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Abstract—The quasi-periodic nature of electrocardiogram
(ECG) signals enables the use of compression techniques to
minimize communications and reduce energy intake for diag-
nostic and preventive health monitoring. However, compression
often degrades signal quality and may impair analysis by means
of machine learning algorithms for the detection of anomalies.
In this paper, we present an approach to pre-select relevant
portions of the ECG signal at the sensor to reduce network load
while satisfying a predefined diagnostic sensitivity requirement.
We deploy a Deep Neural Network (DNN) to filter-out the
signal’s normal rhythms and reduce the amount of data stored
or transmitted for further processing. Our extensive experiments
covering a wide range of DNN hyper-parameters illustrate the
trade-off between diagnostic sensitivity, channel usage, energy
consumption and computational complexity.

Index Terms—electrocardiogram, signal compression, convo-
lutional neural networks

I. INTRODUCTION

After more than a century since it was first invented,
the electrocardiogram (ECG) has become a commodity car-
diovascular disease (CVD) diagnostic tool. Nowadays, the
acquisition of ECG signals can be performed by wearable
devices [1]. The availability of ECG signals enables a broad
spectrum of applications, ranging from early detection of
premonitory signs of myocardia ischmia and arrhythmia to
long term monitoring for the identification of rare but life-
threatening rhythms. Recent contributions by Hannun et. al.
[2] have demonstrated cadiologist-level detection and classi-
fication of arrhythmia by means of specialized convolutional
neural networks (CNN).

One existing clinical device, the Holter monitor, allows
continuous acquisition of ECG signals for extended time
periods. However, due to the shear amount of data, expert
interpretation of Holter readings is often performed offline,
sometimes severely delayed. Furthermore, some features in
ECG recording which suggest heart malfunction only appear
infrequently. For instance, premature ventricular contractions
(PVCs) is an elusive rhythm which might lead to the diagnosis
of heart failure (HF) and cardiomyopathy. According to [3],
24-hour or 48-hour Holter monitoring is usually prescribed to
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identify a key determinant of PVC – ventricular premature
beats (VPB) – when a patient complains of dizziness or
palpitations after there were no specific findings in routine
12-lead ECG. Events of VPB might occur as infrequently as
once a week or even a couple of times a month [4]. Naively
transmitting and recording complete ECG signals seems to be
wasteful in dealing with such rare rhythms.

Therefore, we assume there exists a way to efficiently
collect and deliver ECG signals to the final analysis unit
without employing a high-capacity communication channel.
In other words, current wireless transceivers have potential
to support more sensors without any increase of the energy
budget.

ECGs are amenable to compression techniques due to their
quasi-periodicity, but compression must be applied carefully to
avoid any distortion of features instrumental to classification.
In fact, while Deep Neural Networks (DNN) appear to be
an ideal tool to analyze ECG signals at the clinical level,
this family of tools requires a high precision representation
of the full morphology of the signal. Several works have
explored compression techniques to mitigate this bandwidth
requirement. The most relevant to the systems investigated
herein is compressive sensing (CS) [5–7]. CS exploits the
repetitive nature of ECG and employs l1-minimization to
approximate raw signals using a sparse reconstruction matrix
with minimum distortion. To obtain sparse representation of
ECG, wavelet transform[8] and dictionary learning[9] are
commonly adopted. Other approaches to obtain a high-fidelity
signal recovery, such as auto-encoders [10], are often too
complex to be executed in-sensor.

The main limitation of traditional compression approaches
is that they aim to generate a high-quality reconstruction of
the entire signal. This necessarily results in a large amount of
storage and/or channel capacity needed to represent normal
rhythms, that may be useless for the final diagnosis objective,
which only requires anomalous rhythms. Here, we take the
different approach of “pre-selecting” interesting and poten-
tially anomalous portions of the ECG signals, by completely
removing uninformative normal heart cycles from the signal
representation. To this aim, we train a deep neural network
(DNN) that is executed at the sensor and which provides as
output the probability that a rhythm is anomalous. A threshold
strategy is then used to determine whether or not the rhythm
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Fig.1.Schematicsoftheproposedsystem.

istransmittedandstored.Intuitively,theexecutionofcom-
plexDNNs,suchasthoseprovidingfine-grainclassification
ofECGcycles,arelikelyinfeasibleonwearablesensors.
Thus,hereinweprovideathoroughevaluationofawide-
rangeofDNNparameterstoexplorethetradeoffbetween
complexity/energyconsumption,channelusageanddiagnosis
accuracy.

