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Abstract

In this paper, we define novel graph measures for directed networks. The measures are
based on graph polynomials utilizing the out- and in-degrees of directed graphs. Based on
these polynomial, we define another polynomial and use their positive zeros as graph mea-
sures. The measures have meaningful properties that we investigate based on analytical
and numerical results. As the computational complexity to compute the measures is polyno-
mial, our approach is efficient and can be applied to large networks. We emphasize that our
approach clearly complements the literature in this field as, to the best of our knowledge,
existing complexity measures for directed graphs have never been applied on a large scale.

1 Introduction

Graph complexity measures have been studied extensively [1-4]. Although a large number of
complexity measures have been defined, few deal specifically with directed graphs. However,
many real-world networks such as transportation networks [5] and biological networks [6] are
directed graphs whose edges express critical interactions, flows and so forth. Examples of com-
plexity measures for undirected graphs include treewidth [2], cycle rank [2] and numerous so-
called topological indices, see [4, 7]. Some of the classical graph complexity indices like the dis-
tance-based Wiener index [8] or the graph entropy measure based on vertex orbits due to
Mowshowitz [9] can be computed for directed graphs as well. For example, Knor et al. [10]
studied the Wiener Index on directed graphs. Other classical and distance-based measures like
the Szeged index [11] could also be applied to directed graphs. But to the best of our knowl-
edge, there is no body of literature that focuses on comparing structural graph measures for
undirected and directed graphs.
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Measures for analyzing directed graphs [12] include DAG-width [3], directed treewidth
[13] and girth [1]. Treewidth and directed treewidth are both based on a game-theory
applied to special graph decompositions. It might be difficult to apply these measures to
large real-world networks. Also, the girth of a directed graph has been defined as the mini-
mum length of a directed cycle [1]. If the graph is acyclic, the girth is infinite [1]. Another
technique is due to Bertz et al. [14]; they investigate the complexity of digraphs by identify-
ing all possible subgraphs with a certain number of vertices representing patterns such as
trees, paths, rings etc. Degree sequences are then used to quantify the complexity or diversity
of the digraphs [14]. Hunter and Kreutzer [15] investigate the meaning of several methods
for determining the complexity of directed graphs and point out differences between undi-
rected and directed graphs. Berwanger and Grédel [16] use special tree-decompositions and
define the graph measure entanglement and its relationship to treewidth. Estrada and
Hatano [17] define the measures reciprocity and returnability based on eigenvalues of spe-
cial graph-theoretical matrices. Heterogeneity measures, interpreted as irregularity based on
differences between in-degrees and out-degrees, have been developed by Ye et al. [18]. We
emphasize that in this paper, we put the emphasis on examining complexity measures for
analyzing complex networks. Another important branch of Quantitative Graph Theory [19]
relates to measure the similarity between networks. See [20] for an up-to-date review to sur-
vey this area.

In this paper, we propose an approach that departs from the contributions sketched above.
Based on the occurrences of out- and in-degrees of directed graphs, we define certain graph
polynomials. We show that every directed graph can be characterized by an out- and in-degree
polynomial. In order to obtain positive zeros, we define modified graph polynomials and show
they must possess a unique, positive zero in the interval (0, 1), depending on certain parame-
ters. So, we analyze properties of these polynomials and prove interrelations between their
zeros. Based on these zeros, we define graph complexity measures and investigate issues such
as the correlation between the measures and the homogeneity of the zeros which are associated
with a graph.

2 Methods
2.1 New complexity measures for directed graphs

In this section, we introduce some preliminaries. The directed graphs [21] considered here are
without loops and multiple edges.
Definition 2.1 Let G= (V, E), EC VX V, |V| < ¢ be a directed graph.

N (v) ={¥ € V\ {v}|(v, V) € E} is the set of out — neighbors of v, (1)

N~ (v) ={u € V\{v}|(it,v) € E} is the set of in — neighbors of v, (2)

3p(v) =N ()],
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Definition 2.2 Let G= (V, E), EC Vx V, |V| < o be a directed graph.

