
Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices

Yu Gan
Cornell University
yg397@cornell.edu

Yanqi Zhang
Cornell University
yz2297@cornell.edu

Kelvin Hu
Cornell University
sh2442@cornell.edu

Dailun Cheng
Cornell University
dc924@cornell.edu

Yuan He
Cornell University
yh772@cornell.edu

Meghna Pancholi
Cornell University
mp832@cornell.edu

Christina Delimitrou
Cornell University

delimitrou@cornell.edu

Abstract

Performance unpredictability is a major roadblock towards
cloud adoption, and has performance, cost, and revenue
ramifications. Predictable performance is even more crit-
ical as cloud services transition from monolithic designs to
microservices. Detecting QoS violations after they occur in
systems with microservices results in long recovery times, as
hotspots propagate and amplify across dependent services.

We present Seer, an online cloud performance debugging
system that leverages deep learning and the massive amount
of tracing data cloud systems collect to learn spatial and
temporal patterns that translate to QoS violations. Seer com-
bines lightweight distributed RPC-level tracing, with detailed
low-level hardware monitoring to signal an upcoming QoS
violation, and diagnose the source of unpredictable perfor-
mance. Once an imminent QoS violation is detected, Seer
notifies the cluster manager to take action to avoid perfor-
mance degradation altogether. We evaluate Seer both in local
clusters, and in large-scale deployments of end-to-end appli-
cations built with microservices with hundreds of users. We
show that Seer correctly anticipates QoS violations 91% of
the time, and avoids the QoS violation to begin with in 84%
of cases. Finally, we show that Seer can identify application-
level design bugs, and provide insights on how to better
architect microservices to achieve predictable performance.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’19, April 13ś17, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304004

CCS Concepts · Computer systems organization →
Cloud computing; Availability; · Computing method-

ologies → Neural networks; · Software and its engi-

neering→ Scheduling.

Keywords cloud computing, datacenter, performance de-
bugging, QoS, deep learning, data mining, tracing, monitor-
ing, microservices, resource management

ACM Reference Format:

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna

Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big

Data to Navigate the Complexity of Performance Debugging in

Cloud Microservices. In 2019 Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’19), April 13ś17, 2019,

Providence, RI, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3297858.3304004

1 Introduction

Cloud computing services are governed by strict quality
of service (QoS) constraints in terms of throughput, and
more critically tail latency [14, 28, 31, 34]. Violating these
requirements worsens the end user experience, leads to loss
of availability and reliability, and has severe revenue im-
plications [13, 14, 28, 32, 35, 36]. In an effort to meet these
performance constraints and facilitate frequent application
updates, cloud services have recently undergone a major
shift from complex monolithic designs, which encompass the
entire functionality in a single binary, to graphs of hundreds
of loosely-coupled, single-concerned microservices [9, 45].
Microservices are appealing for several reasons, including
accelerating development and deployment, simplifying cor-
rectness debugging, as errors can be isolated in specific tiers,
and enabling a rich software ecosystem, as each microservice
is written in the language or programming framework that
best suits its needs.
At the same time microservices signal a fundamental de-

parture from the way traditional cloud applications were
designed, and bring with them several system challenges.

of a QoS violation that will occur over the next few 100s of
milliseconds, it uses detailed per-node hardware monitoring
to determine the reason behind the degraded performance,
and provide the cluster scheduler with recommendations on
actions required to avoid it.

We evaluate Seer both in our local cluster of 20 two-socket
servers, and on large-scale clusters on Google Compute En-
gine (GCE) with a set of end-to-end interactive applications
built with microservices, including the Social Network above.
In our local cluster, Seer correctly identifies upcoming QoS
violations in 93% of cases, and correctly pinpoints the mi-
croservice initiating the violation 89% of the time. To combat
long inference times as clusters scale, we offload the DNN

training and inference to Google’s Tensor Processing Units
(TPUs) when running on GCE [55]. We additionally experi-
ment with using FPGAs in Seer via Project Brainwave [25]
when running on Windows Azure, and show that both types
of acceleration speed up Seer by 200-235x, with the TPU help-
ing the most during training, and vice versa for inference.
Accuracy is consistent with the small cluster results.

Finally, we deploy Seer in a large-scale installation of the
Social Network service with several hundred users, and show
that it not only correctly identifies 90.6% of upcoming QoS
violations and avoids 84% of them, but that detecting pat-
terns that create hotspots helps the application’s developers
improve the service design, resulting in a decreasing number
of QoS violations over time. As cloud application and hard-
ware complexity continues to grow, data-driven systems like
Seer can offer practical solutions for systems whose scale
make empirical approaches intractable.

2 Related Work

Performance unpredictability is a well-studied problem in
public clouds that stems from platform heterogeneity, re-
source interference, software bugs and load variation [23,
32, 34, 35, 38, 53, 58, 61ś63, 72, 76, 81, 81]. We now review
related work on reducing performance unpredictability in
cloud systems, including through scheduling and cluster
management, or through online tracing systems.