Therestofthepaperisorganizedasfollows.SectionII
beginsbyformulatingaquantitativeframeworkthatevaluates
howwellthesystemperformsintermsofmistransmission
rateandnormalizedenergycost.InSectionIII,wepresenta
detaileddescriptionoftheproposedsystemanditscritical
functionalblocks.InSection V, wepresentexperimental
resultstonumericallyvalidatetheproposedmethodsusing
aparameterizedCNNenergyestimationmodel.SectionVI
concludesthepaper.

II.PROBLEMFORMULATION

WeconsiderascenariowhereasensoracquiresanECG
signalandwirelesslytransmitsittoaserver.Additionally,we
assumethatonlytheabnormalrhythmsneedtobetransmitted
forfurtherinterpretationbyeitheranexpertoramachine
learningmodel.Intuitively,transportingthewholesignalto
aserverdoesnotrequireanycomputationatthesensor,but
imposesahightrafficloadtothewirelesschannel,whoseca-
pacityisoftenlimited.Compressioncanreducetraffic.How-
ever,compressioninnarrowsenseassumeslosslessrecovery
ofalltherhythmswhosecompletenessmaynotbenecessary
intheapplication.Arguably,adoptinglossycompressioncan
aggressivelyreducechannelusagewhiletakingatollonthe
overallqualityofrecoveredsignalandthefinalclassification
accuracyontheserverend.

Thetechniqueweproposewhoseschematicisrepresented
inFig.1takesthedifferentapproachofpre-selectingatthe
sensorabnormalrhythms.Aneuralnetworkisfollowedby
adecisionlogicwhoseobjectiveistodiscardallrhythms
deemednormal.Clearly,thesensorcannotaffordtoexecute
thefull-fledgedclassifier, whoseuse wouldresultinno
accuracylossandminimalchannelusage. We,then,explore
thetradeoffbetweenthecomputationalcomplexitypushedto
thesensor,andtheperformanceofthesystem. Weexplicitly
considerfourmetrics:(a)overallaccuracyoftheclassification
process,(b)bandwidthutilization,(c)pre-selectionaccuracy,
and(d)energyusage.

Formaldefinitionsofthesignalsandperformancemetrics
mentionedearlierareprovidedbelow. Weconsidersignal-

labelpairsconsistingofadigitizedECGsignalandsample-
wiseanomalylabelsannotatedbyECGspecialists:

x(t)=[x1 ,x2 ,x3 ,x4 ,x5 ,...,xn ](1)

L(t)=[(1,0),(0,1),(1,0),(0,1),(0,1),...,(1,0)](2)

wherebracketsdenoteatimeseriesofdiscretesamples.
Labelsinthefollowingdiscussionareexpectedtotakea2-
tupleformatwhereabnormalityandnormalityareindicatedby
thefirstandthesecondelement,respectively.Forabnormal
samples,sayx1inEq.3,thelabelis(1,0).Ontheother
hand,(0,1)aretaggedonnormalsamplessuchasx3.Note
thatnotallsamplesareannotated.Therefore,somesamples
mayhave(0,0)meaningtheyareneithertaggedpositivenor
negative.Acquisitionisfollowedbydecisionlogic,denoted
byD{·},whichselectspositivesamplesfromx(t)andoutput
transmittingtimeseriesxT(t).Forexample,ifsamplesx2,x4
andx5arepredictedtobeassociatedwithnormalrhythms,
D{·}replacesthemwithaspecialsymbolφtocommandwire-
lesstransmitternottotransmitthosesamples.Thefollowing
equationshowsthecorrespondingoutputofdecisionlogicif
therealizationofx(t)inEquation(1)istheinput:

xT(t)=D{x(t)}=[x1,φ,x3,φ,φ,...,xn]. (3)

Intuitively,thebandwidthutilizationbtxofaECGframeis
definedasratioofvalidsamplesbetweenrawsignalxT(t)
andtransmittedsignalx(t)

btx=
|{xi:xi∈xT(t)∧xi=φ}|

|{xi:xi∈x(t)}|
. (4)

Toevaluatethelossofsensitivitycausedbydropped
positivesamples,weusethegroundtruthL(t)todefine
themistranmissionratemt astheratioofpositivesamples
betweenxT(t)andinx(t),thatis,

mt =
|{xi:xi∈xT(t)∧L(ti)=(1,0)}|

|{xi:xi∈x(t)∧L(ti)=(1,0)}|
. (5)

A.EnergyConsumption

Tojustifythenewsystemarchitecture,weraisethefollow-
ingquestion:WilltheenergysavingsinRFtransmissionbe
greaterthanthecostofrunninganextraCNN?
Toaddressthisquestion,weproposeinthissectionan

analyticalmodelforenergyconsumptionthattakesintocon-
siderationbothRFtransmissionandCNNinference[11].