Ny ={veVv, =0},
Ny ={veVv,m=1, )

N = (v € VI8,(0) = 80} (7)

out

Definition 2.3 Let G= (V, E), EC Vx V, |V| < o be a directed graph.
Ny ={veVis,(v) =0},  (8)
Ny ={veVls, =1} (9

(10)
N e = {v € V|5, (v) = 62}, (11)

0

Now, we define two special graph polynomials with real coefficients. Note that the coeffi-
cients capture structural information of the given graph.
Definition 2.4 We define the coefficients of the graph polynomial Pg,,,(x) by

a =N ;mx

= N |, (13)

; ; (14)

a =|N|,  (15)

ay =N (16)
Finally, P ,,,(x) = aZ”tx‘jﬁ"Lﬁx a4 agutxo'

Similarly,
Definition 2.5 we define the coefficients of the graph polynomial P ;,(x) by

ay = N
in

@ =N ey |, - (18)

, (17

: : (19)
ap =N, (20)
ay =|Ny]. (21)

gmax

Finally, P, (x) = a’xn" + - - 4 ai'x + aj'x".

Obviously Pg oui(x) and Pg ;,(x) have no positive zeros since their sequences of coefficients
have no sign changes. This follows from Descartes’ Rule of Signs, see [22]. In the following, we
establish the conditions under which two associated polynomials have a unique, positive zero

€ (0, 1).
Theorem 2.1 Let G = (V, E) be a directed graph. Now we define the polynomials
P*G,out(‘x) = (xaut - PG,aut (‘x)’ (22)
P, (%) = o, = Pg(x). (23)
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There exist parameters o, € R and a,, € R, such that the polynomials P* g ,,,,(x) and P’ ;,,(x)
have a unique, positive zero 8,,/G) and 6,,(G), respectively. In fact, the values of 5,,(G) and
0:,(G) depend on a,,,; and a;,, respectively.

Proof: In order to simplify the notation, we write the polynomial as

P.(x)=ax*+---+ax+a, a€Z. (24)
Also, we need to define
Pox) = 2= Po(x) = — (apt + -+ a+ ay). (25)

Observe that lim ___P}(x) = —oco. Assuming P;(0) > 0 yields the inequality

X—00

o—a,>0 or o> a, (26)

Since the sequence of coefficients of P (x) has only one sign change, Descartes’ Rule of
Signs tells us that Py (x) has a unique zero 6. Now 6 € (0, 1) if

Pg(1) =a—(a,+---+a, +a) <0, (27)
and, finally
a<a+---+a +a,. (28)

Thus the inequalities (26) and (28) provide a range for 6 € (0, 1). It is evident that § depends
on the choice of o needed to satisfy the Inequalities (26) and (28). Finally, the theorem holds
for the two different polynomials represented by the Eqs (22) and (23) along with the corre-
sponding parameters oy, and y,.

In the following, we elaborate briefly on the problem of choosing ¢, and ¢,,. Again, con-
sider the Inequalities (26) and (28), whose parameters can be real numbers or positive integers.
If we choose real numbers, we get an infinite number of polynomials P* ., (x) and P* g ,(x)
whose roots lie in the interval (0, 1). If a,,,; and e, are taken to be positive integers, the set of
possible polynomials is finite. To determine the effect of the parameters on the roots, we appeal
to the continuity theorem for complex and real polynomials, see [22]. This theorem states that
the zeros of a polynomial are continuous functions of the coefficients of the polynomial, which
mean a small change in the coefficients will cause only a small change in value of the zeros
[22]. It seems to be unclear who was the first who proved the continuity theorem. Yet, it
appears that a proof was already given by Weber in 1895, see [23]. Several other proofs of this
statement have also been given independently, see [22].