Cloud management: The prevalence of cloud computing
has motivated several cluster management designs. Systems
like Mesos [51], Torque [87], Tarcil [38], and Omega [82]
all target the problem of resource allocation in large, multi-
tenant clusters. Mesos is a two-level scheduler. It has a central
coordinator that makes resource offers to application frame-
works, and each framework has an individual scheduler that
handles its assigned resources. Omega on the other hand,
follows a shared-state approach, where multiple concurrent
schedulers can view the whole cluster state, with conflicts be-
ing resolved through a transactional mechanism [82]. Tarcil
leverages information on the type of resources applications
need to employ a sampling-base distributed scheduler that
returns high quality resources within a fewmilliseconds [38].

Dejavu identifies a few workload classes and reuses previ-
ous allocations for each class, to minimize reallocation over-
heads [90]. CloudScale [83], PRESS [48], AGILE [70] and the
work by Gmach et al. [47] predict future resource needs on-
line, often without a priori knowledge. Finally, auto-scaling
systems, such as Rightscale [79], automatically scale the
number of physical or virtual instances used by webserving
workloads, to accommodate changes in user load.

A second line of work tries to identify resources that will
allow a new, potentially-unknown application to meet its
performance (throughput or tail latency) requirements [29,
31, 32, 34, 66, 68, 95]. Paragon uses classification to determine
the impact of platform heterogeneity and workload interfer-
ence on an unknown, incoming workload [30, 31]. It then
uses this information to achieve predictable performance,
and high cluster utilization. Paragon, assumes that the clus-
ter manager has full control over all resources, which is often
not the case in public clouds. Quasar extends the use of data
mining in cluster management by additionally determining
the appropriate amount of resources for a new application.
Nathuji et al. developed a feedback-based scheme that tunes
resource assignments to mitigate memory interference [69].
Yang et al. developed an online scheme that detects mem-
ory pressure and finds colocations that avoid interference on
latency-sensitiveworkloads [95]. Similarly, DeepDive detects
and manages interference between co-scheduled workloads
in a VM environment [71].
Finally, CPI2 [98] throttles low-priority workloads that

introduce destructive interference to important, latency-
critical services, using low-level metrics of performance col-
lected through Google-Wide Profiling (GWP). In terms of
managing platform heterogeneity, Nathuji et al. [68] and
Mars et al. [64] quantified its impact on conventional bench-
marks and Google services, and designed schemes to predict
the most appropriate servers for a workload.

Cloud tracing & diagnostics: There is extensive related
work on monitoring systems that has shown that execu-
tion traces can help diagnose performance, efficiency, and
even security problems in large-scale systems [12, 24, 26, 42,
54, 77, 85, 93, 97]. For example, X-Trace is a tracing frame-
work that provides a comprehensive view of the behavior of
services running on large-scale, potentially shared clusters.
X-Trace supports several protocols and software systems,
and has been deployed in several real-world scenarios, in-
cluding DNS resolution, and a photo-hosting site [42]. The
Mystery Machine, on the other hand, leverages the massive
amount of monitoring data cloud systems collect to deter-
mine the causal relationship between different requests [24].
Cloudseer serves a similar purpose, building an automaton
for the workflow of each task based on normal execution,
and then compares against this automaton at runtime to
determine if the workflow has diverged from its expected
behavior [97]. Finally, there are several production systems,

Name LoC
Layers Nonlinear

Weights
Batch

FC Conv Vect Total Function Size

CNN 1456 8 8 ReLU 30K 4

LSTM 944 12 6 18 sigmoid,tanh 52K 32

Seer 2882 10 7 5 22
ReLU

80K 32
sigmoid,tanh

Table 2. The different neural network configurations we
explored for Seer.

Seer’s instrumentation for memcached. Memcached includes
five main stages [60], TCP/IP receive, epoll/libevent, read-
ing the request from the socket, processing the request, and
responding over TCP/IP, either with the <k,v> pair for a read,
or with an ack for a write. Each of these stages includes a
hardware (NIC) or software (epoll,socket read,memcached
proc) queue. For theNIC queues, Seer filters packets based on
the destination microservice, but accounts for the aggregate
queue length if hardware queues are shared, since that will
impact how fast a microservice’s packets get processed. For
the software queues, Seer inserts probes in the application
to read the number of queued requests in each case.

Limited instrumentation: As seen above, accounting for
all sources of queueing in a complex system requires non-
trivial instrumentation. This can become cumbersome if
users leverage third-party applications in their services, or in
the case of public cloud providers which do not have access
to the source code of externally-submitted applications for
instrumentation. In these cases Seer relies on the requests
queued exclusively in the NIC to signal upcoming QoS viola-
tions. In Section 5 we compare the accuracy of the full versus
limited instrumentation, and see that using network queue
depths alone is enough to signal a large fraction of QoS viola-
tions, although smaller than when the full instrumentation is
available. Exclusively polling NIC queues identifies hotspots
caused by routing, incast, failures, and resource saturation,
but misses QoS violations that are caused by performance
and efficiency bugs in the application implementation, such
as blocking behavior between microservices. Signaling such
bugs helps developers better understand the microservices
model, and results in better application design.

