
Unveiling the Hardware
and Software Implications
of Microservices in Cloud
and Edge Systems

Yu Gan, Yanqi Zhang, Dailun Cheng,

Ankitha Shetty, Priyal Rathi, Nayan Katarki,

Ariana Bruno, Justin Hu, Brian Ritchken,

Brendon Jackson, Kelvin Hu,

Meghna Pancholi, Yuan He, Brett Clancy,

Chris Colen, Fukang Wen, Catherine Leung,

Siyuan Wang, Leon Zaruvinsky,

Mateo Espinosa, Rick Lin, Zhongling Liu,

Jake Padilla, and Christina Delimitrou

Cornell University

Abstract—Cloudservicesprogressively shift frommonolithic applications tocomplexgraphs

of loosely-coupledmicroservices. This article aimsat understanding the implications

microserviceshaveacross thesystemstack, fromhardwareaccelerationandserver design,

to operating systemsandnetworking, clustermanagement, andprogramming frameworks.

Toward this effort,wehavedesignedanopen-sourcedDeathstarBench, a benchmarksuite

for interactivemicroservices that isboth representativeandextensible.

& CLOUD COMPUTING NOW powers applications

from every domain of human endeavor, which

require ever improving performance, respon-

siveness, and scalability.2,5,6,8 Many of these

applications are interactive, latency critical

services that must meet strict performance

(throughput and tail latency), and availability

constraints, while also handling frequent soft-

ware updates.4–7;12 The past five years have

seen a significant shift in the way cloud services

are designed, from large monolithic implemen-

tations, where the entire functionality of a

Digital Object Identifier 10.1109/MM.2020.2985960

Date of publication 22 April 2020; date of current version 22

May 2020.

Theme Article: Top PicksTheme Article: Top Picks

10
0272-1732 � 2020 IEEE Published by the IEEE Computer Society IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

service is implemented in a single binary, to

large graphs of single-concerned and loosely-

coupled microservices.1,10 This shift is becom-

ing increasingly pervasive, with large cloud pro-

viders, such as Amazon, Twitter, Netflix, Apple,

and EBay having already adopted the microser-

vices application model, and Netflix reporting

more than 200 unique microservices in their

ecosystem, as of the end of 2016.1

The increasing popularity of microservices is

justified by several reasons. First, they promote

composable software design, simplifying and

accelerating development, with each microser-

vice being responsible for a small subset of the

application’s functionality. The richer the func-

tionality of cloud services becomes, the more

the modular design of microservices helps man-

age system complexity. They similarly facilitate

deploying, scaling, and updating individualmicro-

services independently, avoiding long develop-

ment cycles, and improving elasticity. For

applications that are updated on a daily basis,

modifying, recompiling, and testing a large mono-

lith is both cumbersome and prone to bugs.

Figure 1 shows the deployment differences

between a traditional monolithic service, and an

application built with microservices. While the

entire monolith is scaled out on multiple servers,

microservices allow individual components of

the end-to-end application to be elastically

scaled, with microservices of complementary

resources bin-packed on the same physical

server. Even though modularity in cloud services

was already part of the service-oriented architec-

ture (SOA) design approach, the fine granularity

of microservices, and their independent deploy-

ment create hardware and software challenges

different from those in traditional SOAworkloads.

Second, microservices enable programming

language and framework heterogeneity, with

each tier developed in the most suitable lan-

guage, only requiring a common API for micro-

services to communicate with each other;

typically over remote procedure calls (RPC) or a

RESTful API. In contrast, monoliths limit the lan-

guages used for development, and make fre-

quent updates cumbersome and error-prone.

Finally, microservices separate failure doma-

ins across application tiers, allowing cleaner error

isolation, and simplifying correctness and perfor-

mance debugging, unlike in monoliths, where

resolving bugs often involves troubleshooting the

entire service. This also makes them applicable to

Internet-of-Things (IoT) applications that often

hostmission-critical computation.

