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Healthcare applications supported by the Internet of Things enable personalized monitoring of a patient in everyday settings.
Such applications often consist of battery-powered sensors coupled to smart gateways at the edge layer. Smart gateways offer
several local computing and storage services (e.g., data aggregation, compression, local decision making), and also provide
an opportunity for implementing local closed-loop optimization of different parameters of the sensor layer, particularly
energy consumption. To implement efficient optimization methods, information regarding the context and state of patients
need to be considered to find opportunities to adjust energy to demanded accuracy. Edge-assisted optimization can manage
energy consumption of the sensor layer but may also adversely affect the quality of sensed data, which could compromise the
reliable detection of health deterioration risk factors. In this article, we propose two approaches: myopic and Markov decision
processes (MDPs)—to consider both energy constraints and risk factor requirements for achieving a twofold goal: energy
savings while satisfying accuracy requirements of abnormality detection in a patient’s vital signs. Vital signs, including heart
rate, respiration rate, and oxygen saturation, are extracted from a photoplethysmogram signal and errors of extracted features
are compared to a ground truth that is modeled as a Gaussian distribution. We control the sensor’s sensing energy to minimize
the power consumption while meeting a desired level of satisfactory detection performance. We present experimental results
on realistic case studies using a reconfigurable photoplethysmogram sensor in an IoT system, and show that compared to
nonadaptive methods, myopic reduces an average of 16.9% in sensing energy consumption with the maximum probability of
abnormality misdetection on the order of 0.17 in a 24-hour health monitoring system. In addition, over 4 weeks of monitoring,
we demonstrate that our MDP policy can extend the battery life on average of more than 2x while fulfilling the same average
probability of misdetection compared to the myopic method. We illustrate results comparing myopic, MDP, and nonadaptive
methods to monitor 14 subjects over 1 month.
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1 INTRODUCTION

Interconnected low-cost and miniaturized wearable sensors are increasingly being proposed as an integral part
of next-generation health care systems [1-3]. In a recent trend in this class of technological problems, these
sensors are integrated within the Internet of Things (IoT) infrastructure to build distributed systems capable of
performing highly complex processing of the acquired signals. Of particular interest is the recently proposed
edge computing paradigm [4, 5], where compute-capable devices—the edge servers—placed at the edge of the
network take over data processing tasks generated by interconnected devices. The low latency of the wireless
links connecting the devices to the edge server makes these architectures capable of supporting time-sensitive
applications [6, 7].

However, the development of wearable systems for clinical-level continuous monitoring of patients in every-
day setting presents critical challenges: (a) the energy supply available to the sensors is severely constrained due
to weight and size constraints, and (b) motion artifacts due to body movements diminish the quality of the ac-
quired signals. Problem (b) especially affects sensors measuring vital signs, such as photoplethysmogram (PPG),
electrocardiogram (ECG), and electromyogram (EMG) sensors. The signal-to-noise ratio (SNR) of the signals can
be improved by increasing the sensing energy. This strategy can further shorten the lifetime of the sensors.

The overarching objective of this work is to mitigate the preceding issues by proposing an edge computing—
based architecture supporting a context-aware form of control of the sensors. Specifically, we observe that noise
affects the collected signal differently as the monitored subject engages in different activities. For instance, if the
person is sleeping, the noise power is much smaller compared to that affecting the same signal acquired when
the person is running. Intuitively, knowing the current activity of the person would allow to set a corresponding
sensing energy level to reach a desired SNR level.

Intuitively, wearable sensors are not suitable to host such complex reasoning, as detecting the activity would
require to process another set of signals, such as from accelerometers. Therefore, we propose to use the edge
servers as the central components of a distributed context-aware system: the edge server assisting the sensors
will collect their signals, extract the context, (in our case, the activity of the monitored person), and control
the sensing parameters using predefined messages. By adapting the sensing energy used by the sensors to the
activity, the system can prolong the lifetime of the sensors, thus improving the integrity of the acquired signal
over long periods of time, without compromising the quality of the signal.

Based on this general concept and architecture, we fully develop a specific application whose objective is
to detect abnormalities in vital signs extracted from PPG sensors [8, 9]. PPG is a low-cost and miniaturized
optical sensor widely used in medical and wearable sensors (e.g., fitness trackers, smart rings, smart earrings),
which can continuously capture several vital signs such as heart rate, heart rate variability, respiration rate, and
blood oxygenation [10]. Based on real-world data, we build a model for normal and abnormal signals, and define
corresponding regions in a feature space. In this context, the edge server will detect the current activity of the
monitor person and adjust the power used by the PPG sensor to ensure that the misdetection probability is below
a predetermined threshold while maximizing the lifetime of the sensor.

To this aim, we develop two distinct strategies. The first strategy is myopic, meaning that the sensing power is
selected solely based on the current activity. The linear time complexity of myopic results in a minimal commu-
nication between the edge and sensor layers, as well as a lightweight computation at smart gateways, making
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the local control at the edge significantly agile. Conversely, the second strategy builds a statistical model of a
person’s activities and battery state of charge (SoC) dynamics, which are then used to locate decisions optimal
over an extended period of time. Our proposed framework includes the following:

o A hardware prototype of a reconfigurable wireless PPG sensor node

e An edge-based adaptation algorithm for wearable sensors in the context of abnormality detection

e A Gaussian model of the sensing accuracy as a function of activity and input sensor current from real-
world measurements to calculate the probability that an abnormal signal is not detected

e Formulation of an optimization problem that enables a trade-off between detection of abnormalities and
sensing energy consumption in the sensor.

In summary, work makes the following contributions:

e An edge-based adaptation algorithm for wearable sensors in the context of abnormality detection

e A Gaussian model of the detection accuracy as a function of activity and input sensor current from real-
world measurements.

e A myopic strategy optimizing the trade-off between detection of abnormalities and sensing energy con-
sumption.

o A Markov decision process (MDP) solution to track the time-evolving, physical activity of an individual
along with the state of the battery.

e Extensive evaluation and results based on a real-world trial involving 20 pregnant women for 7 months
(ethically approved human subject trial).

The rest of the article is organized as follows. In Section 2, we provide background on the addressed problem
and discuss related work. Section 3 describes the layered architecture of the system. The monitoring and detection
frameworks are presented in Section 4. Section 5 discusses the process of extracting vital signs from a PPG signal
and setup for collecting activity related data from various subjects. Section 6 presents and discusses numerical
results, and Section 7 concludes the article.

2 BACKGROUND AND RELATED WORK

We first introduce state-of-the-art methods in sensor control for energy efficiency (Section 2.1), then we provide
background on the PPG sensor used in the proposed study (Section 2.2).

