
Vol.:(0123456789)1 3

Computing and Software for Big Science             (2020) 4:3  
https://doi.org/10.1007/s41781-020-0035-2

ORIGINAL ARTICLE

MadMiner: Machine Learning‑Based Inference for Particle Physics

Johann Brehmer1   · Felix Kling2,3 · Irina Espejo1 · Kyle Cranmer1

Received: 8 August 2019 / Accepted: 3 January 2020 
© Springer Nature Switzerland AG 2020

Abstract
Precision measurements at the LHC often require analyzing high-dimensional event data for subtle kinematic signatures, 
which is challenging for established analysis methods. Recently, a powerful family of multivariate inference techniques that 
leverage both matrix element information and machine learning has been developed. This approach neither requires the reduc-
tion of high-dimensional data to summary statistics nor any simplifications to the underlying physics or detector response. 
In this paper, we introduce MadMiner , a Python module that streamlines the steps involved in this procedure. Wrapping 
around MadGraph5_aMC and Pythia 8, it supports almost any physics process and model. To aid phenomenological 
studies, the tool also wraps around Delphes 3, though it is extendable to a full Geant4-based detector simulation. We 
demonstrate the use of MadMiner in an example analysis of dimension-six operators in ttH production, finding that the 
new techniques substantially increase the sensitivity to new physics.

Introduction

Precision measurements at the Large Hadron Collider (LHC) 
experiments search for direct and indirect signals of physics 
beyond the Standard Model. Statistically, this requires con-
straining a typically high-dimensional parameter space, for 
instance the Wilson coefficients in an effective field theory 
(EFT) or the couplings and masses in a supersymmetric 
model. The data going into these analyses consist of a large 
number of observables, many of which can carry informa-
tion on the parameters of interest.

The relation between model parameters and observables 
is typically best described by a suite of computer simulation 
tools for the hard interaction, parton shower, hadronization, 
and detector response. These tools take as input assumed 
parameters of the physics model, for instance a particular 
value for the Wilson coefficients of an EFT, and use Monte 
Carlo methods to sample hypothetical observations. Unfor-
tunately, they do not directly let us solve the inverse prob-
lem: given a set of observed events, it is not possible to 
explicitly calculate the likelihood of such a measurement 
as a function of the theory parameters. This intractability 
of the likelihood function is a major challenge for particle 
physics measurements.

Particle physicists have developed a range of techniques 
for this problem of likelihood-free inference. These can be 
roughly grouped into three categories [1]: 

1.	 Traditionally, analyses are restricted to a small number 
of hand-picked observables. The likelihood function 
for these low-dimensional summary statistics can then 
be estimated with explicit parametric functions, histo-
grams, kernel density estimation techniques, or Gauss-
ian Processes [2–4]. Relatedly, Approximate Bayesian 
Computation [5–8] is a family of Bayesian techniques 
that allow sampling from an approximate version of the 
posterior in the space of the summary statistics. Coming 
up with the newest and greatest kinematic observables is 
a popular pastime among phenomenologists. However, 

 *	 Johann Brehmer 
	 johann.brehmer@nyu.edu

	 Felix Kling 
	 felixk@slac.stanford.edu

	 Irina Espejo 
	 iem244@nyu.edu

	 Kyle Cranmer 
	 kyle.cranmer@nyu.edu

1	 Center for Data Science and Center for Cosmology 
and Particle Physics, New York University, New York, 
NY 10003, USA

2	 Department of Physics and Astronomy, University 
of California, Irvine, CA 92697, USA

3	 SLAC National Accelerator Laboratory, 2575 Sand Hill 
Road, Menlo Park, CA 94025, USA

http://orcid.org/0000-0003-3344-4209
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-020-0035-2&domain=pdf


	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 2 of 25

limiting the analysis to a few summary statistics discards 
the information in all other directions in phase space. 
Even well-motivated variables often do not come close 
to the power of an analysis of the fully differential cross 
Sect. [9, 10].

2.	 Another approach aims to estimate the likelihood func-
tion of high-dimensional observables by approximat-
ing the effect of shower, hadronization, and detector 
response with simple transfer functions (or neglecting 
them altogether). In this approximation, the likelihood 
becomes tractable. This category includes the Matrix 
Element Method [11–26], Optimal Observables [27–29], 
and Shower and Event Deconstruction [30–33]. These 
methods make maximal use of the knowledge about the 
physics underlying the simulations. While these methods 
do not require picking summary statistics, the approxi-
mation of the detector response can lead to suboptimal 
results, the treatment of additional jet radiation is a chal-
lenge, and the evaluation of each event requires the cal-
culation of a numerically expensive integral.

3.	 Over the last years, methods based on machine learn-
ing have become increasingly popular. The industry 
standard in particle physics is to train a classifier (often 
a boosted decision tree or neural network) to classify 
events as coming from different sources (e. g. signal 
vs. background). Its output is used to define acceptance 
regions, and accepted events are then usually analyzed 
with a traditional histogram-based measurement strat-
egy. While this strategy is great at suppressing back-
ground events, it does not necessarily lead to the most 
precise parameter measurements when kinematic distri-
butions change over the parameter space [9].

	   Only recently has there been an increased interest in 
using machine learning to estimate the likelihood, likeli-
hood ratio, or (in a Bayesian setting) the posterior [34–
58]. These approaches have in common that they only 
require access to samples generated for different model 
parameter values. They can handle high-dimensional 
observables and do not require a choice of summary 
statistics. They also work natively with the output of 
the simulator, so they do not require any simplifications 
to the underlying physics or detector response. The 
estimate of the likelihood provided by these algorithms 
typically becomes exact in the limit of infinite train-
ing samples (assuming sufficient capacity and efficient 
training), but often a large number of simulations are 
required before a good performance is reached.

A new machine-learning-based approach that directly lev-
erages matrix element information has been introduced in 
Refs. [59–61] and since been further developed in Refs. [1, 

62]. Like the other multivariate approaches, these tech-
niques support high-dimensional observables without the 
restriction to summary statistics. Similar to the Matrix Ele-
ment Method and Optimal Observables, these techniques 
leverage our physics insight in the form of the matrix 
elements efficiently. But unlike those methods, they sup-
port state-of-the-art simulations of the parton shower and 
detector response. In addition, after an upfront simulation 
and training phase, they provide a function that estimates 
the likelihood and can be evaluated in microseconds.

These new techniques require extracting matrix element 
information from the Monte Carlo simulation, keeping 
track of and manipulating these weights in specific ways, 
and then training machine learning models on this data. 
Without proper software support, these steps are cumber-
some and error-prone, providing a technological hurdle 
to a wider adaptation of these methods. Reference [59] 
describes this approach with the analogy of “mining gold” 
from Monte Carlo simulations: while the additional infor-
mation from the simulations is very valuable, it can require 
some effort to extract and process. However, the gold does 
not have to be hard to mine!

In this paper, we introduce MadMiner , a Python mod-
ule that automates all steps necessary for these modern 
multivariate inference techniques. It supports all elements 
of a typical analysis, including the simulation of events 
with MadGraph5_aMC [63], Pythia 8 [64], detector 
simulation, reducible and irreducible backgrounds, and 
systematic uncertainties. For phenomenological studies, 
the tool supports the simulation of the detector response 
with Delphes 3 [65], though it is extendable to a full-
detector simulation based on Geant4 [66].

We review the supported analysis techniques in Sect. 3 
and describe their implementation in MadMiner  in 
Sect. 4. In Sect. 5, the new tool is demonstrated in an 
example analysis of Higgs production in association with 
a top pair at the high-luminosity run of the LHC. We give 
our conclusions in Sect. 6. In the appendix, we answer 
frequently asked questions.

Inference Techniques

LHC Measurements as a Likelihood‑Free Inference 
Problem

The ultimate goals of most measurements are best-fit 
points and exclusion regions in a (high-dimensional) 
parameter space. In particle physics experiments, best-
fit points are typically defined as maximum-likelihood 



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 3 of 25      3 

estimators, while exclusion regions are based on hypoth-
esis tests that use the (profile) likelihood ratio as test sta-
tistic [67].1 Both are based on the same central object, 
the likelihood function pfull({x}|�) . It quantifies the prob-
ability of observing a set of events, where each event is 
characterized by a vector x of observables such as recon-
structed energies, momenta, and angles of all final-state 
particles, as a function of a vector of model parameters � , 
e. g. the Wilson coefficients of an effective field theory.

In particle physics measurements, the likelihood function 
usually has the form:

Here, n is the observed number of events, L is the integrated 
luminosity, �(�) is the cross section as a function of the 
model parameters, Pois (n|�) = �ne−�∕n! is the probability 
mass function of the Poisson distribution, and

is the likelihood function for a single event: the probability 
density of the d-dimensional vector of observables x as a 
function of the model parameters � . Up to the normalization, 
this kinematic likelihood function is identical to the fully 
differential cross section dd�(x|�)∕dxd.

The Poisson or rate term in Eq. (1) is comparably sim-
ple, even though it is based on the cross section after effi-
ciency and acceptance effects, which can be complicated 
to calculate in realistic problems. However, the remaining 
terms, which quantify the kinematic information, typically 
cannot be explicitly computed at all. This is because the 
most accurate model of the kinematic distributions is usually 
given by a complicated chain of Monte Carlo simulators. 
The kinematic likelihood which they implicitly define can 
be written symbolically as:

where zp are the four-momenta, charges, and helicities of 
the parton-level four-momenta, zs is the entire history of the 
parton shower, and zd describes the interactions of the par-
ticles with the detector. A state-of-the-art simulation can 
easily involve billions of such latent variables. Explicitly 
calculating the integral over this huge space is clearly impos-
sible: given a set of events {x} and a parameter point � , we 

(1)pfull({x}|�) = Pois (n|L�(�)) ∏
i

p(xi|�).

