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Abstract—In the healthcare sector, there is a strong demand
for accurate objective pain assessment as a key for effective pain
management. Real-time and accurate objective pain assessment
help hospital staffs and caregivers decide the proper dosage of
pain medication to be provided to a patient in a timely manner.
The state-of-the-art automatic and objective pain assessment
techniques in the literature can be classified into two main
categories: physiological-based and behavioral-based. The first-
class monitors the changes in patients’ physiological data such
as Electrocardiography (ECG), Electromyography (EMG), Pho-
toplethysmography (PPG) to identify autonomic nervous system
reactions to pain, while the second class utilizes behavioral
reactions to pain such as techniques using computer vision-based
techniques by extracting features from patients’ head poses and
facial expressions. Recent pain monitoring systems have become
multi-modal meaning that they deploy a combination of both
approaches to improve pain monitoring accuracy. Although such
complex models are highly accurate in pain monitoring, they are
more computationally intensive imposing feasibility limitations to
implement them on wearable devices in terms of energy efficiency
(battery life) as well as computation latency. A smart and self-
aware system capable of adaptively making a decision at run-time
in response to the changes in pain level and context can minimize
energy consumption by dynamically offloading tasks to the
gateway devices at the edge layer. For this reason, in this paper,
a self-aware system is proposed for the continuous assessment
of pain intensity at the edge layer. Using the BioVid heat pain
dataset, our approach demonstrates a promising reduction in
terms of energy consumption with a negligible accuracy loss
compared with its non-adaptive counterpart.

Index Terms—Edge Computing, Deep Learning, Pain Assess-
ment, Self-Aware

I. INTRODUCTION

Pain is a single major reason for people seeking medical
care and is associated with many illnesses [1]. In acute
pain management, pain assessment is critical for optimal
treatment of pain and evaluation for decisions on intervention.
However, pain, as a multivalent, dynamic, and ambiguous
phenomenon is difficult to quantify [2], in particular, at
times when patient has limitation in his/her communication
(e.g., during critical illness, infants and preverbal toddlers,
patients under sedation or anesthesia, persons with intellectual
disabilities, and patients at the end of life) [3]. At present, a
wide variation exists in how pain is assessed and managed at
the bedside, and the prevalent practices remain sub-optimal
[4]. The pain assessment “gold standard” relies on a patient’s
self-report of their pain intensity on a scale of 0 to 10, where

0 refers to no pain, and 10 represents the most severe pain.
This is done through tools such as Numerical Rating Scale
(NRS), Visual Analogue Scale (VAS), and Verbal Rating
Scale (VRS). However, these unidimensional assessment tools
have been questioned and debated for their oversimplification
and limited applicability in noncommunicative patients since
they require interactive communication between patient and
caregiver [5]. It is thus imperative to develop an objective
pain assessment tool to improve the well-being and care
processes of noncommunicative patients. Such a tool can
also benefit other patient populations with a more accurate
assessment and more timely treatment.

While pain is a highly subjective experience, there are
behavioral and physiological manifestations of pain that
can be objectively measured. There have been efforts in
developing objective pain assessment tools through analyzing
changes in physiological pain indicators, such as heart rate
(HR), heart rate variability (HRV), and electrodermal activity
(EDA) [6]-[14]. However, pain assessment by using only
these signals can be unreliable as there are various other
factors causing changes in vital signs [15]. Objective pain
assessment, using behavioral signs such as facial expression,
has recently gained attention [16]. One way to detect facial
expressions is to record patient’s faces and use the video
as another useful modality. Face detection in a video is
improved so much that nowadays, it is possible to detect
facial landmarks, head pose tracking, eye gaze, and facial
Action Unit estimation. One of the best algorithms that can
perform all of these in real-time is called OpenFace [17].
Predictions of pain levels can be leveraged via using both
modalities combined.

Internet-of-Things (IoT) devices, including wearables, play a
significant role in objective pain monitoring systems. These
devices are in charge of delivering real-time measurements of
physiological signs reflecting pain as well as processing these
signals to be able to classify pain levels automatically and
objectively. At the same time, to be feasible in real settings,
these devices need to have reasonable battery lives. However,
because of computationally intensive tasks, accurate real-time
pain monitoring is not a long term solution in wearable
technologies. Some tasks, such as modern Computer Vision
or Deep Neural Network inference, are not suitable to be
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executed on such resource-constrained devices. One way of
addressing the resource constraints in IoT devices in terms
of computation power and energy consumption is through
offloading the computation to the gateway layer, often called
Edge or Fog computing [18]. This approach can help improve
performance and energy consumption to enable IoT devices
can deliver real-time services.