Despite their advantages, microservices rep-

resent a significant departure from the way cloud

services are traditionally designed, and have

broad implications in both hardware and soft-

ware, changing a lot of assumptions currentware-

house-scale systems are designed with. For

example, since dependentmicroservices are typi-

cally placed on different physical machines, they

put a lot more pressure on high bandwidth and

low latency networking than traditional applica-

tions. Furthermore, the dependencies between

microservices introduce backpressure effects

between dependent tiers, leading to cascading

QoS violations that propagate and amplify

through the system, making performance debug-

ging expensive in both resources and time.11

Given the increasing prevalence of microser-

vices in both cloud and IoT settings, it is impera-

tive to study both their opportunities and

challenges. Unfortunately most academic work

on cloud systems is limited to the available

open-source applications; monolithic designs in

their majority. This not only prevents a wealth

of interesting research questions from being

explored, but can also lead to misdirected

research efforts whose results do not translate

to the way real cloud services are implemented.

DeathstarBench SUITE
Our article,10 presented at ASPLOS’19,

addresses the lack of representative and open-

source benchmarks built with microservices, and

Figure 1. Differences in the deployment of

monoliths and microservices.

May/June 2020 11
Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

quantifies the opportunities and challenges of this

new applicationmodel across the system stack.

Benchmark Suite Design: We have designed,

implemented, and open-sourced a set of end-

to-end applications built with interactive micro-

services, representative of popular production

online services using this application model. Spe-

cifically, the benchmark suite includes a social

network, a media service, an ecommerce shop, a

hotel reservation site, a secure banking system,

and a coordination control platform for UAV

swarms. Across all applications, we adhere to the

design principles of representativeness, modular-

ity, extensibility, software heterogeneity, and end-

to-end operation.

Each service includes tens of microservices in

different languages and programming models,

including node.js, Python, C/Cþþ, Java, Java-

script, Scala, and Go, and leverages open-source

applications, such as NGINX, memcached, Mon-

goDB, Cylon, and Xapian. To create the end-to-end

services, we built custom RPC and RESTful APIs

using popular open-source frameworks like

Apache Thrift, and gRPC. Finally, to track how

user requests progress throughmicroservices, we

have developed a lightweight and transparent to

the user distributed tracing system, similar to Dap-

per and Zipkin that tracks requests at RPC granu-

larity, associates RPCs belonging to the same end-

to-end request, and records traces in a centralized

database. We study both traffic generated by real

users of the services, and synthetic loads gener-

ated by open-loopworkload generators.

Applications in DeathStarBench

Social Network: The end-to-end service imple-

ments a broadcast-style social network with

unidirectional follow relationships. Figure 2

shows the architecture of the end-to-end service.

Users (client) send requests over http, which

first reach a load balancer, implemented with

nginx. Once a specific webserver is selected,

also in nginx, the latter uses a php-fpm module

to talk to the microservices responsible for com-

posing and displaying posts, as well as microser-

vices for advertisements and search engines. All

messages downstream of php-fpm are Apache

Thrift RPCs. Users can create posts embedded

with text, media, links, and tags to other users.

Their posts are then broadcasted to all their fol-

lowers. Users can also read, favorite, and repost

posts, as well as reply publicly, or send a direct

message to another user. The application also

includes machine learning plugins, such as user

recommender engines, a search service using

Xapian, and microservices to record and display

user statistics, e.g., number of followers, and to

allow users to follow, unfollow, or block other

accounts. The service’s backend uses memc-

ached for caching, and MongoDB for persistent

storage for posts, profiles, media, and recom-

mendations. The service is broadly deployed at

our institution, currently servicing several hun-

dred users. We also use this deployment to

quantify the tail at scale effects of microservices.

Media Service: The application implements an

end-to-end service for browsing movie informa-

tion, as well as reviewing, rating, renting, and

streaming movies. Figure 3 shows the architec-

ture of the end-to-end service. As with the social

network, a client request hits the load balancer,

which distributes requests among multiple nginx

webservers. Users can search and browse infor-

mation about movies, including their plot,

Figure 2. Graph of microservices in Social Network. Figure 3. Graph of microservices inMedia Service.