Inferring queue lengths: Additionally, there has been re-
cent work on using deep learning to reverse engineer the
number of queued requests in switches across a large net-
work topology [46], when tracing information is incomplete.
Such techniques are also applicable and beneficial for Seer
when the default level of instrumentation is not available.

4.3 Deep Learning in Performance Debugging

A popular way to model performance in cloud systems, es-
pecially when there are dependencies between tasks, are
queueing networks [49]. Although queueing networks are a
valuable tool to model how bottlenecks propagate through

the system, they require in-depth knowledge of application
semantics and structure, and can become overly complex
as applications and systems scale. They additionally cannot
easily capture all sources of contention, such as the OS and
network stack.

Instead in Seer, we take a data-driven, application-agnostic
approach that assumes no information about the structure
and bottlenecks of a service, making it robust to unknown
and changing applications, and relying instead on practi-
cal learning techniques to infer patterns that lead to QoS
violations. This includes both spatial patterns, such as de-
pendencies between microservices, and temporal patterns,
such as input load, and resource contention. The key idea in
Seer is that conditions that led to QoS violations in the past
can be used to anticipate unpredictable performance in the
near future. Seer uses execution traces annotated with QoS
violations and collected over time to train a deep neural net-
work to signal upcoming QoS violations. Below we describe
the structure of the neural network, why deep learning is
well-suited for this problem, and how Seer adapts to changes
in application structure online.

Using deep learning: Although deep learning is not the
only approach that can be used for proactive QoS violation
detection, there are several reasonswhy it is preferable in this
case. First, the problem Seer must solve is a pattern matching
problem of recognizing conditions that result in QoS viola-
tions, where the patterns are not always known in advance
or easy to annotate. This is a more complicated task than sim-
ply signaling a microservice with many enqueued requests,
for which simpler classification, regression, or sequence la-
beling techniques would suffice [15, 16, 92]. Second, the DNN
in Seer assumes no a priori knowledge about dependencies
between individual microservices, making it applicable to
frequently-updated services, where describing changes is
cumbersome or even difficult for the user to know. Third,
deep learning has been shown to be especially effective in
pattern recognition problems with massive datasets, e.g., in
image or text recognition [10]. Finally, as we show in the
validation section (Sec. 5), deep learning allows Seer to rec-
ognize QoS violations with high accuracy in practice, and
within the opportunity window the cluster manager has to
apply corrective actions.

Configuring the DNN: The input used in the network is
essential for its accuracy. We have experimented with re-
source utilization, latency, and queue depths as input met-
rics. Consistent with prior work, utilization is not a good
proxy for performance [31, 35, 56, 61]. Latency similarly
leads to many false positives, or to incorrectly pinpointing
computationally-intensive microservices as QoS violation
culprits. Again consistent with queueing theory [49] and
prior work [34, 37, 38, 46, 56], per-microservice queue depths
accurately capture performance bottlenecks and pinpoint the

Retraining Seer: By default training happens once, and
can be time consuming, taking several hours up to a day for
week-long traces collected on our 20-server cluster (Sec. 5
includes a detailed sensitivity study for training time). How-
ever, one of the main advantages of microservices is that they
simplify frequent application updates, with old microser-
vices often swapped out and replaced by newer modules, or
large services progressively broken down to microservices.
If the application (or underlying hardware) change signifi-
cantly, Seer’s detection accuracy can be impacted. To adjust
to changes in the execution environment, Seer retrains incre-
mentally in the background, using the transfer learning-based
approach in [80]. Weights from previous training rounds are
stored in disk, allowing the model to continue training from
where it last left off when new data arrive, reducing the
training time by 2-3 orders of magnitude. Even though this
approach allows Seer to handle application changes almost in
real-time, it is not a long-term solution, since newweights are
still polluted by the previous application architecture. When
the application changes in a major way, e.g., microservices
on the critical path change, Seer also retrains from scratch
in the background. While the new network trains, QoS vi-
olation detection happens with the incrementally-trained
interim model. In Section 5, we evaluate Seer’s ability to
adjust its estimations to application changes.

4.4 Hardware Monitoring

Once a QoS violation is signaled and a culprit microservice
is pinpointed, Seer uses low-level monitoring to identify the
reason behind the QoS violation. The exact process depends
on whether Seer has access to performance counters.