Although continuous offloading tasks can deliver high-quality
real-time services to end-users, the continuous sensing and
data transmission over the network can, however, dramatically
reduce battery lifetime. To be able to cope with such stringent
constraints, a monitoring system needs to be aware of its
context and its internal state to be able to adaptively adjust its
sensing energy and accuracy at run-time when a power-saving
opportunity arises [19]-[21]. Self-Aware monitoring systems
are capable of making smart decisions at run-time by sensing
parameters from the environment as well as their state (e.g.,
battery lifetime or pain level of the user) and take proper
actions accordingly [22]-[25]. They often utilize the Observe,
Decide, and Act (ODA) control loop paradigm for real-time
observations to dynamically control the system [26].

In this paper, we propose a real-time pain monitoring system
that is designed based on the self and context awareness
concepts to provide energy efficiency (longer operation time)
and accuracy for long-term monitoring. Our system uses two
different models to access pain levels. The decision on what
model to be used is taken at runtime by an ODA control
loop. The models have different characteristics in terms of
prediction accuracy and energy consumption. The first model
is a pain assessment approach based on physiological signals,
particularly ECG, EMG, and GSR signals. The second model
is a multi-modal pain assessment approach utilizing an aggre-
gation of facial expressions (video) and Physiological signals.
The proposed self-aware pain monitoring system can deliver
real-time service in the long-term by dynamically offloading
tasks at the Edge. The main contributions of this paper are as
the following:

e We propose a self-aware pain monitoring system to
enable a real-time long term service using battery con-
strained wearable devices.

« We evaluated the pain monitoring system using the biopo-
tentials and multi-modal models in terms of accuracy and
energy consumption on the edge devices.

The rest of this paper is organized as follows. In Section II,
the pain assessment approaches are explained then in Section
III, our proposed self-aware system is introduced in terms of
system architecture and self-awareness algorithm. In the rest of
the sections, the pain monitoring system, experimental setup,
and our results are explained and discussed.

II. OBJECTIVE PAIN ASSESSMENT METHODS

Pain Assessment is a challenging task. Current pain as-
sessment tools rely on a patient’s self-reported level of pain
intensity, which is subjective. In this paper, we focus on
objective methods, in particular, two popular methods for
pain intensity classification which are based on: i) analyzing

captured video of patients using computer vision and deep
learning, and ii) processing subjects’ physiological signs.

A. Pain Assessment using Physiological Signs

To this date, research in the estimation of pain intensity has
mainly focused on physiological features. They are extracted
from channels that include Electromyography (EMG) from
facial expressions, Electrocardiography (ECG), Photoplethys-
mogram (PPG), and Galvanic Skin Response (GSR). After raw
signals are extracted, they are then preprocessed often using
Butterworth filters and adaptive non-linear noise cancellation
techniques. The final step of the preprocessing is the segmen-
tation and feature extraction of these signals. Once the features
are obtained, they are then normalized and concatenated to a
feature matrix. Each set of normalized physiological features
in the feature matrix is associated with a particular pain level.
For instance, in the experimental design of [27], three pain
levels are used: No pain, Mild pain, and Moderate/severe pain.
A patient’s pain levels can then be predicted using machine
learning models based on the labeled feature matrix.

B. Pain Assessment using Behavioral Parameters: Computer
Vision

There are several research studies regarding visual features
and the fusion of bio-physiological and visual features for pain
intensity estimation. To improve the robustness of the pain-
level classifiers and achieve invariance to different face poses
and subject identity, two sets of features from videos from
head pose and facial expressions are extracted: geometric-
based features and appearance-based features. The steps in
extracting features from a video are to detect a face and then
locate facial landmarks. In this regard, one of the most popular
methods is OpenFace [17], which is capable of detecting
facial landmarks, estimating head pose, recognizing facial
action units, and estimating eye-gaze. The computed facial
landmarks consist of 68 points on the face which describe
mouth, nose, and eye areas as well as the shape of the detected
facial regions. Then we can represent the face in numerical
embedding using a deep neural network. OpenFace trains
each image to produce 128-dimensional facial embeddings that
represents a generic face. Once all the relevant visual features
are obtained, specific Machine Learning based methods like
Random Forest or Neural Network can be employed for pain
classification. It should be noted that the computer vision-
based techniques are orders of magnitude more power hungry
and computationally intensive compared to the approached
processing vital signs, although they offer another essential
modality for pain assessment.