(2)p(x|�) = 1

�(x)

dd�(x|�)
dxd

(3)

p(x|�) = ∫ dzd ∫ dzs ∫ dzp p(x|zd) p(zd|zs) p(zs|zp) p(zp|�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p(x,z|�)

,

hence cannot compute the likelihood function (it is intracta-
ble). This is a major challenge for analyzing LHC data. The 
same structural problem appears in many other fields that 
use computer simulations to model complicated processes, 
including cosmology, systems biology, and epidemiology, 
giving rise to the development of different likelihood-free 
inference techniques.

In particle physics, common analysis techniques address 
the intractability of the likelihood function in different ways. 
The traditional approach restricts the observables x to one or 
two summary statistics v(x), for instance the invariant mass 
of the decay products of a searched resonance or the trans-
verse momentum of the hardest particle in an EFT analysis. 
Then, the density p(v|�) can be calculated with histograms 
and used in lieu of the full likelihood p(x|�) . On the other 
hand, the Matrix Element Method and Optimal Observable 
approaches simplify the integral in Eq. (3) by replacing 
the shower and detector response with simple smearing or 
transfer functions; in this approximation, it also becomes 
tractable. For a discussion and comparison of these different 
methods, see Ref. [1].

Learning the Likelihood Function

A first class of inference techniques in MadMiner tackles 
the intractability of the likelihood function head-on: a neu-
ral network is trained to estimate the kinematic likelihood 
p(x|�) or, equivalently, the likelihood ratio:

using data available from the simulator. To be more specific, 
MadMiner differentiates between three different functions 
that the neural network can learn:

Likelihood estimators In this case, a neural network 
takes as input event data x as well as a model parameter 
point � and returns the estimated likelihood p̂(x|𝜃) : 

Likelihood ratio estimators Alternatively, the network 
can model the likelihood ratio including its dependence 
on the data x and on the parameter point � in the numera-
tor of the ratio: 

 There are different options for the denominator distri-
bution pref(x) . In MadMiner , we set it to the distribu-
tion from a reference parameter point, pref(x) = p(x|�ref) . 
Alternatively, it could be given by a marginal model 

(4)r(x|�0, �1) =
p(x|�0)
p(x|�1)

(5)NN ∶ (x, 𝜃) ↦ p̂(x|𝜃).

(6)NN ∶ (x, 𝜃) ↦ r̂(x|𝜃) ≈ p(x|𝜃)
pref(x)

.

1  The issue of likelihood-free inference, the inference techniques dis-
cussed here, and MadMiner just as well apply in a Bayesian setting, 
see for instance Ref. [56].



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 4 of 25

pref(x) = ∫ d�� p(x|��)p(��) , or even be an entirely unphys-
ical reference distribution.
Doubly parameterized likelihood ratio estimators The 
last option is to model the likelihood ratio as a function 
of not only the event data x and the numerator parameter 
point �0 , but also including its dependence on the denomi-
nator model: 

Note that in all three cases, the network is parameterized in 
terms of the theory parameters � [37, 68]: rather than train-
ing separate networks for different points on a grid of param-
eter points, one neural networks model the likelihood func-
tion for the whole parameter space. The network learns to 
interpolate in parameter space and can “borrow” statistical 
power from close parameter points, leading to a significantly 
better sample efficiency than a point-by-point approach [61].

But how do we train a neural network to learn any of 
these three functions? More specifically, which loss func-
tion can we minimize so that a neural network will con-
verge to the right function? There are a number of different 
answers, which can be grouped into two categories. First, 
some methods have been developed that just use samples 
of events {x} generated from different parameter points � . 
This includes neural density estimation (NDE) techniques, 
for instance masked autoregressive flows [47], in which the 
network learns the likelihood function. Another approach is 
the Carl method [37], which trains the network to estimate 
the likelihood ratio.

While both NDE and Carl are implemented in Mad-
Miner , its major feature is the support for a new, poten-
tially more powerful paradigm to likelihood or likelihood 
ratio estimation [59–61]. The key idea is that additional 
information can be extracted from the Monte Carlo simula-
tions, and that this additional information can be used to 
train more precise estimators of likelihood or likelihood ratio 
with less training data.

More specifically, for each simulated event, it is possible 
to calculate the joint likelihood ratio:

and the joint score:

(7)NN ∶ (x, 𝜃0, 𝜃1) ↦ r̂(x|𝜃0, 𝜃1) ≈
p(x|𝜃0)
p(x|𝜃1) .

(8)

r(x, z|�0, �1) ≡p(x, z|�0)
p(x, z|�1)

=
p(x|zd) p(zd|zs) p(zs|zp) p(zp|�0)
p(x|zd) p(zd|zs) p(zs|zp) p(zp|�1)

=
d�(zp|�0)
d�(zp|�1)

�(�1)

�(�0)

Here, �(�) is the total cross section as a function of the 
model parameters � , and d�(zp|�) are the parton-level event 
weights. At a hadron collider such as the LHC, these can be 
written as [15]:

They depend on the momentum fractions xi carried by the 
initial-state partons, the squared center-of-mass energy s, 
the momentum transfer Q, the corresponding values of the 
parton density functions fi(xi,Q2) , and the Lorentz-invariant 
phase-space element dΦ(zp) . Finally, zp is the entire phase-
space point of a simulated event (including the parton four-
momenta, helicities, and charges), and |M|2(zp|�) is the 
squared matrix element. Both the joint likelihood ratio and 
the joint score thus depend on the parton-level momenta 
zp and are directly related to the squared matrix element 
describing the underlying process.

The main insight of Refs. [59–61] is that the joint likeli-
hood ratio and joint score can be used to define loss func-
tions that, when minimized with respect to a test function 
that only depends on x and � , converges to the likelihood 
function p(x|�) or the likelihood ratio.2

There are several variations of this idea. The main dif-
ference between them is the exact form of the loss function 
used. We label them with a set of acronyms: Scandal is 
an improved version of NDE techniques that uses the joint 
score to train likelihood estimators more efficiently; Cascal 
is a similarly improved version of the Carl method; Rolr 
and Alice use the joint likelihood ratio to efficiently train a 
likelihood ratio estimator; and finally, the Rascal and Alices 
techniques use both the joint likelihood ratio and the joint 
score, maximizing the use of information from the simulator. 
In Table 1, we provide an overview and give references to 
detailed explanations of all methods.

Once a neural network has been trained with one of these 
methods, it can calculate an estimated value of the likeli-
hood or likelihood ratio for any event and any parameter 

(9)

t(x, z|�) ≡∇� log p(x, z|�)
=
p(x|zd) p(zd|zs) p(zs|zp) ∇�p(zp|�)
p(x|zd) p(zd|zs) p(zs|zp) p(zp|�)

=
∇�d�(zp|�)
d�(zp|�) −

∇��(�)

�(�)
.

(10)

d�(zp|�) =
(2�)4f1(x1,Q

2)f2(x2,Q
2)

2x1x2s
|M|2(zp|�) dΦ(zp).

2  Note that this approach is similar in spirit to the Matrix Element 
Method, which also uses parton-level likelihoods and aims to esti-
mate r(x|�0, �1) by calculating approximate versions of the integral in 
Eq.  (3). But unlike the Matrix Element Method, our machine learn-
ing-based approach supports realistic shower and detector simulations 
and can be evaluated very efficiently.



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 5 of 25      3 

point. Established statistical tools can then be used to cal-
culate best-fit points and exclusion limits in the parameter 
space. For the calculation of frequentist confidence regions, 
there are generally two strategies. The first is simulating a 
large number of toy experiments to calculate the p-value 
for each parameter point that is tested. This approach can 
be computationally expensive, but guarantees statistically 
correct results—even if the neural network has not learned 
the likelihood function accurately, this approach will not 
lead to too tight limits. The second strategy uses the asymp-
totic properties of the likelihood ratio function [69–71] to 
directly translate values of the likelihood ratio into p-values. 
While this method is extremely efficient, it relies on cor-
rectly trained neural networks.

Learning Locally Optimal Observables

MadMiner also implements a second class of methods: 
rather than trying to reconstruct the full likelihood function, 

a neural network is trained to provide the most powerful 
observables for a given measurement problem. The central 
quantity of this approach is the score:

evaluated at a fixed reference parameter point �ref , for 
instance the SM. This vector has one component per param-
eter. For a given event x, its components are just numbers 
(unlike the likelihood and the likelihood ratio, which are also 
functions of the parameters � ). In other words, the score is 
a vector of observables.

The relevance of these observables is most obvious in 
a local approximation of the likelihood function [7, 60, 
72]: in the neighborhood of the parameter point �ref , the 
score components are the sufficient statistics. That means 
that for the purpose of measuring � , knowing t(x) is just 
as powerful as knowing the full likelihood p(x|�) (which, 
since it depends on � , is a much more complicated object). 