Top Picks

12 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

photos, videos, cast, and review information, as

well as insert new reviews in the system for a

specific movie by logging into their account.

Users can also select to rent a movie, which

involves a payment authentication module to

verify that the user has enough funds, and a

video streaming module using nginx-hls, a pro-

duction nginx module for HTTP live streaming.

The actual movie files are stored in NFS, to avoid

the latency and complexity of accessing chunked

records from nonrelational databases, while

movie reviews are kept in memcached and Mon-

goDB instances. Movie information is main-

tained in a sharded and replicated MySQL

database. The application also includes movie

and advertisement recommenders, as well as a

couple auxiliary services for maintenance and

service discovery, which are not shown in the

figure.

E-Commerce Site: The service implements an

e-commerce site for clothing. The design draws

inspiration, and uses several components of the

open-source Sockshop application. The applica-

tion front-end in this case is a node.js service.

Clients can use the service to browse the inven-

tory using catalogue, a Go microservice that

mines the back-end memcached and MongoDB

instances holding information about products.

Users can also place orders (Go) by adding items

to their cart (Java). After they log in (Go) to their

account, they can select shipping options (Java),

process their payment (Go), and obtain an

invoice (Java) for their order. Finally, the service

includes a recommender engine for suggested

products, and microservices for creating an item

wishlist (Java), and displaying current discounts.

Hotel Reservation: The service implements a

hotel reservation site, where users can browse

information about hotels and complete reserva-

tions. The service is primarily written in Go, with

the backend tiers implemented using memc-

ached and MongoDB. Users can filter hotels

according to ratings, price, location, and avail-

ability. They also receive recommendations on

hotels they may be interested in.

Banking System: The service implements a

secure banking system that processes payments,

loan requests, and credit card transactions.

Users interface with a node.js front-end, similar

to the one in E-commerce to login to their

account, search information about the bank, or

contact a representative. Once logged in, a user

can process a payment, pay their credit card bill,

browse information about loans or request one,

and obtain information about wealth manage-

ment options. Most microservices are written in

Java and Javascript. The back-end databases use

memcached andMongoDB instances.

IoT SwarmCoordination: Finally, we explore an

environment where applications run both on the

cloud and on edge devices. The service coordi-

nates the routing of a swarm of programmable

drones, which perform image recognition and

obstacle avoidance. We have designed two ver-

sion of this service. In the first, themajority of the

computation happens on the drones, including

the motion planning, image recognition, and

obstacle avoidance, with the cloud only con-

structing the initial route per-drone, and holding

persistent copies of sensor data. This architec-

ture avoids the high network latency between

cloud and edge, however, it is limited by the on-

board resources. In the second version, the cloud

is responsible for most of the computation. It per-

forms motion control, image recognition, and

obstacle avoidance for all drones, using the

ardrone-autonomy, and Cylon libraries, in

OpenCV and Javascript, respectively. The edge

devices are only responsible for collecting sensor

data and transmitting them to the cloud, as well

as recording some diagnostics using a local node.

js logging service. In this case, almost every

action suffers the cloud-edge network latency,

although services benefit from the additional

cloud resources. We use 24 programmable Parrot

AR2.0 drones, together with a backend cluster of

20 two-socket, 40-core servers.

Adoption

DeathStarBench is open-source software

under a GPL license.� The project is currently in

use by several tens of research groups both in

academia and industry. In addition to the open-

source project, we have also deployed the social

network as an internal social network at Cornell

University, currently used by over 500 students,

and have used execution traces for several

�
https://github.com/delimitrou/DeathStarBench.

May/June 2020 13
Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

research studies, including using ML in root

cause analysis for interactive microservices.11

HARDWARE AND SOFTWARE
IMPLICATIONS OF MICROSERVICES

We have used DeathStarBench to quantify

the implications microservices have in cloud

hardware and software, and what these implica-

tions mean for computer engineers. Below we

summarize the main findings from our study.