III. SELF-AWARE ENERGY MANAGEMENT

Power and energy are constraints in IoT devices that per-
form computational tasks at the Edge. Self-Aware computing
leverages a set of techniques to deal with multiple constraints
such as power and performance. These techniques exist at
application-level and system-level. Approximate-able applica-
tions can be one of the examples used in application-level
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techniques that can sacrifice the quality of service to obtain a
real-time service. System-level techniques can reduce energy
consumption by decreasing computational demands. In this
paper, we proposed a system that leverages an application-
level self-awareness framework. In this manner, we propose
an IoT device that continuously delivers pain level predictions
by executing two different machine learning models with dif-
ferent quality of service at the Edge. The system architecture
and self-awareness framework are explained in the following
subsections.

A. System Architecture

In our system architecture, we leverage the concept of
edge computing. The Edge consists of two layers, which
include the processing unit, communication infrastructure,
storage, to name a few. The first layer is the sensor layer,
which continuously senses and collects raw data from end-
users. The layer is resource-constrained in terms of battery
life, computational power, and communication bandwidth. The
second layer is the gateway layer, which offers more resources
for computations closer to the sensor layer. In this paper,
an IoT node which is connected to a camera recorder and
Physiological signal acquisition device constitutes the sensor
layer while a gateway which can offer high computational
power constitutes the gateway layer as shown in Figure 1.

B. Self-Aware System

A Self-aware system makes a decision based on the changes
in its internal parameter as well the environment and context
surrounding it often using the Observe, Decision, Act (ODA)
model. Our approach also exploits the same model where the
loop measures the system state, performs decision making, and
applies changes in the system’s behavior [24], [26]. In this
context, it measures the system’s battery life and observes the
user predicted pain level and makes a decision to determine
which layer is the most efficient one to execute the pain
assessment. Then, it applies the decision of whether to keep the
execution at the sensor layer or offload it to the gateway layer.
The loop structure is shown in Figure 2, and the algorithm is
explained in Algorithm 1. This algorithm will be discussed in
more detail in the following section.
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Power Performance
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Fig. 2. ODA Loop Architecture

Self-Aware Controller

Algorithm 1: Self-Aware Pain Monitoring Algorithm

painLevel < O;

averageMeasurement <— 0;

state <— Sensor Layer Computing;

while batteryPercentage do

batteryPercentage < Battery Remaining;

if batteryPercentage < 20% then
| state < Senor Layer Computing;

else

if averageMeasurement == NOPAIN then
‘ state <— Senor Layer Computing;

else
‘ state «— Gateway Layer Computing;
end
end
if state == Sensor Layer Computing then

painLavel «+ Prediction from Bio-Potential

Model at Sensor Layer
else
painLavel < Prediction from Multi-modal Model

at Gateway Layer

end
averageMeasurement <— Last five pain predictions;

end

IV. PAIN MONITORING SYSTEM

In this section, we conduct an experiment to evaluate our
proposed real-time self-aware pain monitoring approach as a
real-life case study. The first subsection explains the dataset
which is used to train and test machine learning models.
Then it describes how features are extracted to be used in
the models. The second subsection describes the models used
to evaluate the proposed method.

A. Dataset & Feature Extraction

The BioVid Heat Pain database [28] is analyzed in the study.
A total of 85 subjects participated in the experiment and a
total of 5 pain levels were recorded (baseline, level 1, 2, 3, 4).
Every subject randomly underwent 20 times of trials of each
pain intensity and 20 times of a no-pain baseline, resulting
in a total of 100 samples. Each pain stimulus was held for 4
seconds and then, paused for 8-12 seconds. Five channels of
physiological signals and high-resolution video were recorded
during the experiments [29], which were electromyogram
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(EMGQG) at the trapezius, corrugator and zygomaticus muscles,
electrocardiogram (ECG) and galvanic skin response (GSR).
The EMG and ECG signals were filtered with a Butter-
worth bandpass filter with cutoff frequencies [20,250] Hz and
[0.1,250] Hz, respectively to reduce noise, such as movement
artifacts and electrical stimulus pulses.