(11)t(x) = ∇� log p(x|�)
||||�ref

Table 1   Inference techniques 
implemented in MadMiner 

We separate them into four groups, depending on which quantity is estimated by the neural network; see 
the text for more details. We give the parameter values for which the Monte Carlo samples have to be gen-
erated and list whether the augmented data (joint likelihood ratio r(x, z) and joint score t(x, z)) are used. 
“Asymptotically exact” describes methods that should give theoretically optimal results in the limit of suffi-
cient network capacity, perfect optimization, and enough training data. Methods that also allow for the fast 
generation of event data from the neural network are marked as “generative”. Finally, for each method, we 
provide the reference that provides the clearest explanation (and spells out the acronym)

Method Run simulation at Loss fn. uses Asympt. exact Generative References

r(x, z) t(x, z)

Likelihood estimators
   NDE � ∼ �(�) ✓ ✓ [47]
   Scandal � ∼ �(�) ✓ ✓ ✓ [59]

Likelihood ratio estimators
   Carl � ∼ �(�) , �ref ✓ [37]
   Rolr � ∼ �(�) , �ref ✓ ✓ [61]
   Alice � ∼ �(�) , �ref ✓ ✓ [62]
   Cascal � ∼ �(�) , �ref ✓ ✓ [61]
   Rascal � ∼ �(�) , �ref ✓ ✓ ✓ [61]
   Alices � ∼ �(�) , �ref ✓ ✓ ✓ [62]

Doubly parameterized likelihood ratio estimators
   Carl �0 ∼ �(�) , �1 ∼ �(�) ✓ [37]
   Rolr �0 ∼ �(�) , �1 ∼ �(�) ✓ ✓ [61]
   Alice �0 ∼ �(�) , �1 ∼ �(�) ✓ ✓ [62]
   Cascal �0 ∼ �(�) , �1 ∼ �(�) ✓ ✓ [61]
   Rascal �0 ∼ �(�) , �1 ∼ �(�) ✓ ✓ ✓ [61]
   Alices �0 ∼ �(�) , �1 ∼ �(�) ✓ ✓ ✓ [62]

Score estimators
   Sally �ref ✓ In local approx. [61]
   Sallino �ref ✓ In local approx. [61]



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 6 of 25

In this sense, the score defines the most powerful observa-
bles for the measurement of �.3

This motivates a fourth function for a neural network to 
estimate:

Score estimator A neural network takes as input event 
data x and returns the estimated score at a reference 
parameter point: 

How does a neural network learn to estimate the score? 
Again, extracting additional information from the simulator 
proves useful. The Sally and Sallino methods introduced 
in Refs. [59–61] define a loss function that involves the joint 
score t(x, z). Minimizing this loss function will train a neural 
network to converge to the true score t(x) [59].

After training, such a score estimator can be used like any 
other set of observables. In particular, we can fill multivari-
ate histograms of the score and use them for inference. This 
approach, named Sally, requires only a minimal modifica-
tion of established analysis workflows. A similar method 
called Sallino constructs one-dimensional histograms of 
particular projections of the estimated score, see Ref. [61] 
for details.

As long as parameter points close to the reference point, 
for instance the SM, are analyzed, and assuming that the 
neural network was trained efficiently and with enough train-
ing data, the Sally or Sallino methods will lead to statisti-
cally optimal limits. Further away from the reference point, 
the score components might no longer be optimal, and this 
approach might lose some power compared to the techniques 
discussed in the previous section. The size of the parameter 
region in which the score components are the sufficient sta-
tistics depends on the size of higher derivatives of the (log) 
likelihood with respect to the parameters and is not known 
a priori; we will illustrate this with an example in Sect. 5.3.

The Fisher Information

The final results of actual measurements are best-fit points 
and exclusion limits. However, for quickly evaluating the 
sensitivity of a measurement, comparing different channels, 
or optimizing an analysis, a different object is often more 
practical: the Fisher information matrix. It is closely con-
nected to the score discussed in the previous section and 
summarizes the sensitivity of an analysis in a compact, 

(12)NN ∶ x ↦ t̂(x) ≈ ∇𝜃 log p(x|𝜃)
||||𝜃ref

.

interpretable, and powerful way [9, 10]. It is defined as the 
expectation value:

with the full likelihood function pfull({x}|�) from Eq. (1).
To see why this matrix is useful, consider an expansion 

of the expected log likelihood ratio between � + Δ� and � 
around the minimum:

In the last step, we have introduced the local Fisher distance:

which is a convenient approximation of the log likelihood 
ratio as long as Δ� is small.4 Moreover, according to the 
Cramér-Rao bound [76, 77], the inverse of the Fisher infor-
mation is the minimal covariance of any estimator 𝜃̂ . The 
larger the Fisher information, the more precisely a parameter 
can be measured.

This approach shines when it comes to ease of use and 
interpretability. The Fisher information matrix is invariant 
under reparameterizations of the observables x, transforms 
covariantly under reparameterizations of the parameters 
� , and is additive over phase-space regions. This property 
means that we can define the distribution of the differential 
information over phase space, which quantifies where in 
phase space, the power of an analysis comes from [9]. The 
formalism also easily accommodates nuisance parameters, 
and profiling over them is a simple matrix operation [9, 78].

In particle physics processes described by Eq. (1), the 
Fisher information turns out to be [9]:

(13)Iij(�) = �

[
� log pfull({x}|�)

�i

� log pfull({x}|�)
�j

|�
]

(14)

− 2 �

[
log

pfull({x}|� + Δ�)

pfull({x}|�) |�
]

= −�

[
�2 log pfull({x}|�)

��i ��j
|�
]
Δ�i Δ�j +O(Δ�3)

= �

[
� log pfull({x}|�)

��i

� log pfull({x}|�)
��j

|�
]
Δ�i Δ�j

+O(Δ�3)

= Iij(�) Δ�i Δ�j +O(Δ�3)

= d(�, � + Δ�)2 +O(Δ�3).

(15)d(� + Δ�, �) =
√

Iij(�) Δ�i Δ�j,

4  The Fisher information defines a metric on the parameter space, 
giving rise to the field of information geometry  [9, 73, 74]. In that 
formalism, we can also define “global” distances measured along 
geodesics, which are equivalent to the expected log likelihood ratio 
even beyond the local approximation of small Δ� [75].

3  In fact, the score vector is a generalization of the concept of Opti-
mal Observables  [27–29] from the parton level to the full statistical 
model including shower and detector simulation.



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 7 of 25      3 

where L is the integrated luminosity, � the cross section, 
�i denotes derivatives with respect to �i , n is the number of 
events x generated for the parameter point � , and ti is the 
ith component of the score vector introduced in Eq. (11). 
The first term describes the information in the overall rate, 
while the second term quantifies the power in the kinematic 
distributions. A neural score estimator t̂(x) as in Eq. (12) 
together with a set of events thus lets us calculate the (a 
priori intractable) Fisher information.

Practical Analysis Aspects

Let us now link these abstract inference techniques to spe-
cific aspects of typical analyses in high-energy physics and 
summarize some features and limitations of MadMiner .

High-energy process MadMiner supports almost all 
processes of perturbative high-energy physics that can 
be run in MadGraph5_aMC [63]. This includes any 
high-energy physics model specified in the UFO for-
mat [79]. The inference techniques only require that 
the model is parameterized by a finite number of model 
parameters � and that it is possible to calculate the par-
ton-level event weights of Eq. (10) for arbitrary values 
of the model parameters � , i. e. to “reweight” the events 
to different parameter points [80]. The approach is not 
fundamentally restricted to leading order, though one 
has to be careful that negative event weights, which can 
appear in certain subtraction schemes, do not lead to 
numerical instabilities.
It is often beneficial to define the parameters � , such 
that they span a similar order of magnitude. In prac-
tice, this may require some rescaling. For instance, if 
an analysis aims to measure two Wilson coefficients 
f0 and f1 and the range of interest of f1 is 1000 times 
larger than that of f0 , consider defining the parameters 
internally as � = (f0, f1∕1000).
Morphing In an important class of models, the squared 
matrix elements (or parton-level event weights) can be 
factorized into a sum over nc components, each consist-
ing of an analytical function of the theory parameters 
times a function of phase space: 

(16)

Iij(�) =
L �i�(�) �j�(�)

�(�)
+ L �(�) ∫ dx p(x|�) ti(x|�) tj(x|�)

≈
L �i�(�) �j�(�)

�(�)
+

L �(�)

n

∑
x∼p(x|�)

ti(x|�) tj(x|�),

(17)|M|2(zp|�) =
∑
c

wc(�) fc(zp).

 This is often the case in effective field theories, or when 
indirect effects of new physics are parameterized through 
form factors.
For instance, consider the simple case in which we are 
trying to measure a single BSM parameter � and the 
process is described by a SM contribution, an interfer-
ence term, and a squared BSM amplitude: 

 More generally, the dependence on the model parameters 
is often a combination of different polynomials. Note that 
the contributions fc(zp) are not necessarily distributions: 
they can be negative, or integrate to zero, for instance for 
interference terms. Nevertheless, the sum of all compo-
nents is always a physical distribution, i. e. it is non-neg-
ative everywhere and integrates to the total cross section.
When a process factorizes according to Eq.   (17), a 
“morphing technique” [61, 81] allows us to calculate 
event weights anywhere in parameter space precisely 
and very fast. First, the squared matrix element is evalu-
ated at nc different points in the parameter space. The 
structure of Eq. (17) together with some linear alge-
bra is then used to exactly interpolate to any other 
parameter point. This process is described in detail in 
Ref. [61].
MadMiner implements this morphing technique and 
leverages it extensively. The user only has to specify 
the maximal powers with which each model parameter 
contributes to the squared matrix element. MadMiner 
then automates the necessary linear algebra internally.
A practical question is at which nc benchmark points the 
matrix elements should be evaluated originally. This set 
of parameter points is called the morphing basis. While 
the physical predictions for a given parameter point 
are independent of this basis, the morphing procedure 
involves matrix inversions and cancelations between 
potentially large terms that depend on the choice of 
basis. Some morphing basis choices can thus lead to 
floating-point precision issues, while others are numeri-
cally more stable. MadMiner can automatically pick 
or complete a morphing basis that avoids or minimizes 
numerical precision issues. This optimization consists 
of randomly drawing a number of basis configurations 
over a user-specified parameter region, calculating mor-

(18)

|M|2(zp|�) = 1
⏟⏟⏟
w0(�)

|MSM|2(zp)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

f0(zp)

+ �
⏟⏟⏟
w1(�)

2ReM
†

SM
(zp)MBSM(zp)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f1(zp)

+ �2
⏟⏟⏟
w2(�)

|MBSM|2(zp)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

f2(zp)

.



