a radius reduction of 2–3 km compared to the
hadronic baseline DBHF. Moreover, the hybrid branch is
qualitatively different from the hadronic one as it has a
large slope of dR=dM. As a result, DBHF_2010 leads to
some of the largest systematic errors in the radius meas-
urement (middle panel of Fig. 2), exceeding 2 km for
certain systems. On the other hand, SFHo_3502 (orange
line in the right panel of Fig. 1) leads to a radius reduction
of less than 500 m, and only for stars heavier than
∼1.6 M⊙. Unsurprisingly, the systematic error from using
hadronic-based EoS-insensitive relations with this hybrid
EoS is also small (right panel of Fig. 2). Additional plots for
the other EoSs is included in Appendix A. Interestingly, in
all cases we find that the error in the radius is smaller than
the inferred statistical uncertainty for GW170817 [1] of
3.7 km using this method, which was derived under the
assumption of normal hadronic EoS throughout all den-
sities. Nevertheless, we emphasize that such estimates are
not directly comparable to predictions from EoS models
that have incorporated phase transitions.
The above results give an indication of what type of

phase transitions and EoSs can be detectable with future
GW measurements. Cases where the systematic error is
small are either too weak to measure, or the hybrid branch
can be mistaken for a hadronic branch possibly with a small
systematic error in the radius. In the next section, we
investigate the detectability of phase transitions with
populations of BNSs and how well the parameters of the
hybrid EoSs can be constrained.

IV. A POPULATION OF BNS SIGNALS

A single loud event, such as GW170817, can offer a
reliable measurement of Λ̃. However, in order to identify

the effect of a phase transition in the EoS and estimate its
parameters, we need to consider multiple such detections.
In this section, we describe how we study phase transitions
with a population of BNS signals, as well as how we
simulate such possible future detections.

A. Chirp radius

In order to study the detectability of phase transitions
from a population of BNSs, we consider the “chirp radius”
parameter introduced in Wade et al. [56] and defined as

R≡ 2MΛ̃1=5; ð3Þ

where the chirp mass is M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5.
Figure 3 shows the chirp mass and the chirp radius for
various EoSs with phase transitions (colors follow the
scheme of Fig. 1) and a purely hadronic EoS (blue). For this
plot we select BNSs with random masses uniformly
distributed in ½1 M⊙;Mmax�, compute the chirp mass M
and chirp radius R for a given EoS, and plot them with a
dot. For the hadronic EoS (blue dots, see plot inset) the
possible BNS systems fall on a curve with a small width
caused by the subdominant dependence of Λ̃, and by
extension R, on the binary mass ratio. This approximate
independence of Λ̃ on the mass ratio qwas also observed in
[56] and later used to translate the GW170817 bound on Λ̃
into a bound on the NS radius [87].
The EoS-insensitive relations discussed in the previous

section can be used to construct an approximate relation
RðM; RÞ that holds for hadronic EoSs, where R is the
(approximately constant) radius of the hadronic stars.
Specifically, for a given R and two NSs of mass m1 ¼
m2 (we take the two masses to be equal due to the
approximate independence of R on the mass ratio
q ¼ m2=m1) we use the CðΛÞ relation to compute their

FIG. 3. Chirpmass and chirp radius for binary systemswith the EoSs fromFig. 1with theDBHF (left) and the SFHo (right) hadronic EoS
baseline. Each dot represents a BNS system with masses randomly selected in ½1 M⊙;Mmax�; the color scheme follows Fig. 1. The grey
dashed lines are theMðR;RÞ fit for purely hadronicEoSs for increments ofR of 1 km.The thick black dashed line is the fit forR ¼ R1.4, the
radius of a 1.4 M⊙ NS with each hadronic baseline model. The inset in each plot shows the hadronic EoS (blue dots) and the fits. The
MðR;RÞ fit is based on EoS-insensitive relations and it can model the purely hadronic systems up to a chirp mass of ∼1.6 M⊙.
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respective tidal deformabilities Λ1 ¼ Λ2. From those we
compute Λ̃ through Eq. (2) andR through Eq. (3). We plot
the relation RðM; RÞ in Fig. 3 for different values of R
incremented by 1 km with grey dashed lines. The black
dashed line is the fit for R ¼ R1.4, the radius of a 1.4 M⊙
star for DBHF (left) and SFHo (right). We find that the fit
accurately reproduces the behavior of the hadronic EoSs
(blue dots) up to a chirp mass of about M ¼ 1.6 M⊙.
The presence of a strong phase transition in the EoS has a

large effect on the tidal parameter Λ̃ and the chirp radiusR.
All EoSs with phase transitions shown in Fig. 3 deviate
from the hadronic fit by multiple kms, with some systems
even forming completely disjointed islands. This observa-
tion suggests a way to identify the presence of phase
transitions from GWobservations of a population of BNSs.
Each system will result in an estimate of the chirp mass and
the chirp radius. If the BNS is composed of two hadronic
stars, then we expect itsM andR to fall on, or close to, the
theoretically expected curve within measurement errors. If,
on the other hand, one or two binary components are hybrid
stars, then the measured M and R will deviate from the
expected curve to some degree that depends on both the
masses of the stars and the details of the EoS. For a
population of BNSs with different chirp masses, we expect
the hadronic binaries to follow a unique curve parametrized
by their almost constant hadronic radius R, while the hybrid
systems will deviate from that curve.

B. The hierarchical model

Most EoS models with phase transitions predict normal
hadronic stars up to some transition mass Mt and hybrid
stars containing quark cores above that mass.3 In a
population of BNS systems, we expect that systems with
m2 < m1 < Mt approximately follow the expected
RðM; RÞ curve, while systems with m2 < Mt < m1 or
Mt < m2 < m1 deviate from it to some degree that depends
on the masses and the EoS. In order to estimate Mt and R
from the BNSs data, we employ a hierarchical analysis
along the lines laid out in [88].
We consider N detections of GW signals from BNSs,

and assume that the GW data for each event lead to a
posterior measurement for the component masses and the
tidal parameter Λ̃ similar to that of GW170817 [1]; the
latter can be trivially transformed into a posterior for
the chirp radius R. The GW data for each detection j
are denoted dj. We define θj ≡ ðMj; qj;RjÞ to be the
source parameters of interest, and x≡ ðMt; R; σ1;R2; σ2Þ
are the population parameters, some of which will be
defined shortly.

The BNS events are independent, so the likelihood for the
data d ¼ fdjg is the product of the individual event like-
lihoods LðdjxÞ ¼ Q

N
j LðdjjxÞ. The latter are given by [89]

LðdjjxÞ ¼
Z

dθjpðdjjθjÞpðθjjxÞ; ð4Þ

where pðdjjθjÞ is the likelihood of the source parameters
computed by the GW data, and pðθjjxÞ corresponds to the
population model. For the latter we use

pðθjjxÞ¼pðMj;qj;RjjR;Mt;σ1;R2;σ2Þ

∼
�
N ½RðMj;RÞ;σ1�ðRjÞ; if m1j <Mt

N ½R2;σ2�ðRjÞ; otherwise
ð5Þ

where N ½μ; σ�ðyÞ is a normal distribution for the parameter
y with a mean μ and variance σ2.

