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Abstract—In the healthcare sector, there is a strong demand
for accurate objective pain assessment as a key for effective pain
management. Real-time and accurate objective pain assessment
help hospital staffs and caregivers decide the proper dosage of
pain medication to be provided to a patient in a timely manner.
The state-of-the-art automatic and objective pain assessment
techniques in the literature can be classified into two main
categories: physiological-based and behavioral-based. The first-
class monitors the changes in patients’ physiological data such
as Electrocardiography (ECG), Electromyography (EMG), Pho-
toplethysmography (PPG) to identify autonomic nervous system
reactions to pain, while the second class utilizes behavioral
reactions to pain such as techniques using computer vision-based
techniques by extracting features from patients’ head poses and
facial expressions. Recent pain monitoring systems have become
multi-modal meaning that they deploy a combination of both
approaches to improve pain monitoring accuracy. Although such
complex models are highly accurate in pain monitoring, they are
more computationally intensive imposing feasibility limitations to
implement them on wearable devices in terms of energy efficiency
(battery life) as well as computation latency. A smart and self-
aware system capable of adaptively making a decision at run-time
in response to the changes in pain level and context can minimize
energy consumption by dynamically offloading tasks to the
gateway devices at the edge layer. For this reason, in this paper,
a self-aware system is proposed for the continuous assessment
of pain intensity at the edge layer. Using the BioVid heat pain
dataset, our approach demonstrates a promising reduction in
terms of energy consumption with a negligible accuracy loss
compared with its non-adaptive counterpart.

Index Terms—Edge Computing, Deep Learning, Pain Assess-
ment, Self-Aware

I. INTRODUCTION

Pain is a single major reason for people seeking medical

care and is associated with many illnesses [1]. In acute

pain management, pain assessment is critical for optimal

treatment of pain and evaluation for decisions on intervention.

However, pain, as a multivalent, dynamic, and ambiguous

phenomenon is difficult to quantify [2], in particular, at

times when patient has limitation in his/her communication

(e.g., during critical illness, infants and preverbal toddlers,

patients under sedation or anesthesia, persons with intellectual

disabilities, and patients at the end of life) [3]. At present, a

wide variation exists in how pain is assessed and managed at

the bedside, and the prevalent practices remain sub-optimal

[4]. The pain assessment “gold standard” relies on a patient’s

self-report of their pain intensity on a scale of 0 to 10, where

0 refers to no pain, and 10 represents the most severe pain.

This is done through tools such as Numerical Rating Scale

(NRS), Visual Analogue Scale (VAS), and Verbal Rating

Scale (VRS). However, these unidimensional assessment tools

have been questioned and debated for their oversimplification

and limited applicability in noncommunicative patients since

they require interactive communication between patient and

caregiver [5]. It is thus imperative to develop an objective

pain assessment tool to improve the well-being and care

processes of noncommunicative patients. Such a tool can

also benefit other patient populations with a more accurate

assessment and more timely treatment.

While pain is a highly subjective experience, there are

behavioral and physiological manifestations of pain that

can be objectively measured. There have been efforts in

developing objective pain assessment tools through analyzing

changes in physiological pain indicators, such as heart rate

(HR), heart rate variability (HRV), and electrodermal activity

(EDA) [6]–[14]. However, pain assessment by using only

these signals can be unreliable as there are various other

factors causing changes in vital signs [15]. Objective pain

assessment, using behavioral signs such as facial expression,

has recently gained attention [16]. One way to detect facial

expressions is to record patient’s faces and use the video

as another useful modality. Face detection in a video is

improved so much that nowadays, it is possible to detect

facial landmarks, head pose tracking, eye gaze, and facial

Action Unit estimation. One of the best algorithms that can

perform all of these in real-time is called OpenFace [17].

Predictions of pain levels can be leveraged via using both

modalities combined.

Internet-of-Things (IoT) devices, including wearables, play a

significant role in objective pain monitoring systems. These

devices are in charge of delivering real-time measurements of

physiological signs reflecting pain as well as processing these

signals to be able to classify pain levels automatically and

objectively. At the same time, to be feasible in real settings,

these devices need to have reasonable battery lives. However,

because of computationally intensive tasks, accurate real-time

pain monitoring is not a long term solution in wearable

technologies. Some tasks, such as modern Computer Vision

or Deep Neural Network inference, are not suitable to be

47

2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE)

978-1-7281-4687-4/19/$31.00 ©2019 IEEE
DOI 10.1109/CHASE48038.2019.00023

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 26,2020 at 00:13:38 UTC from IEEE Xplore.  Restrictions apply. 



executed on such resource-constrained devices. One way of

addressing the resource constraints in IoT devices in terms

of computation power and energy consumption is through

offloading the computation to the gateway layer, often called

Edge or Fog computing [18]. This approach can help improve

performance and energy consumption to enable IoT devices

can deliver real-time services.

