Theme Article: Top Picks

"M
nd

Yu Gan, Yanqi Zhang, Dailun Cheng,
Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken,
Brendon Jackson, Kelvin Hu,

Meghna Pancholi, Yuan He, Brett Clancy,
Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky,

Mateo Espinosa, Rick Lin, Zhongling Liu,
Jake Padilla, and Christina Delimitrou
Cornell University

10

Unveiling the Hardware
and Software Implications
of Microservices in Cloud
and Edge Systems

Abstract—Cloud services progressively shift from monolithic applications to complex graphs
of loosely-coupled microservices. This article aims at understanding the implications
microservices have across the system stack, from hardware acceleration and server design,
to operating systems and networking, cluster management, and programming frameworks.
Toward this effort, we have designed an open-sourced DeathstarBench, a benchmark suite
for interactive microservices that is both representative and extensible.

M CLoup compuTING Now powers applications
from every domain of human endeavor, which
require ever improving performance, respon-
siveness, and scalability.>>%® Many of these

Digital Object Identifier 10.1109/MM.2020.2985960
Date of publication 22 April 2020, date of current version 22
May 2020.

0272-1732 © 2020 IEEE

Published by the IEEE Computer Society

applications are interactive, latency critical
services that must meet strict performance
(throughput and tail latency), and availability
constraints, while also handling frequent soft-
ware updates.*"1? The past five years have
seen a significant shift in the way cloud services
are designed, from large monolithic implemen-

tations, where the entire functionality of a

IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Differences in the deployment of
monoliths and microservices.

service is implemented in a single binary, to
large graphs of single-concerned and loosely-
coupled microservices.'° This shift is becom-
ing increasingly pervasive, with large cloud pro-
viders, such as Amazon, Twitter, Netflix, Apple,
and EBay having already adopted the microser-
vices application model, and Netflix reporting
more than 200 unique microservices in their
ecosystem, as of the end of 2016.!

The increasing popularity of microservices is
justified by several reasons. First, they promote
composable software design, simplifying and
accelerating development, with each microser-
vice being responsible for a small subset of the
application’s functionality. The richer the func-
tionality of cloud services becomes, the more
the modular design of microservices helps man-
age system complexity. They similarly facilitate
deploying, scaling, and updating individual micro-
services independently, avoiding long develop-
ment cycles, and improving elasticity. For
applications that are updated on a daily basis,
modifying, recompiling, and testing a large mono-
lith is both cumbersome and prone to bugs.
Figure 1 shows the deployment differences
between a traditional monolithic service, and an
application built with microservices. While the
entire monolith is scaled out on multiple servers,
microservices allow individual components of
the end-to-end application to be elastically
scaled, with microservices of complementary
resources bin-packed on the same physical
server. Even though modularity in cloud services
was already part of the service-oriented architec-
ture (SOA) design approach, the fine granularity
of microservices, and their independent deploy-
ment create hardware and software challenges
different from those in traditional SOA workloads.

May/June 2020

Second, microservices enable programming
language and framework heterogeneity, with
each tier developed in the most suitable lan-
guage, only requiring a common API for micro-
services to communicate with each other;
typically over remote procedure calls (RPC) or a
RESTful API. In contrast, monoliths limit the lan-
guages used for development, and make fre-
quent updates cumbersome and error-prone.

Finally, microservices separate failure doma-
ins across application tiers, allowing cleaner error
isolation, and simplifying correctness and perfor-
mance debugging, unlike in monoliths, where
resolving bugs often involves troubleshooting the
entire service. This also makes them applicable to
Internet-of-Things (IoT) applications that often
host mission-critical computation.

Despite their advantages, microservices rep-
resent a significant departure from the way cloud
services are traditionally designed, and have
broad implications in both hardware and soft-
ware, changing a lot of assumptions current ware-
house-scale systems are designed with. For
example, since dependent microservices are typi-
cally placed on different physical machines, they
put a lot more pressure on high bandwidth and
low latency networking than traditional applica-
tions. Furthermore, the dependencies between
microservices introduce backpressure effects
between dependent tiers, leading to cascading
QoS violations that propagate and amplify
through the system, making performance debug-
ging expensive in both resources and time.!!