Private cluster: When Seer has access to hardware events,
such as performance counters, it uses them to determine
the utilization of different shared resources. Note that even
though utilization is a problematic metric for anticipating
QoS violations in a large-scale service, once a culprit mi-
croservice has been identified, examining the utilization of
different resources can provide useful hints to the cluster
manager on suitable decisions to avoid degraded perfor-
mance. Seer specifically examines CPU, memory capacity
and bandwidth, network bandwidth, cache contention, and
storage I/O bandwidth when prioritizing a resource to adjust.
Once the saturated resource is identified, Seer notifies the
cluster manager to take action.

Public cluster:When Seer does not have access to perfor-
mance counters, it instead uses a set of 10 tunable contentious
microbenchmarks, each of them targeting a different shared
resource [30] to determine resource saturation. For example,
if Seer injects the memory bandwidth microbenchmark in
the system, and tunes up its intensity without an impact
on the co-scheduled microservice’s performance, memory
bandwidth is most likely not the resource that needs to be
adjusted. Seer starts from microbenchmarks corresponding

to core resources, and progressively moves to resources fur-
ther away from the core, until it sees a substantial change in
performance when running the microbenchmark. Each mi-
crobenchmark takes approximately 10ms to complete, avoid-
ing prolonged degraded performance.

Upon identifying the problematic resource(s), Seer notifies
the cluster manager, which takes one of several resource
allocation actions, resizing the Docker container, or using
mechanisms like Intel’s Cache Allocation Technology (CAT)
for last level cache (LLC) partitioning, and the Linux traffic
control’s hierarchical token bucket (HTB) queueing discipline
in qdisc [17, 62] for network bandwidth partitioning.

4.5 System Insights from Seer

Using learning-based, data-driven approaches in systems
is most useful when these techniques are used to gain in-
sight into system problems, instead of treating them as black
boxes. Section 5 includes an analysis of the causes behind
QoS violations signaled by Seer, including application bugs,
poor resource provisioning decisions, and hardware failures.
Furthermore, we have deployed Seer in a large installation of
the Social Network service over the past few months, and its
output has been instrumental not only in guaranteeing QoS,
but in understanding sources of unpredictable performance,
and improving the application design. This has resulted both
in progressively fewer QoS violations over time, and a better
understanding of the design challenges of microservices.

4.6 Implementation

Seer is implemented in 12KLOC of C,C++, and Python. It
runs on Linux and OSX and supports applications in various
languages, including all frameworks the end-to-end services
are designed in. Furthermore, we provide automated patches
for the instrumentation probes for many popular microser-
vices, including NGINX, memcached, MongoDB, Xapian, and all
Sockshop and Go-microservices applications to minimize the
development effort from the user’s perspective.

Seer is a centralized system; we usemaster-slavemirroring
to improve fault tolerance, with two hot stand-by masters
that can take over if the primary system fails. Similarly, the
trace database is also replicated in the background.
Security concerns: Trace data is stored and processed un-
encrypted in Cassandra. Previous work has shown that the
sensitivity applications have to different resources can leak
information about their nature and characteristics, making
them vulnerable to malicious security attacks [27, 36, 50, 52,
84, 88, 89, 94, 99]. Similar attacks are possible using the data
and techniques in Seer, and are deferred to future work.

5 Seer Analysis and Validation

5.1 Methodology

Server clusters: First, we use a dedicated local cluster with
20, 2-socket 40-core servers with 128GB of RAM each. Each

References
[1] [n. d.]. Apache Thrift. https://thrift.apache.org.

[2] [n. d.]. Decomposing Twitter: Adventures in Service-

Oriented Architecture. https://www.slideshare.net/InfoQ/

decomposing-twitter-adventures-in-serviceoriented-architecture.

[3] [n. d.]. Golang Microservices Example. https://github.com/harlow/

go-micro-services.

[4] [n. d.]. Messaging that just works. https://www.rabbitmq.com/.

[5] [n. d.]. MongoDB. https://www.mongodb.com.

[6] [n. d.]. NGINX. https://nginx.org/en.

[7] [n. d.]. SockShop: A Microservices Demo Application. https://www.

weave.works/blog/sock-shop-microservices-demo-application.

[8] [n. d.]. Zipkin. http://zipkin.io.

[9] 2016. The Evolution of Microservices. https://www.slideshare.net/

adriancockcroft/evolution-of-microservices-craft-conference.

[10] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete

Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. [n. d.]. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Distributed Systems. In Proceedings of OSDI, 2016.

[11] Adrian Cockroft [n. d.]. Microservices Workshop: Why, what,

and how to get there. http://www.slideshare.net/adriancockcroft/

microservices-workshop-craft-conference.

[12] Hyunwook Baek, Abhinav Srivastava, and Jacobus Van der Merwe.

[n. d.]. CloudSight: A tenant-oriented transparency framework for

cross-layer cloud troubleshooting. In Proceedings of the 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing. 2017.

[13] Luiz Barroso. [n. d.]. Warehouse-Scale Computing: Entering the

Teenage Decade. ISCA Keynote, SJ, June 2011 ([n. d.]).

