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Abstract

Performance unpredictability is a major roadblock towards
cloud adoption, and has performance, cost, and revenue
ramifications. Predictable performance is even more crit-
ical as cloud services transition from monolithic designs to
microservices. Detecting QoS violations after they occur in
systems with microservices results in long recovery times, as
hotspots propagate and amplify across dependent services.

We present Seer, an online cloud performance debugging
system that leverages deep learning and the massive amount
of tracing data cloud systems collect to learn spatial and
temporal patterns that translate to QoS violations. Seer com-
bines lightweight distributed RPC-level tracing, with detailed
low-level hardware monitoring to signal an upcoming QoS
violation, and diagnose the source of unpredictable perfor-
mance. Once an imminent QoS violation is detected, Seer
notifies the cluster manager to take action to avoid perfor-
mance degradation altogether. We evaluate Seer both in local
clusters, and in large-scale deployments of end-to-end appli-
cations built with microservices with hundreds of users. We
show that Seer correctly anticipates QoS violations 91% of
the time, and avoids the QoS violation to begin with in 84%
of cases. Finally, we show that Seer can identify application-
level design bugs, and provide insights on how to better
architect microservices to achieve predictable performance.
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1 Introduction

Cloud computing services are governed by strict quality
of service (QoS) constraints in terms of throughput, and
more critically tail latency [14, 28, 31, 34]. Violating these
requirements worsens the end user experience, leads to loss
of availability and reliability, and has severe revenue im-
plications [13, 14, 28, 32, 35, 36]. In an effort to meet these
performance constraints and facilitate frequent application
updates, cloud services have recently undergone a major
shift from complex monolithic designs, which encompass the
entire functionality in a single binary, to graphs of hundreds
of loosely-coupled, single-concerned microservices [9, 45].
Microservices are appealing for several reasons, including
accelerating development and deployment, simplifying cor-
rectness debugging, as errors can be isolated in specific tiers,
and enabling a rich software ecosystem, as each microservice
is written in the language or programming framework that
best suits its needs.
At the same time microservices signal a fundamental de-

parture from the way traditional cloud applications were
designed, and bring with them several system challenges.





of a QoS violation that will occur over the next few 100s of
milliseconds, it uses detailed per-node hardware monitoring
to determine the reason behind the degraded performance,
and provide the cluster scheduler with recommendations on
actions required to avoid it.

We evaluate Seer both in our local cluster of 20 two-socket
servers, and on large-scale clusters on Google Compute En-
gine (GCE) with a set of end-to-end interactive applications
built with microservices, including the Social Network above.
In our local cluster, Seer correctly identifies upcoming QoS
violations in 93% of cases, and correctly pinpoints the mi-
croservice initiating the violation 89% of the time. To combat
long inference times as clusters scale, we offload the DNN

training and inference to Google’s Tensor Processing Units
(TPUs) when running on GCE [55]. We additionally experi-
ment with using FPGAs in Seer via Project Brainwave [25]
when running on Windows Azure, and show that both types
of acceleration speed up Seer by 200-235x, with the TPU help-
ing the most during training, and vice versa for inference.
Accuracy is consistent with the small cluster results.

Finally, we deploy Seer in a large-scale installation of the
Social Network service with several hundred users, and show
that it not only correctly identifies 90.6% of upcoming QoS
violations and avoids 84% of them, but that detecting pat-
terns that create hotspots helps the application’s developers
improve the service design, resulting in a decreasing number
of QoS violations over time. As cloud application and hard-
ware complexity continues to grow, data-driven systems like
Seer can offer practical solutions for systems whose scale
make empirical approaches intractable.

2 Related Work

Performance unpredictability is a well-studied problem in
public clouds that stems from platform heterogeneity, re-
source interference, software bugs and load variation [23,
32, 34, 35, 38, 53, 58, 61ś63, 72, 76, 81, 81]. We now review
related work on reducing performance unpredictability in
cloud systems, including through scheduling and cluster
management, or through online tracing systems.