Our population model in Eq. (5) consists of two
components which are designed to follow the hadronic
and hybrid branches of an EoS. If the heavier component is
lighter than Mt, then the binary is hadronic and its chirp
radius Ri follows a Gaussian distribution centered at
RðMi; RÞ and with a standard deviation σ1. Otherwise,
the binary is considered to be hybrid and the chirp radius is
distributed according to N ½R2; σ2�. The parameters of the
population model are: (i) Mt, the mass above which NSs
have a quark core, (ii) R, the typical radius of the hadronic
branch of the EoS, (iii) σ1, the standard deviation of the
inferred chirp radii around the hadronic fit RðM; RÞ,
(iv) R2, the mean, and (v) σ2, the standard deviation of
the distribution of the chirp radii for the hybrid BNSs.
Additionally, the true chirp radii (as opposed to those
measured with the GW data) are also taken to be free
parameters of the hierarchical model, as described in [90].
We compute the posterior distribution for these param-

eters employing the following priors. The prior for the
transition mass Mt is taken to be uniform in ½1 M⊙;Mmax�.
Although a number of EoS models we test have a lower
transition mass, we assume that the detected NSs have
masses above 1 M⊙ and therefore restrict Mt accordingly.
The hadronic radius R is taken to be flat in [10,14] km. The
upper limit is consistent with existing constraints and does
not affect our results. The lower limit, on the other hand, is
critical as we explain below. We choose a lower limit of
10 km which is the smallest hadronic EoS radius that can
support a 2 M⊙ NS [58] as shown in Fig. 1 of [91],4 which
is also consistent with the results of [6]. The parameter σ1
captures the scatter of hadronic binaries around the
expected RðM; RÞ fit, so we determine a suitable prior

3We neglect the effects from “rising twins” [29,45] where the
heaviest hadronic stars are slightly more massive than the lightest
hybrid stars, as the relevant mass range is typically very small and
hardly discernible by tidal deformability measurements [31,32].

4The study of [91] used two parametrizations for the hadronic
EoS, one with three and the other with four polytropic segments.
The lower radius they arrive at is ∼11 km and ∼10 km,
respectively. We choose 10 km to be conservative.
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by fitting hadronic-only populations with a hierarchical
model that includes the first component of Eq. (5) only. We
find that a log-normal distribution with parameters μ ¼
logð0.15= ffiffiffiffi

N
p Þ and σ2 ¼ 0.4 is a reasonable fit. For σ2 we

choose a wider log-normal distribution, since this param-
eter captures the much larger scatter of the hybrid chirp
radii. We empirically choose parameters μ ¼ logð3Þ and
σ2 ¼ 1. For the mean of the chirp radii of the hybrid stars
we choose a uniform distribution ½7;Rð1.2; RÞ� M⊙. The
upper limit is chosen as to impose that the hybrid binaries
have smaller chirp radii than the hadronic binaries, as
expected from Fig. 3. We also choose to evaluate the upper
limit ofRð1.2; RÞ at a chirp mass of M ¼ 1.2 M⊙, typical
of the values expected for galactic NS binaries [92].

C. Simulated population

We apply the above model to simulate populations of
BNS GW signals. The parameters of interest to be extracted
from the GW data are θ≡ ðM; q;RÞ. Posterior distribu-
tions for all source parameters can be computed by
sampling the high-dimensional parameter spaces [93],
but this is computationally intractable for the thousands
of simulated signals we investigate here. For this reason we
describe below how we approximate the measured uncer-
tainty in the source parameters.
For a given EoS model from Sec. II, we select BNS

masses according to two mass distributions. In the first
case, both masses are drawn uniformly in ½1 M⊙;Mmax�. In
the second case, the component masses follow the observed
galactic BNS distribution, which is a Gaussian with a mean
of 1.32 M⊙ and the standard deviation of 0.1 M⊙ [94]. In
both cases we impose m2 < m1. The tidal parameter Λ̃ of
the binary and the chirp radius are computed from the
masses and the EoS model. The signal-to-noise ratio ρ of
the system is drawn from a ∼1=ρ−4 distribution [95], the
expected distribution for local events for which cosmo-
logical effects are subdominant.
The uncertainty in each inferred source parameter, i.e.,

the term pðdijθiÞ in Eq. (4), is inversely proportional to the
signal-to-noise of the event. We assume a perfect meas-
urement of the chirp mass M, since the typical expected
relative measurement errors areOð10−3Þ [96]. For the mass
ratio q we simulate a relative measurement error of 0.15 at
the 1-σ level for a binary with ρ ¼ 10 [96]. To obtain an
estimate of the uncertainty in Λ̃ we consider the parameter
estimation studies presented in [56,97,98]. Table I of [56]
quotes absolute measurement uncertainties for Λ̃ for
simulated BNS signals of different NS mass combinations.
They report a measurement uncertainty between 100 and
700 for an SNR of 30 at the 90% level (which we obtain by
converting their quoted 2-σ error bars). For our simulated
population, we use an uncertainty of 400 at the 90% level
for SNR 30 for Λ̃ which is slightly larger than the median
uncertainty in [56]. This uncertainty should in principle

depend on the true masses, but in the absence of a model to
simulate that, we keep it fixed for all masses and use the
approximate median value of [56]. The uncertainty we use
is also consistent with the results of [97,98], while the fact
that the absolute uncertainty on Λ̃ is not a strong function of
the true value of Λ̃ is also shown in [97]. The uncertainty in
the chirp radius R can be obtained from the Λ̃ uncertainty
through error propagation.
We approximate all likelihood distributions for the

relevant source parameters as Gaussians centered at the
true value of each parameter plus a random shift due to
noise realization, and a width determined by the uncer-
tainties described above. The shift due to noise realization
in the GW detectors is random and distributed according to
a zero-mean Gaussian with a standard deviation equal to
the parameter measurement uncertainty.

V. RESULTS AND DISCUSSION

We create random populations of BNSs with the EoSs
described in Sec. II, and compute posterior distributions for
the population parameters Mt and R using the hierarchical
model described in Sec. IV. We discuss what constraints we
can place on the parameter space of the phase transition and
how many detections are needed.

A. Characteristic cases

We expect that our ability to identify or constrain phase
transitions depends sensitively on the properties of the EoS,
specifically the onset density and transition strength, as
well as the masses of the observed BNSs. For this reason
we begin by examining single populations of 100 simulated
BNSs with different EoSs, and discuss below the different
characteristic cases possible depending on the values ofMt,
Δε=εtrans, and the observed BNS masses. Unless otherwise
noted, examples presented in this subsection are obtained
with a uniform NS mass distribution. In Table I we sum-
marize which case each EoS belongs in. Posterior densities
for the transition mass Mt (left) and the hadronic radius R
(right) for all cases are presented in Figs. 4–7.