[14] Luiz Barroso and Urs Hoelzle. 2009. The Datacenter as a Computer: An

Introduction to the Design ofWarehouse-Scale Machines. MC Publishers.

[15] Robert Bell, Yehuda Koren, and Chris Volinsky. 2007. The BellKor 2008

Solution to the Netflix Prize. Technical Report.

[16] Leon Bottou. [n. d.]. Large-Scale Machine Learning with Stochastic

Gradient Descent. In Proceedings of the International Conference on

Computational Statistics (COMPSTAT). Paris, France, 2010.

[17] Martin A. Brown. [n. d.]. Traffic Control HOWTO. http://linux-ip.net/

articles/Traffic-Control-HOWTO/.

[18] Cassandra [n. d.]. Apache Cassandra. http://cassandra.apache.org/.

[19] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,

Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,

Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin

Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek

Chiou, and Doug Burger. 2016. A Cloud-scale Acceleration Architec-

ture. In MICRO. IEEE Press, Piscataway, NJ, USA, Article 7, 13 pages.

[20] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,

Yunji Chen, and Olivier Temam. 2014. DianNao: a small-footprint high-

throughput accelerator for ubiquitous machine-learning. In Proc. of

the 19th intl. conf. on Architectural Support for Programming Languages

and Operating Systems.

[21] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, andOlivier Temam.

2016. DianNao Family: Energy-efficient Hardware Accelerators for

Machine Learning. Commun. ACM 59, 11 (Oct. 2016), 105ś112. https:

//doi.org/10.1145/2996864

[22] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,

Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam.

2014. DaDianNao: A Machine-Learning Supercomputer. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO-47). IEEE Computer Society, Washington, DC, USA,

609ś622.

[23] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. 2007. Com-

parison of the Three CPU Schedulers in Xen. SIGMETRICS Perform.

Eval. Rev. 35, 2 (Sept. 2007), 42ś51.

[24] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.

Wenisch. 2014. The Mystery Machine: End-to-end Performance Anal-

ysis of Large-scale Internet Services. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation (OSDI’14).

USENIX Association, Berkeley, CA, USA, 217ś231.

[25] Eric S. Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,

Adrian M. Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi

Alkalay, Michael Haselman, Maleen Abeydeera, Logan Adams, Hari

Angepat, Christian Boehn, Derek Chiou, Oren Firestein, Alessandro

Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan,

Ahmad El Husseini, Tamás Juhász, Kara Kagi, Ratna Kovvuri, Sitaram

Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon

Perez, Amanda Rapsang, Steven K. Reinhardt, Bita Rouhani, Adam

Sapek, Raja Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz,

LisaWoods, Phillip Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger.

2018. Serving DNNs in Real Time at Datacenter Scale with Project

Brainwave. IEEE Micro 38, 2 (2018), 8ś20.

[26] Guilherme Da Cunha Rodrigues, Rodrigo N. Calheiros, Vini-

cius Tavares Guimaraes, Glederson Lessa dos Santos, Márcio Barbosa

de Carvalho, Lisandro Zambenedetti Granville, Liane Margarida Rock-

enbach Tarouco, and Rajkumar Buyya. 2016. Monitoring of Cloud

Computing Environments: Concepts, Solutions, Trends, and Future Di-

rections. In Proceedings of the 31st Annual ACM Symposium on Applied

Computing (SAC ’16). ACM, New York, NY, USA, 378ś383.

[27] Marwan Darwish, Abdelkader Ouda, and Luiz Fernando Capretz. [n.

d.]. Cloud-based DDoS attacks and defenses. In Proc. of i-Society.

Toronto, ON, 2013.

[28] Jeffrey Dean and Luiz Andre Barroso. [n. d.]. The Tail at Scale. In

CACM, Vol. 56 No. 2.

[29] Christina Delimitrou, Nick Bambos, and Christos Kozyrakis. [n. d.].

QoS-Aware Admission Control in Heterogeneous Datacenters. In Pro-

ceedings of the International Conference of Autonomic Computing (ICAC).

San Jose, CA, USA, 2013.

[30] Christina Delimitrou and Christos Kozyrakis. [n. d.]. iBench: Quanti-

fying Interference for Datacenter Workloads. In Proceedings of the 2013

IEEE International Symposium on Workload Characterization (IISWC).

Portland, OR, September 2013.

[31] Christina Delimitrou and Christos Kozyrakis. [n. d.]. Paragon: QoS-

Aware Scheduling for Heterogeneous Datacenters. In Proceedings of

the Eighteenth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS). Houston,

TX, USA, 2013.

[32] Christina Delimitrou and Christos Kozyrakis. [n. d.]. QoS-Aware Sched-

uling in Heterogeneous Datacenters with Paragon. In ACM Transac-

tions on Computer Systems (TOCS), Vol. 31 Issue 4. December 2013.

[33] Christina Delimitrou and Christos Kozyrakis. [n. d.]. Quality-

of-Service-Aware Scheduling in Heterogeneous Datacenters with

Paragon. In IEEE Micro Special Issue on Top Picks from the Computer

Architecture Conferences. May/June 2014.