Server Design

We first quantified how effective current data-

center architectures are at running microservices,

as well as how datacenter hardware needs to

change to better accommodate their perfor-

mance and resource requirements. There has

been a lot of work on whether small servers can

replace high-end platforms in the cloud.3 Despite

the power benefits of simple cores, interactive

services still achieve better latency in servers

optimized for single-thread performance. Micro-

services offer an appealing target for simple

cores, given the small amount of computation

per microservice. Figure 4 (top row) shows the

change in tail latency as load increases and fre-

quency decreases using running average power

limit (RAPL) for five popular, open-source single-

tier interactive services: nginx, memcached,

MongoDB, Xapian, and Recommender. We com-

pare these against the five end-to-end services

(bottom row).

As expected, most interactive services are sen-

sitive to frequency scaling. Among the monolithic

workloads, MongoDB is the only one that can tol-

erate almost minimum frequency at maximum

load, due to it being I/O-bound. The other four sin-

gle-tier services experience increased latency as

frequency drops, with Xapian being the most sen-

sitive, followedbynginx, andmemcached. Looking

at the same study for microservices reveals that,

perhaps counterintuitively, they are much more

sensitive to poor single-thread performance than

traditional cloud applications, despite the small

amount of per-microservice processing. The rea-

sons behind this are the strict, microsecond-level

tail latency requirements of individual microservi-

ces, which put more pressure on low and predict-

able latency, emphasizing the need for hardware

and software techniques that eliminate latency jit-

ter. Out of the five end-to-end services (we omit

Swarm-Edge, since compute happens on the edge

devices), the Social Network and E-commerce are

most sensitive to low frequency, while the Swarm

service is the least sensitive, primarily because it

is bound by the cloud-edge communication

latency, as opposed to compute speed.

Networking and OS Overheads

Microservices spend a large fraction processing

network requests of RPCs or other RESTful APIs.

While for traditional monolithic cloud services

only a small amount of time goes toward network

processing, with microservices this time increases

to 36.3% on average, and on occasion over 50% of

the end-to-end latency, causing the system’s

resource bottlenecks to change drastically. To this

end,we also explored thepotential hardware accel-

eration has to address the network requirements

of microservices for low latency and high through-

put network processing. Specifically, we use a

bump-in-the-wire setup, seen in Figure 5(a), and

similar to the one given by Firestone et al.9 to off-

load the entire TCP stack on a Virtex 7 FPGA using

Vivado HLS. The FPGA is placed between the NIC

and the top of rack switch, and is connected to

both with matching transceivers, acting as a filter

on the network. We maintain the PCIe connection

between the host and the FPGA for accelerating

other services, such as the machine learning mod-

els in the recommender engines, during periods of

low network load. Figure 5(b) shows the speedup

Figure 4. Tail latency with increasing load and decreasing

frequency (RAPL) for traditional monolithic cloud applications,

and the five end-to-end DeathStarBench services. Lighter colors

(yellow) denote QoS violations.

Top Picks

14 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

from acceleration on network processing latency

alone, and on the end-to-end latency of each of the

services. Network processing latency improves by

10�68x over native TCP, whereas end-to-end tail

latency improves by 43% and up to 2:2x. For inter-

active, latency-critical services, where even a

small improvement in tail latency is significant,

network acceleration provides a major boost in

performance.

Cluster Management

A major challenge with microservices has to

do with cluster management. Even though the

cluster manager can elastically scale out individ-

ual microservices on-demand instead of the entire

monolith, dependencies between microservices

introduce backpressure effects and cascading

QoS violations that propagate through the sys-

tem, hurting quality of service (QoS). Backpres-

sure can additionally trick the cluster manager

into penalizing or upsizing a highly utilized micro-

service, even though its saturation is the result of

backpressure from another, potentially not-satu-

rated service. Not only does this not solve the

performance issue, but can on occasion make it

worse, by admitting more traffic into the system.