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 8 of 25

phing weights for each basis, and choosing the basis 
that minimizes the sum of squared morphing weights.
Note that MadMiner is not restricted to problems that 
factorize according to Eq. (17). Much of the core func-
tionality is available for almost any model of new physics. 
However, some features are currently only implemented 
in the morphing case, and for others, the morphing setup 
can reduce the computational cost substantially.
Parton shower Parton shower and hadronization can be 
simulated with Pythia 8 [64], including matching and 
merging of different final-state jet multiplicities. This part 
of the event evolution should not directly depend on the 
new physics parameters of interest.5 Other shower simula-
tors can be interfaced with little effort.
Detector simulation Out of the box, MadMiner 
includes a fast phenomenological detector simula-
tion with Delphes 3 [65], as well as an alternative 
approximate detector simulation through smearing func-
tions based on the parton-level final state. MadMiner is 
designed modularly, so that it can be interfaced to more 
realistic detector simulations used by the experimental 
collaborations such as Geant4 [66]. Such an extension 
will mostly require careful book-keeping of event weights 
and observables.
Observables The observed data for each event need to 
be parameterized in a fixed-length vector of observa-
bles x. These can include both basic characteristics like 
energies, transverse momenta, and angular directions of 
reconstructed particles, but also higher-level features such 
as invariant masses or angular correlations between par-
ticles. For Delphes-level analyses, MadMiner allows 
the definition of these observables as arbitrary functions 
of the objects in the Delphes output file, while for 
parton-level analyses, arbitrary functions of the smeared 
parton-level four-momenta are supported. It is possible to 
extend MadMiner with interfaces to any external code 
that calculates observables from generated events.
Backgrounds Different signal and background processes, 
with no limitations on the parton-level final states, can be 
combined in the same analysis. Background processes are 
allowed to depend on the model parameters � . In the case 
of a reducible backgrounds that are not affected by � , the 
joint log likelihood ratio and joint score of all background 
events are zero, up to an x-independent constant that is 
related to the dependence of the overall signal cross section 
on � . We will discuss and illustrate this case in Sect. 5.1.
While fully data-driven backgrounds are not supported, 
a data-driven normalization of MC event samples is pos-
sible.

Systematic uncertainties All imperfections in the 
description of the physics process with the simulation 
chain are modeled with nuisance parameters � . For most 
of the analysis chain, they play the same role as the phys-
ics parameters of interest � : their true value is unknown 
and they affect the likelihood of simulation outcomes. For 
the inference techniques presented in the previous section, 
every occurrence of � then has to be replaced with (�, �) : 
the neural networks estimate the likelihood p(x|�, �) , the 
likelihood ratio r(x|�0, �0;�1, �1) , or the score t(x|�, �) , 
where the latter now has more components correspond-
ing to both the gradient with respect to � and the gradient 
with respect to � . At the final limit setting stage, one then 
picks a constraint term (or, in a Bayesian setting, a prior) 
for the nuisance parameters and profiles (or marginalizes) 
over them, following established statistical procedures [9, 
71, 78, 82].
MadMiner currently supports nuisance parameters 
that model systematic uncertainties from scale and PDF 
choices. The effect of the nuisance parameters on an event 
weight is parameterized as: 

similar to HistFactory [3] and PyHF [83]. �i = 0 
corresponds to the nominal value of the ith nuisance 
parameter. For each varied scale, �i = ±1 correspond to 
the scale variations (typically half and twice the nominal 
scale choice). PDF uncertainties are described by one 
nuisance parameter per eigenvector in a Hessian PDF 
set, and �i = 1 corresponds to the event weight along a 
unit step of an eigenvector. The factors a(zp) and b(zp) 
are automatically calculated for each event based on a 
reweighting procedure [84]. The exponential form of Eq.  
(19) ensures non-negative event weights.
Neural network architectures and training At the heart 
of MadMiner ’s analysis techniques lie neural networks 
that take event data x (and, depending on the method, 
a parameter point (�, �) ) as input and return the likeli-
hood, likelihood ratio, or score. The optimal architecture 
of these networks depends on the problem. MadMiner 
currently supports fully connected feed-forward neural 
networks with a variable number of layers and hidden 
units and different activation functions, implemented 
in PyTorch [85]. The loss functions are mostly fixed 
by the inference methods given in Table1. The Scan-
dal, Rascal, Alices, and Cascal techniques have a free 
hyperparameter � that weights the joint score term in the 
loss function relative to another term. These loss func-
tions are minimized by stochastic gradient descent with or 
without momentum [86], the Adam optimizer [87], or the 

(19)

d�(zp|�, �) = d�(zp|�, 0) × exp

[∑
i

(
a(zp) �i + b(zp) �

2
i

)]
,

5  Fundamentally, the presented inference techniques also support 
new physics effects that affect e. g. the probabilities of shower split-
tings, but this is currently not supported in MadMiner.



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 9 of 25      3 

AMSGrad optimizer [88]; other options include batching, 
learning rate decay, and early stopping.
Uncertainty estimation An individual neural estimator 
merely provides a point estimate for the likelihood, likeli-
hood ratio, or score. By training an ensemble of different 
estimators with different random seeds, we can use the 
ensemble variance as a diagnostic tool to check whether 
the global minimum of the loss functional has been 
found [89]. Taking this idea one step further, we can train 
each network on resampled data. With this nonparametric 
bootstrap method, the ensemble variance represents the 
uncertainty in the neural network output from finite train-
ing sample size. While this approach may serve as a use-
ful indicator of the epistemic uncertainty of the network 
predictions (i. e. the uncertainty on the parameters of the 
neural network), there is no guarantee that it covers all 
relevant sources of bias and variance.

Recommendations for Getting Started

The large number of different inference methods, analysis 
aspects, and hyperparameters outlined above and described 
in detail in a total of six publications [37, 47, 59–62] might 
seem a little overwhelming. That is why we here provide a 
few suggestions for new users of MadMiner, largely based 
on the comprehensive comparison in Refs. [61, 62]. Rather 
than being a one-size-fits-all solution, this should be seen as 
a starting point for the exploration of the space of possible 
analysis methods.

The main question is whether one of the methods should 
be used that reconstruct the entire likelihood or likelihood 
ratio function, as described in Sect. 3.2, or whether the 
analysis merely aims to find (locally) optimal observables, 
as described in Sect. 3.3. The former approach is poten-
tially more powerful: given enough data, expressive enough 
networks, and a training of the neural network that reaches 
the global minimum of the loss function, it will lead to the 
best possible limits. However, it is also more ambitious, may 
require more training data and hyperparameter experiments, 
and represents a bigger change to a typical data analysis 
pipeline.

The latter strategy, on the other hand, is simpler, scales 
better to high-dimensional parameter spaces, and requires 
less training samples. Since it essentially defines a new set 
of observables, it requires only minimal modifications to 
existing analysis pipelines. The Fisher information formu-
lation makes it very easy to summarize the sensitivity of a 
measurement. The catch is that this approach is only optimal 
as long as the dominant signatures enter at linear order in the 
model parameters, and otherwise loses statistical power and 
may lead to worse limits.

If this last condition is satisfied—if the dominant new 
physics effects are expected at linear order in the param-
eters—we consider the Sally strategy an ideal starting point. 
A typical example for this is a precision measurement of 
effective operators. On the other hand, if non-linear contri-
butions from the model parameters dominate, we instead 
suggest using the Alices technique. Its hyperparameter � 
should initially be chosen such that the two terms in the loss 
function contribute approximately equally to the training, 
but it is worth scanning this parameter over a few orders of 
magnitude.

Using MadMiner

We will now describe the implementation of these tech-
niques in the new Python package MadMiner .
MadMiner is open source and its code is available at 

Ref. [90]. That repository also contains interactive tutori-
als with step-by-step comments. A detailed documentation 
of the API is available online at Ref. [91]. We also provide 
a Docker container with a working environment of all 
required tools at Ref. [92], and reusable workflows based 
on Reana [93] at Ref. [94].

To get started, the minimal requirements are work-
ing installations of MadGraph5_aMC and MadMiner . 
The latter can be installed with a simple pip install 
madminer. Shower and detector simulations in addition 
require installations of Pythia 8, the automatic Mad-
Graph–Pythia interface, and Delphes 3. To model PDF 
uncertainties, LHAPDF has to be installed, including its 
Python interface. All these additional dependencies can 
easily be installed from the MadGraph5_aMC command 
line interface. Detailed instructions for the installation can 
be found at Ref. [91].

In the following, we will go through the typical steps of a 
MadMiner analysis that uses the inference techniques dis-
cussed in the last section. Figure 1 visualizes the workflow 
of such an analysis, and we will generally follow this figure.

Analysis Specification and Event Generation

The first phase of a MadMiner analysis consists of specify-
ing the problem and generating events. First, the necessary 
files (“cards”) that define the analyzed process and theoreti-
cal model should be collected. This includes the UFO model 
files as well as the run card, the parameter card, the Pythia 
card, and the Delphes card, all in the standard format used 
by MadGraph5_aMC.