2.1 Related Work

Wearable sensors necessarily are battery-powered devices. Thus, one of the key problems in continuous moni-
toring of vital signs acquired by these sensors is their limited energy supply. Algorithms to reduce the energy
consumption of sensors have been proposed in previous work and widely studied. Recent research has begun
to study the energy efficiency of IoT architectures. Scheduling sleeping intervals [11-15], determining duty cy-
cles [16] in the sensor layer, and implementing packet routing [17] are among the methods to deliver energy
efficiency to the sensor networks. However, the state of the art lacks the attention toward designing adaptive
healthcare IoT architectures capable of controlling system-level parameters based on the context of environment
and the state of patients. In 2017, Kaur and Sood [18] presented a solution to determine sleep intervals of sensors
based on their residual battery level, usage history, and quality of the measured signal. Additionally in 2017,
Tunic and Akar [19] proposed to model as a Markov chain the charging/discharging process of sensors equipped
with energy harvesting units. Based on the resulting model, the authors computed the outage probability in a
finite time horizon.

Techniques to implement energy efficient networks for biosensors known as the wireless body area net-
work (WBAN) are proposed. Chang et al. [20] proposed a routing protocol for WBAN, considering expected
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transmission count and remaining energy units for optimal path selection. Pradhan et al. [21] compared en-
ergy consumption in four protocols—802.15.4, IEEE 802.15.6, SMAC, and TMAC—as hybrid MAC protocols in
healthcare.

All of the preceding are exemplars of contributions addressing energy efficiency for IoT sensors. However,
none of the authors focused on context-aware models. Herein, we propose a context-aware approach to optimize
the energy consumption of the sensors without compromising the probability of detecting anomalous signals.

In 2012-2014, Zois et al. [22-24] proposed MDP-based approaches to detect the activity of a monitored subject
by means of imperfect observations acquired by noisy wearable sensors. The framework proposed in those
works, which is based on partially observable Markov decision rocesses, enable exploration of the trade-off
between energy consumption, sampling rate, and estimation accuracy. Herein, we use a Markov chain to model
the activity, but we use that information to build an optimal detector of anomalies in biosignals. Note that the
two approaches could be merged to obtain a holistic activity estimation and anomaly detection.

2.2 Photoplethysmogram

PPG is an optical sensor to measure the amount of oxygenated blood in body tissues. When the heart beats,
oxygenated blood penetrates in body tissues through small blood vessels until it delivers all of its oxygen content.
The optical characteristics of red blood cells changes according to the amount of oxygen it carries via an internal
biomolecule named hemoglobin. In PPG, a single wavelength light source illuminates a part of the skin, and a
light sensor measures the amount of light reflection or absorption. The sensor output is an oscillating signal,
in which each cycle shows the increase and decrease of the oxygenated hemoglobin molecule in blood vessels
during individual heartbeats. Although the frequency of the fast-oscillating part of the signal can be used to
extract the heart rate, there are also low-frequency oscillations in the signal baseline due to physical changes in
the blood vessels surrounding tissues, which reflects the respiration rate. Since the hemoglobin light absorption
coefficient differs with different light wavelength, comparing the sensor’s output to two different wavelength
light sources allows the estimation of blood oxygen saturation (SpO,).

3 10T SYSTEM ARCHITECTURE

Herein, we develop a monitoring system based on the emerging three-layer IoT architecture (Figure 1). In health-
care applications, the first layer of this architecture—the one in direct contact with the monitored person—is
composed of a body area sensor network capable of capturing biosignals. In our case, this layer consists of a
microcontroller, a PPG sensor, an inertial measurement unit (IMU), and a transmission module. The PPG sensor
has several power consumption levels (i.e., the LED’s current levels) that result in different SNRs as a function of
the monitored person’s activity. Since our approach finds an optimal solution for the sensor settings by selecting
the most efficient power mode, the power levels for this device need to be reconfigurable.

In conventional two-layer IoT architectures, the gateways are simply utilized for networking purposes such
as protocol conversion to connect a sensor network to the Internet and cloud infrastructures. Instead, we use
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the augmented (smart) version of these gateways [6] and their processing power to implement the core part of
the proposed context-aware control: to analyze the incoming data, plan for future configurations of the sensing
device, and send the configuration data to the sensor layer. We remark that the three-tier architecture introduces
challenges. First, a coherent management of communications and task allocation among the layers necessitates
careful design. Then, the distribution of tasks inevitably introduces a delay in the propagation of information
throughout the system. Finally, a three-layer design introduces security and privacy concerns. Herein, we estab-
lish a fast control loop using the edge server, which is connected to the sensor through a one-hop wireless link.
We remark that this strategy grants significant performance gain to the sensor, which has limited computation
and energy resources.

As shown in Figure 1, the edge server (e.g., a smart gateway) receives the sensing device information together
with the PPG and body acceleration signals and locates the subject’s health status, activity level, and state of the
sensing device. It then determines the sensing parameters and sends the new configuration to the sensor node.
Note that the overall processing involves some additional steps, such as filtering, encryption, and compression,
and sends the preprocessed data to the cloud server, which builds a statistical model of the person’s temporal
sequence of activities. The sensing and edge layer are connected through a wireless link, which supports data
transfer upstream from the sensors to the edge server and, in the proposed framework, control downstream from
the edge server to the sensors.

We use a virtual private server as a cloud server. Similar to an edge device, the cloud server runs an Apache
web server on an Ubuntu Linux operating system (OS). A service on the Apache web server is responsible for
receiving data from the edge devices and storing them in the OS file system. A MySQL database server stores
user information and the index of their related files. These services gradually create a behavior and medical
history of the user. We process the stored data through another service to create the weekly Markov model for
each user. The server updates the edge device periodically with the latest users’ Markov models.

4 EDGE-ASSISTED ADAPTATION CONTROL

Based on the edge-assisted architecture described in the previous section, the IoT system that we propose uses
information related to the context of the monitored subject—the activity in the case study considered here—and
the model at the cloud layer to adjust sensing energy. The optimization formulation aims at the minimization of
cost measured as energy expense of the sensor node and maximization of the probability an abnormality will be
detected. As the first step to formulate the abnormality detection, we model the accuracy of sensor output as a
function of the different activities and energy levels.

In Section 4.1, the accuracy model as a function of Gaussian distribution for vital signs is derived. Section 4.2
discusses the stochastic model considering both the activity and the battery model. Section 4.2.1 presents a
myopic method, which only considers the current patient’s activity to determine the sensing configuration. We
build a model for the dynamics of the SoC of the sensor’s battery in Section 4.2.2. In addition, we present an
MDP formulation and algorithm that optimizes the current level over a finite horizon based on the activity
model stored at the cloud layer.