FIG. 4. Case A: Marginalized 1-dimensional posterior density
for the transition mass Mt (left) and the hadronic radius R (right)
for a random population of 100 BNSs with the purely hadronic
EoS SFHo. Solid vertical lines denote the true parameters, where
applicable. Dashed vertical lines denote the 90% credible lower
limit (left) and symmetric interval (right).
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1. Case A: Purely hadronic EoS

The most simple case is that of a purely hadronic EoS for
all densities. In our set of EoSs we have two such models,
namely DBHF and SFHo, which also serve as the hadronic
baselines for the hybrid EoSs within the CSS parametriza-
tion. We simulate 100 BNS detections from a uniform mass
distribution, and plot in Fig. 4 the posterior density for the
transition massMt and the hadronic radius R for the case of
the SFHo EoS. We obtain qualitatively similar results with
DBHF, though note that this EoS is mildly inconsistent
with GW170817.
We find that the hadronic radius R is reliably extracted

with an accuracy of ∼200 m at the 90% level, suggesting
that the systematic error from assuming a universal
RðM; RÞ fit is subdominant. In this case of the absence
of a phase transition, the posterior for Mt can be used to
place a lower limit on the onset mass/density; we find that

Mt > 1.81 M⊙ at the 90% level. This limit on Mt is lower
than the heaviest NS in our population, suggesting that
some heavy systems cannot be confidently classified as
hadronic or hybrid. Indeed, the tidal deformability of a NS
decreases rapidly with increasing mass, making the meas-
urement of the tidal properties of heavy systems challeng-
ing. Moreover, as we discuss below, a similar constraint on
Mt would be obtained for an EoS with a phase transition at
high enough mass (case D).

FIG. 5. Case B: Marginalized 1-dimensional posterior density
for the transition mass Mt (left) and the hadronic radius R (right)
for a random population of 100 BNSs with EoSs whose transition
mass is lower than the detected population masses, Mt < 1 M⊙.
Solid vertical lines denote the true parameters, where applicable.
The dashed vertical line denotes the 90% credible upper or lower
limit as appropriate (left). We show results with DBHF_1032 (top
row), SFHo_2009 with a hadronic radius prior lower limit of
10 km (second row), SFHo_2009 with a hadronic radius prior
lower limit of 11 km (third row), and SFHo_2506 (bottom row).

FIG. 6. Case C: Marginalized 1-dimensional posterior density
for the transition mass Mt (left) and the hadronic radius R (right)
for a random population of 100 BNSs with EoSs whose transition
mass is comparable to the typical NS masses in the detected
population. Solid vertical lines denote the true parameters. The
dashed vertical lines denote the 90% credible upper limit or
symmetric interval as appropriate. We show results with
DBHF_2507 (top row), and SFHo_3003 (bottom row).

FIG. 7. Case D: Marginalized 1-dimensional posterior density
for the transition mass Mt (left) and the hadronic radius R (right)
for a random population of 100 BNSs with EoSs whose transition
mass is at relatively high masses and the phase transition is not
detectable. Solid vertical lines denote the true parameters. The
dashed vertical lines denote the 90% credible upper limit (left) or
symmetric interval (right). We show results with DBHF_3504
(top row), and DBHF_2507 with a BNS mass distribution that is
tightly centered around ∼1.32 M⊙ (second row).
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2. Case B: EoS with a phase transition
below the minimum NS mass

The standard astrophysical formation scenario of NSs
suggests their masses above ∼1 M⊙ [99,100], while the
smallest NS mass measurement corresponds to the PSR
J0453þ 1559 companion with 1.174� 0.004 M⊙ [101]. It
is therefore possible that the EoS exhibits a phase transition
at densities low enough that all NSs in the Universe contain
both hadronic and quark matter. As Fig. 1 shows, such
EoSs (specifically DBHF_1032, SFHo_1031, and SFHo_
2009) deviate from their respective hadronic baselines at
low NS masses. More importantly, it is possible for these
hybrid EoSs to qualitatively resemble some much softer
hadronic EoSs on the mass-radius plane, i.e., hadronic EoS
with a much smaller radius.
This apparent degeneracy between hybrid EoSs with

low-density phase transitions and very soft hadronic EoSs
can be broken by imposing a lower limit on the hadronic
radius inferred from massive pulsar observations [57–60].
As already discussed in Sec. IV, most of our results assume
R > 10 km, which was obtained in [91] after imposing the
requirement that their hadronic EoSs can support 2 M⊙
stars [58]. Interestingly, a probably even heavier pulsar has
recently been reported, though with a larger error bar of
2.14þ0.20

−0.18 M⊙ at the 2-σ level [60]. The existence of such a
heavy NS implies an even more stringent lower bound
for the hadronic NS radius R. As expected we find
that detection of heavy pulsar is crucial for identifying
low-density phase transitions; this highlights once again
the interdisciplinary nature of the NS EoS measurement
project.
Figure 5 shows posterior distributions for the transition

mass Mt and the hadronic radius R. The top row corre-
sponds to the DBHF_1032 EoS (similar results are
obtained with SFHo_1031 so we omit them), which has
a typical radius of ∼9 km in the mass range probed by our
simulated BNS population. This radius value is below the
prior bound for the hadronic radius of 10 km, as purely
hadronic EoSs with a radius of 9 km would not be able to
support 2 M⊙ pulsars. Therefore in this case our hierar-
chical analysis correctly identifies that the entire BNS
population consists of hybrid stars and results in an upper
limit on the transition mass Mt (left panel). Indeed the
transition mass posterior rails heavily against its 1 M⊙ prior
bound, indicating a small transition mass; for this simulated
population we find Mt < 1.07 M⊙ at the 90% credible
level. Additionally, since we infer that there are no hadronic
stars in the detected population, the posterior for the
hadronic radius is uninformative and similar to its flat
prior (right panel).
The second row of Fig. 5 corresponds to SFHo_2009,

and shows a case where the applied prior lower limit on the
hadronic radius cannot fully break the degeneracy between
a low-density phase transition and the hadronic EoS soft-
ness. Indeed from Fig. 1 we see that SFHo_2009 has a

typical radius of ∼10 km in the mass range of interest,
which is marginally consistent with our prior. The resulting
posterior for both the transition mass and the hadronic
radius exhibits a “dual” behavior. Part of the posterior is
characteristic of a purely hybrid population and resembles
the top row of the figure, suggesting an upper limit on Mt
coupled with an uninformativeR estimate. The other part of
the posterior is more similar to the case of a purely hadronic
population and Fig. 4, resulting in a lower limit on the Mt
and a measurement of Rwhich is around 10 km, marginally
consistent with the existence of a 2 M⊙ pulsar.
For the third row of Fig. 5 we consider the same EoS and

BNS population, but increase the prior lower bound on the
hadronic radius from 10 km to 11 km. As already alluded
to, we can now correctly conclude that all the detected
BNSs involve hybrid stars, as we recover an upper limit on
Mt and an uninformative R. Both posteriors are qualita-
tively similar to those on the first row of Fig. 5. As already
known, the discovery of heavier pulsars is invaluable for
the EoS inference and we here encounter one more example
of this.
EoS SFHo_2506 represents a borderline case as it

predicts Mt ¼ 1.01 M⊙, which is marginally above our
lowest possible BNS mass. Given the number of BNS
detections expected in the coming years, it is fairly unlikely
that a hadronic binary would be observed under this EoS;
we therefore discuss it here. Figure 1 shows that
SFHo_2506 (red line on the right panel) results in masses
and radii that are qualitatively similar to that of a softer,
purely hadronic EoS with R around 11 km. The bottom
panel of Fig. 5 confirms this expectation, as our inference
finds that the detected population is consistent with a
hadronic EoS (lower limit on Mt on the left panel) with a
biased radius (right panel). This is perhaps the worst case
scenario for GW-only observations and would result in a
misidentification of the EoS properties. As discussed ear-
lier, this degeneracy between a low-density phase transition
and a softer hadronic EoS can be broken through the
detection of very massive pulsars, such as the one in [60].