The measurement problem is specified with an instance 
of the MadMiner class. The parameter space is defined by 
repeatedly calling its add_parameter() function. Each 



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 10 of 25

5A
. F

IS
H

ER
 IN

FO

FisherInformation

5B
. I

N
FE

RE
N

CE

AsymptoticLimits

1.
 E

VE
N

T 
G

EN
ER

AT
IO

N
3.

 S
A

M
PL

IN
G

4.
 M

L
2.

 O
BS

ER
VA

BL
ES

MadMiner

DelphesReader

SampleAugmenter

LikelihoodEstimator 
RatioEstimator 
ScoreEstimator 

Ensemble

MadGraph

Delphes

Pythia

M
ad

M
in

er
 

le
 (.

h5
)

MadGraph cards
(.dat)

Parton-level events
(.lhe)

Hadron-level events
(.hepmc)

Detector-level events
(.root)

Training data
(.npy)

Trained ML model
(.json, .pt, .npy)

Parameters

Fisher information

Observed events, 
parameter grid

Best t, p-values

Parameter space, 
benchmarks, 
morphing,

nuisance parameters

Observables,
cuts

Sampling setup

Physics process, 
theory model,

simulation setup

Input / Output MadMiner classes External simulators Files

Fig. 1   Example workflow, with classes in red, external simulations in blue, and files in green



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 11 of 25      3 

model parameter is specified by its LHA block and LHA ID 
in the UFO model.

Next, the user chooses benchmarks: parameter points at 
which the event are evaluated. Benchmarks can be speci-
fied manually with add_benchmark(). Additionally, a 
morphing technique based on Eq. 17 can be activated by 
calling set_morphing(). If less benchmarks have been 
manually specified than required for a morphing basis, more 
benchmarks will be chosen automatically, minimizing the 
expected size of morphing weights |wc(x)|.

Systematic uncertainties (from PDF and scale variations) 
can be specified with a call to set_systematics(). 
Once the parameter space, benchmarks, morphing, and sys-
tematic uncertainties are set up, save() saves these set-
tings in the MadMiner file, which is based on the HDF5 
standard [95].

Finally, events can be generated by calling run() or 
run_multiple() (the difference is that the former 
starts one event generation run, while the latter generates 
multiple sets with different run cards or sampled from dif-
ferent benchmarks). MadMiner will set up MadGraph’s 
reweighting feature to evaluate the event weights for all 
events at all benchmarks, which are stored in the LHE event 
files together with the parton-level information. Pythia 8 
will automatically be called to shower and hadronize the 
partons, the results are stored in a standard HepMC event 
file [96].

Detector Effects and Observables

In the second phase, all relevant information has to be 
extracted from the event samples, including observables as 
well as event weights for the different benchmarks. There 
are currently two implementations for this step: the LHERe-
ader class realizes a simple parton-level analysis, in which 
the effects of shower and detector are approximated with 
transfer functions, while the DelpesReader class imple-
ments an detector-level analysis in which the shower is mod-
eled with Pythia 8 and the detector with Delphes 3. 
The API of both classes is very similar, and here, we focus 
on the DelpesReader option.

After creating a DelphesReader instance and point-
ing it to the MadMiner file, the user has to list the HepMC 
event samples that should be analyzed by calling the func-
tion add_sample(). The detector simulation with Del-
phes can either be run externally or through MadMiner 
by calling run_delphes().

In a next step, the user defines a set of observables 
that will be calculated for each event. These can be pro-
vided either as Python functions with add_observ-
able_from_function() or as parse-able strings 
with add_observable(). In both cases, reconstructed 
objects are accessible as MadMinerParticle objects, 

which inherits all functions of scikit-hep’s Lor-
entzVector class  [97]. This makes observable defi-
nitions very easy: for instance, the transverse momen-
tum of the hardest lepton can simply be defined as 
add_observable("lepton_pt", "l[0].pt"), 
while the azimuthal angle between the two hardest jets can 
be defined as add_observable("delta_phi", 
"j[0].deltaphi(j[1])"). Cuts can be added simi-
larly with add_cuts().

Once all samples are added, Delphes has been called, 
and all observables and cuts are defined, a call to ana-
lyse_delphes_samples() parses the observables 
for the simulated events, applies the cuts, and extracts the 
relevant event weights. With save(), these data are stored 
in the MadMiner file.

Sample Unweighting and Augmentation

If multiple different samples were created, for instance for 
different processes or phase-space regions, they should now 
be combined into a single MadMiner file and shuffled by 
calling the combine_and_shuffle() function.

In the third step of the analysis workflow, the event infor-
mation in the MadMiner file is processed into training data 
for the different algorithms described in the previous section. 
This consists of two aspects: first, the event data need to be 
reweighted to the parameter points � (and / or �0 , �1 , �ref ) that 
make up the training data and then unweighted. Second, the 
joint likelihood ratio r(x, z) and the joint score t(x, z) need 
to be calculated for each unweighted event.

This is implemented in the SampleAugmenter class. 
It provides a set of six high-level functions that generate 
and augment the data for the different types of inference 
techniques. For instance, sample_train_local() gen-
erates training samples for score estimators (the Sally and 
Sallino techniques), while sample_train_ratio() 
prepares training data for likelihood ratio estimators. The 
outputs of all these functions are a set of plain NumPy [98] 
arrays. The rows of these two-dimensional arrays are the 
events; the columns correspond to the observables that char-
acterize the event data (in the order in which the observa-
bles were defined in the DelphesReader or LHEReader 
classes), the parameter points according which they are sam-
pled, and the components of the joint score, respectively.

Machine Learning

It is finally time to train neural networks to estimate the 
likelihood, likelihood ratio, or score, as discussed in 
Sect. 3. This is implemented in the classes Likeli-
hoodEstimator, ParameterizedRatioEstima-
tor, DoubleParameterizedRatioEstimator, 
and ScoreEstimator. This training is independent of 



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 12 of 25

the external Monte Carlo simulations and even the Mad-
Miner file, which makes it easy to run it on an external 
system with GPU support.

During initialization of any of these classes, the network 
architecture is chosen. Currently, MadMiner supports fully 
connected feed-forward networks with variable number of 
layers, hidden units, and activation functions, implemented 
in PyTorch [85]. A call to train() starts the training; 
keywords specify which loss function to use, the location 
of the training data generated in the previous step, the opti-
mizer, the learning rate schedule, the batch size, and whether 
early stopping is used.

After training, save() saves the neural network to files. 
The estimators are evaluated for arbitrary parameter points 
and observables with evaluate_log_likelihood(), 
evaluate_log_likelihood_ratio(), or evalu-
ate_score(). For many users, the estimates returned by 
these functions will be the final output of MadMiner , and 
the statistical analysis will be performed externally.

We also provide the Ensemble class, a convenient 
wrapper that allows to train an ensemble of multiple neural 
networks. The different instances can have identical or dif-
ferent architectures and the training can be performed on 
the same or resampled training data. Such an ensemble is 
useful for consistency checks and uncertainty estimation as 
discussed in Sect. 3.5.

Inference

MadMiner provides a barebones framework for the sta-
tistical analysis: the AsymptoticLimits class. After 
initializing, it with the MadMiner file, the two high-level 
functions expected_limits() and observed_lim-
its() calculate expected and observed p-values over a grid 
in parameter space. expected_limits() takes as input 
the parameter point that is assumed to be true and internally 
generates a so-called “Asimov” data set [71], a large simu-
lated set of events. observed_limits() on the other 
hand is directly based on a list of events, which the user can 
take from simulations or actual measured data.

Both methods can estimate the kinematic likelihood 
either through histograms of kinematic variables, through 
histograms of the estimated score from a trained ScoreEs-
timator instance, or through a trained likelihood (ratio) 
estimator. p values are calculated with a likelihood ratio test, 
using the asymptotic distribution of the likelihood ratio as 
described in Wilks’ theorem [69–71].

The AsymptoticLimits currently does not support 
systematic uncertainties. We are planning to interface Mad-
Miner with existing software packages that implement pro-
file likelihood ratio tests.

Fisher Information

As discussed in Sect. 3.3, a convenient and powerful sum-
mary of the sensitivity of a measurement is the Fisher 
information matrix. Its calculation is implemented in 
the FisherInformation class. Most importantly, 
full_information() calculates the Fisher informa-
tion based on a ScoreEstimator instance as given in 
Eq. (16). Several other functions allow to calculate the 
Fisher information in the cross section only (i. e. the first 
term of Eq. (16)), the Fisher information in the histogram 
of one or two kinematic variables, and finally the truth-
level Fisher information, which treats all properties of the 
parton-level particles as observable. Finally, the function 
histogram_of_information() allows the user to 
calculate the distribution of the Fisher information over 
phase space, as introduced in Ref. [9].

In the presence of systematic uncertainties and in 
a frequentist setup, nuisance parameters can either be 
neglected (“projected out”) or conservatively taken into 
account (“profiled out”). These operations are imple-
mented in the functions project_information() 
and profile_information().

Physics Example

We demonstrate the use of MadMiner in the measure-
ment of dimension-six operators in tth production at the 
high-luminosity run of the LHC. We choose to analyze 
fully leptonic top decays and a Higgs decay into two 
photons:

with � = e,� . While this particular signature is not expected 
to be the most sensitive channel, for example when com-
pared to either semi-leptonic tth production or Higgs pro-
duction in gluon fusion, it provides a high-dimensional final 
state with a non-trivial missing energy signature, illustrating 
the features and challenges that MadMiner can address.

We consider three different scenarios:

Illustration We first illustrate the mechanism behind 
the inference techniques in MadMiner in a one-dimen-
sional version of the problem, restricting the analysis to 
one parameter and one observable.
Validation MadMiner is then validated in a parton-
level toy scenario. By not letting the W bosons decay and 
ignoring the effect of shower and detector on observables, 
we can calculate the true likelihood function and compare 
the output of the neural networks to a ground truth.