Feature selection was then applied to obtain a full rank feature
matrix. For the EMG and GSR channels, 39 features were
extracted, which among them all, there were 97.6%, 80%, 70%
and 70% empty values for four features, so we excluded them.
For ECG channels, three features of heart rate variability were
included. In addition to this, Walter et al. demonstrated that
there was a significant difference in the heart rate variability
features among females and males, so the gender of the
participants was recorded [30]. Thus, in total, there were 156
features selected. After feature selection, we standardized the
data with a mean value of 0 and a standard deviation of 1.
Additionally, head pose features and facial expressions were
extracted from videos of the BioVid heat pain database. The
first step in extracting features from a video is to detect the
face in each frame. Next, facial landmarks needed to be located
on the mouth, right eye, and right eyebrow [31]. In this regard,
one of the most popular methods is the OpenFace library,
which can detect facial landmarks, different head poses, and
eye gaze. The computed facial landmarks consisted of 68
points on the face, which describe mouth, nose, and eye areas.
OpenFace produces 128-dimensional facial embeddings that
represent a generic face. In literature, a number of fusion
strategies [32], [33] are employed. Since this is not our primary
focus in this paper, we used an early fusion strategy, which
combines the features of different modalities prior to the
learning phase.

B. Data Analytics using Machine Learning

For the classification of pain intensity levels in this study,
we focused on using biopotential data at the sensor layer
along with a multi-modal fusion of biopotential and video
signals at the gateway layer. In this regard, for the following
experiments a selected classical Machine Learning algorithms,
Support Vector Machine (SVM) and Random Forest (RF)
were chosen as a classifier from the extracted features and
OpenFace [17] deep learning to extract visual features on the
gateway. SVM classifies data by maximizing the margin of the

Raspberry NVIDIA
Pi 3 Model B Jetson TX2
Processor Quad-core Broadcom Quad-core
o BCM2837 64bit Cortex-A57
Architecture ARM ARM
Speed 1.2 GHz 2.0 GHz
GPU — 256-core Pascal
RAM 1 GB 8GB
External 16GB eMMC 32GB eMMC
Storage
TABLE I

PLATFORMS SPECIFICATIONS

hyperplane that separates the classes. It can work effectively
in high-dimensional data and maintain sufficient flexibility
[34], [35]. An RF classifier constructs a multitude of decision
trees each performing the classification and picks the mode
class as the model’s predicted value. The OpenFace library
detects the face from the input image and isolates it from
the background. Then it calculates 68 landmarks on the face
and projects these facial landmarks to a Deep Neural Network
(DNN) to extract 128 embedding features. We can predict a
pain level among five levels, given the needed features, the
features calculated from biopotential data or 128-dimensional
visual features returned from DNN. Our present work focuses
on the 10-fold cross-validation method to evaluate the results.
Although no additional learning phases are included, it can be
considered as an applicable scenario in the real world.

V. EXPERIMENTAL SETUP & EVALUATION

In this section, the setup and experiments conducted to
evaluate the self-awareness method are described. The system
includes a sensor node and a gateway node. The sensor collects
30 frames-per-second videos along with the EMG, ECG, and
GSR channels from the patient. A Raspberry Pi and NVIDIA
Jetson TX2 are used to deploy the self-aware monitoring
at the Edge (sensor layer and gateway layer, respectively).
Furthermore, the system’s behavior is elaborated at runtime.
The specifications for both devices are listed in Table L.