3. Case C: EoS with a phase transition
in the detected population

Perhaps the most interesting case is the one where the
detected BNS population contains both hadronic and
hybrid stars. In this scenario, the detectability of the phase
transition is determined by the exact value of Mt as well as
the strength of the transition Δε=εtrans. The dimensionless
tidal deformability Λ of a star decreases steeply with its
mass [12], therefore heavier stars (that are more likely to be
hadron-quark hybrids) undergo weaker tidal interactions.
This means that ifMt is too high, binaries involving hybrid
stars do not deviate from the expected RðM; RÞ hadronic
curve considerably and could be mistaken for purely
hadronic. At the same time, the value of Δε=εtrans affects
how much the radius and tidal parameters of hybrid stars
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deviate from their hadronic counterparts [31,55,61]. One
pertinent example is SFHo_3502 which has a relatively low
Mt ∼ 1.6 M⊙, but the hybrid star radius is merely ∼500 m
smaller than the hadronic one at best (see Fig. 1) due to its
small value of Δε=εtrans.
Figure 6 shows the possible posteriors for the transition

mass Mt (left) and the hadronic radius R (right) for EoSs
belonging in this category. The top row corresponds to
DBHF_2507, an EoS withMt ∼ 1.5 M⊙. Such value ofMt
suggests that a considerable portion of the detected BNS
population is comprised of hybrid stars. At the same time,
the transition strength Δε=εtrans is high enough that the
chirp radius of the hybrid binaries deviates from the
hadronic ones by ≳1 km, see Fig. 3. As expected, there-
fore, we are able to infer that the analyzed BNS population
is not purely hadronic and measure Mt to within 0.15 M⊙
at the 90% level and R to within 130 m at the same
credible level. We obtain qualitatively similar results with
DBHF_2010.
The second row of Fig. 6 corresponds to SFHo_3003, an

example of EoSs with a phase transition in the masses
observed in the population but whose strength is too small
to be detectable. In this scenario all BNSs have a similar
chirp radius, and we obtain an estimate of R (right panel)
consistent with the EoS’s typical hadronic radius R1.4 at the
90% level, though visibly shifted towards lower values.
However, theMt posterior (left panel) places all the support
at high values and looks qualitatively similar to Fig. 4
which refers to purely hadronic EoSs. This means all
detected BNSs have been found to agree with a single
hadronic RðM; RÞ curve and thus interpreted as not
containing a quark core. We also find qualitatively similar
results with EoSs SFHo_3502 and DBHF_3004. Figure 3
suggests that we would need a fairly loud and heavy system
to identify a phase transition in these EoS with weak
transitions. For example, in the case of SFHo_3003 we find
that a “lucky” system with m1 ¼ m2 ¼ 1.7 M⊙ and ρ ∼
600 could result in the detection of the phase transition.
Though such loud systems are unlikely for second gen-
eration detectors, they might be within reach of third
generation ground-based detectors [102,103].

A key finding of the analyses of cases B and C is that to
achieve a convincing identification of the phase transition
from observations, both a low enough Mt and a high
enough Δε=εtrans are necessary. The former is essential as it
guarantees the existence of quark cores in the detected
component NSs, while the latter ensures that the tidal
properties of the hybrid branch are sufficiently distinguish-
able from that of the purely hadronic branch. This is
expected since the “disconnected” third-family stars are the
ones that exhibit maximal deviation from their hadronic
counterparts, and these stars are realized through suffi-
ciently strong transitions Δε=εtrans ≳ 0.6 at relatively low
densities ntrans ≲ 2.5–3n0 [31,61]. Our results confirmed
this prediction from generic mass-radius topology for stable

hybrid stars, and show quantitatively the difficulties in
revealing phase transition from observations when varying
the EoS parameters.

4. Case D: EoS with a phase transition at high NS masses

The final case is an extension of case C where the
transition mass is so high that it is not measurable, while the
hadronic radius can still be reliably extracted. Figure 7
shows two such examples. The top row corresponds to EoS
DBHF_3504 which has Mt ∼ 2 M⊙. At such a high
transition mass, almost the entire population is hadronic
so the Mt and R posteriors are similar to those of Fig. 4 for
the purely hadronic EoS. We again find that it is difficult to
tell apart a hadronic EoS and a hybrid EoS with a phase
transition at high densities or of a weak strength. In the next
subsection we elaborate on this and show how we can
derive an upper limit on the transition strength.
The second row of Fig. 7 corresponds to the scenario

where the transition mass might not be too high, but it is
higher than the observed masses. Assuming the DBHF_
2507 EoS with Mt ∼ 1.5 M⊙, we draw NS masses from a
Gaussian distribution peaked at 1.32 M⊙ and with a
standard deviation of 0.1 M⊙, and obtain a BNS population
with no hybrid stars. Since the population contains only
hadronic stars, we obtain a lower limit on Mt that is
consistent with the highest mass observed in the binary
systems. Unsurprisingly the Mt posterior is uninformative
for masses above that, since we do no have any observed
data in the high mass range. The hadronic radius is
extracted accurately. Therefore if the BNS population we
observe with GWs does not contain heavy NSs, our
observations can only rule out phase transitions up to
the masses observed.

B. Constraining the phase transition strength

While directly identifying phase transitions and meas-
uring their properties hinges on a low enough Mt and a
large enough Δε=εtrans (i.e., on the existence of a “dis-
connected” category of hybrid stars), it might still be
possible to constrain the parameter space of EoSs involving
such transitions with GW observations. In this subsection
we discuss what can be inferred about the strength of the
transition Δε=εtrans for each of the three possible outcomes
for the transition massMt: a lower limit, an upper limit, or a
measurement of Mt.