Given the increasing prevalence of microser-
vices in both cloud and IoT settings, it is impera-
tive to study both their opportunities and
challenges. Unfortunately most academic work
on cloud systems is limited to the available
open-source applications; monolithic designs in
their majority. This not only prevents a wealth
of interesting research questions from being
explored, but can also lead to misdirected
research efforts whose results do not translate
to the way real cloud services are implemented.

DeathstarBench SUITE

Our article,'° presented at ASPLOS’19,
addresses the lack of representative and open-
source benchmarks built with microservices, and

11

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

12

Top Picks

Social Network
Service

Media Service

video
streaming

memcached

{userReview)
mongoDB
—ravawwmemcached

fastgi

1] Y—

5 { load
Clienty» ;
{Balancer;

{uniquelD]
S
B F.

http

Figure 2. Graph of microservices in Social Network.

quantifies the opportunities and challenges of this
new application model across the system stack.

Benchmark Suite Design: We have designed,
implemented, and open-sourced a set of end-
to-end applications built with interactive micro-
services, representative of popular production
online services using this application model. Spe-
cifically, the benchmark suite includes a social
network, a media service, an ecommerce shop, a
hotel reservation site, a secure banking system,
and a coordination control platform for UAV
swarms. Across all applications, we adhere to the
design principles of representativeness, modular-
ity, extensibility, software heterogeneity, and end-
to-end operation.

Each service includes tens of microservices in
different languages and programming models,
including node.js, Python, C/C++, Java, Java-
script, Scala, and Go, and leverages open-source
applications, such as NGINX, memcached, Mon-
goDB, Cylon, and Xapian. To create the end-to-end
services, we built custom RPC and RESTful APIs
using popular open-source frameworks like
Apache Thrift, and gRPC. Finally, to track how
user requests progress through microservices, we
have developed a lightweight and transparent to
the user distributed tracing system, similar to Dap-
per and Zipkin that tracks requests at RPC granu-
larity, associates RPCs belonging to the same end-
to-end request, and records traces in a centralized
database. We study both traffic generated by real
users of the services, and synthetic loads gener-
ated by open-loop workload generators.

Applications in DeathStarBench
Social Network: The end-to-end service imple-
ments a broadcast-style social network with

\fmovieD

Figure 3. Graph of microservices in Media Service.

unidirectional follow relationships. Figure 2
shows the architecture of the end-to-end service.
Users (client) send requests over http, which
first reach a load balancer, implemented with
nginx. Once a specific webserver is selected,
also in nginx, the latter uses a php-fpm module
to talk to the microservices responsible for com-
posing and displaying posts, as well as microser-
vices for advertisements and search engines. All
messages downstream of php-fpm are Apache
Thrift RPCs. Users can create posts embedded
with text, media, links, and tags to other users.
Their posts are then broadcasted to all their fol-
lowers. Users can also read, favorite, and repost
posts, as well as reply publicly, or send a direct
message to another user. The application also
includes machine learning plugins, such as user
recommender engines, a search service using
Xapian, and microservices to record and display
user statistics, e.g., number of followers, and to
allow users to follow, unfollow, or block other
accounts. The service’s backend uses memc-
ached for caching, and MongoDB for persistent
storage for posts, profiles, media, and recom-
mendations. The service is broadly deployed at
our institution, currently servicing several hun-
dred users. We also use this deployment to
quantify the tail at scale effects of microservices.

Media Service: The application implements an
end-to-end service for browsing movie informa-
tion, as well as reviewing, rating, renting, and
streaming movies. Figure 3 shows the architec-
ture of the end-to-end service. As with the social
network, a client request hits the load balancer,
which distributes requests among multiple nginx
webservers. Users can search and browse infor-
mation about movies, including their plot,

IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

photos, videos, cast, and review information, as
well as insert new reviews in the system for a
specific movie by logging into their account.
Users can also select to rent a movie, which
involves a payment authentication module to
verify that the user has enough funds, and a
video streaming module using nginx-hls, a pro-
duction nginx module for HTTP live streaming.
The actual movie files are stored in NFS, to avoid
the latency and complexity of accessing chunked
records from nonrelational databases, while
movie reviews are kept in memcached and Mon-
goDB instances. Movie information is main-
tained in a sharded and replicated MySQL
database. The application also includes movie
and advertisement recommenders, as well as a
couple auxiliary services for maintenance and
service discovery, which are not shown in the
figure.