Cloud management: The prevalence of cloud computing
has motivated several cluster management designs. Systems
like Mesos [51], Torque [87], Tarcil [38], and Omega [82]
all target the problem of resource allocation in large, multi-
tenant clusters. Mesos is a two-level scheduler. It has a central
coordinator that makes resource offers to application frame-
works, and each framework has an individual scheduler that
handles its assigned resources. Omega on the other hand,
follows a shared-state approach, where multiple concurrent
schedulers can view the whole cluster state, with conflicts be-
ing resolved through a transactional mechanism [82]. Tarcil
leverages information on the type of resources applications
need to employ a sampling-base distributed scheduler that
returns high quality resources within a fewmilliseconds [38].

Dejavu identifies a few workload classes and reuses previ-
ous allocations for each class, to minimize reallocation over-
heads [90]. CloudScale [83], PRESS [48], AGILE [70] and the
work by Gmach et al. [47] predict future resource needs on-
line, often without a priori knowledge. Finally, auto-scaling
systems, such as Rightscale [79], automatically scale the
number of physical or virtual instances used by webserving
workloads, to accommodate changes in user load.

A second line of work tries to identify resources that will
allow a new, potentially-unknown application to meet its
performance (throughput or tail latency) requirements [29,
31, 32, 34, 66, 68, 95]. Paragon uses classification to determine
the impact of platform heterogeneity and workload interfer-
ence on an unknown, incoming workload [30, 31]. It then
uses this information to achieve predictable performance,
and high cluster utilization. Paragon, assumes that the clus-
ter manager has full control over all resources, which is often
not the case in public clouds. Quasar extends the use of data
mining in cluster management by additionally determining
the appropriate amount of resources for a new application.
Nathuji et al. developed a feedback-based scheme that tunes
resource assignments to mitigate memory interference [69].
Yang et al. developed an online scheme that detects mem-
ory pressure and finds colocations that avoid interference on
latency-sensitiveworkloads [95]. Similarly, DeepDive detects
and manages interference between co-scheduled workloads
in a VM environment [71].
Finally, CPI2 [98] throttles low-priority workloads that

introduce destructive interference to important, latency-
critical services, using low-level metrics of performance col-
lected through Google-Wide Profiling (GWP). In terms of
managing platform heterogeneity, Nathuji et al. [68] and
Mars et al. [64] quantified its impact on conventional bench-
marks and Google services, and designed schemes to predict
the most appropriate servers for a workload.

Cloud tracing & diagnostics: There is extensive related
work on monitoring systems that has shown that execu-
tion traces can help diagnose performance, efficiency, and
even security problems in large-scale systems [12, 24, 26, 42,
54, 77, 85, 93, 97]. For example, X-Trace is a tracing frame-
work that provides a comprehensive view of the behavior of
services running on large-scale, potentially shared clusters.
X-Trace supports several protocols and software systems,
and has been deployed in several real-world scenarios, in-
cluding DNS resolution, and a photo-hosting site [42]. The
Mystery Machine, on the other hand, leverages the massive
amount of monitoring data cloud systems collect to deter-
mine the causal relationship between different requests [24].
Cloudseer serves a similar purpose, building an automaton
for the workflow of each task based on normal execution,
and then compares against this automaton at runtime to
determine if the workflow has diverged from its expected
behavior [97]. Finally, there are several production systems,









Name LoC
Layers Nonlinear

Weights
Batch

FC Conv Vect Total Function Size

CNN 1456 8 8 ReLU 30K 4

LSTM 944 12 6 18 sigmoid,tanh 52K 32

Seer 2882 10 7 5 22
ReLU

80K 32
sigmoid,tanh

Table 2. The different neural network configurations we
explored for Seer.

Seer’s instrumentation for memcached. Memcached includes
five main stages [60], TCP/IP receive, epoll/libevent, read-
ing the request from the socket, processing the request, and
responding over TCP/IP, either with the <k,v> pair for a read,
or with an ack for a write. Each of these stages includes a
hardware (NIC) or software (epoll,socket read,memcached
proc) queue. For theNIC queues, Seer filters packets based on
the destination microservice, but accounts for the aggregate
queue length if hardware queues are shared, since that will
impact how fast a microservice’s packets get processed. For
the software queues, Seer inserts probes in the application
to read the number of queued requests in each case.