4.1 Problem Formulation

Based on the biometric PPG signal generated from the pulse oximeter sensor, the gateway calculates vital signs
of the monitored person, including heart rate, respiration rate, and SpO,. We remark that the current level U and
the activity X will determine the SNR of the signal used to calculate the features. To evaluate the accuracy of the
PPG sensor, we use an ECG sensor as a reference for heart rate, an airflow sensor for respiration, and another
PPG sensor with higher signal quality—and therefore energy consumption—as a reference for SpOs.

Based on the reference signals, we compute the error vectors of the three features: heart rate error
e1(U, X), respiration rate error e;(U, X), and SpO, error e3(U, X). We calculate the weighted total error vector
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e(U,X) = {y1e1(U, X) + y262(U, X) + y3e3(U, X)}. The variables yi,y2,ys are positive weights such that
y1+y2+y3=1. We denote as p(e(U,X) | U = u, X = x) the probability density function (PDF) of the total error
as a function of extracted features during an activity state X € {Sleeping, Sitting, Walking, Jogging, Running}
and current level U € {Uy, Us, ..., Us}. For practicality reasons, we assume that the PDF is Gaussian—that is,
pe(U,X) | U =u,X =x) ~N(0,0(U, X)). The variance of error o(U, X) can be derived from the error vector
e given current level U and activity state X. The error probability is calculated as the tail probability of the nor-
mal distribution. Threshold T corresponds to the maximum total RMSE tolerance in the estimated vital signs.
Therefore, the error probability is the following:

T
Pasn(T) = [ pr(e(UX) 1U = X = x)de. B

The formulation derived for error probability can be used to calculate the abnormality misdetection probabil-
ity. In fact, the abnormality misdetection probability is a function of sensor’s error probability (e.g., Perror(T) in
Equation (1)) and probability of abnormal vital sign regions. The abnormality misdetection probability formu-
lates the probability that an abnormal event in vital signs is not captured considering the error margin in the
sensor’s measurements. The error margin in the sensor’s measurements can be controlled and adjusted by the
threshold T in Peyor(T). For instance, a smaller value of T results in accepting smaller values of error probability
in the system. Thus, the small values of misdetection probability will require the system to choose higher power
levels in the sensor resulting in a higher energy consumption in the sensor.

To formulate the abnormality misdetection probability, we define regions of abnormal vital signs. We as-
sume that the PDF of the vital signs—heart rate, y;, respiration rate, y,, and SpO,, y3—is Gaussian both in nor-
mal and abnormal conditions. We calculate the mean of normal vital signs y, = 2?:1 Un.ivi and variance o =

3 Gz’iyii. Note that these parameters are calculated based on the combined features y = y1y;1 + y2y2 + y3ys,

i=1"n
and we assume that the combined features follow a Gaussian distribution. Abnormal vital signs also follow a
Gaussian distribution with mean p, = 3)3_, pa ;y; and variance 2 = 3)3_, 02 y2 .

To detect the normal vital signs from abnormal ones, we set the threshold 7 = }3_ 7;y; over the thresholds
{71, 72, 73} of each individual feature. We then define Ppg as when the abnormality misdetection probability is
detecting the abnormal vital signs as normal. A similar formulation considering normal regions of vital signs can
be used to model the misdetection of normal vitals as abnormal. In summary, the PDFs of abnormal vital signs
(e.g., fa(ylU, X)) and error (e.g., p(e|U, X)) follow independent Gaussian distributions.

Let Ppe = P(a, f, 1) be the abnormality misdetection probability defined as the probability of the following
events:

e the sensor’s error tolerance a = {e(U, X) < T},
e the region of abnormal vital signs f={y > 7}, and
o the activity state and current level n={U =u, X = x}.

Using the chain rule, the joint misdetection probability can be written as

Poe = P(a | f.mP B | MP (1) (2)
Consider the following upper bound for (1), with no prior knowledge about U and X,
Poe < Pla | f.mP(Bln). ®)

Intuitively, although the distribution of abnormal vital signs is a function of the activity, it is independent with
respect to the sensor’s current level. Thus,

Ppe < Pla | PP | X=x)=Pus. (4)
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Assuming P(a | n) ~ N(0,0) and P(f | X = x) ~ N (g, 04), We obtain

T oo
Pun= [ pelainde [ fulf1X=xdy ©)
By substituting the error probability in Equation (1), we finally obtain
P = Perror(T) f fa(B 1 X =x)dy. (6)

We use this form of Pyp along with the energy consumption in the PPG sensor as the main optimization param-
eters in Sections 4.2.1 and 4.2.2.

4.2  Stochastic Model

The PPG sensor is equipped with a battery of finite capacity. A key part of our model tracks the dynamic of the
battery’s SoC to enable energy-aware optimization of the used current level. Herein, we consider that At is a
time slot equal to 15 minutes.

The battery capacity is uniformly quantized to create discrete battery states. Specifically, the SoC in a given
time Qy takes values in Q = {Qy, ..., Qk}. In the following, we consider the maximum number of battery states
K to be 30. The sensing energy consumption is a function of the used sensing current level, which is determined
by the control U taking values in the action set {U, U, U, . . ., Us}.

We set the states so that the sensor consumes one charge level of the battery in 1 hour if the lowest sensing
current level U; is used. Thus, the maximum number of hours the sensor can continuously function is equal to
30. The highest current level Us consumes five levels of battery charge in an hour. Therefore, the battery will be
drained in 6 hours using the highest current level. Action Uy indicates that the sensor is in sleeping mode, during
which the SoC remains the same.

The dynamics of the battery state can be written as

Q. =max{Qx — E(U), 0}, (7)
where E(U)€E = E,.. ., Es indicates the number of battery levels consumed at a given time. Denoting the power
consumption of the sensor as Ctx(U), Equation (7) can be rewritten as

Q. =max{Qk — Crx(U)At, 0}. (8)

We consider that sensing starts with the maximum full-charged battery at time 0—that is, Q3p. Choosing an
optimal solution for the current level, the sensor consumes the corresponding energy budget. The discharging
probability in the battery depends on the current level chosen as an optimal action. The sensor consumes en-
ergy changing the state of battery from Qy to Q- where k’ < k. Therefore, the transition probability during
discharging can be defined as

e 2 P (Q4Qk.U). ©)

The sensor is forced to choose a lower current level U during the critical situation when the battery level at
a given time is less than the optimal action. For instance, consider that the sensor’s optimal current level was
chosen to be Uy but the battery’s critical battery level Q, does not allow sensing for the next hour. Therefore, the
optimal action will be forced to be U, to afford the continuation of sensing.