E-Commerce Site: The service implements an
e-commerce site for clothing. The design draws
inspiration, and uses several components of the
open-source Sockshop application. The applica-
tion front-end in this case is a node.js service.
Clients can use the service to browse the inven-
tory using catalogue, a Go microservice that
mines the back-end memcached and MongoDB
instances holding information about products.
Users can also place orders (Go) by adding items
to their cart (Java). After they log in (Go) to their
account, they can select shipping options (Java),
process their payment (Go), and obtain an
invoice (Java) for their order. Finally, the service
includes a recommender engine for suggested
products, and microservices for creating an item
wishlist (Java), and displaying current discounts.

Hotel Reservation: The service implements a
hotel reservation site, where users can browse
information about hotels and complete reserva-
tions. The service is primarily written in Go, with
the backend tiers implemented using memc-
ached and MongoDB. Users can filter hotels
according to ratings, price, location, and avail-
ability. They also receive recommendations on
hotels they may be interested in.

Banking System: The service implements a
secure banking system that processes payments,
loan requests, and credit card transactions.
Users interface with a node.js front-end, similar
to the one in E-commerce to login to their

May/June 2020

account, search information about the bank, or
contact a representative. Once logged in, a user
can process a payment, pay their credit card bill,
browse information about loans or request one,
and obtain information about wealth manage-
ment options. Most microservices are written in
Java and Javascript. The back-end databases use
memcached and MongoDB instances.

IoT Swarm Coordination: Finally, we explore an
environment where applications run both on the
cloud and on edge devices. The service coordi-
nates the routing of a swarm of programmable
drones, which perform image recognition and
obstacle avoidance. We have designed two ver-
sion of this service. In the first, the majority of the
computation happens on the drones, including
the motion planning, image recognition, and
obstacle avoidance, with the cloud only con-
structing the initial route per-drone, and holding
persistent copies of sensor data. This architec-
ture avoids the high network latency between
cloud and edge, however, it is limited by the on-
board resources. In the second version, the cloud
is responsible for most of the computation. It per-
forms motion control, image recognition, and
obstacle avoidance for all drones, using the
ardrone-autonomy, and Cylon libraries, in
OpenCV and Javascript, respectively. The edge
devices are only responsible for collecting sensor
data and transmitting them to the cloud, as well
as recording some diagnostics using a local node.
js logging service. In this case, almost every
action suffers the cloud-edge network latency,
although services benefit from the additional
cloud resources. We use 24 programmable Parrot
AR2.0 drones, together with a backend cluster of
20 two-socket, 40-core servers.

Adoption

DeathStarBench is open-source software
under a GPL license.” The project is currently in
use by several tens of research groups both in
academia and industry. In addition to the open-
source project, we have also deployed the social
network as an internal social network at Cornell
University, currently used by over 500 students,
and have used execution traces for several

*https://github.com/delimitrou/DeathStarBench.

13

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

1000,
1200}

I 1400)
<
<1600

£ 1800]

g

2-2000)

o

T 2200)
2400

0 100 200 300 400
QPs

1000Social Network

Top Picks

Memcached

MongoDB Xapian

Recommender

0 100 200 300 400 0 100 200 300 400 0 100 200 3ua 400 0 100 200 300 400
QPs QPs

Media Service

Banking System Swarm-Cloud

. 1200f
N

L 1400f
Ewsoo
2 1800)

3
22000
o
(T 2200|
2400)
0 100 200 300 400
QPs

LR

0100 zon sno 400 0 20 w so 80

0 100 200 300 400
QPs

0 100 200 300 400
QPs

10 10 10°
Tail Latency norm QoS (x1)

Figure 4. Tail latency with increasing load and decreasing
frequency (RAPL) for traditional monolithic cloud applications,
and the five end-to-end DeathStarBench services. Lighter colors
(yellow) denote QoS violations.

14

research studies, including using ML in root
cause analysis for interactive microservices.!!

HARDWARE AND SOFTWARE
IMPLICATIONS OF MICROSERVICES
We have used DeathStarBench to quantify
the implications microservices have in cloud
hardware and software, and what these implica-
tions mean for computer engineers. Below we
summarize the main findings from our study.