1. Lower limit on Mt

Beginning with the scenario of a lower limit on Mt, an
EoS with a phase transition at large masses cannot have
arbitrarily large transition strength if it is required to also
support NS masses of some high value; see Fig. 5 of [61]
and Fig. 3 of [31]. Therefore if our analysis of the detected
BNSs has resulted in a lower limit on Mt and an accurate
determination of the hadronic radius R, the requirement of
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the existence of heavy pulsars can result in an upper limit
constraint on Δε=εtrans, or even the elimination of a phase
transition.
Figure 8 displays contours of the NS maximum mass,

Mmax ¼ 2.0 M⊙ (solid) and Mmax ¼ 2.2 M⊙ (dashed),
of stable hybrid stars on the (Mt, Δε=εtrans) plane for
various baseline hadronic EoSs. For Mmax ¼ 2.0 M⊙ the
symbols are obtained by numerically solving the Tolman-
Oppenheimer-Volkov (TOV) equations [104,105] while
solid curves are analytical approximate fits (see Table II).
The dashed curves track the numerical TOV solutions for
Mmax ¼ 2.2 M⊙, which we do not individually show with
symbols for clarity. Besides the familiar DBHF and SFHo
baselinewe also use the APR [106] and HLPS [107] models,
which are representative of even softer hadronic EoSs, with
smaller radii (RHLPS

1.4 ¼ 10.88 km and RAPR
1.4 ¼ 11.31 km)

that are compatible with the 2 M⊙ constraint (MHLPS
max ¼

2.15 M⊙ and MAPR
max ¼ 2.18 M⊙). The region to the upper

right of each curve (gray-shaded zone for DBHF) refers to

hybrid EoSs for which the maximum-mass stars are below
2 M⊙ and hence are considered ruled out. If the quark matter
was softer than assumed here (c2QM < 1) the allowed space
would be even smaller [55,61], therefore the limits shown are
conservative.
The contours in Fig. 8 suggest that the combination of a

maximum-mass constraint with a lower bound on Mt, as
well as an inference on the (radius of) hadronic baseline
EoS from premerger GW detections (as shown e.g., in
Figs. 4 and 7), can lead to a robust upper bound on
Δε=εtrans. Additionally, the higher the Mmax imposed by
pulsar mass measurements, the more severe constraints on
the phase transition parameters will be. For instance, if
future BNS detections indicate that Mt > 1.5 M⊙ together
withMmax > 2.2 M⊙ inferred from heavy pulsars, then the
hadron-to-quark first-order phase transition scenario is
almost completely incompatible with mature stable NSs,
if the hadronic baseline EoS has also been determined to be
as soft as HLPS with RHLPS

1.4 ¼ 10.88 km. In this case the
only feasible option left would be that either deconfined
quarks emerge at densities beyond cold massive NS cores,5

or the transition is a continuous hadron-quark crossover
instead of a first-order one.
Among all hadronic models tested, the stiffest one,

DBHF, leads to the largest allowed parameter space for
a first-order transition; however, the hadronic branch itself
is at the edge of exclusion by GW170817’s upper bound on
the effective tidal deformability Λ̃ for M ∼ 1.2 M⊙ [6].
This suggests that if future GW data were to further lower
that upper bound, the transition mass cannot be too high for
such a stiff hadronic baseline EoS, presumablyMt < m1 ∈
½1.36; 1.60� M⊙. This implies a somewhat low transition
density (ntrans ≲ 2.7n0), connecting to constraints from
heavy-ion collisions [108,109] and nuclear matter calcu-
lations [107,110] at relevant densities.

2. Upper limit on Mt

Next, we turn to the scenario of an upper limit on Mt,
which could be obtained if the transition density is low and
all detected NSs are hadron-quark hybrids (case B). As
discussed previously, the combination of a lower bound on
the hadronic radius by virtue of the heavy pulsar measure-
ments and an even lower R inferred from the GW data lead
to the conclusion that no hadronic NSs exist in the detected
population. The resulting upper limit onMt is driven by the
lightest systems observed. Such a low-density phase
transition (Mt < 1 M⊙) typically starts at a rather large
radius Rt (see Fig. 1 and Table I). This suggests that for the
hybrid branch to reach such surprisingly small radii (and
thus small tidal deformabilities) that the EoS is not
misinterpreted as a soft hadronic EoS, a sufficiently large

FIG. 8. Relation between the strength of the phase transition
Δε=εtrans and the onset mass for quarks Mt at fixed maximum
mass of hybrid starsMmax ¼ 2.0 M⊙ (solid) andMmax ¼ 2.2 M⊙
(dashed for selected EoSs). Points and dashed curves correspond
to numerical solutions to the TOV equations, while solid curves
are fits with the coefficients from Table II. The gray-shaded
regions mark the area excluded by the corresponding heavy
pulsar measurements Mmax ≥ 2.0 M⊙ for DBHF. The detection
of even heavier pulsars will further decrease the allowed
parameter space.

TABLE II. Coefficients of the fits for Δε=εtrans ¼ fðMt=M⊙Þ at
Mmax ¼ 2.0 M⊙ (see Fig. 8), where fðxÞ ¼ c0 þ c1xþ c2x2.
The parabolic form works reasonably well within the component
mass range 1.1–1.7 M⊙ unless a rather soft hadronic part is
subject to the more stringent Mmax ≥ 2.2 M⊙ constraint.

c0 c1 c2

DBHF 3.15835 −2.37617 0.524739
SFHo 2.19855 −1.88657 0.437564
APR 2.22027 −2.28079 0.671553
HLPS 1.746 −1.89115 0.573446

5Such a phase could be attainable in hot dense remnants of
supernovae or mergers.
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transition strength Δε=εtrans is imperative. Said transition
strength, however, cannot be too large as it would violate
the upper bound limited by Mmax (Fig. 8).
Figure 9 shows in the case of a low-density phase

transition with Mt < 1 M⊙, the chirp radius RQQ for a
hybrid binary as a function of the transition strength
Δε=εtrans for different onset densities ntrans; the chirp mass
is held fixed at M ¼ 1.2 M⊙. Since all NSs considered
here are hybrids, we again expect that the chirp radius does
not sensitively depend on the mass ratio (see for example
the brown and purple dots on the right panel of Fig. 3), and
we therefore restrict to equal-mass systems. The largest
possible values of Δε=εtrans on each curve are limited by
Mmax ≥ 2.0 M⊙, tracked by the dashed lines as ntrans is
varied. If the transition happens at saturation density n0
(right-most solid lines), then the hadronic baseline EoS has
little effect on the tidal properties of the hybrid star as it is
mostly composed of quark matter. As the transition density
increases, the hadronic part of the EoS also has an
increasing influence. For a transition at twice the saturation
density, the stiff DBHF EoS already results inMt > 1 M⊙.
The solid horizontal line corresponds to RHHðM ¼

1.2 M⊙; R ¼ 10 kmÞ ≈ 9 km, the minimum chirp radius
for this chirp mass if the binary were hadronic and the EoS
must support a 2 M⊙ NS. As discussed in Sec. VA 2, it
is the identification of binaries with a chirp radius less
than this value that establishes the fact that the entire
observed population consists of hybrid stars, and that a

phase transition has occurred at sufficiently low densities.
Figure 9 suggests that if we measure the chirp radius of a
binary and it is below ∼9 km, then we would be able to
estimate Δε=εtrans if we knew the transition density and
stiffness of the hadronic EoS.
As already discussed in Sec. VA 2 though, neither the

transition density nor the properties of the hadronic EoS
can be constrained with GWs in this case, as that would
require detecting unexpectedly light NSs, with a masses
around 0.5 M⊙. Nevertheless, Fig. 9 suggests then, that we
can still place a conservative lower limit on Δε=εtrans if the
presence of a low-density phase transition (together with an
upper limit onMt) has been established, by considering the
highest transition density ntrans such that Mt ≲ 1 M⊙ for a
soft hadronic EoS. This conservative lower limit is speci-
fied by the intersection of the R ¼ 9 km horizontal line
with either the ntransðMt ¼ 1 M⊙Þ curve or the Mmax ¼
2.0 M⊙ borderline, whichever gives higherΔε=εtrans for the
softer hadronic EoS. For Fig. 9, these two criteria lead to
Δε=εtrans ≳ 0.78. If Δε were smaller, the chirp radii would
be R > 9 km, which would lead to the case where the
phase transition cannot be identified, and we cannot obtain
an upper limit on Mt.