Suppose, G is a directed graph and we wish to apply Theorem (2.1). To do this we have to
determine the sets {oc&]“, e ocfﬂt} and {oci[i], e oci[ﬁ]}, if we choose positive integers. The fol-
lowing ordering can be obtained by permuting the indices

a([)lL]lt < O‘E\L < - O(([i]lta (29)
and
dll <ol <ol (30)

The sets of roots {5, (G), ..., (G)} and {5, (G),..., 5% (G)} in the interval (0, 1) can

° Yout
also be obtained. Applying the continuity theorem may lead to a simplification. For instance,

we always choose the minimum value namely oy, € Z and o)) € Z satisfying the Inequalities

(26) and (28). Consequently, we could reduce the problem to the zeros {5, (G)} and

out
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{56! (G)}. In Section (3.5), we investigate numerically the effect of parameters o and a;, on
the zeros of P oui(x) and P* g ;,(x) numerically.

2.2 Graph complexity measures

In this section, we define some complexity measures on directed graphs based on the findings
of Section (2.1). Recall the two polynomials, defined earlier, based on out- and in-degrees (see
the Definitions (2.4), (2.5), and the modified polynomials with unique positive zeros in the
interval (0, 1). Here, we argue that these zeros can serve as measures of the structural complex-
ity of a directed graph. These measures are similar to those defined as a function of the eigen-
values of certain graph polynomials, see, e.g., [24, 25]. The eigenvalue based measures,
represented by Eqs (33)-(36), have been defined with an eye to reducing their degeneracy, see
also [24-26]. Degeneracy implies that a measure is unable to distinguish between non- isomor-
phic graphs, [4, 26], and is thus an undesirable property. Taking account of this we define the
following measures.

Definition 2.6
L(G) = 3,,(6), G1)
L(G) = 5,(6), (52)
1 1
1(6) = 56,4(G) +55,(G) (33)
1(6) = 5 V/3,,(G) + 5 V/5,(G) (34)
1(G) = In(3,,,(G))| + [In(3,)(G)], (53)
__Im
HO) = (36)

Oout(G) and 6;,(G) are unique, positive zeros of the respective out- and in-degree polynomials.
I is the well-known edge density [27].

2.3 Examples

In the previous section, we briefly discussed how to find the parameters o, and o, by using
Theorem (2.1). Now, we calculate the polynomials P* g o, () and P*5;,(x) as well as their roots
in some special cases. Consider the graphs shown in Fig (1). For G; we determine

-/\[0+ = {vi, v, v}, -/\[1+ ={} N; ={}
N; = {vs}, NI = {vi, v}, N; ={}
Ny ={vi}, N7 = {v,m},

No ={vi,m}h Ny ={},

N, ={w}h Ny ={v}, N, ={v},
N, ={vs, v}, Ny = {vg, v}
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(a) G1 = (V,E),|V|=9,|E|=31. (b) Ga=(V,E),|V|=09,|E|=8.
Fig 1. Two example graphs from G,.
https://doi.org/10.1371/journal.pone.0223745.9001

and

t __ t __ t __ t __ \ | . t t
a2 =203 =1,a" = 0,a" = 2, a3 = 1,a3" = 0,43 = 0,a3" = 3,

ap =2,a =2,a" =1,a0 =1,a) =1,a =0,a) = 2.

From definitions (2.4), (2.5), we obtain

Py () = 2x" +x° 4+ 2x* + ° + 3,

Py (%) = 2x° 426 +x' + 57 + % + 2.

To determine the range of @, we use the Inequalities (26) and (28) and infer

Oy >3 and o, <24+24+14+1+142=0. (37)

out out

According to Theorem (2.1), P* g oue(x) and P*;,(x) have a unique positive zero in the
interval (0, 1) if 3 < @y < 9. If we choose positive integers, we obtain the set {4,5,6,7,8} as
valid candidates. In Section (2.1) we explained that due to the continuity of the zeros, it makes
sense to choose the minimum value of this set in order to calculate the zero. Thus,

P o (%) = 0ty — Pg (%) =4 — (2% +x° 4+ 2x" +x* 4+ 3) =0, (38)
gives 8ou(G1) = 0.683953. Following the same procedure, we get
o, >2 and o, <0O. (39)
This leads to
P (X)) =0, —Pg o (x) =3 - (2x° + 2 +x' + X +x* +2) = 0. (40)
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Table 1. Characteristics of the example graphs G, and G,.