Limited instrumentation: As seen above, accounting for
all sources of queueing in a complex system requires non-
trivial instrumentation. This can become cumbersome if
users leverage third-party applications in their services, or in
the case of public cloud providers which do not have access
to the source code of externally-submitted applications for
instrumentation. In these cases Seer relies on the requests
queued exclusively in the NIC to signal upcoming QoS viola-
tions. In Section 5 we compare the accuracy of the full versus
limited instrumentation, and see that using network queue
depths alone is enough to signal a large fraction of QoS viola-
tions, although smaller than when the full instrumentation is
available. Exclusively polling NIC queues identifies hotspots
caused by routing, incast, failures, and resource saturation,
but misses QoS violations that are caused by performance
and efficiency bugs in the application implementation, such
as blocking behavior between microservices. Signaling such
bugs helps developers better understand the microservices
model, and results in better application design.

Inferring queue lengths: Additionally, there has been re-
cent work on using deep learning to reverse engineer the
number of queued requests in switches across a large net-
work topology [46], when tracing information is incomplete.
Such techniques are also applicable and beneficial for Seer
when the default level of instrumentation is not available.

4.3 Deep Learning in Performance Debugging

A popular way to model performance in cloud systems, es-
pecially when there are dependencies between tasks, are
queueing networks [49]. Although queueing networks are a
valuable tool to model how bottlenecks propagate through

the system, they require in-depth knowledge of application
semantics and structure, and can become overly complex
as applications and systems scale. They additionally cannot
easily capture all sources of contention, such as the OS and
network stack.

Instead in Seer, we take a data-driven, application-agnostic
approach that assumes no information about the structure
and bottlenecks of a service, making it robust to unknown
and changing applications, and relying instead on practi-
cal learning techniques to infer patterns that lead to QoS
violations. This includes both spatial patterns, such as de-
pendencies between microservices, and temporal patterns,
such as input load, and resource contention. The key idea in
Seer is that conditions that led to QoS violations in the past
can be used to anticipate unpredictable performance in the
near future. Seer uses execution traces annotated with QoS
violations and collected over time to train a deep neural net-
work to signal upcoming QoS violations. Below we describe
the structure of the neural network, why deep learning is
well-suited for this problem, and how Seer adapts to changes
in application structure online.

Using deep learning: Although deep learning is not the
only approach that can be used for proactive QoS violation
detection, there are several reasonswhy it is preferable in this
case. First, the problem Seer must solve is a pattern matching
problem of recognizing conditions that result in QoS viola-
tions, where the patterns are not always known in advance
or easy to annotate. This is a more complicated task than sim-
ply signaling a microservice with many enqueued requests,
for which simpler classification, regression, or sequence la-
beling techniques would suffice [15, 16, 92]. Second, the DNN
in Seer assumes no a priori knowledge about dependencies
between individual microservices, making it applicable to
frequently-updated services, where describing changes is
cumbersome or even difficult for the user to know. Third,
deep learning has been shown to be especially effective in
pattern recognition problems with massive datasets, e.g., in
image or text recognition [10]. Finally, as we show in the
validation section (Sec. 5), deep learning allows Seer to rec-
ognize QoS violations with high accuracy in practice, and
within the opportunity window the cluster manager has to
apply corrective actions.

Configuring the DNN: The input used in the network is
essential for its accuracy. We have experimented with re-
source utilization, latency, and queue depths as input met-
rics. Consistent with prior work, utilization is not a good
proxy for performance [31, 35, 56, 61]. Latency similarly
leads to many false positives, or to incorrectly pinpointing
computationally-intensive microservices as QoS violation
culprits. Again consistent with queueing theory [49] and
prior work [34, 37, 38, 46, 56], per-microservice queue depths
accurately capture performance bottlenecks and pinpoint the





Retraining Seer: By default training happens once, and
can be time consuming, taking several hours up to a day for
week-long traces collected on our 20-server cluster (Sec. 5
includes a detailed sensitivity study for training time). How-
ever, one of the main advantages of microservices is that they
simplify frequent application updates, with old microser-
vices often swapped out and replaced by newer modules, or
large services progressively broken down to microservices.
If the application (or underlying hardware) change signifi-
cantly, Seer’s detection accuracy can be impacted. To adjust
to changes in the execution environment, Seer retrains incre-
mentally in the background, using the transfer learning-based
approach in [80]. Weights from previous training rounds are
stored in disk, allowing the model to continue training from
where it last left off when new data arrive, reducing the
training time by 2-3 orders of magnitude. Even though this
approach allows Seer to handle application changes almost in
real-time, it is not a long-term solution, since newweights are
still polluted by the previous application architecture. When
the application changes in a major way, e.g., microservices
on the critical path change, Seer also retrains from scratch
in the background. While the new network trains, QoS vi-
olation detection happens with the incrementally-trained
interim model. In Section 5, we evaluate Seer’s ability to
adjust its estimations to application changes.