6 This conservative bound might
further improve if we can combine non-GW information
about hadronic matter at those lower densities, for example
from heavy-ion collisions or nuclear matter calculations.

3. Measurement of Mt

The final scenario corresponds to EoSs like DBHF_2507
for which the phase transition has taken place in the
detected population, and we can measure Mt with enough
BNS observations (case C). Besides the transition mass, for
these systems we also have access to the chirp radii of
individual BNSs, as well as the mean chirp radius of the
hybrid binaries ΔR2; see Sec. IV B. The relation between
the chirp radii of the binaries containing hybrid stars and
hadronic stars depends on the strength of the transition
Δε=εtrans, with stronger transitions in general leading to a
larger reduction in the chirp radii of hybrid binaries.
In Fig. 10 we plot on the (Mt, Δε=εtrans) plane the con-

tours ofΔR≡RHHðM¼ 1.2 M⊙Þ−RHQðM¼ 1.2 M⊙Þ,
where RHHðM ¼ 1.2 M⊙Þ and RHQðM ¼ 1.2 M⊙Þ refer
to the chirp radii of “hadronic-hadronic” and “hadronic-
hybrid” binaries, respectively, with the same chirp mass.
We show results with two mass ratio values, q ¼ 0.7 and
q ¼ 0.9, as there is no equal-mass “HQ” binary because of
the assumption that masses on the hybrid branch are always
higher than on the hadronic one. For the more symmetric
binary systems (q ¼ 0.9, dashed curves), ΔR is more
sensitive to Mt, although there is a much narrower range

FIG. 9. Dependence of the chirp radiusRQQðM ¼ 1.2 M⊙Þ on
the strength of the phase transition Δε=εtrans for a small transition
mass Mt ≲ 1 M⊙ (case B); equal-mass binaries are assumed. We
again consider two hadronic baseline EoSs and vary the onset
density of the transition ntrans (indicated next to each line). At the
lowest transition density ntrans ¼ 1.0n0, the hadronic baseline
EoS has little effect though its influence increases with
increasing ntrans. The horizontal line denotesRHHðM ¼ 1.2 M⊙;
R ¼ 10 kmÞ ≈ 9 km. For fixed ntrans, the maximum value of
Δε=εtrans is determined by Mmax ¼ 2.0 M⊙ (dashed curves),
which also corresponds to the leftmost part of the boundary
contours in Fig. 8 when Mt ≲ 1 M⊙. Note that for a given ntrans,
different hadronic base EoSs reflect different values of Mt.

6It is worth mentioning that for any softer quark phase c2QM < 1,
the required strength of Δε to achieve small (chirp) radii is also
higher, so the limit discussed here is indeed conservative.
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of Mt for which m2 < Mt < m1. The shaded region is
excluded by the requirement that Mmax ≥ 2.0 M⊙.
Figure 10 suggests that with a measurement of Mt ≈

1.5 M⊙ and the hadronic radius (see e.g., the first row of
Fig. 6, case C), an estimate of RHQðM ¼ 1.2 M⊙Þ from
the detected population can potentially further constrain the
preferred range of Δε=εtrans. For instance, if RHQðM ¼
1.2 M⊙Þ is measured to be ∼0.7 km smaller than the cor-
responding hadronic chirp radius, this favorsΔε=εtrans≳0.8.
Such constraint is also consistent with the generic expect-
ation that a disconnected hybrid branch is detectable when
the transition strength is above ∼0.6 (see discussion in
Sec. VA 3), therefore the identification of a phase transition
in the detected population can be used to conservatively
infer Δε=εtrans ≳ 0.6.

C. Measurement accuracy with multiple detections

In Sec. VA we discussed the possible measurement
outcomes in detail, and showed how they depend on
properties of the EoS and the mass distribution of the
observed BNSs by studying a single realization of a
population of 100 detected binaries. The precise numerical
bounds we obtained onMt and R depend to some extent on
the specific population realization, i.e., the exact masses
and the SNRs of the systems detected. In this section, we
simulate multiple population realizations of N detections,
and compute the expected accuracy with which we can
measure the transition mass Mt and hadronic radius R
averaged over the different populations. We also discuss
how these measurements can lead to estimates on the
transition strength Δε=εtrans, along the lines of the dis-
cussion of Sec. V B. In all cases, we find that the averaged

posterior agrees qualitatively with the single-population
posteriors discussed in Sec. VA.
For each number of BNS detections N we simulate 100

random population realizations and compute the posterior
distribution for Mt and R. Figure 11 shows our result for
selected characteristic EoSs, while in Table III we present
numerical estimates for the measurement accuracy for Mt,
R, and Δε=εtrans for all EoSs. The left panel in each subplot
of Fig. 11 shows the posterior for Mt averaged over
population realizations7 (thick solid lines) as well as for
5 random population realizations (thin dashed lines) for
different values of N. The right panel in each subplot
corresponds to the hadronic radius R and shows the median
of the 90% (light shaded region) and 50% (dark shaded
region) credible upper and lower limits over the different
population realizations.
The expected number of BNS detections in the next

years are estimated in [11], which concludes that two years
of detector operation in the expected fourth observing run
network sensitivity could yield a few dozens of BNS
detections. Additional planned improvements, network
expansion, and multiyear observing runs are expected
beyond that, so we choose to simulate up to N ¼ 200
BNS detections. Estimates from further detections can be
easily obtained based on the fact that measurement accu-
racy roughly scales as 1=

ffiffiffiffi
N

p
in the regime where the data

are highly informative. Accordingly, in Table III we quote
expected measurement accuracies for N ¼ 100.