We consider that sensing stops when the battery is drained to the lowest level Q; forcing the sensor to choose
sleeping action. The user charges the battery only if he or she is not “Walking,” “Jogging,” or “Running,” and the
sensor’s optimal action would be sleeping mode Uj,. During the charging state, the sensor goes to a sleep mode
by choosing the current level to be Uy. During charging, the state of the battery changes from Q- to Qk, where
k’ > k. Therefore, the transition probability during charging will be

qk/k =P (Qr|Qk, Up) - (10)
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Considering the probability of charging and discharging defined previously, the dynamics of the battery during
the time can be modeled as a Markov process with states defined with temporal evolution in Figure 2.

The stochastic model considers the activity of the monitored person. In particular, we define a Markov process
X whose state space is {Sleeping, Sitting, Walking, Jogging, Running}. Figure 3 shows the connectivity structure
of the Markov chain governing the dynamics of X.

Importantly, the statistics of activity dynamics change over time following daily cycles. We capture this charac-
teristic by making the transition probabilities of X. Specifically, we build four different models for daily activities,
each corresponding to a 6-hour period. Based on the time of the day, the corresponding Markov chain computed
from the history of the activity of the subject will be used to calculate the optimal solution. Assume that each
model corresponding to each period of time is denoted by i € {1, 2, 3,4} during a 24-hour activity. For instance,
transition probability from the activity “Sitting” to “Walking” for the first period is denoted as P (X3(1)|X2(1)).
The transition probability during period i from activity X;(i) to X (i) is defined as

Py () =P (Xy (D)IX;(0)). (11)

The Markov model corresponding the ith period of 6 hours per day (e.g., i € {1,2,3,4}) will be used to solve
the optimization problem. Note that the dynamics of activity change over time, and the model needs to be
periodically updated. This becomes particularly apparent in the considered case study, where daily activities
are measured in pregnant women. Optimization not only needs to be context aware but also specific to the
person and the change over time of the person’s habits. The idea of this model demonstrates the necessity of
a self-aware system to adapt its dynamics throughout time. In view of the foregoing, our proposed model in
adapting the context-aware system to the activity of the subject results in personalization of the system.
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The overall system state Z is defined to be the composition of the battery state Qy and the patient’s activity
state X (i),

Z(i) = (X;(1), Qx)s (12)

with Z € Z = X X Q. Note that the dynamics of the battery are deterministic and fully defined by the action U

and the current SoC Q. During the time period i, it is assumed that the transition probabilities between activities

are static but then the transition probability will be updated entering the new period. Since the transition prob-

ability between activity X and battery level Q is independent, the joint transition probabilities can be written as

P(Z'(1)|Z(i). U) = P (QulQk. U) x P (X;(1)1X; (1))
or, equivalently, (13)

PZ'DIZ(D).U) = pjj (i) X g /i
where P (Qx|Qk, U) captures the the dynamics of the battery as a function of Qk, and the chosen action U and
P (X;(i)IXj (i)) captures the dynamics of activity. We remark that the probability #(X;(i)| X (i)) depends on the
time perlod i. At the end of each time horizon i, a new model of Markov chain with dlfferent transition proba-
bilities will be calculated. Therefore, the total transition probability of joint battery and activity states updates
in each time slot. In addition, transition probability P (Z’(i)|Z(i), U) depends on chosen action U. For instance,
if the user is “Sitting” and the battery state is fully discharged (e.g., Z; = (X3, Q1) in Figure 3), the system tran-
sitions to the user with “Walking” and battery state Qs(denoted as Zg = (X3, Q2)) given the possible action Uy,
with probability g2 X p2/3. An example of the resulting Markov chain is illustrated in Figure 4. The transition
probabilities P (X;(i)| X (i)) are specific to an individual, meaning that the Markov chain is built with the statis-
tics collected over time at the cloud layer. For simplicity, here we assume that the probabilities P (X;(i)| X} (i))
are known. Figure 5 demonstrates the dynamics of joint activity and battery states over 24 hours. In thls case, the
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transition probability between activity states p;, (i) is shown as a function of period i. The activity model for the
corresponding period i can be used to calculate the total transition probability between joint states. Therefore,
dependency of p;,j (i) on period i results in dependency of total transition probabilities between states on period
i as well. This model allows the system to evolve in time based on dynamics of the user’s context.

4.2.1 Myopic Strategy. Based on the upper bound for the misdetection probability provided in Equation (6),
we define the optimization problem controlling the trade-off between sensing power consumption Crx and prob-
ability of misdetection Pyg. The myopic optimization problem trades off between sensing power consumption
Crx and the probability Pyg in each time slot as follows:

mingnize Crx(U)

subjectto  Pup < 0

or, equivalently, (14)
0
Plaln) £ ————=1¢.
(| n) PEIX =) ¢
We define the Lagrangian multiplier A to solve the equivalent optimization problem:
LU, ) =Crx(U) + A(P(a | 1) = ). (15)
Taking the derivative with respect to the sensor’s current level,
Cx(U) . 0P(aln)
A =0 16
ou T au (16)
We obtain a linear relation between power consumption and current level:
0P(a | n) O
+A———— =0. 17
da  0U (a7)
Given the Gaussian PDF of « and linearity between « and U, we have
N
00;(a)
Ab 1[U =U; =0. 18
au + Aby ; [ il 32 (18)
The optimal (U*, 1) can be then calculated as
N
+0%i(a) ay
1[U=U =— . 19
Z =01 === 5o (19)

Using this formulation, we developed Algorithm 1 to determine the optimal current level in each slot. If the
number of possible current levels is equal to N, the complexity of this search is O(N).

4.2.2  Optimization over a Finite Horizon. The myopic method solves the optimization problem with linear
time complexity. In this section, we propose the second method to optimize in a longer perspective. In our
prototype system, the edge layer keeps track of patient’s activity state along with the battery state of the PPG
sensor. The cost function in this method is defined as a function of the power consumption and the upper bound
for misdetection probability (e.g., Equation (6)). The twofold goal is to minimize the cost while tracking the
system and patients’ states. To this end, we must propose a method that determines the sensor’s current level to
minimize the accumulative cost over a finite time horizon.