Server Design

We first quantified how effective current data-
center architectures are at running microservices,
as well as how datacenter hardware needs to
change to better accommodate their perfor-
mance and resource requirements. There has
been a lot of work on whether small servers can
replace high-end platforms in the cloud.® Despite
the power benefits of simple cores, interactive
services still achieve better latency in servers
optimized for single-thread performance. Micro-
services offer an appealing target for simple
cores, given the small amount of computation
per microservice. Figure 4 (top row) shows the
change in tail latency as load increases and fre-
quency decreases using running average power
limit (RAPL) for five popular, open-source single-
tier interactive services: nginx, memcached,
MongoDB, Xapian, and Recommender. We com-
pare these against the five end-to-end services
(bottom row).

As expected, most interactive services are sen-
sitive to frequency scaling. Among the monolithic
workloads, MongoDB is the only one that can tol-
erate almost minimum frequency at maximum
load, due to it being I/O-bound. The other four sin-
gle-tier services experience increased latency as
frequency drops, with Xapian being the most sen-
sitive, followed by nginx, and memcached. Looking
at the same study for microservices reveals that,
perhaps counterintuitively, they are much more
sensitive to poor single-thread performance than
traditional cloud applications, despite the small
amount of per-microservice processing. The rea-
sons behind this are the strict, microsecond-level
tail latency requirements of individual microservi-
ces, which put more pressure on low and predict-
able latency, emphasizing the need for hardware
and software techniques that eliminate latency jit-
ter. Out of the five end-to-end services (we omit
Swarm-Edge, since compute happens on the edge
devices), the Social Network and E-commerce are
most sensitive to low frequency, while the Swarm
service is the least sensitive, primarily because it
is bound by the cloud-edge communication
latency, as opposed to compute speed.

Networking and OS Overheads

Microservices spend a large fraction processing
network requests of RPCs or other RESTful APIs.
While for traditional monolithic cloud services
only a small amount of time goes toward network
processing, with microservices this time increases
to 36.3% on average, and on occasion over 50% of
the end-to-end latency, causing the system’s
resource bottlenecks to change drastically. To this
end, we also explored the potential hardware accel-
eration has to address the network requirements
of microservices for low latency and high through-
put network processing. Specifically, we use a
bump-in-the-wire setup, seen in Figure 5(a), and
similar to the one given by Firestone et al.’ to off-
load the entire TCP stack on a Virtex 7 FPGA using
Vivado HLS. The FPGA is placed between the NIC
and the top of rack switch, and is connected to
both with matching transceivers, acting as a filter
on the network. We maintain the PCle connection
between the host and the FPGA for accelerating
other services, such as the machine learning mod-
els in the recommender engines, during periods of
low network load. Figure 5(b) shows the speedup

IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

10Gbps

Speedup over Native (x1)

10Gbps

§Q
S
Q7fl7

Figure 5. (a) Overview of the FPGA configuration for RPC
acceleration, and (b) the performance benefits of acceleration in

terms of network and end-to-end tail latency.

from acceleration on network processing latency
alone, and on the end-to-end latency of each of the
services. Network processing latency improves by
10—68z over native TCP, whereas end-to-end tail
latency improves by 43% and up to 2.2z. For inter-
active, latency-critical services, where even a
small improvement in tail latency is significant,
network acceleration provides a major boost in
performance.

Cluster Management

A major challenge with microservices has to
do with cluster management. Even though the
cluster manager can elastically scale out individ-
ual microservices on-demand instead of the entire
monolith, dependencies between microservices
introduce backpressure effects and cascading
QoS violations that propagate through the sys-
tem, hurting quality of service (QoS). Backpres-
sure can additionally trick the cluster manager
into penalizing or upsizing a highly utilized micro-
service, even though its saturation is the result of
backpressure from another, potentially not-satu-
rated service. Not only does this not solve the

Netflix

Social Network

Amazon

Figure 6. Microservices graphs for three production
clouds, and our Social Network.

May/June 2020

10;{ B Network Proc. M End-to-End Latency

Back-end

(%)

Microservices Instances
Latency increase

& =
g e

&
(}Q @“/b 0 50 100 150 200 250 300

Front-end Time (s) Front-end

utilization.

performance issue, but can on occasion make it
worse, by admitting more traffic into the system.
The more complex the dependence graph
between microservices, the more pronounced
such issues become. Figure 6 shows the microser-
vices dependence graphs for three major cloud
service providers, and for one of our applications
(Social Network). The perimeter of the circle (or
sphere surface) shows the different microservi-
ces, and edges show dependencies between
them. Such dependencies are difficult for develop-
ers or users to describe, and furthermore, they
change frequently, as old microservices are
swapped out and replaced by newer services.