Although continuous offloading tasks can deliver high-quality

real-time services to end-users, the continuous sensing and

data transmission over the network can, however, dramatically

reduce battery lifetime. To be able to cope with such stringent

constraints, a monitoring system needs to be aware of its

context and its internal state to be able to adaptively adjust its

sensing energy and accuracy at run-time when a power-saving

opportunity arises [19]–[21]. Self-Aware monitoring systems

are capable of making smart decisions at run-time by sensing

parameters from the environment as well as their state (e.g.,

battery lifetime or pain level of the user) and take proper

actions accordingly [22]–[25]. They often utilize the Observe,

Decide, and Act (ODA) control loop paradigm for real-time

observations to dynamically control the system [26].

In this paper, we propose a real-time pain monitoring system

that is designed based on the self and context awareness

concepts to provide energy efficiency (longer operation time)

and accuracy for long-term monitoring. Our system uses two

different models to access pain levels. The decision on what

model to be used is taken at runtime by an ODA control

loop. The models have different characteristics in terms of

prediction accuracy and energy consumption. The first model

is a pain assessment approach based on physiological signals,

particularly ECG, EMG, and GSR signals. The second model

is a multi-modal pain assessment approach utilizing an aggre-

gation of facial expressions (video) and Physiological signals.

The proposed self-aware pain monitoring system can deliver

real-time service in the long-term by dynamically offloading

tasks at the Edge. The main contributions of this paper are as

the following:

• We propose a self-aware pain monitoring system to

enable a real-time long term service using battery con-

strained wearable devices.

• We evaluated the pain monitoring system using the biopo-

tentials and multi-modal models in terms of accuracy and

energy consumption on the edge devices.

The rest of this paper is organized as follows. In Section II,

the pain assessment approaches are explained then in Section

III, our proposed self-aware system is introduced in terms of

system architecture and self-awareness algorithm. In the rest of

the sections, the pain monitoring system, experimental setup,

and our results are explained and discussed.

II. OBJECTIVE PAIN ASSESSMENT METHODS

Pain Assessment is a challenging task. Current pain as-

sessment tools rely on a patient’s self-reported level of pain

intensity, which is subjective. In this paper, we focus on

objective methods, in particular, two popular methods for

pain intensity classification which are based on: i) analyzing

captured video of patients using computer vision and deep

learning, and ii) processing subjects’ physiological signs.

A. Pain Assessment using Physiological Signs

To this date, research in the estimation of pain intensity has

mainly focused on physiological features. They are extracted

from channels that include Electromyography (EMG) from

facial expressions, Electrocardiography (ECG), Photoplethys-

mogram (PPG), and Galvanic Skin Response (GSR). After raw

signals are extracted, they are then preprocessed often using

Butterworth filters and adaptive non-linear noise cancellation

techniques. The final step of the preprocessing is the segmen-

tation and feature extraction of these signals. Once the features

are obtained, they are then normalized and concatenated to a

feature matrix. Each set of normalized physiological features

in the feature matrix is associated with a particular pain level.

For instance, in the experimental design of [27], three pain

levels are used: No pain, Mild pain, and Moderate/severe pain.

A patient’s pain levels can then be predicted using machine

learning models based on the labeled feature matrix.

B. Pain Assessment using Behavioral Parameters: Computer
Vision

There are several research studies regarding visual features

and the fusion of bio-physiological and visual features for pain

intensity estimation. To improve the robustness of the pain-

level classifiers and achieve invariance to different face poses

and subject identity, two sets of features from videos from

head pose and facial expressions are extracted: geometric-

based features and appearance-based features. The steps in

extracting features from a video are to detect a face and then

locate facial landmarks. In this regard, one of the most popular

methods is OpenFace [17], which is capable of detecting

facial landmarks, estimating head pose, recognizing facial

action units, and estimating eye-gaze. The computed facial

landmarks consist of 68 points on the face which describe

mouth, nose, and eye areas as well as the shape of the detected

facial regions. Then we can represent the face in numerical

embedding using a deep neural network. OpenFace trains

each image to produce 128-dimensional facial embeddings that

represents a generic face. Once all the relevant visual features

are obtained, specific Machine Learning based methods like

Random Forest or Neural Network can be employed for pain

classification. It should be noted that the computer vision-

based techniques are orders of magnitude more power hungry

and computationally intensive compared to the approached

processing vital signs, although they offer another essential

modality for pain assessment.