4.4 Hardware Monitoring

Once a QoS violation is signaled and a culprit microservice
is pinpointed, Seer uses low-level monitoring to identify the
reason behind the QoS violation. The exact process depends
on whether Seer has access to performance counters.

Private cluster: When Seer has access to hardware events,
such as performance counters, it uses them to determine
the utilization of different shared resources. Note that even
though utilization is a problematic metric for anticipating
QoS violations in a large-scale service, once a culprit mi-
croservice has been identified, examining the utilization of
different resources can provide useful hints to the cluster
manager on suitable decisions to avoid degraded perfor-
mance. Seer specifically examines CPU, memory capacity
and bandwidth, network bandwidth, cache contention, and
storage I/O bandwidth when prioritizing a resource to adjust.
Once the saturated resource is identified, Seer notifies the
cluster manager to take action.

Public cluster:When Seer does not have access to perfor-
mance counters, it instead uses a set of 10 tunable contentious
microbenchmarks, each of them targeting a different shared
resource [30] to determine resource saturation. For example,
if Seer injects the memory bandwidth microbenchmark in
the system, and tunes up its intensity without an impact
on the co-scheduled microservice’s performance, memory
bandwidth is most likely not the resource that needs to be
adjusted. Seer starts from microbenchmarks corresponding

to core resources, and progressively moves to resources fur-
ther away from the core, until it sees a substantial change in
performance when running the microbenchmark. Each mi-
crobenchmark takes approximately 10ms to complete, avoid-
ing prolonged degraded performance.

Upon identifying the problematic resource(s), Seer notifies
the cluster manager, which takes one of several resource
allocation actions, resizing the Docker container, or using
mechanisms like Intel’s Cache Allocation Technology (CAT)
for last level cache (LLC) partitioning, and the Linux traffic
control’s hierarchical token bucket (HTB) queueing discipline
in qdisc [17, 62] for network bandwidth partitioning.

4.5 System Insights from Seer

Using learning-based, data-driven approaches in systems
is most useful when these techniques are used to gain in-
sight into system problems, instead of treating them as black
boxes. Section 5 includes an analysis of the causes behind
QoS violations signaled by Seer, including application bugs,
poor resource provisioning decisions, and hardware failures.
Furthermore, we have deployed Seer in a large installation of
the Social Network service over the past few months, and its
output has been instrumental not only in guaranteeing QoS,
but in understanding sources of unpredictable performance,
and improving the application design. This has resulted both
in progressively fewer QoS violations over time, and a better
understanding of the design challenges of microservices.

4.6 Implementation

Seer is implemented in 12KLOC of C,C++, and Python. It
runs on Linux and OSX and supports applications in various
languages, including all frameworks the end-to-end services
are designed in. Furthermore, we provide automated patches
for the instrumentation probes for many popular microser-
vices, including NGINX, memcached, MongoDB, Xapian, and all
Sockshop and Go-microservices applications to minimize the
development effort from the user’s perspective.

Seer is a centralized system; we usemaster-slavemirroring
to improve fault tolerance, with two hot stand-by masters
that can take over if the primary system fails. Similarly, the
trace database is also replicated in the background.
Security concerns: Trace data is stored and processed un-
encrypted in Cassandra. Previous work has shown that the
sensitivity applications have to different resources can leak
information about their nature and characteristics, making
them vulnerable to malicious security attacks [27, 36, 50, 52,
84, 88, 89, 94, 99]. Similar attacks are possible using the data
and techniques in Seer, and are deferred to future work.

5 Seer Analysis and Validation

5.1 Methodology

Server clusters: First, we use a dedicated local cluster with
20, 2-socket 40-core servers with 128GB of RAM each. Each
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