(20)pp → tt̄ h → (b�+) (b̄�−) (𝛾𝛾)Emiss
T



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 13 of 25      3 

Physics analysis Finally, we perform a realistic phe-
nomenological analysis, including the effects of parton 
shower and detector and considering a three-dimen-
sional parameter space and high-dimensional event 
data.

All three analyses are performed with MadMiner v0.4 
following the workflow outlined in the previous section. 
Events are generated with MadGraph5_aMC@NLO at lead-
ing order for 

√
s = 14 TeV using the PDF4LHC15_nlo 

parton distribution function [99]. We normalize the rates 
to the NLO predictions [100] with a phase-space-independ-
ent k-factor. We consider the Standard Model Lagrangian 
supplemented with dimension-six operators in the SILH 
basis  [101], as implemented in the HEL FeynRules 
model [102].

Otherwise, the simulation setup is different for each of the 
three scenarios. We summarize the main settings in Table 2 
and discuss them in each of the following sections.

Illustration of Analysis Techniques

Our first analysis aims to illustrate how MadMiner calcu-
lates the likelihood function in a simplified one-dimensional 
version of the problem. For this, we restrict ourselves to a 
single dimension-six operator:

with

This operator induces an additional contribution to the effec-
tive Higgs–gluon coupling, gggh → gggh(1 + 192�2∕g2 × cG) , 
and, therefore, affects the kinematic distributions [103].

We define the theory parameter as � = 100 cG , which is 
dimensionless and of order unity over the parameter range 
of interest. � = 0 then corresponds to the SM, any devia-
tion from zero to a new physics effect. The squared matrix 

(21)L = LSM + cG OG

(22)OG =
g2
s

m2
W

(H†H)Ga
��
G��

a
.

element consists of an SM contribution, an interference term 
linear in � , and a squared dimension-six amplitude propor-
tional to �2 , and we can use a morphing technique to interpo-
late event weights and cross sections from three benchmarks 
(or morphing basis points) to any point in parameter space.

In this illustration setup, we also restrict the analysis to a 
single observable x = pT ,�� , the transverse momentum of the 
di-photon system. All other observables are treated as if they 
were unobservable. Together with physically unobservable 
degrees of freedom (such as neutrino energies) as well as 
random variables in the simulation of the shower, hadroniza-
tion, and detector, they form the set of latent variables z. This 
setup is similar to a histogram-based analysis of cG using 
only the pT ,�� histogram.

We generate events with MadGraph5_aMC@NLO as 
described above. They are then showered and hadronized 
through Pythia 8. The detector response is simulated 
with Delphes 3 using the HL-LHC card suggested by the 
HL/HE-LHC working group [104].

Signal Only

In the sampling and data augmentation step (the third box 
in Fig. 1), MadMiner creates training samples where each 
simulated event is characterized by values of the observable 
x = pT ,�� and the (unobservable) latent variables z. Addi-
tionally, for each event, MadMiner calculates the joint 
likelihood ratio r(x, z|�) between the parameter point � and 
a reference point �ref , which we take to be the SM. It also 
calculates the joint score t(x, z|�) evaluated at the parameter 
point � . This is illustrated in Fig. 2. The blue dots and orange 
triangles in the left panel show the joint log likelihood 
ratio log r(x, z|�) with their dependence on the observable 
x = pT ,�� . The blue dots show tth events sampled accord-
ing to the SM (with �ref = 0 ), while the orange triangles are 
sampled from a BSM hypothesis with � = 1 (or cG = 0.01 ). 
We can see that there are more high-pT events for the BSM 
model than for the SM, and hence, the joint likelihood ratio 
is higher. The large vertical scatter in the joint likelihood 
ration is caused by the presence of the latent variables z, 
which affect the joint likelihood ratio, but are unobservable. 

Table 2   The three scenarios 
in which we analyze the tth 
process

Illustration Validation Physics analysis

Operators OG Ou , OG , OuG Ou , OG , OuG

Initial states pp gg pp
Final state (b�+) (b̄�−) (𝛾𝛾)Emiss

T
(bW+) (b̄W−) (𝛾𝛾) (b�+) (b̄�−) (𝛾𝛾)Emiss

T

Background ✓ – ✓

Shower simulation Pythia – Pythia

Detector simulation Delphes – Delphes

Observables 1: pT ,�� 80 48
Systematic uncertainties – – PDF, scale



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 14 of 25

In the right panel of the same figure, the arrows show the 
joint log likelihood ratio log r(x, z|�) (arrow position) and the 
joint score t(x, z|�) (arrow slope) with their dependence on 
the theory parameter � . Here, the observable is constrained 
to the range pT ,�� = (300 ± 2.5) GeV to suppress the observ-
able dependence.

Estimating the likelihood ratio with the methods 
described in Sect. 3.2 (and in more detail in Ref.  [61]) 
essentially means fitting a function r̂(x|𝜃) to the joint likeli-
hood ratio r(x, z|�) by numerically minimizing a suitable 
loss functions. In this process, the unobservable latent vari-
ables z are effectively integrated out. This is the gist of the 
machine learning step of the MadMiner workflow (box four 
in Fig. 1). The result of this step, the estimated log likeli-
hood ratio r̂(x|𝜃) based on the Alices method, is shown in 
the solid black lines in Fig. 2: the left panel illustrates the x 
dependence for fixed � = 1 , the right panel illustrates the � 
dependence for fixed x. While it is possible to estimate the 
likelihood ratio only using the joint likelihood ratio as input, 
the gradient information that is the joint score provides addi-
tional guidance, which often allows for the fit to converge 
with less data.

Adding Backgrounds

So far, we have only considered the tth signal process. How 
does this picture change when we include backgrounds? 
We answer this question in the left panel of Fig. 3, where 
in addition to the signal, we now include the dominant 

background, continuum tt̄ 𝛾𝛾 production with leptonically 
decaying tops.

As before the circles show the joint log likelihood ratio 
log r(x, z|�) and the line denotes the estimated log likelihood 
ratio function log r̂(x|𝜃) . Since signal and background popu-
late different phase-space regions, the interference between 
them is negligible and we could consistently simulate them 
separately from each other. This means that every simulated 
event is labeled either as a signal or a background event, 
which plays the role of a discrete variable in the set of latent 
variables z. The background event weights are unaffected by 
the EFT operator OG , so the joint likelihood ratio for these 
events is independent of x and z:

which in our case turns out to be:

This is clearly visible in the left panel of Fig. 3, where the 
tt̄ 𝛾𝛾 events show up as a horizontal line at this value. While 
the presence of backgrounds does not affect the fundamental 

(23)

r(x, z|�)||||background =
p(x, z|�)
p(x, z|�ref)

=
d�(zp|�)
d�(zp|�ref)

�(�ref)

�(�)

=
�(�ref)

�(�)
,

(24)log r(x, z|�)||||background = −0.78 =∶ log r∗.

Fig. 2   Illustration of the analysis techniques in a one-dimensional 
problem. Left Joint log likelihood ratio as a function of the observ-
able pT ,�� for tth signal events sampled according to the SM (blue 
dots) and an BSM theory with � = 100 cG = 1 (orange triangles). The 
solid line shows the estimated log likelihood ratio from an Alices 
model trained only on pT�� as input observable. Right Joint log likeli-

hood ratio (arrow position) and joint score (arrow slope) as a func-
tion of the model parameter � = 100 cG , for tth signal events in the 
range pT ,�� = (300 ± 2.5) GeV. The solid line shows the estimated log 
likelihood ratio from an Alices model trained only on pT ,�� as input 
observable and evaluated at pT ,�� = 300 GeV



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 15 of 25      3 

validity of the inference technique, it increases the variance 
of the joint likelihood ratio around the true likelihood ratio, 
so that more training events are required before the neural 
network converges on the true likelihood ratio function.

In this simple example with one-dimensional observa-
tions x, we can validate the Alices predictions with histo-
grams. The histogram approximation for the likelihood ratio 
is r̂(x|𝜃) = [𝜎bin(𝜃)∕𝜎(𝜃)]∕[𝜎bin(𝜃ref)∕𝜎(𝜃ref)] , where �bin(�) 
is the cross section in the bin corresponding to x. In the left 
panel of Fig. 3, the log likelihood ratio based on a histogram 
with 5 (100) equally sized bins is shown as solid orange 
(dashed blue) line. It generally agrees excellently with the 
Alices prediction. The two histogram lines show the trade-
off in the number of bins: while too few bins lead to large 
binning effects, a large number of bins can lead to large fluc-
tuations due to limited Monte Carlo statistics. In contrast, 
the MadMiner techniques based on neural networks learn 
the correct continuum limit equivalent to an infinite number 
of histogram bins, without suffering from large fluctuations.

In Sect. 3.3, we described an alternative approach in 
which MadMiner calculates the score, a vector of summary 
statistics that are statistically optimal close to a reference 
parameter point such as the SM. We illustrate this Sally 
technique in the right panel of Fig. 3. The green circles show 
the joint score t(x, z) at the SM reference point, correspond-
ing to the change of the log likelihood when infinitesimally 
increasing the sole theory parameter � = 100 cG . In anal-
ogy to the log likelihood ratio, the red points clustering at 
a horizontal line:

correspond to the tt̄ 𝛾𝛾 background events. Estimating the 
score function conceptually corresponds to fitting a function 
t̂(x) to the joint score data t(x, z) by numerically minimizing 
an appropriate loss function. The resulting score estima-
tor t̂(x) is shown as a solid black line. Again, in this one-
dimensional case, we can compare the result to the score 
estimated through a histogram, which is shown in a solid 
red (dashed green) line for a histogram with 5 (100) bins. 
We find excellent agreement between the Sally prediction 
and the histogram results.