TABLEI
NORMALIZEDENERGYCOSTSFORCRITICALOPERATIONSINUNIFIED

ENERGYMODEL(ASSUMEaANDbARE8-BITNUMBERS)

Operation Symbol Norm.Energy Energy

DRAMR/W Ed 4000 × 320 pJ
GlobalBufferR/W Eg 15 × 1.2 pJ
Inter-PEComm. Ep 5 × 400 fJ
RegisterFileR/W Er 2.5 × 200 fJ
a+b Ea 10 2 × 0.8 fJ
a×b Em 1 × 80 fJ
RFTransmission Etx 106 × 80 µJ
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If we consider the RF transmitter energy model described in
[12], transmitter energy consumption Etx can be broken down
into two components: transmitted energy Et, and dissipated
energy Eh, i.e. waste heat, as in

Etx = Et + Eh = (Pt + Ph)Ttx = PtxTtx (6)

where Ttx is the accumulated time for active signaling, i.e.
xT (t) 6= φ. Since we are targeting a body area network
(BAN) application, we set the transmitter-receiver distance to
d = 10m. For simplicity, we select 8-DPSK, which transports
3 bits per symbol, as the modulation scheme. Transmission
energy cost is approximately 10 µJ/bit, if we assume the same
set of system design parameters as in [12].

In order to estimate the energy consumption per inference,
we used an energy model analogous to proposed by Chen et.
al. in [13]. The energy cost associated with each operation are
listed in Table I where we assume 8-bit fixed-point numbers in
each operation. Then, the average energy E for the proposed
system to process an ECG sample can, then, be computed as

E ≈ lf
(

(γ−1wd
~1l · ~nc + γ−1dd )Ed

+ (γ−1wg
~1l · ~nc + γ−1dg )Eg

+ (γ−1wp
~1l · ~nc + γ−1dp )Ep

+ (γ−1wr
~1l · ~nc + γ−1dr )Er

+~1l · ~nc(Ea + Em)
)

+ btxEtx = Ecomp + btxEtx

(7)

where · denotes vector inner product, lf is the length of
filter; ~1l denotes an all one vector of length l; ~nc is the
number of channels in the CNN. Data and weight reuses are
modeled by γ factors: the first character in subscript denotes
data (d) and weight (w), while the second subscript denotes a
particular memory hierarchy. Specifically γdd, γdg , γdp, and
γdr corresponds to data reuse at DRAM (d), global buffer
(g), array (p) and register files (r), respectively. Note Eq. 7
represents the energy cost to generate a single output.

The relative reduction in energy over a naive system is

∆E =
Enaive − E
Enaive

=
Etx − E
Etx

, (8)

a metric which we will use in Section V to assess the savings
in energy consumption through our proposed approach.

III. SYSTEM ARCHITECTURE

In the following, we describe the components of the system
in detail.

A. Neural Network

Intuitively, a neural network as complex as that used at
the remote device to perform final classification would enable
a “perfect” selection of anomalous signal sections. In fact,
as the two classifiers have the same output, only positive
cycles would be selected for transmission, thus minimizing
channel usage without any accuracy degradation. Clearly, such
a complex neural network cannot be executed within wearable

sensors. Therefore we explore a range of parameters corre-
sponding to different levels of complexity – and thus energy
consumption and selection accuracy – for DNNs deployed on
wearable sensors.