Optimal strategy. The Markov process defined earlier in Section 4.2 allows the computation of strategies op-
timizing the current level over a temporal horizon, which is moved in a sliding window fashion. Optimality is
defined over a cost jointly capturing sensing power consumption and misdetection probability in the upper-
bound form provided in the previous section. In fact, misdetection probability Pyg as a function of activity state
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ALGORITHM 1: Myopic method to control the sensor’s current

1: procedure SoLuTION(7, T) > 7 and T are thresholds at a given time ¢
2 Extract activity level X

3 for U € {Uy,...,Us} do

4 Calculate the variance of the error e(U, X).

5: Calculate tail Gaussian P(e | U = u, X = x)

6 Estimate Ppg using Pyg.

7 if Pyp < r thenreturn u

8 else

9: continue

10 until the system is terminated

X and current level U directly influence the total cost. Therefore, the total cost C(Z,U) can be written as a
function of joint state Z and current level U:

C(Z,U) = oPus(U,X) + (1 — 0)Crx(U). (20)

Given an initial state X(0) € X and Q(0) € Q, and the finite horizon 7, we calculate an average expected

reward under the action U:
T -1

J@U) == [Z YOZ.0)IZ(0)
t=0

' (21)

where we find the expected function under action U : Z’ — Z. Note that discount factor 0 > y < 1 is typically
chosen close to 1.

Optimal action. The goal is to minimize J over a finite time horizon with a given initial state Z(0) that achieves
the minimum cost:

U* = argmin9 (Z,U). (22)
U

Using this optimization formulation, we developed Algorithm 2 to determine the optimal current level in a
given time. In other words, the edge processor determines the current level such that the total cost as a function
of misdetection probability and the sensor’s power consumption will be minimized.

5 SETUP AND DATA

In this section, we first describe in detail the system setup in Section 5.1, and in Section 5.2, we describe the
clinical trial at the base of this study and its output data.

5.1 Setup

We now provide some specifics of the IoT system we developed. The sensing device, besides the actual PPG
sensor, is equipped with a microcontroller to read data from the sensor, a Flash memory to store data temporar-
ily, and a wireless data transmission module to send the recorded data. We use the ESP8266-12E board, which
integrates all mentioned components in a single board. In the specific board we used, a full TCP/IP stack is in-
tegrated with an L106 32-bit RISC microprocessor core running at 80 MHz, with 96 KB of on-chip SRAM and
4 MB of external Flash memory. For the sensor, we use a MAX-REFDES117 PPG sensor board, which is highly
configurable and provides a digitized signal through 12C communication. We program the microprocessor using
the C programming language to configure the sensor board internal registers. The sensing device connects to the
edge device via a WiFi connection. It has a permanent configuration memory that records the user information
and credentials of three different WiFi networks. At the beginning of the operation, the sensor node connects
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Table 1. System States with Sensing Power Consumption

State Power Consumption
Recording mode: LED setting: 0.8 mA 69.30 mW
Recording mode: LED setting: 3.5 mA 73.26 mW
Recording mode: LED setting: 6.2 mA 79.86 mW
Recording mode: LED setting: 9.3 mA 84.15 mW
Recording mode: LED setting: 12 mA 89.43 mW
Noisy PPG Signal Filtered PPG Signal Vital Signs
Heart Rate
Noise /\/\/\/ Biosignal  Vital Signs  Respiration Rate
Filter Extraction ~ Detection Blood Oxygen
Saturation

Fig. 6. Local data analysis to extract vital signs from raw PPG signals.

ALGORITHM 2: MDP method to control the sensor’s current

1: procedure SoLuTION(7, T) > 7 and T are thresholds at a given time ¢
2 Extract activity level X

3 Estimate battery level Q

4 Calculate the variance of the error e(U, X).

5: Calculate tail Gaussian P(e | U = u, X = x)

6 Estimate Ppg using Pyg.

7 Find the transition matrix $,,(U) based on time ¢ on the portion of the day

8 for state Z € {Z1,...,Z150} do

9 for state U € {Uy,...,Us} do

10: Use Equation (20) to compute cost C(Z, U) for transition matrix P, (u)
11: Use Equation (22) to find optimal action U*
12: until the system is terminated

to a WiFi network and asks the edge device to send initial configuration instructions, which include the PPG
LED power, recording duration, and hibernate state duration. Next, the sensing device begins to record the PPG
signal on the Flash memory and then goes to the hibernation mode for the duration defined in the configuration
instructions. After the hibernation period, it connects again to the edge device via the WiFi connection, sends
the recorded data, waits for the edge device to process the transferred data, receives the results as a new set of
configuration instructions, and initiates a new recording cycle. Note that the sensor turns the radio communica-
tion circuitry off during the recording and hibernation to save energy. Table 1 summarizes the system’s power
consumption specifications.

The edge device is a Linux-based computer running an Apache web server. It receives each set of the recorded
data from the sensing device via several HTTP Upload POST requests, merges data chunks into one file, analyzes
the data, and returns the new configuration in reply to the latest HT TP request. As shown in Figure 6, local data
analysis on the edge device consists of two sequential phases: biosignal extraction and vital signs detection.

Biosignal extraction. Respiratory and heartbeat signals are extracted from the raw PPG signal. Different studies
proposed various techniques that can be categorized into two major classes: feature-based extraction and filter-
based extraction [25, 26]. The former class first derives features from the waveform to extract respiratory and
heartbeat signals [27]. These methods might be, nevertheless, inappropriate in real-world applications since the
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Fig. 7. PSD of a 1-minute PPG signal while the user is sleeping. HR, heart rate; RR, respiration rate.

feature quality is highly susceptible to motion and ambient noise. Such artifacts are inevitable in wearable de-
vices as patients engage in different activities in nonclinical settings. However, filter-based extraction techniques
remove the artifacts before deriving the biosignals, filtering the raw PPG signal [28].

We adopt a filter-based technique by designing two band-pass filters for heartbeat and respiratory signal
extraction. In general, the biosignals have different frequency ranges: 0.1 to 1 Hz (6 to 60 breaths/minute) and
0.5 to 3.3 Hz (30 to 180 heartbeats/minute). The boundaries could be selected as the filters’ cutoff frequency.
However, such a naive approach leads to high error rates, as the pass range is too broad. Then, we select the
cutoff frequency using the peak values in the power spectral density (PSD) of the PPG signals [29]. Figure 7
shows the PSD as a function of frequency for a 1-minute PPG signal while the user is sleeping.

The peak in the heart rate frequency range reflects the heartbeat signal frequency. Similarly, the respiratory
signal frequency is selected using the peak in the respiration rate frequency range. As the respiration rate fre-
quency range might contain the heart rate frequency peak, we first extract the heartbeat signal and remove the
heart rate peaks, and then we acquire the respiratory signal. The filter’s cutoff frequencies are dynamically se-
lected during the monitoring with respect to the incoming signals. Note that an acceptable SNR is necessary, as
an excessive distortion of the signal would impair the process.

Vital signs detection. Several time-domain and frequency-domain techniques can be exploited to derive the
respiration rate and heart rate from the biosignals [25]. In our setup, we use a peak detection algorithm where
the peaks are obtained by detecting local maximum points in the derivative of the biosignals. The period between
two consecutive peaks reflects the respiration rate and heart rate values.