Figure 7 shows the impact of cascading QoS
violations in the Social Network service. Darker
colors show tail latency closer to nominal opera-
tion for a given microservice in Figure 7(a), and
low utilization in Figure 7(b). Brighter colors sig-
nify high per-microservice tail latency and high
CPU utilization. Microservices are ordered based
on the service architecture, from the back-end
services at the top, to the front-end at the bot-
tom. Figure 7(a) shows that once the back-end
service at the top experiences high tail latency,
the hotspot propagates to its upstream services,
and all the way to the front-end. Utilization in
this case can be misleading. Even though the sat-
urated back-end services have high utilization in
Figure 7(b), microservices in the middle of the
figure also have even higher utilization, without
this translating to QoS violations.

Conversely, there are microservices with
relatively low utilization and degraded perfor-
mance, for example, due to waiting on a blocking/
synchronous request from another, saturated
tier. This highlights the need for cluster manag-
ers that account for the impact dependencies

Figure 7. Cascading QoS violations in Social
Network compared to per-microservice CPU

50 100 150 200 250 300
Time (s)

=
o

CPU Utilization (%)

15

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

Top Picks

== Monolith
1+ Microservices

=
o

CPU Utilization (%)

Tail Latency (ms)

°

©
o
=4
3
17}
<
»
©
2
2
o
@
<t
=

=
=)

10
: ilo

0 50 100 150 200 250 300
Front-end Time (s)

0 50 100 150 200 250 300
Time (s)

Figure 8. (a) Microservices taking longer than
monoliths to recover from a QoS violation, even (b) in
the presence of autoscaling mechanisms.

between microservices have on end-to-end per-
formance when allocating resources.

Finally, the fact that hotspots propagate
between tiers means that once microservices
experience a QoS violation, they need longer to
recover than traditional monolithic applications,
even in the presence of autoscaling mechanisms,
which most cloud providers employ. Figure 8
shows such a case for Social Network imple-
mented with microservices, and as a monolith in
Java. In both cases, the QoS violation is detected
at the same time. However, while the cluster man-
ager can simply instantiate new copies of the
monolith and rebalance the load, autoscaling
takes longer to improve performance. This is
because, as shown in Figure 8(b), the autoscaler
simply upsizes the resources of saturated
services—seen by the progressively darker colors
of highly utilized microservices. However, serv-
ices with the highest utilization are not necessar-
ily the culprits of a QoS violation, taking the
system much longer to identify the correct source
behind the degraded performance and upsizing it.
As a result, by the time the culprit is identified,
long queues have already built up, which take
considerable time to drain.

Serverless Programming Frameworks
Microservices are often used interchangeably
with serverless compute frameworks. Serverless
enables fine-grained, short-lived cloud execution,
and is well-suited for interactive applications
with ample parallelism and intermittent activity.
We evaluated our end-to-end applications on
AWS’s serverless platform, AWS Lambda and
showed that despite avoiding the high costs of
reserved idle resources, and enabling more elas-
tic scaling in the presence of short load bursts,
serverless also results in less predictable

performance for interactive microservices for
three reasons. First, on current serverless plat-
forms communication between dependent func-
tions (serverless tasks) happens via remote
persistent storage, S3, in AWS’s case. This not
only introduces high, but also unpredictable
latency, as S3 is subject to long queueing delays
and rate limiting. Second, because VMs hosting
serverless tasks are terminated after a given
amount of idle time, when new tasks are spawned,
they need to reload any external dependencies,
introducing nonnegligible overheads. Finally, the
placement of serverless tasks is up to the cloud
operator’s scheduler, and hence prone to long
scheduling delays, and unpredictable perfor-
mance due to contention from external jobs shar-
ing system resources. Overall, we show that while
similar, microservices and serverless compute
each present different system challenges, and are
well suited for different application classes.