In the case of a purely hadronic EoS [top left, subplot (a),
SFHo], we obtain a tight measurement of the hadronic
radius as well as a lower limit on the transition mass that
improve with increasing number of detections. The radius
measurement contains the injected R1.4 value at the 90%
credible level, showing that systematic errors in the
RðM; RÞ fit are subdominant for this EoS even for N ¼
200 binary systems. We reach the same conclusion in the
case of the stiffer DBHF EoS. Additionally, we obtain
qualitatively similar results in the case of an EoS with a
phase transition at very high masses [bottom right, subplot
(f), DBHF_3504]. As discussed earlier, this is due to the
fact that either the entire detected population is hadronic, or
the few hybrid systems are heavy and undergo only weak
tidal interactions. The tight measurement of R and the
lower limit onMt can be used to place an upper limit on the
transition strength Δε=εtrans using Fig. 8. For example for
SFHo [subplot (a)] we can constrain Δε=εtrans < 0.3; see
Table III.
The top right and the middle left subplots correspond to

the case of a low transition mass compared to the detected
NS masses. In the case where the low-density phase
transition softens the EoS to radii below 10 km [subplot
(b), DBHF_1032], we obtain an upper limit on Mt that

FIG. 10. Contours of constant reduction in chirp radius ΔR≡
RHHðM ¼ 1.2 M⊙Þ −RHQðM ¼ 1.2 M⊙Þ for “HQ” binaries
with mass ratio q ¼ 0.7 (solid) or q ¼ 0.9 (dashed) on the (Mt,
Δε=εtrans) plane. We use the DBHF baseline for which the chirp
radius is RHHðM ¼ 1.2 M⊙Þ ≈ 13.5 km for purely hadronic
binaries. The dash-dotted horizontal line denotes Δε=εtrans ¼
0.6, the approximate threshold for a separate hybrid branch to
form, while the shaded region is excluded by Mmax ≥ 2.0 M⊙.

7We obtain the average posterior over population realizations
by combining the posterior samples from all realizations.
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improves with N, while the hadronic radius remains
unmeasurable regardless of how many BNSs are detected;
indeed the posterior 90% credible interval for the radius
spans almost 90% of the prior range. Detecting such a low-
density phase transition with Mt < 1 M⊙ can place a
conservative lower bound on Δε=εtrans ≳ 0.7; see Fig. 9.
On the other hand, if the low-density transition results in

an EoS that is similar to an allowed softer hadronic EoS,
then radius inference will be biased [subplot (c),
SFHo_2506]. In that case we obtain an increasingly precise
estimate of the radius R, which, however, is inconsistent
with the true hadronic radius for N ∼ 50 and above. The
transition mass Mt posterior generally favors large values,
consistent with the absence of a phase transition, though the
average posterior does not scale with N as strongly as the
one in subplot (a). Indeed we find certain selected pop-
ulation realizations where the phase transition is identified
due to lucky detections of some low-mass hadronic BNS.
Results with EoSs that give rise to BNS populations that

include both hadronic and hybrid stars are shown in the
middle right and bottom left plots. If the transition is strong
enough [subplot (d), DBHF_2507], we can identify it and
measure its properties with enough detections. The left
panel shows that with ∼20 BNSs we can rule out a

(a)

(c)

(e) (f)

(d)

(b)

FIG. 11. Marginalized posterior distributions for Mt (left subplot) and median 90% (light shading) and 50% (dark shading) credible
interval for R (right subplot) for different numbers of detected BNSs N for various EoSs (see subplot caption). In the left subplots solid
curves show the posterior averaged over 100 random population realizations, while thin dashed lines show the posterior for 5 random
population realizations for each N (same color as the averaged posterior). Solid vertical or horizontal black lines denote the injectedMt
and R1.4, where applicable. Dashed vertical lines in the Mt posteriors denote upper or lower 90% credible intervals, where appropriate
(same color as the averaged posterior).

TABLE III. Expected measurement accuracy for the transition
mass Mt and the hadronic radius R at the 90% credible level for
N ¼ 100 BNS detections, as well as corresponding conclusion
about the transition strength Δε=εtrans. We present results for all
EoSs studied here; “det” refers to a phase transition confirmed in
the detected population, “hyb” refers to a phase transition below
the minimum NS mass for which all NSs are identified as hybrid
stars, and “deg” refers to a low-density transition present
completely degenerate with a softer hadronic EoS.

EoS Mt R Δε=εtrans
DBHF >1.75 M⊙ 140 m ≲0.6
DBHF_1032 <1.13 M⊙ N/A ≳0.7 (hyb)
DBHF_2010 0.14 M⊙ 530 m ≳0.6 (det)
DBHF_2507 0.25 M⊙ 170 m ≳0.6 (det)
DBHF_3004 >1.78 M⊙ 140 m ≲0.6
DBHF_3504 >1.81 M⊙ 140 m ≲0.5
SFHo >1.76 M⊙ 210 m ≲0.2
SFHo_1031 <1.13 M⊙ N/A ≳0.7 (hyb)
SFHo_2009 dual dual ≳0.6 (det)
SFHo_2506 >1.23 M⊙ 380 m (biased) ≲0.6 (deg)
SFHo_3003 >1.66 M⊙ 230 m ≲0.3
SFHo_3502 >1.7 M⊙ 220 m ≲0.3
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transition at low masses. With ∼50 detections the posterior
starts showing increased support for the correct value ofMt
resulting in a slight bimodal structure. The measurement of
Mt becomes increasingly precise with more detections as
the posterior mode that contains the injected value gets
more favored. At the same time, the hadronic radius R is
measured to ∼200 m thanks to the hadronic binaries in the
detected population. The phase transition strength can be
conservatively inferred as Δε=εtrans ≳ 0.6, a requirement
for the emergence of a sufficiently disconnected hybrid
branch. Additionally, measurement of a small chirp radius
RHQ from “hadronic-hybrid” binaries can also potentially
constrain the transition strength; see Fig. 10.
If the phase transition is moderately weak, then the

radius difference between hybrid and hadronic stars might
be too small to detect. This case is shown in subplot (e) for
SFHo_3003, which shows that the resulting posterior
distribution for the transition mass Mt increasingly favors
large values, similar to the case where the entire population
is hadronic. The hadronic radius R is again measured to
high precision, though the bias is slightly larger than if the
population was indeed hadronic [subplot (a), SFHo]. For
the EoS studied here, we find that the inferred radius agrees
with R1.4 up to N ∼ 100 at the 90% level. The combination
of a lower limit on Mt and a measurement of the hadronic
radius R leads to an upper limit on the transition strength of
Δε=εtrans ≲ 0.3 for this EoS; see Table III.
The cause of this small radius bias is the fact that hybrid

NSs with a smaller radius than their hadronic counterparts
are interpreted as hadronic, overall bringing the radius
estimate to lower values. The radius bias depends on the
strength of the phase transition and if the transition is very
weak, such as the case studied here, the radius difference
remains small and the inferred hadronic radius is not
strongly biased. If the transition strength increases beyond
a certain point, typically Δε=εtrans ≳ 0.6 when Mt ≳ 1 M⊙
(with modest dependence on the underlying hadronic EoS
and the transition density) that ensures a stable discon-
nected branch, then the effect becomes directly detectable
and the hadronic radius can be estimated accurately; see
subplot (d) for DBHF_2507.