[34] Christina Delimitrou and Christos Kozyrakis. [n. d.]. Quasar: Resource-

Efficient and QoS-Aware Cluster Management. In Proc. of ASPLOS. Salt

Lake City, 2014.

[35] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-

Efficient Provisioning in Shared Cloud Systems. In Proceedings of the

Twenty First International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS).

[36] Christina Delimitrou and Christos Kozyrakis. 2017. Bolt: I KnowWhat

You Did Last Summer... In The Cloud. In Proc. of the Twenty Second

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

[37] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s Law for

Tail Latency. In Communications of the ACM (CACM).

[38] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.

Tarcil: Reconciling Scheduling Speed and Quality in Large Shared Clus-

ters. In Proceedings of the Sixth ACM Symposium on Cloud Computing

(SOCC).

[39] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao

Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDi-

anNao: Shifting Vision Processing Closer to the Sensor. In Proceed-

ings of the 42Nd Annual International Symposium on Computer Ar-

chitecture (ISCA ’15). ACM, New York, NY, USA, 92ś104. https:

//doi.org/10.1145/2749469.2750389

[40] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,

Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,

Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth

Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.

Azure Accelerated Networking: SmartNICs in the Public Cloud. In 15th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 18). USENIX Association, Renton, WA, 51ś66.

[41] Brad Fitzpatrick. [n. d.]. Distributed caching with memcached. In

Linux Journal, Volume 2004, Issue 124, 2004.

[42] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and

Ion Stoica. 2007. X-trace: A Pervasive Network Tracing Framework. In

Proceedings of the 4th USENIX Conference on Networked Systems Design

& Implementation (NSDI’07). USENIX Association, Berkeley, CA, USA,

20ś20.

[43] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications

of Cloud Microservices. In Computer Architecture Letters (CAL), vol.17,

iss. 2.

[44] Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He, and

Christina Delimitrou. 2018. Seer: Leveraging Big Data to Navigate the

Complexity of Cloud Debugging. In Proceedings of the Tenth USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud).

[45] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon

Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris

Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,

Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina

Delimitrou. 2019. An Open-Source Benchmark Suite for Microser-

vices and Their Hardware-Software Implications for Cloud and Edge

Systems. In Proceedings of the Twenty Fourth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS).

[46] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel

Rosenblum, and Amin Vahdat. [n. d.]. Exploiting a Natural Network

Effect for Scalable, Fine-grained Clock Synchronization. In Proc. of

NSDI. 2018.

[47] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper.

[n. d.]. Workload Analysis and Demand Prediction of Enterprise Data

Center Applications. In Proceedings of IISWC. Boston, MA, 2007, 10.

https://doi.org/10.1109/IISWC.2007.4362193

[48] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. [n. d.]. PRESS: PRe-

dictive Elastic ReSource Scaling for cloud systems. In Proceedings of

CNSM. Niagara Falls, ON, 2010.

[49] Donald Gross, John F. Shortle, James M. Thompson, and Carl M. Harris.

[n. d.]. Fundamentals of Queueing Theory. InWiley Series in Probability

and Statistics, Book 627. 2011.

[50] Sanchika Gupta and PadamKumar. [n. d.]. VM Profile Based Optimized

Network Attack Pattern Detection Scheme for DDOS Attacks in Cloud.

In Proc. of SSCC. Mysore, India, 2013.

[51] BenHindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, AnthonyD.

Joseph, Randy Katz, Scott Shenker, and Ion Stoica. [n. d.]. Mesos: A

Platform for Fine-Grained Resource Sharing in the Data Center. In

Proceedings of NSDI. Boston, MA, 2011.

[52] Jingwei Huang, David M. Nicol, and Roy H. Campbell. [n. d.]. Denial-

of-Service Threat to Hadoop/YARN Clusters with Multi-Tenancy. In

Proc. of the IEEE International Congress on Big Data. Washington, DC,

2014.

[53] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. [n. d.]. On the

Performance Variability of Production Cloud Services. In Proceedings

of CCGRID. Newport Beach, CA, 2011.

[54] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. 2017. Perfor-

mance Monitoring and Root Cause Analysis for Cloud-hosted Web

Applications. In Proceedings of WWW. International World Wide Web

Conferences Steering Committee, Republic and Canton of Geneva,

Switzerland, 469ś478.

[55] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris

Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,

Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,

Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-

der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen

Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris

Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-

ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-

nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew

Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,

Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.

In-Datacenter Performance Analysis of a Tensor Processing Unit. In

Proceedings of the 44th Annual International Symposium on Computer

Architecture (ISCA ’17). ACM, New York, NY, USA, 1ś12.

[56] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache

Sharing with Strict QoS for Latency-Critical Workloads. In Proceed-

ings of the 19th international conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-XIX).