The more complex the dependence graph

between microservices, the more pronounced

such issues become. Figure 6 shows the microser-

vices dependence graphs for three major cloud

service providers, and for one of our applications

(Social Network). The perimeter of the circle (or

sphere surface) shows the different microservi-

ces, and edges show dependencies between

them. Such dependencies are difficult for develop-

ers or users to describe, and furthermore, they

change frequently, as old microservices are

swapped out and replaced by newer services.

Figure 7 shows the impact of cascading QoS

violations in the Social Network service. Darker

colors show tail latency closer to nominal opera-

tion for a given microservice in Figure 7(a), and

low utilization in Figure 7(b). Brighter colors sig-

nify high per-microservice tail latency and high

CPU utilization. Microservices are ordered based

on the service architecture, from the back-end

services at the top, to the front-end at the bot-

tom. Figure 7(a) shows that once the back-end

service at the top experiences high tail latency,

the hotspot propagates to its upstream services,

and all the way to the front-end. Utilization in

this case can be misleading. Even though the sat-

urated back-end services have high utilization in

Figure 7(b), microservices in the middle of the

figure also have even higher utilization, without

this translating to QoS violations.

Conversely, there are microservices with

relatively low utilization and degraded perfor-

mance, for example, due to waiting on a blocking/

synchronous request from another, saturated

tier. This highlights the need for cluster manag-

ers that account for the impact dependencies

Figure 5. (a) Overview of the FPGA configuration for RPC

acceleration, and (b) the performance benefits of acceleration in

terms of network and end-to-end tail latency.

Figure 6.Microservices graphs for three production

clouds, and our Social Network.

Figure 7. Cascading QoS violations in Social

Network compared to per-microservice CPU

utilization.

May/June 2020 15
Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

between microservices have on end-to-end per-

formance when allocating resources.

Finally, the fact that hotspots propagate

between tiers means that once microservices

experience a QoS violation, they need longer to

recover than traditional monolithic applications,

even in the presence of autoscaling mechanisms,

which most cloud providers employ. Figure 8

shows such a case for Social Network imple-

mented with microservices, and as a monolith in

Java. In both cases, the QoS violation is detected

at the same time. However, while the cluster man-

ager can simply instantiate new copies of the

monolith and rebalance the load, autoscaling

takes longer to improve performance. This is

because, as shown in Figure 8(b), the autoscaler

simply upsizes the resources of saturated

services—seen by the progressively darker colors

of highly utilized microservices. However, serv-

ices with the highest utilization are not necessar-

ily the culprits of a QoS violation, taking the

systemmuch longer to identify the correct source

behind the degraded performance and upsizing it.

As a result, by the time the culprit is identified,

long queues have already built up, which take

considerable time to drain.

Serverless Programming Frameworks

Microservices are often used interchangeably

with serverless compute frameworks. Serverless

enables fine-grained, short-lived cloud execution,

and is well-suited for interactive applications

with ample parallelism and intermittent activity.

We evaluated our end-to-end applications on

AWS’s serverless platform, AWS Lambda and

showed that despite avoiding the high costs of

reserved idle resources, and enabling more elas-

tic scaling in the presence of short load bursts,

serverless also results in less predictable

performance for interactive microservices for

three reasons. First, on current serverless plat-

forms communication between dependent func-

tions (serverless tasks) happens via remote

persistent storage, S3, in AWS’s case. This not

only introduces high, but also unpredictable

latency, as S3 is subject to long queueing delays

and rate limiting. Second, because VMs hosting

serverless tasks are terminated after a given

amount of idle time, when new tasks are spawned,

they need to reload any external dependencies,

introducing nonnegligible overheads. Finally, the

placement of serverless tasks is up to the cloud

operator’s scheduler, and hence prone to long

scheduling delays, and unpredictable perfor-

mance due to contention from external jobs shar-

ing system resources. Overall, we show that while

similar, microservices and serverless compute

each present different system challenges, and are

well suited for different application classes.

Tail at Scale Effects

Finally, we explore the system implications of

microservices at large scale. Tail at scale effects

are well-documented in warehouse-scale com-

puters,4 and refer to system (performance, avail-

ability, efficiency) issues that specifically arise due

to a system’s scale. In this article, we use the

large-scale deployment of the social network appli-

cation with hundreds of real users to the impact of

cascading performance hotspots, request skews,

and slow servers on end-to-end performance.