Validation at Parton Level

Next, we validate MadMiner in a setup in which we can cal-
culate a ground truth for the output of the algorithms. This 
is not trivial, because the ground truth—the true likelihood, 
likelihood ratio, or score—is intractable in realistic situations. 
In the last section, we showed how we can use histograms 
to check the algorithms, but only when limiting the analysis 
to one or two observables. We now turn to another approxi-
mation in which we can access the true likelihood ratio and 
score, even though both observables and model parameters 
are high-dimensional: Following Ref. [60, 61], we consider 
a truth-level scenario in which all latent variables are also 
observable, x = z . In this case the likelihood ratio r(x) is equal 
to the joint likelihood ratio r(x, z) and the score t(x) is equal to 

(25)t(x, z)
||||background = −0.58 =∶ t∗

Fig. 3   Illustration of the analysis techniques in a one-dimensional 
problem. Left Joint log likelihood ratio as a function of the observ-
able pT�� for tth signal events (green dots) and tt�� background events 
(red triangles) sampled according to the SM and a BSM theory with 
� = 100 cG = 1 . The background events cluster at a constant value of 
−0.78 , as explained in the text. The lines show the estimated log like-
lihood ratio based on the Alices method trained only on pT ,�� (black 

solid) and a pT ,�� histogram with 5 (orange solid) and 100 (blue 
dashed) bins, respectively. Right Joint score evaluated at the SM for 
tth signal (green dots) and tt�� background events (red triangles). The 
background events cluster at a constant value of −0.58 , as explained 
in the text. The lines show the estimated score obtained using a Sally 
method trained only on pT�� (black solid) and a pT ,�� histogram with 
5 (orange solid) and 100 (blue dashed) bins, respectively



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 16 of 25

the joint score t(x, z). We can thus compare the predictions of 
a neural network trained to estimate either of these quantities 
to a ground truth.

For this validation, we choose the parton-level process:

We do not let the W bosons decay and assume that the four-
momenta and flavors of all initial-state and final-state par-
ticles can be measured, i. e. we do not simulate the effect 
of parton shower and detector response. These truth-level 
approximations are not necessary for the inference tech-
niques in MadMiner , but they allow us to calculate a 
ground truth for the likelihood ratio and score, which is not 
possible for any realistic treatment of neutrinos or modeling 
of parton shower and detector response.

Following Ref.  [103], we consider three-dimension-
six operators affecting the top and Higgs couplings in tth 
production:

where the operators are defined as:

(26)gg → tt̄h → (bW+) (b̄W−) (𝛾𝛾).

(27)L = LSM + cu Ou + cG OG + cuG OuG,

(28)

Ou = −
1

v2
(H†H)(H†Q̄L)uR,

OG =
g2
s

m2
W

(H†H)Ga
𝜇𝜈
G𝜇𝜈

a
,

OuG = −
4gs

m2
W

yu(H
†Q̄L)𝛾

𝜇𝜈TauRG
a
𝜇𝜈
.

The Ou operator effectively rescales the top Yukawa 
coupling as yt → yt × (1 + 3∕2 × cu) , essentially rescal-
ing the overall rate of the tth process. As discussed in 
the previous section, the OG operator induces an addi-
tional contribution to the effective Higgs–gluon coupling, 
gggh → gggh(1 + 192�2∕g2 × cG) , and thus changes the kin-
ematic distributions. Finally, the OuG operator corresponds 
to a top-quark chromo-dipole moment, which modifies the 
gtt vertex. It also induces new effective ggtt, gtth, and ggtth 
couplings, promising new kinematic features.

As theory parameters, we define the vector:

Two of the Wilson coefficients are rescaled by a factor 100 to 
make sure that typical values of the three parameters are of 
the same size. Like in most EFT analyses, the squared matrix 
element factorizes as described in Eq. 17, and we can use a 
morphing technique to interpolate event weights and cross 
sections from nine benchmarks (or morphing basis points) 
to any point in parameter space.

Based on a sample of 1.25 ⋅ 106 events, we train a likeli-
hood ratio estimator with the Alices technique and a score 
estimator with the Sally method.

We show the results in Fig. 4. The left panel shows the 
correlation between the true and estimated score based on 
the Sally technique, focusing on the score component t2(x) 
that corresponds to the theory parameter �2 = 100 cG (with 
similar results for the other components). In the right panel, 
we compare the estimated likelihood ratio based on the 

(29)� = (�1, �2, �3)
T = (cu, 100 cG, 100 cuG)

T .

Fig. 4   Validation of the analysis techniques in a parton-level analy-
sis, treating the momenta and flavors of all initial-state and final-
state partons are observable. Left Validation of score estimation 
with the Sally method. Estimated versus true score component t2(x) 
evaluated at the SM. Right Validation of likelihood ratio estima-

tion with the Alices technique. Estimated versus true log likelihood 
ratio log r(x|�) . The numerator parameter points � are drawn from 
a multivariate Gaussian with mean (0,  0,  0) and covariance matrix 
diag (0.22, 0.22, 0.22) as an example for a relevant region of parameter 
space



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 17 of 25      3 

Alices method to the ground truth, with parameter points 
drawn from a region of parameter space that could be of 
interest in a typical analysis. In both cases, we find that the 
predictions of the neural network are very close to the true 
values, confirming that the MadMiner algorithms work 
correctly in this truth-level scenario.

Realistic Physics Analysis

Finally, we analyze the new physics reach of the tth process 
in a realistic setup with high-dimensional event data and 
theory parameters. We consider the three-dimension-six 
operators given in Eqs. (27) and (28) and define the theory 
parameter space as in Eq. (29).

In addition to the tth signal, we again include the domi-
nant background, continuum tt̄ 𝛾𝛾 production with leptoni-
cally decaying tops. We take into account that this process 
is sensitive to the theory parameter cuG through the modified 
gtt and ggtt vertex while being independent of cu and cG . 
We neglect subleading backgrounds, in particular those with 
fake photons or fake leptons.

The event generation follows the discussion in Sect. 5.1; 
we simulate the parton shower with Pythia  8 and 
the detector response with Delphes  3 using the HL-
LHC detector setup. We now also take into account PDF 
and scale uncertainties, using the 30 eigenvectors of the 
PDF4LHC15_nlo_30 PDF set and independently vary-
ing renormalization and factorization scales by a factor of 2.

The event data are described by 48 observables, which 
includes the four-momenta of all reconstructed final-
state objects (photons, leptons, and jets), the missing 
energy, as well as derived quantities such as the recon-
structed transverse momentum of the di-photon system 
pT ,�� . We require the events to pass a di-photon mass cut 
115 GeV < m𝛾𝛾 < 135 GeV and to pass one of four triggers, 
which were adopted from the Delphes default trigger card: 
the mono-photon trigger ( pT ,𝛾 > 80 GeV ), the di-photon 
trigger ( pT ,𝛾1 > 40 GeV and pT ,𝛾2 > 20 GeV ), the mono-
lepton trigger ( pT ,� > 29 GeV ), or the di-lepton trigger 
( pT ,�1

> 17 GeV and pT ,�2
> 17 GeV ). For an anticipated 

integrated luminosity of L = 3 ab−1 at the HL-LHC, we 
expect 24.5 tth SM signal and 33.6 tt�� background events 
to pass these acceptance and selection cuts.

We simulate 1.5 ⋅ 106 signal and 106 background events 
(after all cuts) and extract training samples with 107 
unweighted events. We then train neural networks to esti-
mate the score or likelihood ratio by minimizing the Sally 
and Alices loss functions, the latter with a hyperparameter 
� = 0.1 . We use fully connected neural networks with three 
hidden layers of 100 units and tanh activation functions, 
minimize the loss functions with the Adam optimizer using 
50 epochs, a batch size of 128, a learning rate that decays 
exponentially from 10−3 to 10−5 , and early stopping to avoid 

overtraining. These hyperparameters are the result of a 
coarse hyperparameter scan, though we did not perform a 
exhaustive optimization.

In the final step, we calculate expected exclusion limits 
and Fisher information matrices. We compare the results 
of the new methods to a baseline histogram analysis of the 
transverse momentum of the di-photon system pT ,�� , and to 
an analysis of the total cross section alone.

Fisher Information

Following our recommendations from Sect. 3.6, we start 
our physics analysis using the Sally technique, training a 
neural network to estimate the score at the SM. We then use 
it to calculate the SM Fisher information Iij as described in 
Sect. 3.4, finding:

This simple matrix summarizes the sensitivity of 
the measurement on all three operators. In particu-
lar, it allows us to calculate the squared Fisher distance 
d2(�, �ref) = Iij(�ref)(� − �ref)i(� − �ref)j . As long as � is 
sufficiently close to �ref , d2 approximates to (−2) times the 
expected log likelihood ratio between � and �ref . That, in 
turn, can be directly translated into an expected p value with 
which � can be excluded if �ref is true, using the asymptotic 
properties of the likelihood ratio [69–71]. In the following, 
we use the Fisher Information to calculate expected limits 
on a combination of two theory parameters, while fixing the 
remaining theory parameter to its SM value. In this case, the 
68% confidence-level contours correspond to a local Fisher 
distance d = 1.509 (95% CL corresponds to d = 2.447 ; 99% 
CL to d = 3.034 ). We show the resulting expected 68% CL 
contours in the cG–cu plane as solid blue line in the left panel 
of Fig. 5.