VI. CONCLUSIONS

The detection of GW170817 along with the measure-
ment of its tidal parameters has offered a first example of
how GW observations can constrain the NS EoS, while
further observations are expected to tighten those con-
straints. Besides improvements on the measurement accu-
racy of EoS parameters, in this paper we consider future
detections of BNS inspirals with GWs and study their
potential for constraining features of the EoS such as
possible strong first-order phase transitions. We show that
within the generic CSS framework, combining information
from premerger GW signals with limits on the NS

maximum mass provided by heavy pulsars can signifi-
cantly narrow down the parameter space of first-order phase
transitions. We utilize the fact that binaries with hadron-
quark hybrid stars exhibit qualitatively different tidal
effects than their hadronic counterparts and model the
entire detected BNS population in a hierarchical way.
Our ability to constrain parameters of the hadronic

baseline EoS, in particular the nearly constant hadronic
radius R, and parameters of the phase transition such as the
onset massMt and the transition strengthΔε=εtrans, depends
sensitively on both the type of EoS and on the intrinsic
mass distribution of NSs in binaries in the Universe.
Regarding the hadronic baseline EoS, it first relates the
transition density ntrans to the transition mass Mt, which
should be low enough so that the detected BNS population
contains a significant fraction of hybrid stars; note that at
given Mt, ntrans is smaller if the hadronic EoS is stiffer, a
caution to check the compatibility with theoretical/exper-
imental constraints that are available at relevant densities.
Additionally, the hadronic baseline EoS affects the param-
eter space for a first-order phase transition to be consistent
with the heavy pulsar observations, for which stiffer
hadronic EoSs are in general favored. Regarding the phase
transition parameters, a phase transition is more easily
detectable when hybrid stars deviate considerably from
their purely hadronic counterparts in the mass-radius plane,
ideally forming disconnected branches. The latter is typ-
ically realized in hybrid EoSs with both relatively low
transition mass Mt and large transition strength Δε.
Depending on the properties of the phase transition and

the NS mass distribution we identify four possible
scenarios:
(1) If the EoS is purely hadronic, we can place a lower

limit on Mt and measure the hadronic radius R.
These estimates from the BNS observations can be
combined with the heavy pulsar measurements and
be translated to an upper limit on the transition
strength Δε=εtrans.

(2) If the onset mass is lower than the detected BNS
masses,Mt < 1 M⊙, then we expect to observe only
hybrid stars, a situation that might be degenerate
with BNSs that obey a softer purely hadronic EoS. In
this case the observation of heavy pulsars is crucial,
as they can lead to lower limits on the softness of the
hadronic EoS and thus break the degeneracy. With
such observations we can place an upper limit onMt,
and a conservative lower limit on the transition
strength Δε=εtrans given detections of sufficiently
small chirp radii, while the hadronic radius is
naturally unmeasurable. This is based on the require-
ment that hybrid stars with canonical masses sat-
isfying the constraint of small tidal deformability
from [5] also favors larger values of Δε=εtrans (see
e.g., Fig. 7 of [31]), but not too large to violate the
Mmax ≥ 2.0 M⊙ limit.
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(3) If Mt is comparable to the NS masses observed,
then a strong enough transition can be inferred after
50–100 observations, while the hadronic BNSs that
were detected can lead to an accurate estimate of
the hadronic radius. Additional information on
Δε=εtrans can possibly be extracted by measuring
ΔR between “HH” and “HQ” binaries from multiple
detections, or conservatively from the generic con-
dition Δε=εtrans ≳ 0.6 for the presence of a discon-
nected hybrid branch. If, on the other hand, the
transition turns out to be weak, i.e., Δε=εtrans is
small, then the tidal properties of the hybrid stars are
identical to those of hadronic stars to within ob-
servational error, and the presence of the phase
transition would be challenging to establish. This
scenario can only be realized if the quark phase is
reasonably stiff (in this work we consider c2QM ¼ 1).
A stiff quark phase is necessary not only for the
hybrid EoSs to be able to support 2 M⊙ stars, but
also for hybrid and hadronic stars to have suffi-
ciently different radii such that they are distinguish-
able with GW observations. This point is further
elaborated on in Appendix B.

(4) Finally, ifMt is high, then the phase transition occurs
only for the heaviest mass systems that exhibit weak
tidal interactions to begin with. In that case we can
place a lower limit on Mt and an upper limit on
Δε=εtrans, but measuring either will be challenging
with second generation GW detectors. Though such
phase transitions are inaccessible to the BNS inspiral
signals considered here, they might have a more
observable imprint in the dynamic evolutions of the
merger product ifMt is close to or even aboveMmax.

The above results assume that the tidal parameter Λ̃ can be
measured without further systematic biases from future,
potentially loud, observations. This might not generically be
the case with currently available waveform models and
stronger or multiple signals [97,98]. However, efforts are
underway to further reduce waveform systematics, see e.g.,
[111–115]; such improvementswill be essential for realizing
the potential of BNS inspirals as probes of distinct features
on theQCDphase diagram, such as the study presented here.
Throughout the paper we have emphasized the impor-

tance of incorporating EoS constraints derived from mass
measurements of heavy pulsars, but other constraints can
also be folded in. Further information from terrestrial
experiments and nuclear calculations can also be included
in our analysis to better understand the behavior of the EoS
at densities around saturation. For example, the future
PREX-II [116,117] experiments aim to accurately measure
the neutron skin thickness of heavy nuclei that correlates
with the pressure/stiffness of neutron-rich matter near or
below saturation density; modern computations based

on chiral effective field theory [107] and quantum
Monte Carlo methods [110] hold the promise of improving
the uncertainty analysis in the nuclear EoS at 1–2 times
the saturation density. Moreover, forthcoming results from
NICER would provide complementary constraints on the
NS radii [118,119] which could help serve as prior
information for the analysis of GW data [120].

Our work has established the conditions under which
GW inspiral signals from BNSs can be used to place
constraints on the parameter space of phase transitions. We
further highlight the importance of incorporating con-
straints from different observations, and demonstrate the
crucial role of measuring the masses of heavy pulsars. The
determination of the properties of dense matter is a firmly
interdisciplinary project that will benefit from future BNS
observations, not only by measuring the EoS parameters
with better precision, but also by constraining scenarios of
the QCD phase diagram such as strong first-order tran-
sitions from hadronic to quark matter.
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APPENDIX A: ΔR PLOTS FOR ALL EoSs

In this appendix we present in Fig. 2 ΔRi plots similar to
Fig. 12 for the remaining EoSs from Fig. 1. In all cases the
values of ΔRi are smaller than ∼2 km.

APPENDIX B: EFFECTS OF
SOFTER QUARK MATTER

Similar to Fig. 8, in Fig. 13 we show exemplary plots with
Mmax contours for the DBHF and HLPS hadronic baselines,
but with a softer quark EoS. Shaded regions again corre-
spond to the region of the parameter space that is excluded
due to the lower limit onMt. Theplots confirm that the choice
ofmaximal stiffness c2QM ¼ 1 in the paper corresponds to the
largest parameter space on the (Δε=εtrans,Mt) plane available
and is therefore conservative.
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FIG. 12. Same as Fig. 2 for the remaining EoSs of Fig. 1.
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FIG. 13. Mmax ¼ 2.0 M⊙ (solid) and Mmax ¼ 2.2 M⊙ (dotted) contours for the DBHF and HLPS hadronic EoSs with soft
(c2QM ¼ 0.33; left panel) and relatively stiff (c2QM ¼ 0.5; right panel) quark matter. For the softest quark EoS, the allowed values of
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