Figure 9(a) shows the performance impact

of dependencies between microservices on 100

EC2 instances. Microservices on the y-axis are

again ordered from the back-end in the top to

the front-end in the bottom. While initially

all microservices are behaving nominally, at

t ¼ 260 s the middle tiers, and specifically compo-

sePost, and readPost become saturated due to a

switch routing misconfiguration that overloaded

one instance of each microservice, instead of load

balancing requests across different instances. This

in turn causes their downstream services to satu-

rate, causing a similar waterfall pattern in per-tier

latency to the one in Figure 7. Toward the end of

the sampled time (t > 500 s) the back-end services

also become saturated for a similar reason, caus-

ing microservices earlier in the critical path to sat-

urate. This is especially evident for microservices

Figure 8. (a) Microservices taking longer than

monoliths to recover from a QoS violation, even (b) in

the presence of autoscaling mechanisms.

Top Picks

16 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

in the middle of the y-axis (bright yellow), whose

performance was already degraded from the previ-

ous QoS violation. To allow the system to recover,

we employed rate limiting, which constrains the

admitted traffic, until hotspots dissipate. Even

though rate limiting is effective, it affects user

experience by dropping a fraction of requests.

Finally, Figure 9(b) shows the impact of a small

number of slow servers on overall QoS as cluster

size increases. We purposely slow down a small

fraction of servers by enabling aggressive power

management, which we already saw is detrimental

to performance. For large clusters (>100 instan-

ces), when 1% or more of servers behave poorly,

QPS under QoS is almost zero, as

these servers host at least one

microservice on the critical path,

degrading QoS. Even for small

clusters (40 instances), a single

slow server is the most the ser-

vice can sustain and still achieve

some QPS under QoS. Finally, we

compare the impact of slow serv-

ers in clusters of equal size for

the monolithic design of Social

Network. In this case, QPS is

higher even as cluster sizes grow,

since a single slow server only

affects the instance of the mono-

lith hosted on it, while the other

instances operate independently.

The only exception are back-end databases, which

even for the monolith are shared across applica-

tion instances, and sharded across machines. If

one of the slow servers is hosting a database

shard, all requests directed to that instance are

degraded. The more complex an application’s

microservices graph, the more impactful slow

servers are, as the probability that a service on

the critical path will be slowed-down increases.

As with the hardware and cluster management

implications above, these results again emphasize

the need for hardware and software techniques

that improve performance predictability at scale

without hurting latency and resource efficiency.

LESSONS FROM DEATHSTARBENCH
DeathStarBench draws attention to the need

for research in the emerging application model

of microservices and highlights the research

areas with the highest potential for impact, while

also providing a widely adopted open-source

infrastructure to make that research possible

and reproducible.

Cloud systems have attracted an increasing

amount of work over the past five to ten years.

As cloud software evolves, the direction of such

research efforts should also evolve with it. Given

the increasing complexity of cloud services, the

switch to a fine-grained, multitier application

model, such as microservices, will continue to

gain traction, and requires more attention from

the research community in both academia and

industry. DeathStarBench highlights the need

for systems research in this emerg-

ing field, and quantifies the most

promising research directions, and

their potential impact.

DeathStarBench also highlights

the need for hardware–software

codesign in cloud systems, as appli-

cations increase in scale and com-

plexity. Specifically, we showed that

current platforms are not well-suited

for the emerging cloud programming

models, which require lower latency,

more elastic scaling, and more pre-

dictable responsiveness. We demon-

strated that microservices come

with both opportunities and chal-

lenges across the system stack, and that for sys-

tem designers to improve QoS without sacrificing

resource efficiency, they need to rethink the cur-

rent cloud stack in a vertical way, from hardware

design and networking, to cluster management

and programming framework design. Finally, we

also quantified the potential hardware accelera-

tion has toward addressing the performance

requirements of interactive microservices, and

Figure 9. (a) Cascading hotspots in the large-scale

Social Network deployment, and tail at scale effects

from slow servers.