Op. G, =(V,E),|V| =9, |E| =31 Op. G,=(V,E),|V|=9,|E| =8

PG out(x) = 207 + x84 2x + 7+ 3 PG ou(X) = 8x +x

P (%) = 1- 23 +x°+2x* + x%) Py (%) = 1-8x

Qout S {4,5,6,7, 8} Qout € {2,3,4,5,6,7,8}
Pgin(%) = 28+ 28 +x v+ P+ 2 P (x) = 8x+1

P (x) = 1-@2C+ 2 + 5+ 7+ x%) P (x) = 1-8x

i € {3,4,5,6,7, 8} U € {2,3,4,5,6,7, 8}
I = 0.683953 I = 0.125

I, = 0.608309 L = 0.125

I = 0.646131 I = 0.125

I, = 0.803478 n = 0.353553

I = 0.876937 I5 = 4.158883

L = 0.430555 I = 0.111111

Op.—operator

https://doi.org/10.1371/journal.pone.0223745.t001

Solving Eq (40) finally gives d;, = 0.608309. Similarly, for G, in Fig (1),
PGZ,out<x) = 8x+ 17 (41)

Py, (x) = 8x + 1. (42)

We see that P, (x) = Py, ;,(x). Also, we infer

Opy =0, >1 and o, =0, <9. (43)

80, Qout = Gin € {2,3,4, 5, 6,7, 8}. Finally,
P*GQ.out<‘x) = OCom - PGQ.out(x) =2- <8x + 1) = 0’ (44)

P*G2,in(x) = %y = PGz,in(X) =2- (Sx + 1) =0. (45)

Hence, 84y = i, = 0.125. These findings are summarized in Table (1).

3 Numerical results
3.1 Software and computation

For the work of this paper, we used R [28] to generate the numerical results. To generate the
classes of directed graphs, we used 1 graph and its functions [29], see Section (3.2). Also, we
performed tests using i graph to ensure the graphs are pairwise non-isomorphic as well as
connected. Moreover, the packages graph and QuUACN were used to determine the in-degree
and out-degree distribution of the generated graphs [30, 31].

3.2 Definition of graph classes

In this section, we define the graph classes we used for performing the numerical analysis.
Note that we always performed 1000 repetitions when generating the graphs as we deal with
random graphs.

Definition 3.1 The class G, contains 20.000 directed, connected randomly chosen graphs
G = (V, E) with 9 vertices.

PLOS ONE | https://doi.org/10.1371/journal.pone.0223745 November 14, 2019 7/19


https://doi.org/10.1371/journal.pone.0223745.t001
https://doi.org/10.1371/journal.pone.0223745

@ PLOS|ONE

Measuring the complexity of directed graphs

.......................................

Level 3

Note that we have relied on the Erd6s—Rényi model [32] to generate these digraphs where
min(|E|) = 8 and max(|E|) = 36. The number of edges and their direction were randomly
selected.

Definition 3.2 G, contains 500 directed, connected, hierarchical graphs G = (V, E) which are
randomly generated. The vertex and the edge sets are given by [33]

Vo= {vy, Vovelr Yiv " 5 YVavyp Yoo " 5 Vo Ve o7 s Vs\vg\}v

(46)
E CE UE,

These graphs have four levels. Level 0 is the root level. |V}, 0 < i < 3 is the number of vertices on
level i. E, represents the set of edges which jump exactly one level. E, is the set of jump edges
which over-jump at least one level. Here, all edges move upwards, which means from level 3 to
the root level. Thus, 5 < |V| < 30.