Tail at Scale Effects

Finally, we explore the system implications of
microservices at large scale. Tail at scale effects
are well-documented in warehouse-scale com-
puters,* and refer to system (performance, avail-
ability, efficiency) issues that specifically arise due
to a system’s scale. In this article, we use the
large-scale deployment of the social network appli-
cation with hundreds of real users to the impact of
cascading performance hotspots, request skews,
and slow servers on end-to-end performance.

Figure 9(a) shows the performance impact
of dependencies between microservices on 100
EC2 instances. Microservices on the y-axis are
again ordered from the back-end in the top to
the front-end in the bottom. While initially
all microservices are behaving nominally, at
t = 260 s the middle tiers, and specifically compo-
sePost, and readPost become saturated due to a
switch routing misconfiguration that overloaded
one instance of each microservice, instead of load
balancing requests across different instances. This
in turn causes their downstream services to satu-
rate, causing a similar waterfall pattern in per-tier
latency to the one in Figure 7. Toward the end of
the sampled time (¢ > 500 s) the back-end services
also become saturated for a similar reason, caus-
ing microservices earlier in the critical path to sat-
urate. This is especially evident for microservices

IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

o
o
o
2
@
3
a

] a2
0100 200 300 400 500 600 0 1 2 3 4 5
Front-end Time (s) Slow Servers (%)

® ® Micro
Micro
Micro
Mono
* % Mono
+ + Mono

40)
100)
200)
40)

100)
200)

,_.
2

c o
+d

=
o

=y
=)

Latency increase (%)

o
@
o
<
S
17}
£
»
@
2
I
@
@
<4
Lo
=

ey
=)

Figure 9. (a) Cascading hotspots in the large-scale
Social Network deployment, and tail at scale effects
from slow servers.

in the middle of the y-axis (bright yellow), whose
performance was already degraded from the previ-
ous QoS violation. To allow the system to recover,
we employed rate limiting, which constrains the
admitted traffic, until hotspots dissipate. Even
though rate limiting is effective, it affects user
experience by dropping a fraction of requests.
Finally, Figure 9(b) shows the impact of a small
number of slow servers on overall QoS as cluster
size increases. We purposely slow down a small
fraction of servers by enabling aggressive power
management, which we already saw is detrimental
to performance. For large clusters (> 100 instan-
ces), when 1% or more of servers behave poorly,
QPS under QoS is almost zero, as
these servers host at least one

As with the hardware and cluster management
implications above, these results again emphasize
the need for hardware and software techniques
that improve performance predictability at scale
without hurting latency and resource efficiency.

LESSONS FROM DEATHSTARBENCH

DeathStarBench draws attention to the need
for research in the emerging application model
of microservices and highlights the research
areas with the highest potential for impact, while
also providing a widely adopted open-source
infrastructure to make that research possible
and reproducible.

Cloud systems have attracted an increasing
amount of work over the past five to ten years.
As cloud software evolves, the direction of such
research efforts should also evolve with it. Given
the increasing complexity of cloud services, the
switch to a fine-grained, multitier application
model, such as microservices, will continue to
gain traction, and requires more attention from
the research community in both academia and
industry. DeathStarBench highlights the need

for systems research in this emerg-

microservice on the critical path,
degrading QoS. Even for small
clusters (40 instances), a single
slow server is the most the ser-
vice can sustain and still achieve
some QPS under QoS. Finally, we
compare the impact of slow serv-
ers in clusters of equal size for
the monolithic design of Social
Network. In this case, QPS is
higher even as cluster sizes grow,
since a single slow server only
affects the instance of the mono-
lith hosted on it, while the other
instances operate independently.

DeathStarBench draws
attention to the need for
research in the
emerging application
model of microservices
and highlights the
research areas with the
highest potential for
impact, while also
providing a widely
adopted open-source
infrastructure to make
that research possible
and reproducible.

ing field, and quantifies the most
promising research directions, and
their potential impact.
DeathStarBench also highlights
the need for hardware-software
codesign in cloud systems, as appli-
cations increase in scale and com-
plexity. Specifically, we showed that
current platforms are not well-suited
for the emerging cloud programming
models, which require lower latency,
more elastic scaling, and more pre-
dictable responsiveness. We demon-
strated that microservices come
with both opportunities and chal-

The only exception are back-end databases, which
even for the monolith are shared across applica-
tion instances, and sharded across machines. If
one of the slow servers is hosting a database
shard, all requests directed to that instance are
degraded. The more complex an application’s
microservices graph, the more impactful slow
servers are, as the probability that a service on
the critical path will be slowed-down increases.