We trained a total of 26 variants of customized sequence
to sequence CNN (S2SCNN) models to translate single lead
ECG signals into sample-wise annotation of arrhythmia. Fig.
2 shows a representative version, which has 800, 010 pa-
rameters, composed of 4 convolution (CONV) modules. The
output of the CNN consists of two probability estimates ŷa,
and ŷn, indicating probabilities of abnormality and normality,
respectively. Each CONV module consists of a 64-channel
1D convolution filter which has a filter length of 64, a batch
normalization layer, rectified linear (ReLU) activation layer,
and a dropout layer set to a 25% dropout rate. Since the
training data only has labels marked on QRS complexes, at the
output of each network, a softmax layer is employed to enable
generation of the most decisive predictions by the CNN.

x(t)

Conv1D(32,64)
BatchNorm

ReLU
Dropout(0.25)

Conv1D(32,64)
BatchNorm

ReLU
Dropout(0.25)

Conv1D(32,64)
BatchNorm

ReLU
Dropout(0.25)

Conv1D(32,64)
BatchNorm

Softmax

(ŷa(t), ŷn(t))

Fig. 2. Two representative architectures of CNN employed in this work.
Layer caption “Conv1D(α, β)” denotes a 1D convolution layer which has α
filter kernels (channels) and β filter length; “Dropout(γ)” denotes dropout[14]
layer with rate of γ.

All CNNs are implemented in Keras with Tensorflow back-
end. Training is performed de novo with random initialization
of weights. We used the Adam optimizer with gradient clip-
ping enabled and a mini batch size of 128. The initial learning
rate is set to 1×10−3 and reduced by tenfold when validation
loss levels off. Convergence can be reached within 20 training
epochs in half an hour on the nVidia 2080Ti GPU.

B. Decision Logic

Signal compression is realized by the decision logic, which
takes the raw signal x(t) and the outputs of the neural network
to determine whether sections of the signal are transmitted or
not. The logic will selectively transmit samples if the output
of the neural network exceeds threshold τ . Transfer function
of the decision logic can be formulated by

xT (t) =

{
x(t) if ŷa(t)− ŷn(t) >= τ

φ otherwise.
(9)

Threshold τ is a system design parameter which allows
adjustment on sensitivity. Lower τ is more conservative in
generating negative predictions. Also, reducing τ implies more
data will be transmitted.
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Fig. 3. Inference results on MITDB record number 105 via CNN which has
137,510 parameters. Blue curve is the Modified lead II (MLII) signal. Note
that two VPC events, indicated by symbol “V”, are observed in this interval.
Middle panel shows the label which is derived from annotation files; Bottom
panel shows prediction outputs for normal ŷn(t) and abnormal heartbeats
ŷa(t)

TABLE II
PERFORMANCE SUMMARY OF CNN VARIANTS. AUC: AREA UNDER ROC

CURVE; TPR: TRUE POSTIVE RATE WHEN τ = 0.

Parameters #CONV Channels ~nc AUC TPR
1460160 4 [106, 106, 106, 2] 0.862 0.683
1224441 4 [97, 97, 97, 2] 0.863 0.799
1032321 4 [89, 89, 89, 2] 0.868 0.729
856585 4 [81, 81, 81, 2] 0.867 0.782
800010 5 [64, 64, 64, 64, 2] 0.849 0.737
697233 4 [73, 73, 73, 2] 0.864 0.759
537546 4 [64, 64, 64, 2] 0.870 0.742
413010 4 [56, 56, 56, 2] 0.880 0.759
343495 4 [51, 51, 51, 2] 0.863 0.762
330360 4 [50, 50, 50, 2] 0.870 0.779
317481 4 [49, 49, 49, 2] 0.860 0.777
304858 4 [48, 48, 48, 2] 0.867 0.813
280380 4 [46, 46, 46, 2] 0.845 0.575
268525 4 [45, 45, 45, 2] 0.869 0.676
256926 4 [44, 44, 44, 2] 0.864 0.753
245583 4 [43, 43, 43, 2] 0.855 0.778
234496 4 [42, 42, 42, 2] 0.844 0.759
213090 4 [40, 40, 40, 2] 0.882 0.795
137706 4 [32, 32, 32, 2] 0.874 0.724
91920 4 [26, 26, 26, 2] 0.864 0.769
72010 3 [32, 32, 2] 0.865 0.836
60805 4 [21, 21, 21, 2] 0.863 0.731
48526 3 [26, 26, 2] 0.877 0.716
36090 4 [16, 16, 16, 2] 0.870 0.724
32476 3 [21, 21, 2] 0.842 0.819
19626 3 [16, 16, 2] 0.858 0.719