Note that these graphs are usually called directed universal graphs and have been intro-
duced in [33]. An example of such a graph is depicted in Fig (2).

Definition 3.3 G, contains 500 directed connected hierarchical graphs G = (V, E) based on
Definition (3.2), where | V| = 20 and 8 < |E| < 30.

The reason we choose hierarchical (random) graphs for our analysis is that they appear in
many real world applications, see [33]. Hierarchical graphs appear in many disciplines such as
biology, management and manufacturing, see [34, 35]. Noteworthy are BOM-structures (Bill
of Material) [34, 35]. These graphs have been widely used to analyze production systems and
for representing optimizational tasks.

3.3 Correlation analysis

In this section, we discuss correlations between the graph measures applied to the classes of
graphs defined above. The discussion is limited to the results shown in Figs (3) and (4). Other
correlations have been found but are not presented explicitly here. We begin with results
shown in Fig (3) for graph class G,. Observe that there are many degenerate cases, i.e., non-iso-
morphic graphs having the same measure values. Interestingly, the two zeros of the polynomi-
als P g out(x) and P* g, (x) represented by the measures I; and I, are rather weakly correlated.
See Fig (3a). Thus, these indices capture structural information differently on random graphs
with 9 vertices. A plausible explanation for the values of the Spearman correlation being higher

.......................

B T B )

Fig 2. An example graph G € G, where |V| = 23, |E| = 35.
https://doi.org/10.1371/journal.pone.0223745.9002
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Table 2. Spearman correlation of the graph measures for G, Qé and GQ,

L
I
I
Is

5

I;

G,
I, L I
0.3709
0.8221 | 0.8194
0.8203 | 0.8199 | 0.9989
-0.8171 | -0.8188 | -0.9959
0.6112 | 0.6218 | 0.7439

I

-0.9990
0.7541

G, G
Is I, L I I, Is I, L I I, Is
L | 0.0046 L | -0.0146
I, | 08259 | 05106 I, | 0.8403 | 04818
I, | 07735 | 05956 @ 0.9898 I, | 07948 | 05626 | 0.9911
Is | -0.7013 | -0.6794 | -0.9559 | -0.9873 Is | -0.7316 | -0.6422 | -0.9626 | -0.9894
-0.7624 | I, | 0.0140 | -0.0666 | -0.0135 | -0.0215 | 0.0286 | I, | 0.1825 | 0.4427 | 0.3741 | 0.4168 | -0.4570

https://doi.org/10.1371/journal.pone.0223745.t1002

for the random graphs of G, (shown by Fig (3d), (3g) and (3h) is that I5, I, I5 also depend on
I,. For some combinations of I; vs. [,2<j<5, the correlation is also weak and, hence, the
associated measures give quite different values. For instance, this is the case for I; and I, on G,.
A possible reason for the weak correlation and for the wide spread shown on the scatter plots
is that the underlying hierarchical graphs have a more distinct structure compared to the
completely random graphs € G,. This also implies that the degeneracy is much lower com-
pared with € G,, which also holds for the scatter plots shown in Fig (3) for G.. All the values of
the Spearman correlation are given in Table (2).

Similar results are obtained for all other combinations of I; vs. I, 2 < j < 5,2 < i < 6, which
is the reason they are not shown explicitly here. Finally, consider Fig (4). These scatter plots as
well as the values in Table (2), show that the edge density I; has no structural relationship with
all other measures. The left column of Fig (4), also shows that I, is highly degenerated. This is
not surprising given its definition. As indicated earlier, the measures applied to graph classes
containing hierarchical graphs have fewer degeneracies.

3.4 Extremal graphs/relations

Now we take a closer look at graphs that attain maximum or minimum values under the graph
measures of Definition (2.6). Fig (5) shows two graphs for which max(I;) and min(I;) obtains.