May/June 2020

lenges across the system stack, and that for sys-
tem designers to improve QoS without sacrificing
resource efficiency, they need to rethink the cur-
rent cloud stack in a vertical way, from hardware
design and networking, to cluster management
and programming framework design. Finally, we
also quantified the potential hardware accelera-
tion has toward addressing the performance
requirements of interactive microservices, and

17

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

18

Top Picks

showed that programmable acceleration can
greatly reduce one of the primary overheads of
multitier services; network processing.

As microservices continue to evolve, it is
essential for datacenter hardware, operating
and networking systems, cluster managers, and
programming frameworks to also evolve with
them, to ensure that their prevalence does not
come at a performance and/or efficiency loss.
Both DeathStarBench and the resulting study of
the system implications of microservices are a
call to action for the research community to fur-
ther explore the opportunities and challenges of
this emerging application model.

ACKNOWLEDGMENTS

We sincerely thank C. Kozyrakis, D. Sanchez,
D. Lo, as well as the academic and industrial users
of the benchmark suite, and the anonymous
reviewers for their feedback on earlier versions of
this article. This work was supported in part by
an NSF CAREER award, in part by NSF grant CNS-
1422088, in part by a Google Faculty Research
Award, in part by a Alfred P. Sloan Foundation Fel-
lowship, in part by a Facebook Faculty Research
Award, in part by a John and Norma Balen Sesqui-
centennial Faculty Fellowship, and in part by gen-
erous donations from Google Compute Engine,
Windows Azure, and Amazon EC2.

B REFERENCES

1. “The evolution of microservices,” 2016. [Online].
Available: https://www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference

2. L. Barroso, U. Hoelzle, and P. Ranganathan, The
Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan &
Claypool: San Rafael, CA, USA, 2018.

3. S. Chen, S. Galon, C. Delimitrou, S. Manne, and
J. F. Martinez, “Workload characterization of
interactive cloud services on big and small server
platforms,” in Proc. Int. Symp. Workload
Characterization, Oct. 2017, pp. 125-134.

4. J. Dean and L. A. Barroso, “The tail at scale,”
Commun. ACM, vol. 56 no. 2, pp. 74-80, 2013.

5. C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware
scheduling for heterogeneous datacenters,” in Proc.
18th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., Houston, TX, USA, 2013, pp. 77-88.

6. C. Delimitrou and C. Kozyrakis, “Quasar: Resource-
efficient and QoSAware cluster management,” in
Proc. 19th Int. Conf. Archit. Support Program.

Lang. Oper. Syst., Salt Lake City, UT, USA, 2014,
pp. 127-144.

7. C. Delimitrou and C. Kozyrakis, “HCloud: Resource-
efficient provisioning in shared cloud systems,” in
Proc. 21st Int. Conf. Archit. Support Program. Lang.
Oper. Syst., Apr. 2016, pp. 473-488.

8. C. Delimitrou and C. Kozyrakis, “Bolt: | know what you
did last summer... Inthe cloud,” in Proc. 22nd Int. Cont.
Archit. Support Program. Lang. Oper. Syst., Apr. 2017,
pp.599-613.

9. D. Firestone et al., “Azure accelerated networking:
Smartnics in the public cloud,” in Proc. 15th USENIX
Symp. Netw. Syst. Design Implementation, 2018,
pp. 51-66.

10. Y. Gan et al., “An open-source benchmark suite for
microservices and their hardware-software
implications for cloud and edge systems,” in Proc.
24th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., Apr. 2019, pp. 3-18.

11. Y. Gan et al, “Seer:
navigate the complexity of performance debugging

Leveraging big data to

in cloud microservices,” in Proc. 24th Int. Conf.
Archit. Support Program. Lang. Oper. Syst., Apr.
2019, pp. 19-33.

12. D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource
efficiency at scale,” in Proc. 42nd Annu. Int. Symp.
Comput. Archit., 2015, pp. 450-462.

Yu Gan is currently working toward the Ph.D. degree
with the School of Electrical and Computer Engineer-
ing, Cornell University, where he works on cloud
computing and root cause analysis for interactive
microservices. He is a student member of IEEE and
ACM. Contact him at yg397@cornell.edu.