III. SELF-AWARE ENERGY MANAGEMENT

Power and energy are constraints in IoT devices that per-

form computational tasks at the Edge. Self-Aware computing

leverages a set of techniques to deal with multiple constraints

such as power and performance. These techniques exist at

application-level and system-level. Approximate-able applica-

tions can be one of the examples used in application-level
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Fig. 1. Edge System Architecture

techniques that can sacrifice the quality of service to obtain a

real-time service. System-level techniques can reduce energy

consumption by decreasing computational demands. In this

paper, we proposed a system that leverages an application-

level self-awareness framework. In this manner, we propose

an IoT device that continuously delivers pain level predictions

by executing two different machine learning models with dif-

ferent quality of service at the Edge. The system architecture

and self-awareness framework are explained in the following

subsections.

A. System Architecture

In our system architecture, we leverage the concept of

edge computing. The Edge consists of two layers, which

include the processing unit, communication infrastructure,

storage, to name a few. The first layer is the sensor layer,

which continuously senses and collects raw data from end-

users. The layer is resource-constrained in terms of battery

life, computational power, and communication bandwidth. The

second layer is the gateway layer, which offers more resources

for computations closer to the sensor layer. In this paper,

an IoT node which is connected to a camera recorder and

Physiological signal acquisition device constitutes the sensor

layer while a gateway which can offer high computational

power constitutes the gateway layer as shown in Figure 1.

B. Self-Aware System

A Self-aware system makes a decision based on the changes

in its internal parameter as well the environment and context

surrounding it often using the Observe, Decision, Act (ODA)

model. Our approach also exploits the same model where the

loop measures the system state, performs decision making, and

applies changes in the system’s behavior [24], [26]. In this

context, it measures the system’s battery life and observes the

user predicted pain level and makes a decision to determine

which layer is the most efficient one to execute the pain

assessment. Then, it applies the decision of whether to keep the

execution at the sensor layer or offload it to the gateway layer.

The loop structure is shown in Figure 2, and the algorithm is

explained in Algorithm 1. This algorithm will be discussed in

more detail in the following section.

Fig. 2. ODA Loop Architecture

Algorithm 1: Self-Aware Pain Monitoring Algorithm

painLevel ←− 0;

averageMeasurement ←− 0;

state ←− Sensor Layer Computing;

while batteryPercentage do
batteryPercentage ←− Battery Remaining;

if batteryPercentage < 20% then
state ←− Senor Layer Computing;

else
if averageMeasurement == NOPAIN then

state ←− Senor Layer Computing;

else
state ←− Gateway Layer Computing;

end
end
if state == Sensor Layer Computing then

painLavel ←− Prediction from Bio-Potential

Model at Sensor Layer
else

painLavel ←− Prediction from Multi-modal Model

at Gateway Layer
end
averageMeasurement ←− Last five pain predictions;

end

IV. PAIN MONITORING SYSTEM

In this section, we conduct an experiment to evaluate our

proposed real-time self-aware pain monitoring approach as a

real-life case study. The first subsection explains the dataset

which is used to train and test machine learning models.

Then it describes how features are extracted to be used in

the models. The second subsection describes the models used

to evaluate the proposed method.

A. Dataset & Feature Extraction

The BioVid Heat Pain database [28] is analyzed in the study.

A total of 85 subjects participated in the experiment and a

total of 5 pain levels were recorded (baseline, level 1, 2, 3, 4).

Every subject randomly underwent 20 times of trials of each

pain intensity and 20 times of a no-pain baseline, resulting

in a total of 100 samples. Each pain stimulus was held for 4

seconds and then, paused for 8-12 seconds. Five channels of

physiological signals and high-resolution video were recorded

during the experiments [29], which were electromyogram
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Fig. 3. Pain Monitoring System

(EMG) at the trapezius, corrugator and zygomaticus muscles,

electrocardiogram (ECG) and galvanic skin response (GSR).