%
G3,out

Take graph Gj; as an example. To calculate P, __(x), we apply Theorem (2.1) and solve the

® G,

(a) Gs with max(I1)
where min(l3), G = (V, E), |V | =9, |E| = 8.

Fig 5. Two graphs € G, maximizing and minimizing I, and L.

https://doi.org/10.1371/journal.pone.0223745.9005

®

(b) G4 with min(/1)

® G,

®

where max(lz), G = (V, E),|V|=9,|E| = 8.
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Table 3. Polynomials, parameters and graph measures for calculating I, and I, for G;, G, € G,.

Op.

PG ou(%)
P ou (%) =
Aout c
Pg,in(x) =
Pgn(%) =
(79 S
L =
I =
I3 =
I =
Is =
I, =

Op.—operator

https://doi.org/10.1371/journal.pone.0223745.t003

Gy= (V,E), |V =9, |E| =8 Op. Gu=(V,E), |V =9, |E| = 8

1x°+8 PG out(X) = 8x+1

0.5 -x° P (%) = 1-8x

{8.5} Cout € {2,3,4,5,6,7,8}

8x+1 PG in(x) = X +x+7

1-8x P (%) = 1-( +x)

{2,3,4,5,6,7, 8} i € {8}

0.917004 I = 0.125

0.125 L = 0.796544
0.521002 I = 0.460772
0.655578 I, = 0.623023
2.166084 Is = 2.306914
0.111111 I = 0.111111

equation
oy — (2° +8) = 0. (47)

According to Theorem (2.1), we know that Eq (47) has a unique, positive zero in the inter-
val (0, 1) which obviously depends on the parameter a,. Solving Eq (47) gives x = {/a,,, — 8.

So, to maximize graph measure I, we have to determine max, {\/o,, — 8}. Note that Theo-
rem (2.1) also gives 8 < dy < 9. In Table (3), we set ¢y, = 8.5 in order to compute the values
of the graph complexity measures. Clearly, this is the maximum value of I; for the given
parameter. The case min(I;) for G, can be shown analogously.

Now, we are in position to begin our analysis of extremal conditions and relations between
digraphs.

Theorem 3.1 Let G = (Vg, Eg) and H = (Vy, Ey), be two digraphs. Define

Polx) =a— (afx +af), af €N, (48)

Py(x) =o—(alx"+a x" '+ - +alx+a]), a' €N, (49)

i

and assume that there exist graphs G and H with the given polynomials. Also, assume that the
conditions of Theorem (2.1), namely,

ag <o<al+ag, (50)

al <a<a'+al +---+a'+adl, (51)
are satisfied, and there exists o satisfying the Inequalities (50) and (51). The equation

G
o — ag

G

L= 5(G) > &' (H), (52)
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holds if
a, G\n a, Gyn—1 ayl G H
x < (a?)n (OC ao) + (a?)n—l (OC ao) + + alc (O( ao) + a() N (53)

Proof: Consider the polynomials represented by the Eqs (48) and (49). Since we assume the
Inequalities (50) and (50) are valid, Theorem (2.1) assures us that §5%(G) and 6%(H) lie in the
interval (0, 1). The notation 6% makes explicit the dependence of the zeros on the parameter ¢.

’Z*HG
L. Assuming Py(6%(G)) < 0, we con-

G
4

Clearly, P.(x) = o — (ax + af) = 0 implies 6" (G) =

clude that Inequality (52) must be satisfied. But

a a, Gy\n a, Gyn-1 a G H
PH(é(G)):o(— Gﬂ(“_ao) + anl(a_ao) +"'+_G(O‘_a0)+a0 <07(54)
(al) (al) aj

implies the Inequality (53).
Corollary 3.1 Referring to Theorem (3.1), we assume that for the two polynomials represented
by the Eqs (48) and (49) the Inequalities (50) and (50) are satisfied. If a = a¥ and a§ = a,
then Inequality (52) always holds.
Proof: Setting a”" = a and a§ = 4/ in Inequality (53), we obtain
a al . all
(ai;)n (a;)”fl (Ot—ag) 1 + -+

(af)’
As o > af, Inequality (55) is always satisfied.