Yangqi Zhang is currently working toward the Ph.D.
degree with the School of Electrical and Computer
Engineering, Cornell University, where he works on
cloud systems and resource management for inter-
active microservices. He is a student member of
IEEE and ACM. Contact him at yz2297@cornell.edu.

Dailun Cheng is currently working toward the
M.Eng. degree with the School of Electrical and
Computer Engineering, Cornell University. Contact
him at dc924@cornell.edu.

IEEE Micro

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

Ankitha Shetty is currently working toward
the M.Eng. degree with the School of Computer
Science, Cornell University. Contact him at
aas394@cornell.edu.

Priyal Rathi is currently working toward the M.Eng.
degree with the School of Computer Science, Cornell
University. Contact him at pr348@cornell.edu.

Nayan Katarki is currently working toward the
M.Eng. degree with the School of Electrical and
Computer Engineering, Cornell University. Contact
him at nk646@cornell.edu.

Ariana Bruno is currently working toward the
M.Eng. degree with the School of Electrical and
Computer Engineering, Cornell University. Contact
him at amb633@cornell.edu.

Justin Hu is currently working toward the M.Eng.
degree with the School of Computer Science, Cornell
University. Contact him at jh2625@cornell.edu.

Brian Ritchken is currently working toward the
M.Eng. degree with the School of Electrical and
Computer Engineering, Cornell University. Contact
him at bjr96@cornell.edu.

Brendon Jackson is currently working toward the
M.Eng. degree with the School of Electrical and
Computer Engineering, Cornell University. Contact
him at btj28@cornell.edu.

Kelvin Hu is currently working toward the M.Eng.
degree with the School of Computer Science, Cornell
University. Contact him at sh2442@cornell.edu.

Meghna Pancholi is currently working toward the
B.S. degree with the School of Computer Science,
Cornell University. Contact him at mp832@comell.edu.

Yuan He is currently working toward the M.Eng.
degree with the School of Electrical and Computer
Engineering, Cornell University. Contact him at
yh772@cornell.edu.

Brett Clancy is currently working toward the M.Eng.

degree with the School of Computer Science, Cornell
University. Contact him at bjc265@cornell.edu.

May/June 2020

Chris Colen is currently working toward the M.Eng.
degree with the School of Computer Science, Cornell
University. Contact him at cdc99@cornell.edu.

Fukang Wen is currently working toward the M.Eng.
degree with the School of Computer Science, Cornell
University. Contact him at fw224@cornell.edu.

Catherine Leung is currently working toward the
M.Eng. degree with the School of Computer Science,
Cornell University. Contact him at chi66@cornell.edu.

Siyuan Wang is currently working toward the M.Eng.
degree with the School of Computer Science, Cornell
University. Contact him at sw884@cornell.edu.

Leon Zaruvinsky is currently working toward the
M.Eng. degree with the School of Computer Science,
Cornell University. Contact him at laz37@cornell.edu.

Mateo Espinosa is currently working toward the
M.Eng. degree with the School of Computer Science,
Cornell University. Contact him at me326@cornell.edu.

Rick Lin is currently working toward the M.Eng.
degree with the School of Electrical and Computer
Engineering, Cornell University. Contact him at
cl2545@cornell.edu.

Zhongling Liu is currently working toward the
M.Eng. degree with the School of Electrical and
Computer Engineering, Cornell University. Contact
him at zI682@cornell.edu.

Jake Padilla is currently working toward the
M.Eng. degree with the School of Computer Science,
Cornell University. Contact him at jsp264@cornell.edu.

Christina Delimitrou is currently an Assistant
Professor with the School of Electrical and Computer
Engineering, Cornell University, where she works on
computer architecture and distributed systems.
Her research interests include resource-efficient data-
centers, scheduling and resource management with
quality-of-service guarantees, emerging cloud and loT
application models, and cloud security. Delimitrou
received the Ph.D. degree in electrical engineering
from Stanford University. She is a member of IEEE and
ACM. Contact her at delimitrou@cornell.edu.

19

Authorized licensed use limited to: Cornell University Library. Downloaded on May 26,2020 at 23:46:39 UTC from IEEE Xplore. Restrictions apply.