In contrast to the respiration rate and heart rate, the SpO; is calculated using a feature-based technique. As
indicated in Figure 8, four features—ACgrgp, DCrep, DCig, and ACrg —are acquired from the infra-red (IR) and
red signals. Such features are obtained by mapping consecutive local extrema of the heartbeat signals into the
raw PPG signals. The SpO; is calculated using the following equation:

ACir.DCggp’
SpO; = aR* + PR+, (29)

where «, 8, and y are constants determined by the sensor’s specification [30].

5.2 Data Collection

To evaluate the accuracy model of the PPG sensor’s measurements, we first collect data for the PPG signal during
different activities. We conduct our 5-hour experiment with 25 different combinations, in which a healthy subject
is monitored during “Sleeping,” “Sitting,” “Walking,” “Jogging,” and “Running” and the sensor’s current level is
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Fig. 8. Features in the PPG signals for SpO3 calculation.

varied with different values (e.g., 0.8 mA, 3.5 mA, 6.3 mA, 9.2 mA, and 12 mA). Each experiment lasted for
12 minutes. Windows of 30 seconds were used to calculate the vital signs from the PPG signal. The PPG signal
from the sensor is preprocessed and filtered, and the features SpOy, heart rate, and respiration rate are evaluated
for each combination of current level and activity.

Simultaneously, we use three different reference sensors to compare the calculated vital signs from our pro-
posed PPG sensor with a ground truth. We use a chest strap ECG sensor to capture the reference heart rate, an
airflow sensor for a respiration reference, and another PPG sensor with higher signal quality as a reference for
SpO2. We then calculated the error between calculated vital signs and the reference signal to model the accuracy
of measurements.

To model and test our proposed algorithms, physical data is recorded. The physical activity data is part of a
longitudinal study conducted to investigate the maternal body changes on pregnant women for 7 months (i.e., 6
months of pregnancy and 1 month postpartum). The study was performed in collaboration with the Department
of Nursing Science, University of Turku (UTU) and Turku University Hospital, and in accordance with the code
of ethics of the World Medical Association (Declaration of Helsinki). In addition, it was approved by the joint
ethics committee of the hospital district of Southwest Finland (35/1801/2016) and Turku University Hospital.

Between May 2016 and June 2017, 20 pregnant women were selected and recruited in Southern Finland, con-
sidering different criteria such as “singleton pregnancy,” “18 as the lower age limit,” and “gestational age less than
15 weeks.” Data collection was performed 24/7 via a lightweight fitness tracker (i.e., Garmin Vivosmart HR) [31]
consisting of a PPG sensor and and IMU. The data were regularly transferred to remote computers for storage
and postprocessing. The physical activity data utilized in this work was abstracted from the user’s steps and
hand movements in every 15-minute interval [32, 33]. Data from six subjects were rejected due to discontinuity
in data recording, with more than 50% of missing data. The output of the study allowed us to build the transi-
tion probabilities capturing the dynamics of the activity engaged by the monitored person. Note that the model
evolves over time and is specific to a person. Therefore, the cloud layer continuously updates the model and
periodically sends it to the edge server.

6 NUMERICAL RESULTS

In this section, we provide extensive results assessing the performance of the proposed system and optimization
framework. To assess the accuracy, the features extracted through the PPG sensor are compared to a ground
truth. We first calculate the total variance of RMSE to determine errors in the sensor with different activities and
different current levels of the PPG sensor. Figure 9 shows that the variance decreases when the current level is
increased. The variance increases in strenuous activities, such as “Jogging” or “Running,” due to noise caused
by motion artifacts. Using the total variance of RMSE, we model the probability of misdetection in abnormality
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Fig. 10. Error probability when RMSE = 2 for different current levels during two states: sitting (a) and running (b).

to follow a Gaussian distribution. The PDF of two activities is shown in Figure 10. Higher values of variance
in lower current levels resulted in higher values of probability of error (e.g., Perror in Equation (1)). Figure 10
shows the PDF of “Sitting” and “Running” with the calculated error variance. Higher values of variance in lower
current levels lead to higher values of the error probability Pe;ror. The shaded regions in Figure 10(a) and (b)
correspond to Perror With a threshold of RMSE, T = 2. A decrease in probability of error with a higher current
level during vigorous decreases is more evident. In addition, Perror is 1 during “Running” or “Jogging” with the
minimum current level of. 0.8 mA. Thus, the heart rate, respiration rate, or SpO, cannot be extracted from the
acquired signal due to the vigorous movements of the subject. The lowest acceptable current level for activities
such as “Running” and “Jogging” is 3.5 mA.

Myopic strategy. First, We evaluate the myopic strategy presented in Section 4.2.1. We first monitor a healthy
individual for 24 hours. A 3D acceleration signal is used to continuously estimate the user’s physical activity.
The accelerometer sensor is placed at the user’s hand, and hand movements are tracked to extract the user’s
steps. The acceleration signal is filtered, mitigating ambient noise, and steps are counted in each time interval.
Moreover, when the user is still (i.e., no step is detected), the orientation of the user is leveraged to differentiate
between sitting and sleeping.

First, we set T = 2 to be the predefined threshold of the RMSE. We then calculate the error probability
for all possible power levels. The myopic algorithm chooses the lowest power level that satisfies the maxi-
mum misdetection probability Pup calculated in Equation (14). Vigorous activities necessitate accurate mon-
itoring, which leads to choosing higher power levels. In contrast, lower power levels can satisfy the same
constraint on the probability of error in activities such as sleeping or sitting. In the results, we set the
maximum probability of error to { = 0.17 and set the weights as y; = 0.25,y; = 0.35,y3 = 0.4. Using these
weights, we determine the mean and variance of abnormal vital signs for each activity. In the considered
case and chosen parameters, the aggregate of normal vital signs y follows the distribution N (p,, 0,) with
sy = {57.72,60.43,74.29, 83.97,91.53} and o, = {0.25,0.73,1.17, 1.45,0.62} in the order of “Sleeping,” “Sitting,”
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Fig. 11. Sensing energy consumption as a function of maximum probability of error with different RMSE levels.

“Walking,” “Jogging,” and “Running,” respectively. Abnormal vital signs follow the distribution N (u,, 0,), where
we set j1, = {56.83,61.07,74.15,81.50,97.00} and o, = {2.02,0.71, 2.29, 1.67, 2.88}, respectively, and each element
of the vectors corresponds to a different activity as indicated earlier. The threshold 7 defined in Equation (5) is
the intersection of two Gaussian distributions corresponding to normal and abnormal vital sings. The cumulative
distribution function (CDF) for abnormal vital signs is calculated with z = {57.20, 60.73, 72.76, 82.68, 89.58}.