H
n

(o —af)" + (2 —aS)* > 0. (55)

Finally, we state the following theorem.
Theorem 3.2 Let G = (Vg, Eg) and H = (Vy, Ey) be two digraphs, and define

P.(x) =o— (ax"+al x" "+ +aix+a]), a €N), (56)

Py(x) =o—(alx"+al x "'+ ---+alx+d), a'eN. (57)

assuming that there are graphs G and H with the given polynomials. Now,

ay <o<aj+---+af+aj, (58)

ay <o<a,+---+a+ag. (59)
Choose o such that it satisfies the Inequalities (58) and (59). If
al <al' for 1<i<n, (60)
then
0"(G) > ¢"(H). (61)
Both 8%(G) and 6%(H) lie in (0, 1).
Proof: From the Inequality-System (60), we derive
Pi(x) =0 — (aSx"+a’ x4+ -+ alx+af)
>o— (a'x"+a X'+ +allx+all) = Py(x). (62)

But Pg(x) > Py(x) implies Inequality (61).
Consider the two graphs G, (see Fig (5)) and G (see Fig (2)). We use these examples to dem-
onstrate Theorem (3.1). In this demonstration, we consider only the out-degree polynomial
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(19 (94

® P g (D
L4 & ® 9 &
G D ® @

a N

(a) Gs with [V| =8, |E| =T. (b) Ge with |V| = 14, |E| = 13.
Fig 6. The two example graphs G; and Gg.
https://doi.org/10.1371/journal.pone.0223745.9006

and obtain
P*G4,out(x) =0 (SX + 1)7 (63)
Pon(®) = — (x* +x" 4 5x" + 10x + 6). (64)
Note that G, and G, (see Fig (1) and Table (1)) have the same polynomial P . (x) and

Py, o (%) but the two graphs are non-isomorphic. We call such polynomials degenerate. The

Inequalities (26) and (28) give for G4, 1 < a < 9 and for G, 6 < a < 23. So, if we choose, e.g.,
o =7, these two inequalities are satisfied. So, we need to check whether the Inequality (53)

7<$(7—1)8+é(7—1)7+§(7—1)5+18—0(7—1)+6, (65)

holds in this case. Since 7 < 14.920, Theorem (3.1) says
3G, > 87(G). (66)

From Eqs (63) and (64) with a = 7, we finally obtain
(G, = Z and §77(G) =0.099995. (67)

The two graphs shown by Fig (6A) provide another illustration of Theorem (3.2). Again, we
deal only with the out-degree polynomials. From Fig (6), we determine

Pl on(®) =0 — (& +x° +2x+4), (68)

Pl o) = 0 — (26" 4 2% + 3x 4 6). (69)

The two graphs have a different number of vertices and edges but their underlying out-
degree polynomials have the same degree. Moreover, the Inequality-System (60) is satisfied.

PLOS ONE | https://doi.org/10.1371/journal.pone.0223745 November 14, 2019 14/19


https://doi.org/10.1371/journal.pone.0223745.g006
https://doi.org/10.1371/journal.pone.0223745

@ PLOS | O N E Measuring the complexity of directed graphs

For Inequalities 4 < o < 8 for G5 and 6 < o < 13, we can choose a = 7. Calculating the zeros
of the polynomials represented by the Eqs (68) and (69) gives

5"7(G,) =0.843734 > §"7(G,) = 0.271069. (70)

3.5 Homogeneity of The Zeros—Influence of o, and &;,

In this section, we briefly investigate the influence of a,,,; and ¢;,,. To measure the divergences
between the resulting zeros, we define a homogeneity measure.

For this discussion we restrict attention to out-degrees; analogous results hold for in-
degrees. Let G be a directed graph with associated polynomials Pg ou¢(x) and P* g u(x).