[57] Harshad Kasture and Daniel Sanchez. 2016. TailBench: A Benchmark

Suite and Evaluation Methodology for Latency-Critical Applications.

In Proc. of IISWC.

[58] Yaakoub El Khamra, Hyunjoo Kim, Shantenu Jha, andManish Parashar.

[n. d.]. Exploring the performance fluctuations of hpc workloads on

clouds. In Proceedings of CloudCom. Indianapolis, IN, 2010.

[59] Krzysztof C. Kiwiel. [n. d.]. Convergence and efficiency of subgradient

methods for quasiconvex minimization. InMathematical Programming

(Series A) (Berlin, Heidelberg: Springer) 90 (1): pp. 1-25, 2001.

[60] Jacob Leverich and Christos Kozyrakis. [n. d.]. Reconciling High Server

Utilization and Sub-millisecond Quality-of-Service. In Proc. of EuroSys.

2014.

[61] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and

Christos Kozyrakis. [n. d.]. Towards Energy Proportionality for Large-

scale Latency-critical Workloads. In Proceedings of the 41st Annual

International Symposium on Computer Architecuture (ISCA). Minneapo-

lis, MN, 2014.

[62] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Christos Kozyrakis. [n. d.]. Heracles: Improving Re-

source Efficiency at Scale. In Proc. of the 42Nd Annual International

Symposium on Computer Architecture (ISCA). Portland, OR, 2015.

[63] Dave Mangot. [n. d.]. EC2 variability: The numbers re-

vealed. http://tech.mangot.com/roller/dave/entry/ec2_variability_the_

numbers_re%vealed.

[64] Jason Mars and Lingjia Tang. [n. d.]. Whare-map: heterogeneity in

"homogeneous" warehouse-scale computers. In Proceedings of ISCA.

Tel-Aviv, Israel, 2013.

[65] Jason Mars, Lingjia Tang, and Robert Hundt. 2011. Heterogeneity in

łHomogeneousž; Warehouse-Scale Computers: A Performance Oppor-

tunity. IEEE Comput. Archit. Lett. 10, 2 (July 2011), 4.

[66] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou

Soffa. [n. d.]. Bubble-Up: increasing utilization in modern warehouse

scale computers via sensible co-locations. In Proceedings of MICRO.

Porto Alegre, Brazil, 2011.

[67] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-

Dietrich Weber, and Thomas F. Wenisch. 2011. Power management

of online data-intensive services. In Proceedings of the 38th annual

international symposium on Computer architecture. 319ś330.

[68] Ripal Nathuji, Canturk Isci, and Eugene Gorbatov. [n. d.]. Exploiting

platform heterogeneity for power efficient data centers. In Proceedings

of ICAC. Jacksonville, FL, 2007.

[69] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. [n. d.]. Q-

Clouds: Managing Performance Interference Effects for QoS-Aware

Clouds. In Proceedings of EuroSys. Paris,France, 2010.

[70] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and

John Wilkes. [n. d.]. AGILE: Elastic Distributed Resource Scaling for

Infrastructure-as-a-Service. In Proceedings of ICAC. San Jose, CA, 2013.

[71] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic,

and Ricardo Bianchini. [n. d.]. DeepDive: Transparently Identifying

and Managing Performance Interference in Virtualized Environments.

In Proceedings of ATC. San Jose, CA, 2013.

[72] Simon Ostermann, Alexandru Iosup, Nezih Yigitbasi, Radu Prodan,

Thomas Fahringer, and Dick Epema. [n. d.]. A Performance Analysis

of EC2 Cloud Computing Services for Scientific Computing. In Lecture

Notes on Cloud Computing. Volume 34, p.115-131, 2010.

[73] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. [n.

d.]. Sparrow: Distributed, Low Latency Scheduling. In Proceedings of

SOSP. Farminton, PA, 2013.

[74] Xue Ouyang, Peter Garraghan, Renyu Yang, Paul Townend, and Jie Xu.

[n. d.]. Reducing Late-Timing Failure at Scale: Straggler Root-Cause

Analysis in Cloud Datacenters. In Proceedings of 46th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks. 2016.

[75] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,

Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-

ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,

Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James

Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi

Xiao, and Doug Burger. 2014. A Reconfigurable Fabric for Accelerat-

ing Large-Scale Datacenter Services. In Proc. of the 41st Intl. Symp. on

Computer Architecture.

[76] Suhail Rehman and Majd Sakr. [n. d.]. Initial Findings for provisioning

variation in cloud computing. In Proceedings of CloudCom. Indianapolis,

IN, 2010.

[77] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and

Michael Kozych. [n. d.]. Heterogeneity and Dynamicity of Clouds at

Scale: Google Trace Analysis. In Proceedings of SOCC. 2012.

[78] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and

Robert Hundt. 2010. Google-Wide Profiling: A Continuous Pro-

filing Infrastructure for Data Centers. IEEE Micro (2010), 65ś79.

http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68

[79] rightscale [n. d.]. Rightscale. https://aws.amazon.com/

solution-providers/isv/rightscale.