IV. EXPERIMENTAL SETUP

A. Dataset

To evaluate the proposed system, we aim to maximize
energy efficiency in recording arrhythmia which is evident
from uneven heartbeats in the ECG. We obtained multiple
ECG datasets from PhysioNet and Telemetric and Holter ECG
warehouse (THEW)[15]. Five specific datasets are combined
to obtain a 205-record dataset for CNN training and system

TABLE III
RELATIVE ENERGY SAVINGS ON DIFFERENT RECORDS IF 1% εmt IS

GUARANTEED

Record ∆E (%) τ btx(%)

105 33.91 -0.14 59.71
1121a 18.12 0.03 75.50
210 13.47 -0.44 80.15
114 8.48 -0.56 85.15
ECG-P18-02 -3.65 -0.72 97.28
107 -4.75 -0.14 98.37
124 -5.65 -0.81 99.28
Mean 8.56 -0.40 85.06
Max 33.91 -0.03 99.28
Min -5.65 -0.81 59.71

evaluation. Each of the records has associated labeling in-
formation which is compliant to ANSI/AAMI EC57 standard
(AAMI). The dataset is then split into training, development,
and test subsets. Each of them has 184, 10 and 11 records,
respectively. Records from the same subject do not overlap
or duplicate across different datasets. According to Luz et.
al.[16], (modified) lead II (II/MLII) is selected to be the most
informative feature for arrhythmia detection.

Abnormal rhythms are derived from disjunction of S, V,
F, and Q categories; Normal rhythms are marked by label
N. Indexes of both types of heartbeats are converted into
two impulse trains δa(t) and δn(t), respectively. To account
for average PR interval and QRS complex duration, the
intervals advancing and lagging R-peak 0.2 seconds and 0.1
seconds are both assumed to share the same label assigned to
corresponding R-peak.

B. Methodology to select system parameters

Three system parameters, namely 1) topology of CNN p,
2) computation resource parameters γ, and 3) communication
system parameters t, determine the overall system perfor-
mance which is defined by application performance εmt and
energy cost E . Here we assume 2) and 3) are fixed and
orthogonal to the CNN parameters. On dataset D, the problem
of finding the optimal system parameters can be formulated
as

p̂ = argmin
p∈P

rp[CNNp(D)]Ptx,t + σ[CNNp(D)]Ecomp,γ

subject to εmt < T, (10)

where rp[CNN(D)] and σ[CNN(D)] denote the rate of pos-
itive calls of CNN and the total amount of computations,
respectively. We applied grid search on parameter space P
to determine the best configuration of p which is derived
numerically in the next section.

V. NUMERICAL RESULTS

A. Performance Summary

Table III summarizes the energy savings as computed in Eq.
8. Only the best performing CNN (indicated by a * in Fig.
4) is represented in the table while simulations are performed
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Fig. 5. Mistransmission rate among 6 test records. Real data points are indicated by black dots. Two subplots should be read relationally. Any single point
on the left contour has a corresponding point on the right. Lower threshold value τ (color coded blue) corresponds to a more conservative DNN which leads
to more data transmission.

based on all variants of CNNs listed in Table II. The threshold
is set to allow at most 1% of mistransmission rate εmt.

Contour plots of the mistransmission rate are shown in Fig.
5a with corresponding threshold τ in Fig. 5b. The contours are
triangularized on mesh grids of btx and number of parameters
in the CNN. Note that setting the threshold to −1 results in
ε = 0% as all samples are transmitted. On the ordinate, where
the number of parameters is zero, data points are computed
based on “stochastic transmitter” assumption. The stochastic
transmitter is defined to randomly drop samples for bandwidth
saving. Asymptotic limit of the mistransmission rate when the
number of parameters approaches zero, i.e. no CNN in system,
is estimated under this assumption.

B. Optimal system parameters

As summarized in Fig. 4, the overall best performance can
be achieved with the CNN which has 91,920 parameters. This
result is consistent with the highlighted design point closest
to the origin in Fig. 5a. The energy saving is a direct result
of the CNN performance.

VI. CONCLUSIONS

We proposed a new technique that leverages a lightweight
DNN to minimize energy consumption on wearable ECG

sensors by selectively transmitting only the informative parts
of an acquired ECG signal. We also formulated a unified
energy model for DNN-assisted embedded systems. Our
extensive experiments on real world datasets demonstrate
that our proposed methodology locates the optimal CNN
hyperparameters that minimizes the overall energy cost, while
maintaining classification performance above a predefined
threshold, making this a viable approach for deploying DNNs
on resource constrained sensors.
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