DeathStarBench draws

attention to the need for

research in the

emerging application

model of microservices

and highlights the

research areas with the

highest potential for

impact, while also

providing a widely

adopted open-source

infrastructure to make

that research possible

and reproducible.

May/June 2020 17
Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

showed that programmable acceleration can

greatly reduce one of the primary overheads of

multitier services; network processing.

As microservices continue to evolve, it is

essential for datacenter hardware, operating

and networking systems, cluster managers, and

programming frameworks to also evolve with

them, to ensure that their prevalence does not

come at a performance and/or efficiency loss.

Both DeathStarBench and the resulting study of

the system implications of microservices are a

call to action for the research community to fur-

ther explore the opportunities and challenges of

this emerging application model.

ACKNOWLEDGMENTS
We sincerely thank C. Kozyrakis, D. Sanchez,

D. Lo, as well as the academic and industrial users

of the benchmark suite, and the anonymous

reviewers for their feedback on earlier versions of

this article. This work was supported in part by

an NSF CAREER award, in part by NSF grant CNS-

1422088, in part by a Google Faculty Research

Award, in part by a Alfred P. Sloan Foundation Fel-

lowship, in part by a Facebook Faculty Research

Award, in part by a John and Norma Balen Sesqui-

centennial Faculty Fellowship, and in part by gen-

erous donations from Google Compute Engine,

Windows Azure, and Amazon EC2.

& REFERENCES

1. “The evolution of microservices,” 2016. [Online].

Available: https://www.slideshare.net/adriancockcroft/

evolution-of-microservices-craft-conference

2. L. Barroso, U. Hoelzle, and P. Ranganathan, The

Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines. Morgan &

Claypool: San Rafael, CA, USA, 2018.

3. S. Chen, S. Galon, C. Delimitrou, S. Manne, and

J. F. Martinez, “Workload characterization of

interactive cloud services on big and small server

platforms,” in Proc. Int. Symp. Workload

Characterization, Oct. 2017, pp. 125–134.

4. J. Dean and L. A. Barroso, “The tail at scale,”

Commun. ACM, vol. 56 no. 2, pp. 74–80, 2013.

5. C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware

scheduling for heterogeneous datacenters,” in Proc.

18th Int. Conf. Archit. Support Program. Lang. Oper.

Syst., Houston, TX, USA, 2013, pp. 77–88.

6. C. Delimitrou and C. Kozyrakis, “Quasar: Resource-

efficient and QoSAware cluster management,” in

Proc. 19th Int. Conf. Archit. Support Program.

Lang. Oper. Syst., Salt Lake City, UT, USA, 2014,

pp. 127–144.

7. C. Delimitrou and C. Kozyrakis, “HCloud: Resource-

efficient provisioning in shared cloud systems,” in

Proc. 21st Int. Conf. Archit. Support Program. Lang.

Oper. Syst., Apr. 2016, pp. 473–488.

8. C. Delimitrou and C. Kozyrakis, “Bolt: I know what you

did last summer... In the cloud,” in Proc. 22nd Int. Conf.

Archit. Support Program. Lang. Oper. Syst., Apr. 2017,

pp. 599–613.

9. D. Firestone et al., “Azure accelerated networking:

Smartnics in the public cloud,” in Proc. 15th USENIX

Symp. Netw. Syst. Design Implementation, 2018,

pp. 51–66.

10. Y. Gan et al., “An open-source benchmark suite for

microservices and their hardware-software

implications for cloud and edge systems,” in Proc.

24th Int. Conf. Archit. Support Program. Lang. Oper.

Syst., Apr. 2019, pp. 3–18.

11. Y. Gan et al., “Seer: Leveraging big data to

navigate the complexity of performance debugging

in cloud microservices,” in Proc. 24th Int. Conf.

Archit. Support Program. Lang. Oper. Syst., Apr.

2019, pp. 19–33.