[80] S. Sarwar, A. Ankit, and K. Roy. [n. d.]. Incremental Learning in Deep

Convolutional Neural Networks Using Partial Network Sharing. In

arXiv preprint arXiv:1712.02719.

[81] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Run-

time Measurements in the Cloud: Observing, Analyzing, and Reducing

Variance. Proceedings VLDB Endow. 3, 1-2 (Sept. 2010), 460ś471.

[82] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and

John Wilkes. [n. d.]. Omega: flexible, scalable schedulers for large

compute clusters. In Proceedings of EuroSys. Prague, 2013.

[83] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. [n.

d.]. CloudScale: elastic resource scaling for multi-tenant cloud systems.

In Proceedings of SOCC. Cascais, Portugal, 2011.

[84] David Shue, Michael J. Freedman, and Anees Shaikh. [n. d.]. Perfor-

mance Isolation and Fairness for Multi-tenant Cloud Storage. In Proc.

of OSDI. Hollywood, CA, 2012.

[85] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat

Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-

dan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing

Infrastructure. Technical Report. Google, Inc. https://research.google.

com/archive/papers/dapper-2010-1.pdf

[86] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin

Ciucu. [n. d.]. Distributed Resource Management Across Process

Boundaries. In Proceedings of the ACM Symposium on Cloud Computing

(SOCC). Santa Clara, CA, 2017.

[87] torque [n. d.]. Torque Resource Manager. http://www.

adaptivecomputing.com/products/open-source/torque/.

[88] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift.

[n. d.]. Scheduler-based Defenses against Cross-VM Side-channels. In

Proc. of the 23rd Usenix Security Symposium. San Diego, CA, 2014.

[89] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. [n. d.]. A Placement Vulnerability Study inMulti-Tenant

Public Clouds. In Proc. of the 24th USENIX Security Symposium (USENIX

Security). Washington, DC, 2015.

[90] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and

Ricardo Bianchini. [n. d.]. DejaVu: accelerating resource allocation

in virtualized environments. In Proceedings of the Seventeenth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). London, UK, 2012.

[91] Jianping Weng, Jessie Hui Wang, Jiahai Yang, and Yang Yang. [n. d.].

Root cause analysis of anomalies of multitier services in public clouds.

In Proceedings of the IEEE/ACM 25th International Symposium on Qual-

ity of Service (IWQoS). 2017.

[92] Ian H. Witten, Eibe Frank, and Geoffrey Holmes. [n. d.]. Data Mining:

Practical Machine Learning Tools and Techniques. 3rd Edition.

[93] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long

Jin, and Shankar Pasupathy. 2016. Early Detection of Configuration

Errors to Reduce Failure Damage. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation (OSDI’16).

USENIX Association, Berkeley, CA, USA, 619ś634.

[94] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti

Hiltunen, and Richard Schlichting. [n. d.]. An Exploration of L2 Cache

Covert Channels in Virtualized Environments. In Proc. of the 3rd ACM

Workshop on Cloud Computing Security Workshop (CCSW). Chicago,

IL, 2011.

[95] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. [n. d.].

Bubble-flux: precise online QoS management for increased utilization

in warehouse scale computers. In Proceedings of ISCA. 2013.

[96] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua

Yuan, Srikanth Kandula, and Changhoon Kim. [n. d.]. Profiling Net-

work Performance for Multi-tier Data Center Applications. In Proceed-

ings of NSDI. Boston, MA, 2011, 14.

[97] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei

Jiang. 2016. CloudSeer: Workflow Monitoring of Cloud Infrastructures

via Interleaved Logs. In Proceedings of APSLOS. ACM, New York, NY,

USA, 489ś502.

[98] Yinqian Zhang and Michael K. Reiter. [n. d.]. Duppel: retrofitting

commodity operating systems to mitigate cache side channels in the

cloud. In Proc. of CCS. Berlin, Germany, 2013.

[99] Mark Zhao and G. Edward Suh. [n. d.]. FPGA-Based Remote Power

Side-Channel Attacks. In Proceedings of the IEEE Symposium on Security

and Privacy. May 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 End-to-End Applications with Microservices
	3.1 Social Network
	3.2 Media Service
	3.3 E-Commerce Service
	3.4 Banking System
	3.5 Hotel Reservation Site

	4 Seer Design
	4.1 Overview
	4.2 Distributed Tracing
	4.3 Deep Learning in Performance Debugging
	4.4 Hardware Monitoring
	4.5 System Insights from Seer
	4.6 Implementation

	5 Seer Analysis and Validation
	5.1 Methodology
	5.2 Evaluation

	6 Large-Scale Cloud Study
	6.1 Seer Scalability
	6.2 Source of QoS Violations
	6.3 Seer's Long-Term Impact on Application Design

	7 Conclusions
	Acknowledgements
	References