Based on these parameters, the probability P (S | X =x) = {0.57,0.68,0.72,0.76,0.99} is then derived accord-
ing to Equation (5). Assuming the predefined threshold { = 0.17 in error probability of the sensor and P(f |
X =x), the new threshold is set for the probability of misdetection to fulfill the upper bound 0 = { X P(f | X =x)
(see Equation (14)). The threshold 6 = {0.09,0.11,0.12,0.13,0.17} is the final vector corresponding to the desired
upper bound of misdetection probability Pup in the order of “Sleeping,” “Sitting,” “Walking,” “Jogging,” and
“Running,” respectively.

We first evaluate the myopic method to monitor a subject for 24 hours. We monitor the subject’s activity and
compare constant power consumption with the myopic method. During the 24-hour experiment, we measured
5,983.4 J and 7,721.4 ] consumed by the lowest and highest sensing power, respectively. The myopic strategy
achieved an energy consumption to 6,417.5 J, with an average sensing power consumption of 74.32 mW, equiv-
alent to a 16.9% reduction compared to the 89.43 mW of the highest sensing power level. Although using the
lowest current level results in a lower overall energy consumed by the sensor, using this setting leads to an
unacceptable Perror = 1 during “Jogging” and “Running.”

Figure 11 illustrates the trade-off between the constraint on the maximum error probability and overall en-
ergy consumption in a 24-hour temporal period. The myopic algorithm can detect abnormalities with maximum
tolerance threshold of RMSE = 50 by choosing the lowest current level. This setting leads to an energy expense
equal to 5,983.4 J. Setting the maximum error tolerance to RMSE = 0.1 or less results in choosing the highest
current level with the lowest probability of error inevitably. In this case, the total sensing energy consumption
during a 24-hour period is equal to 7,721.4 J. Values between these two extreme cases influence the maximum
probability of error and the sensing energy consumption in the sensor layer. For a specific value of the RMSE
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Fig. 12. Markov chain of activities of a subject in a 24-hour period with average transition probabilities calculated from first
week in a month.

threshold, increasing the maximum probability of error will let the system monitor the subject less accurately
using a lower current level. Therefore, the sensing energy consumption in the sensor will decrease.

MDP strategy. The myopic strategy only considers the instantaneous state of the system. Intuitively, a strategy
incorporating a longer-term evaluation of the outcome of actions can control the current level to avoid outage,
which inevitably reduces performance, saving energy until the subject is more likely to charge. We emphasize
that this planning is performed on a nonhomogeneous model, where transition probabilities are a function of the
time of the day. This further emphasizes the need for wise planning, aligning energy availability with periods of
the day most likely presenting vigorous activities. We further remark that such planning is informed by highly
personalized models, capturing the dynamics of the specific person wearing the sensor.

Figure 12 shows the transition probabilities during one day for one of the monitored subjects obtained training
the model over 1 week. This specific subject’s activities mostly included sleeping between 12 AM and 6 AM, with
a probability of 0.937 to remain in the sleeping state and 0.063 of transitioning to the sitting state. The probability
of staying in a sleeping state reduces to 0.58 and transitioning to a sitting state increases to 0.42 in the temporal
period between 6 PM and 12 AM because of a decrease in the sleeping state. In addition, the Markov chain
for each period can be updated after each week. Figure 13 shows the transition probabilities extracted between
12 PM and 6 PM trained over a 1 month period. The individual has a decrease in the probability of staying in the
sleeping state from 0.65 to 0.50 over the span of 4 weeks. Meanwhile, the probability of remaining in the sitting
state increased from 0.34 to 0.44.

Figure 14 illustrates how the activity of this specific individual evolves over 1 month. For instance, the subject
had a decline in walking time from the first week to the third week but then had an increase in her fourth week.
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Fig. 13. Markov chain of activities of a subject between 12 PM and 6 PM with average transition probabilities calculated
from weekly activities over the span of 4 weeks.
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Fig. 14. Weekly activity percentage for 1 month.

In contrast, the sleeping state had an increase of 8% from week 1 to week 3 and dropping by 4% on week 4.
Clearly, these changes should be reflected in the control strategy and planning.

Figure 15 compares the myopic and MDP strategies for the aforementioned subject over a 48-hour monitoring
period. We set the threshold for the probability of error (e.g., { in Equation (14)) to 0.002. The MDP cost function,
which captures a trade-off between the upper-bound misdetection probability and energy consumption, is a
function of the weight 0 < w < 1. If the value of w is close to zero, the control strategy tends to privilege lower
current levels and higher probability of misdetection. In contrast, a value of w close to 1 pushes the actions to
compromise energy saving to achieve a lower error probability. In this experiment, we set @ = 0.176 to have the
closest probability of misdetection to that of the myopic strategy in the previous results.
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Fig. 15. The 48-hour health monitoring of a healthy person during first week of monitoring. (a) User’s activity level. (b)
Sensor’s sensing power consumption. (c) Battery state tracking based on the sensor’s power consumption. (d) Probability of
error expected regarding the user’s activity. The red line and blue line indicate the myopic and MDP methods, respectively.

Figure 15(b) shows the optimal current level selected by the myopic and MDP methods. Figure 15(b) and (c)
show the actions and dynamics of the battery state induced by the two methods’ actions, respectively. The system
tracks the battery state for both methods, with 30 being the highest charging state. Based on the optimal action
taken, the battery state will be updated at each given time during sensing. During each time, the user charges
the battery the sensing stops and the state of battery will be updated.

Figure 15(d) shows the probability of error corresponding to the current level chosen in the optimal current
level chosen based on Figure 15(b). At each given time, the system chooses an optimal action based on the user’s
activity. The myopic strategy chooses the optimal action by considering the current activity of an individual.
However, the MDP strategy plans based on the current state of the battery and the activity of a user. Therefore,
the battery is drained after a longer time in the MDP method compared to myopic. The myopic method chooses
the optimal action without taking into account that the action chosen will drain the battery faster, and this
will increase the possibility that the battery will be drained during strenuous activity such as walking, jogging,
and running. The battery will not be charged until the user is sleeping or sitting. The myopic method chooses a
higher current level that will have lower probability of misdetection compared to MDP in a short term. However,
the frequency of necessity to charge the battery will be decreased in MDP, resulting in using the resource of the
battery more wisely. For instance, between 6 PM and 10 PM of the first 24-hour monitoring, the user was walking,
but due to drainage of the battery, the sensor was in sleeping mode. However, the MDP strategy chose the current
level U; and monitored the user for a longer time.

To update the activity model, the system retrains the MDP model weekly. The MDP model based on activity
history from the first week is used to find the optimal solution in Figure 16. Respectively, Figures 17 and 18 show
the results of 48 hours of monitoring during the third and fourth week, respectively, of results starting at 10 PM
and ending 48 hours later.