The EMG and ECG signals were filtered with a Butter-

worth bandpass filter with cutoff frequencies [20,250] Hz and

[0.1,250] Hz, respectively to reduce noise, such as movement

artifacts and electrical stimulus pulses.

Feature selection was then applied to obtain a full rank feature

matrix. For the EMG and GSR channels, 39 features were

extracted, which among them all, there were 97.6%, 80%, 70%

and 70% empty values for four features, so we excluded them.

For ECG channels, three features of heart rate variability were

included. In addition to this, Walter et al. demonstrated that

there was a significant difference in the heart rate variability

features among females and males, so the gender of the

participants was recorded [30]. Thus, in total, there were 156

features selected. After feature selection, we standardized the

data with a mean value of 0 and a standard deviation of 1.

Additionally, head pose features and facial expressions were

extracted from videos of the BioVid heat pain database. The

first step in extracting features from a video is to detect the

face in each frame. Next, facial landmarks needed to be located

on the mouth, right eye, and right eyebrow [31]. In this regard,

one of the most popular methods is the OpenFace library,

which can detect facial landmarks, different head poses, and

eye gaze. The computed facial landmarks consisted of 68

points on the face, which describe mouth, nose, and eye areas.

OpenFace produces 128-dimensional facial embeddings that

represent a generic face. In literature, a number of fusion

strategies [32], [33] are employed. Since this is not our primary

focus in this paper, we used an early fusion strategy, which

combines the features of different modalities prior to the

learning phase.

B. Data Analytics using Machine Learning

For the classification of pain intensity levels in this study,

we focused on using biopotential data at the sensor layer

along with a multi-modal fusion of biopotential and video

signals at the gateway layer. In this regard, for the following

experiments a selected classical Machine Learning algorithms,

Support Vector Machine (SVM) and Random Forest (RF)

were chosen as a classifier from the extracted features and

OpenFace [17] deep learning to extract visual features on the

gateway. SVM classifies data by maximizing the margin of the

Raspberry
Pi 3 Model B

NVIDIA
Jetson TX2

Processor
Quad-core Broadcom

BCM2837 64bit
Quad-core

Cortex-A57
Architecture ARM ARM

Speed 1.2 GHz 2.0 GHz

GPU — 256-core Pascal

RAM 1 GB 8GB

External
Storage

16GB eMMC 32GB eMMC

TABLE I
PLATFORMS SPECIFICATIONS

hyperplane that separates the classes. It can work effectively

in high-dimensional data and maintain sufficient flexibility

[34], [35]. An RF classifier constructs a multitude of decision

trees each performing the classification and picks the mode

class as the model’s predicted value. The OpenFace library

detects the face from the input image and isolates it from

the background. Then it calculates 68 landmarks on the face

and projects these facial landmarks to a Deep Neural Network

(DNN) to extract 128 embedding features. We can predict a

pain level among five levels, given the needed features, the

features calculated from biopotential data or 128-dimensional

visual features returned from DNN. Our present work focuses

on the 10-fold cross-validation method to evaluate the results.

Although no additional learning phases are included, it can be

considered as an applicable scenario in the real world.

V. EXPERIMENTAL SETUP & EVALUATION

In this section, the setup and experiments conducted to

evaluate the self-awareness method are described. The system

includes a sensor node and a gateway node. The sensor collects

30 frames-per-second videos along with the EMG, ECG, and

GSR channels from the patient. A Raspberry Pi and NVIDIA

Jetson TX2 are used to deploy the self-aware monitoring

at the Edge (sensor layer and gateway layer, respectively).

Furthermore, the system’s behavior is elaborated at runtime.

The specifications for both devices are listed in Table I.