Suppose the Inequalities (26) and (28), yield k&, p0551ble values o ocOG,;f‘?“‘. Thus,

om ? ?

o9t 892 .9 lfg“‘ are possible roots of P* g oui(x) =

out? “out’

To define the homogeneity of the set

S5 = (s G5 O} (71)
we use a real valued distance measure, namely,
d(x,y) =|x—yl,x,y € R. (72)
The homogeneity of S¢  is defined by
kue Ko
M5 = g ) D O (73)

The value for in-degrees is defined similarly. A high h-score indicates that the set S is inho-
mogeneous while a small value of / gives a high homogeneity rank of S°. The definition is
illustrated in Fig (7).

The homogeneity values are plotted against the number of polynomials in Fig (7). First,
observe that the distributions of the homogeneity values for out-degrees and in-degrees look
very similar. Also, we observe that the differences between the zeros is quite small, which
implies that homogeneity is high. This can be seen from the value-range in Fig (7). This result
is not surprising as we explained in Section (2.1), i.e., the zeros of a polynomial are continuous
functions of the coefficients of the polynomial. In fact, if we vary o, or a;,, we see that the
coefficients of the resulting polynomials are quite similar, when only the constant terms ¢y,
and a;, are changed, see the Eqs (22) and (23). Therefore, the small differences between the
roots (and the high homogeneity values) reflect the continuity theorem for complex and real
polynomials, see [22].

3.6 Computational complexity

In this section, we briefly sketch some ideas to determine the computational complexity to
compute &. Note that calculating the vertex degrees requires polynomial time, i.e., O(n%) in
case 1 is the order of an input graph. Assigning the out- and in-degrees to the monomials x’
can be achieved in constant time and adding up those terms requires linear time complexity,
i.e., O(k); k is the degree of the polynomial. Altogether, we see that we are able to construct an
efficient algorithm to compute 6.
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Fig 7. Distributions of the h(S¢, ) and h(Sg ) values for all three graph classes.
https://doi.org/10.1371/journal.pone.0223745.g007

(f) Ranked h distribution versus P/™ for G3.
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4 Summary and conclusion

In this paper, we have introduced new complexity measures for real networks. One reason for
developing an alternative to degree-based measures such as the Zagreb indices [4] or entropies
based on vertex degrees [36] is their high degeneracy, meaning that many pairwise non-iso-
morphic graphs have the same measured value. Similar to [37], we developed a polynomial-
based approach for measuring the complexity of directed graphs. To the best of our knowl-
edge, there are very few measures for directed graphs, e.g., treewith and girth, and these are
true complexity measures for encoding structural information of a directed graph. Following
[37], we developed graph polynomials based on the out- and in-degrees of directed graphs and
constructed modified polynomials which posses a unique, positive zero in the interval (0, 1),
depending on up to two parameters 0, and Q.. These zeros d,,,, and J;, can be interpreted
as complexity measures. Interestingly, we start with a graph invariant and construct polynomi-
als which are associated with the graph. However, the graph measures defined here are alge-
braic quantities representing the zeros of polynomials.

Analytical results showing relationships between the graph measures have been demon-
strated; we have obtained numerical results that show correlations between the graph mea-
sures, and have investigated the homogeneity of the zeros (graph measures). We compared
our graph measures with the well-known edge density and found that our measures capture
structural information differently. Also some of our measures seem to have useful properties,
e.g., they possess a high discrimination power for graphs with a distinct graph topology. Our
approach to analyzing the complexity of directed graphs is promising in that low computa-
tional complexity (i.e., vertex degrees of a directed graph can be determined in polynomial
time) allows for applying the polynomial based measures to large networks.

As part of our ongoing research, we plan to continue investigating extremal properties of
the measures. Also, we should like to perform a correlation analysis with other measures on a
large scale, if we can find ones that can be computed in polynomial time. Existing measures
based on game theory are computationally complex, see, e.g., [13].
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