12. D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and

C. Kozyrakis, “Heracles: Improving resource

efficiency at scale,” in Proc. 42nd Annu. Int. Symp.

Comput. Archit., 2015, pp. 450–462.

Yu Gan is currently working toward the Ph.D. degree

with the School of Electrical and Computer Engineer-

ing, Cornell University, where he works on cloud

computing and root cause analysis for interactive

microservices. He is a student member of IEEE and

ACM.Contact him at yg397@cornell.edu.

Yanqi Zhang is currently working toward the Ph.D.

degree with the School of Electrical and Computer

Engineering, Cornell University, where he works on

cloud systems and resource management for inter-

active microservices. He is a student member of

IEEE and ACM. Contact him at yz2297@cornell.edu.

Dailun Cheng is currently working toward the

M.Eng. degree with the School of Electrical and

Computer Engineering, Cornell University. Contact

him at dc924@cornell.edu.

Top Picks

18 IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

Ankitha Shetty is currently working toward

the M.Eng. degree with the School of Computer

Science, Cornell University. Contact him at

aas394@cornell.edu.

Priyal Rathi is currently working toward the M.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at pr348@cornell.edu.

Nayan Katarki is currently working toward the

M.Eng. degree with the School of Electrical and

Computer Engineering, Cornell University. Contact

him at nk646@cornell.edu.

Ariana Bruno is currently working toward the

M.Eng. degree with the School of Electrical and

Computer Engineering, Cornell University. Contact

him at amb633@cornell.edu.

Justin Hu is currently working toward the M.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at jh2625@cornell.edu.

Brian Ritchken is currently working toward the

M.Eng. degree with the School of Electrical and

Computer Engineering, Cornell University. Contact

him at bjr96@cornell.edu.

Brendon Jackson is currently working toward the

M.Eng. degree with the School of Electrical and

Computer Engineering, Cornell University. Contact

him at btj28@cornell.edu.

Kelvin Hu is currently working toward the M.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at sh2442@cornell.edu.

Meghna Pancholi is currently working toward the

B.S. degree with the School of Computer Science,

Cornell University. Contact him atmp832@cornell.edu.

Yuan He is currently working toward the M.Eng.

degree with the School of Electrical and Computer

Engineering, Cornell University. Contact him at

yh772@cornell.edu.

Brett Clancy is currently working toward theM.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at bjc265@cornell.edu.

Chris Colen is currently working toward the M.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at cdc99@cornell.edu.

FukangWen is currently working toward theM.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at fw224@cornell.edu.

Catherine Leung is currently working toward the

M.Eng. degree with the School of Computer Science,

Cornell University. Contact him at chl66@cornell.edu.

SiyuanWang is currently working toward theM.Eng.

degree with the School of Computer Science, Cornell

University. Contact him at sw884@cornell.edu.

Leon Zaruvinsky is currently working toward the

M.Eng. degree with the School of Computer Science,

Cornell University. Contact him at laz37@cornell.edu.

Mateo Espinosa is currently working toward the

M.Eng. degree with the School of Computer Science,

Cornell University. Contact him atme326@cornell.edu.

Rick Lin is currently working toward the M.Eng.

degree with the School of Electrical and Computer

Engineering, Cornell University. Contact him at

cl2545@cornell.edu.

Zhongling Liu is currently working toward the

M.Eng. degree with the School of Electrical and

Computer Engineering, Cornell University. Contact

him at zl682@cornell.edu.

Jake Padilla is currently working toward the

M.Eng. degree with the School of Computer Science,

Cornell University. Contact him at jsp264@cornell.edu.

Christina Delimitrou is currently an Assistant

Professor with the School of Electrical and Computer

Engineering, Cornell University, where she works on

computer architecture and distributed systems.

Her research interests include resource-efficient data-

centers, scheduling and resource management with

quality-of-service guarantees, emerging cloud and IoT

application models, and cloud security. Delimitrou

received the Ph.D. degree in electrical engineering

from Stanford University. She is a member of IEEE and

ACM.Contact her at delimitrou@cornell.edu.

May/June 2020 19
Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