Stimulus EMG ECG GSR
All

Biopotentials
All Bio +

Video

0 vs. 1
SVM 0.74 0.49 0.55 0.76 0.74

RF 0.78 0.50 0.54 0.79 0.76

1 vs. 2
SVM 0.52 0.52 0.56 0.53 0.50

RF 0.53 0.52 0.49 0.52 0.51

2 vs. 3
SVM 0.54 0.54 0.56 0.54 0.49

RF 0.56 0.50 0.53 0.55 0.50

3 vs. 4
SVM 0.58 0.54 0.58 0.60 0.55

RF 0.61 0.53 0.56 0.60 0.55

TABLE II
SUPPORT VECTOR MACHINE AND RANDOM-FOREST CLASSIFICATION

ACCURACY OF BIO-POTENTIAL DATA AND BIO-POTENTIAL+VIDEO DATA

WITH SELF-AWARE METHOD ON THE EDGE DEVICES

As is described in Section II, we use Support Vector

Machine (SVM) and Random Forest (RF) classifiers as our

selected classifiers performing a prediction on biopotential
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Fig. 4. Scenario I: Pain Intensity - System Behavior - Consumed Energy

data and video signals. The accuracy of these classifiers

between two adjacent pain levels is shown in Table II. In this

study, two different sets of experiments have been carried out

to investigate the behavior of the proposed method using an

individual model trained on biopotential data on the sensor

layer and a multi-modal model trained on bio-visual data on

the gateway.

The self-awareness method is used to minimize the system’s

energy consumption. In this regard, according to Algorithm 1,

the self-aware controller measures the pain level and remaining

battery lifetime during the run-time. Then, it decides to execute

either one of the multi-modal models on the gateway or the

biopotential model on the sensor layer. In detail, the controller

observes the last five predicted pain levels and makes a deci-

sion based on average measurements. If it decides to execute

the multi-modal model, then the sensor device transmits the

collected frames and the biopotential raw data over a WiFi

network to the gateway device, and the model is executed

at the gateway layer. Otherwise, the biopotential model is

executed at the sensor layer in 6 seconds interval. Furthermore,

the biopotential model is always executed when the remaining

battery is less than 20%. In other words, the system’s behavior

has two states, low power, and high-performance mode. In

the low power mode, the system always executes the low

complex model (bipotential model) at the sensor layer and

in the high-performance mode, it executes the high complex

(multi-modal model) at the gateway layer. Energy consumption

and performance evaluation for both low power and high-

performance modes are explained in Table III.

Raspberry
Pi 3 Model B

NVIDIA
Jetson TX2

Execution Time(ms) 13ms 33ms

Power Consumption
in Running

5W 12W

Power Consumption
in Idle

1.7W 7W

TABLE III
THE SYSTEM PERFORMANCE/ POWER CONSUMPTION EVALUATION FOR

BIO-POTENTIAL AND MULTI-MODAL MODELS ON THE EDGE DEVICES

The proposed self-aware system is evaluated in terms of energy

consumption considering the BioVid dataset to estimate the

Fig. 5. Scenario II: Pain Intensity - System Behavior - Consumed Energy

pain intensity, as a real-life case study. Two sets of experiments

were conducted to test the overall system advantages. These

scenarios can be considered as if a real patient with acute

pain is lying down on a bed with a pain level of 2 at the

normal condition. As they start doing an activity - lifting a

leg, coughing, sitting up to name a few, their pain level gets

increased and as soon as they stop performing the activity their

pain level goes back to the normal situation.

To compare the performance of our self-aware system, a

comparison is made between including the self-aware energy

management technique or only performing the usual pain

intensity estimation on the gateway. The results of the two

trained models, the one with physiological signals on the

sensor layer and the one with bio-visual fusion data on the

gateway layer, are shown in Figure 4 and 5. As shown in these

figures, the model or state of the system which is running

is changing based on the Algorithm 1. It can be observed

that the energy consumption of these two real-life scenarios

is reduced by 45% and 64% with a limited accuracy drop of

2% to 7% comparing to the best classification result from a

Linear Support Vector Machine or a Random Forest.

VI. CONCLUSION

As highly accurate pain monitoring requires intensive com-

putation on IoT and wearable devices, the offloading tasks to

more powerful layers were considered in this paper. Although

offloading can improve the quality of service at the Edge,

but continuous data collection and transmission to the upper

layers are not feasible for long term monitoring. In this

work, we proposed a self-aware system for long-term real-

time pain monitoring at the Edge of the network. Two pain

monitoring models with different characterization in terms of

accuracy and computational complexity were deployed at the

Edge. We presented a self-aware system capable of observing

environmental parameters and making decisions to assign tasks

to Edge layers dynamically. As a real-case study, the proposed

system was evaluated through two real scenarios showing a

significant reduction in sensor layer energy consumption with

limited accuracy loss of at most 7%. Our result shows that

the proposed system makes long term monitoring feasible on
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IoT devices by up to 64% energy consumption reduction in

different real scenarios.
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