Stmuus  EMG  ECG  GSR g Ao ALBlos

bvey SYM 074 049 055 0.76 074
RF 078 050 054 079 076

L, SYM 052 052 056 053 0.50
RF 053 052 049 052 051

Jves SVM 054 054 056 0.54 049
RF 056 050 053 055 0.50

sves SYM 0S8 054 0S8 0.60 055
RF 061 053 056 060 055

TABLE II

SUPPORT VECTOR MACHINE AND RANDOM-FOREST CLASSIFICATION
ACCURACY OF BIO-POTENTIAL DATA AND BIO-POTENTIAL+VIDEO DATA
WITH SELF-AWARE METHOD ON THE EDGE DEVICES

As is described in Section II, we use Support Vector
Machine (SVM) and Random Forest (RF) classifiers as our
selected classifiers performing a prediction on biopotential
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data and video signals. The accuracy of these classifiers
between two adjacent pain levels is shown in Table II. In this
study, two different sets of experiments have been carried out
to investigate the behavior of the proposed method using an
individual model trained on biopotential data on the sensor
layer and a multi-modal model trained on bio-visual data on
the gateway.

The self-awareness method is used to minimize the system’s
energy consumption. In this regard, according to Algorithm 1,
the self-aware controller measures the pain level and remaining
battery lifetime during the run-time. Then, it decides to execute
either one of the multi-modal models on the gateway or the
biopotential model on the sensor layer. In detail, the controller
observes the last five predicted pain levels and makes a deci-
sion based on average measurements. If it decides to execute
the multi-modal model, then the sensor device transmits the
collected frames and the biopotential raw data over a WiFi
network to the gateway device, and the model is executed
at the gateway layer. Otherwise, the biopotential model is
executed at the sensor layer in 6 seconds interval. Furthermore,
the biopotential model is always executed when the remaining
battery is less than 20%. In other words, the system’s behavior
has two states, low power, and high-performance mode. In
the low power mode, the system always executes the low
complex model (bipotential model) at the sensor layer and
in the high-performance mode, it executes the high complex
(multi-modal model) at the gateway layer. Energy consumption
and performance evaluation for both low power and high-
performance modes are explained in Table III.

Raspberry NVIDIA
Pi 3 Model B Jetson TX2
Execution Time(ms) 13ms 33ms
Power Consumption SW 12w
in Running
Power Consumption 1.7W T™W
in Idle
TABLE III

THE SYSTEM PERFORMANCE/ POWER CONSUMPTION EVALUATION FOR
BIO-POTENTIAL AND MULTI-MODAL MODELS ON THE EDGE DEVICES

The proposed self-aware system is evaluated in terms of energy
consumption considering the BioVid dataset to estimate the
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Fig. 5. Scenario II: Pain Intensity - System Behavior - Consumed Energy

pain intensity, as a real-life case study. Two sets of experiments
were conducted to test the overall system advantages. These
scenarios can be considered as if a real patient with acute
pain is lying down on a bed with a pain level of 2 at the
normal condition. As they start doing an activity - lifting a
leg, coughing, sitting up to name a few, their pain level gets
increased and as soon as they stop performing the activity their
pain level goes back to the normal situation.

To compare the performance of our self-aware system, a
comparison is made between including the self-aware energy
management technique or only performing the usual pain
intensity estimation on the gateway. The results of the two
trained models, the one with physiological signals on the
sensor layer and the one with bio-visual fusion data on the
gateway layer, are shown in Figure 4 and 5. As shown in these
figures, the model or state of the system which is running
is changing based on the Algorithm 1. It can be observed
that the energy consumption of these two real-life scenarios
is reduced by 45% and 64% with a limited accuracy drop of
2% to 7% comparing to the best classification result from a
Linear Support Vector Machine or a Random Forest.

VI. CONCLUSION

As highly accurate pain monitoring requires intensive com-
putation on IoT and wearable devices, the offloading tasks to
more powerful layers were considered in this paper. Although
offloading can improve the quality of service at the Edge,
but continuous data collection and transmission to the upper
layers are not feasible for long term monitoring. In this
work, we proposed a self-aware system for long-term real-
time pain monitoring at the Edge of the network. Two pain
monitoring models with different characterization in terms of
accuracy and computational complexity were deployed at the
Edge. We presented a self-aware system capable of observing
environmental parameters and making decisions to assign tasks
to Edge layers dynamically. As a real-case study, the proposed
system was evaluated through two real scenarios showing a
significant reduction in sensor layer energy consumption with
limited accuracy loss of at most 7%. Our result shows that
the proposed system makes long term monitoring feasible on
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IoT devices by up to 64% energy consumption reduction in
different real scenarios.
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