Figure 19 shows the probability of error over the entire day as a function of the average energy consumption
averaged over a month. We compare the three methods: myopic, MDP, and static power allocation.
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Fig. 16. The 48-hour health monitoring of a healthy person during the second week of monitoring. (a) User’s activity level.
(b) Sensor’s sensing power consumption. (c) Battery state tracking based on the sensor’s power consumption. (d) Probability
of error expected regarding the user’s activity. The red line and blue line indicate the myopicand MDP methods, respectively.
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Fig. 17. The 48-hour health monitoring of a healthy person during the third week of monitoring. (a) User’s activity level. (b)
Sensor’s sensing power consumption. (c) Battery state tracking based on the sensor’s power consumption. (d) Probability of
error expected regarding the user’s activity. The red line and blue line indicate the myopic and MDP methods, respectively.

Note that the sensor has five current levels—that is, U € {0.8 mA, 3.5 mA, 6.2 mA, 9.2 mA, 12 mA}. We take
into account the time slots in which the sensor is off due to battery outage, impacting the average energy con-
sumption and the probability of misdetection in abnormality. Note that the highest current level (e.g., 12 mA)
consumes the highest amount of energy but quickly drains the battery, thus inducing an outage approximately
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probability in abnormality detection expected regarding the user’s activity. The red line and blue line indicate the myopic
and MDP methods, respectively.
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Fig. 19. Average of probability of error as a function of energy consumption (KJ) in 1 month for one subject. Compar-
ison between three methods of MDP, myopic, and static power consumption. The myopic method is evaluated based
on { € {0.0002,0.002,0.045,0.07,0.1} in Equation (14). MDP is evaluated based on w € {0.172,0.176,0.177,0.188, 0.3, 0.4,
0.5,0.6,0.7} in Equation (20). Static power consumption is evaluated based on current levels U € {0.8 mA,3.5 mA,
6.2 mA,9.2 mA, 12 mA}.

every 6 hours. Note that due to the frequent outages, and thus the frequent 1.5-hour charging periods, the aver-
age energy consumption over the 24 hours is smaller than in other current levels. However, during the charging
mode, the probability of abnormality misdetection is equal to 1, resulting in a large misdetection probability.
Using a constant current level of 0.8 mA increases the average 24-hour energy consumption but leads to a low
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Fig. 20. Average battery lasting over 1 month.

probability of detecting anomalies in difficult states. The dynamic context-aware selection operated by the my-
opic and MDP frameworks is therefore instrumental to achieve good performance.

To derive the MDP-based strategy, we set the parameter of cost function (e.g.,  in Equation (20)) to
{0.172,0.176,0.177,0.188,0.3,0.4,0.5,0.6,0.7} to determine the importance of energy consumption over error
probability. Comparing MDP to myopic and the constant current level, we see a great reduction in energy con-
sumption when the probability of error is around 0.25. To compare the battery lasting for the three methods,
we chose the parameters to satisfy the fixed probability of error 0.26. In this case, the parameter for MDP cost
function (w = 0.176), parameter for upper bound probability of error in the myopic method ({ = 0.1), and static
current level is chosen as 6.2 mA.

Using the settings mentioned earlier, we calculated the average time between consecutive battery outages and
compared the methods in Figure 20. We also included the battery lasting using the highest and lowest current
level in the sensor (e.g., 12 mA and 0.8 mA accordingly).

According to Figure 20, results indicate that MDP even achieves higher efficiency compared to the time we
choose the lowest power level. This is because MDP policy chooses the sleeping mode in the sensor when the
battery has very low charge, leading to longer periods between battery outages. Results show that MDP doubles
the battery duration compared to the myopic strategy.

We observe a considerable increase of battery lasting in the third week granted by the myopic approach com-
pared to the other weeks for this specific user. The increase is motivated by the evolution of the statistics of the
activity pattern, which is illustrated in Figure 14. The user has an increase in the fraction of time spent sleeping
and sitting, which grow to 46% and 24%. Therefore, based on our model, this user had a higher probability to
charge her wearable device. Consequently, the battery was fully charged more often compared to other weeks.
Furthermore, during these activities, the sensor can use a lower power level, resulting in a longer battery duration
even when using a simple approach.

Figure 21 shows the comparison between MDP, myopic, and static power allocation strategies averaged over
14 subjects. We set a fixed value of average probability of error to 0.32. The MDP strategy consumes 3.7 KJ over
1 month, whereas the myopic method consumes 4.42 KJ and the static power allocation strategy consumes 4.4
when using a current level of 9.2 mA. Therefore, MDP has an average of 12% reduction in energy consumption,
fulfilling the same probability of error compared to myopic and static power consumption.
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Fig. 21. Average probability of error as a function of energy consumption (KJ) in 1 month averaged over 14 subjects.
Comparison between three methods of MDP, myopic, and static power consumption. The myopic method is evaluated
based on ¢ € {0.0002,0.002,0.045,0.07,0.1} in Equation (14). MDP is evaluated based on w € {0.172,0.176,0.177,0.188,
0.3,0.4,0.5,0.6,0.7} in Equation (20). Static power consumption is evaluated based on current levels U e
{0.8 mA,3.5 mA, 6.2 mA,9.2 mA, 12 mA}.

7 CONCLUSION

The IoT paradigm, through a high-level network of connected devices, enables ubiquitous health monitoring
for patients at risk in everyday settings. Such a remote IoT-based health monitoring system typically includes
battery-powered sensors that require a satisfactory energy-efficient control approach. Contemporary published
approaches mostly focus on optimizing the power consumption of the sensor layer, which may compromise the
accuracy of measurements.

In this article, we proposed two frameworks—myopic and MDP—to control the energy-constrained sensor
layer. We used the key low-latency characteristics of edge computing to build a context-aware control system
whose objective is to adaptively determine the sensing accuracy, and thus the energy dissipation, to maximize
the sensor lifetime. We modeled the accuracy of sensor measurement in capturing abnormality as a Gaussian
distribution. The optimization problem minimizes the energy consumption within different contexts (e.g., ac-
tivity) to achieve a satisfactory probability of misdetection in abnormality. We extend our implementations to
monitor 14 healthy subjects for 1 month.

We demonstrated that the myopic method has savings of 16.9% on average compared to the nonadaptive case
in a 24-hour health monitoring period by adapting to an activity while assuring a minimum level of probability
of misdetection in abnormality. Moreover, our results show that MDP can increase the battery lasting with an
average of more than two times compared to myopic and nonadaptive power consumption, fulfilling the same
probability of misdetection over 1 month. As future work, we will investigate calculating the distance of adjacent
policies among different subjects.
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