The Fisher information formalism makes it easy to dis-
sect these results a little. First, Eq. (16) shows that we can 
separate the full Fisher information into a rate term and kin-
ematic information. We show this separation in the left panel 
of Fig. 5 by separately plotting the expected limits corre-
sponding to the rate information (gray), the kinematic infor-
mation (dashed blue), and their combination (solid blue). We 
find that kinematic information is crucial for this channel. 
Since a rate measurement only provides a single number, at 
the level of the Fisher information, it can only constrain one 
direction in theory space and is blind in the remaining direc-
tion. This degeneracy is broken once additional information 
from the kinematic distributions is included. Indeed, the kin-
ematic information can constrain the rate-sensitive direction 
in theory space almost as well the rate itself.

(30)Iij =

⎛⎜⎜⎝

140.5 68.1 170.6

68.1 47.1 105.7

179.5 105.7 283.3

⎞⎟⎟⎠
.



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 18 of 25

Another aspect that can be conveniently discussed in 
the Fisher information framework is systematic uncertain-
ties. MadMiner can take PDF and scale uncertainties into 
account by parameterizing them with nuisance parameters 
and then profiling over them, which at the level of the Fisher 
information is a simple matrix operation [9, 78]. In the right 
panel of Fig. 5, we analyze the impact of these uncertain-
ties. The dashed lines show the expected limits neglecting 
systematic uncertainties, while the solid lines show results 
that take systematics into account by profiling over nuisance 
parameters. We also again distinguish between the Fisher 
information in the rate (gray), the Fisher information in a 
pT ,�� histogram (green), and the full information based on 
a neural score estimator (blue). We can see that the pres-
ence of systematic uncertainties, which are dominated by 
the scale uncertainty, mainly reduces the sensitivity in the 
rate-sensitive direction. The effect of systematic uncertain-
ties is more pronounced for the information in the total rate 
and in the pT ,�� histogram. The full, multivariate information 
is reduced mostly in the rate-sensitive direction in parameter 
space, while the information in the orthogonal direction (to 
which the rate analysis is blind) is affected only slightly.

The results in both panels of Fig. 5 do not just include 
central predictions for each Fisher information or contour, 
but also shaded error bands. These bands visualize the vari-
ance of an ensemble of ten score estimator instances, each 
trained on resampled training samples with independent 
random seeds. The bands show 2� variations, where � is 
the ensemble standard deviation for a prediction. The small 

width of these bands signals a passed sanity check; a larger 
width would be an indicator for numerical issues during 
training or insufficient training data.

In the discussion so far, we have focused on the total 
Fisher information integrated over phase space, which is 
related to the expected exclusion limits. There is another 
useful aspect of the Fisher information: we can analyze the 
kinematic distribution of the Fisher information over kine-
matic variables to identify the important phase-space regions 
for a measurement [9]. This knowledge can then be used to 
design and optimize the event selection.6 As an example, we 
consider the distribution of information over the di-photon 
transverse momentum pT ,�� , which is shown in the left panel 
of Fig. 6. The shaded gray areas show the differential cross 
section for the tt�� background and the SM tth signal. The 
three colored lines show the normalized distribution of the 
diagonal elements of the Fisher Information. We find that the 
information on Ou , the operator that just rescales the overall 
tth rate, peaks at 100 GeV , marking the optimal compromise 
between good signal-to-background ratio and large rate. For 
OuG and in particular OG , the information is shifted further 
towards the high-energy tail of the distribution, where the 
kinematic effects from these operators are large.

In the right panel of Fig. 6, we illustrate the relation 
between the score and kinematic variables and show how 

Fig. 5   Realistic physics analysis. Left Expected 68% CL limits in the 
cG–cu plane based on the Fisher information in the rate (gray), the 
kinematic information (dashed blue), and their combination (solid 
blue). The kinematic information is calculated based on the Sally 
technique. The shaded error bands show the ensemble variance of a 
set of 10 independently trained neural networks. We set cuG to zero. 

Right Expected 68% CL limits in the cuG–cG plane based on the Fisher 
Information for the rate (gray), a pT ,�� histogram (green), and the full 
multivariate information based on Sally (blue). The dashed (solid) 
line shows the reach without (with) systematic uncertainties. The 
shaded error bands show the ensemble variance of a set of ten inde-
pendently trained neural networks. cu is set to zero

6  Similarly, important phase-space regions can also be identified 
using the log likelihood ratio directly [105–107].



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 19 of 25      3 

the score itself can be used to identify the most sensitive 
region of phase space. We show the score component t2(x) , 
corresponding to the Wilson coefficient cG , as a function of 
the di-photon mass m�� and di-photon transverse momentum 
pT ,�� . While the m�� distribution for the signal process does 
not depend on the Wilson coefficients, this variable is impor-
tant in telling apart signal and background contributions. 
As discussed in Sect. 5.1, background events are generated 
with a constant joint score t2(x, z) = t∗ = −0.58 . This is 
why in kinematic regions dominated by the background, for 
instance away from the Higgs mass peak, the estimated score 
approaches a constant value t̂2(x) ≈ t∗ = −0.58 . Clusters of 
positive (negative) values of the score component corre-
spond to phase-space regions that are enhanced (suppressed) 
when increasing cG . The largest scores are observed for 
events around the Higgs peak with high pT ,𝛾𝛾 ≳ 100 GeV , 
showing the increased sensitivity of this high-energy region 
to the Wilson coefficient cG . Note that while the score com-
ponent is clearly related to the two variables shown here, it 
is not a simple function of m�� and pT ,�� ; the neural network 
instead learned a non-trivial function of the high-dimen-
sional observable space.

Exclusion Limits

So far, we have calculated limits in a local approximation, 
in which non-linear effects of the theory parameters on the 
likelihood function are neglected and in which the Fisher 
information fully characterizes the expected log likeli-
hood ratio as given in Eq.  (14). Let us now go beyond this 
approximation and calculate exclusion limits based on the 
full likelihood function, including any non-linear effects. 
In an analysis of effective dimension-six operators, the 

approach in the previous section corresponds to an analy-
sis of interference effects between the SM contribution and 
dimension-six effects, while in this section, we also take into 
account the squared dimension-six amplitudes. We can thus 
draw conclusions about the relevance of the dimension-six 
squared terms by comparing the limits obtained using the 
Fisher information with those obtained using the full likeli-
hood ratio function.

In the left panel of Fig. 7, we show the expected 68% CL 
contours for the parameter plane spanned by cG and cu . The 
solid red line shows the limits obtained using the Alices 
method, which directly estimates the likelihood ratio func-
tion. The Sally method (solid blue line) estimates the SM 
score vector; the components corresponding to cG and cu are 
used as observables and the likelihood is calculated with 
two-dimensional histograms. Finally, the limits based on the 
local Fisher distance are shown as dashed blue line. We can 
see the limits obtained using the three methods do not fully 
agree, indicating the relevance of dimension-six squared 
terms. Indeed, in the region of parameter space probed at 
68% CL, these terms contribute between 1% and 10% to 
the total rate, as shown by the dotted black lines, and sub-
stantially more in the relevant high-energy region of phase 
space.

These multivariate results are compared to limits based 
on the analysis of just a single summary statistic in the right 
panel of Fig. 7. We analyze the pT ,�� distribution with three 
methods: a histogram with 20 bins (pastel green), an Alices 
likelihood ratio estimator trained only on pT ,�� as observ-
able input (forest green), and a Sally estimator of the score 
trained only on pT ,�� as input (turquoise). We also show 
limits based only on the total cross section (gray) and, for 
each of the three methods, only on kinematic information 

Fig. 6   Realistic physics analysis. Left Differential cross section 
(shaded gray) and distribution of the Fisher information components 
(lines) over pT ,�� . Right Score component t2(x) corresponding to the 
Wilson coefficient cG as a function of di-photon mass m�� and di-

photon transverse momentum pT ,�� . Note that events in background-
dominated regions cluster at the value t∗ = −0.58 , as discussed in 
Sect. 5.1



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 20 of 25

(dashed lines). We find that the shape information in the 
pT ,�� distribution (dashed green) is complementary to the 
rate information, and hence removes the blind directions of 
the pure rate measurement. In addition, the results from the 
three methods agree very well, providing a non-trivial cross-
check of the three different approaches.

Finally, we collect the expected limits on the Wilson 
coefficients based on the different methods in Fig. 8. The 

left panel shows the cG–cu plane and the right panel the cuG
–cu plane, while the parameter not shown is set to zero in 
both cases. In gray, we show limits based on a cut-and-count 
analysis of the total rate. This approach only constrains 
one direction in theory space and is blind in the remain-
ing directions. In particular, this rate-only analysis cannot 
distinguish between multiple disjoint best-fit regions, for 
instance between cu = 0 and cu = −4∕3 , which corresponds 

Fig. 7   Realistic physics analysis. Left Comparison of the expected 
limits in the cG–cu plane at 68% CL. We show the limits based on 
the full likelihood ratio estimated with the Sally (solid blue) and 
Alices (solid red) methods as well as approximate limits based on 
the Fisher information calculated with Sally (dashed blue). The dot-
ted black line indicates where the contribution of the dimension-six 
squared terms contribute 1% and 10% to the total cross section. Right 

Comparison of the expected 68% CL exclusion limits in the cuG–cG 
plane using the rate (gray), a pT ,�� histogram with 20 bins (green), the 
Sally method trained with only pT ,�� as input (blue), and an Alices 
likelihood ratio estimator trained with only pT ,�� as input (red). The 
dashed limits only use kinematic distributions, while the solid curves 
include the rate measurement

Fig. 8   Realistic physics analysis. Expected exclusion limits on the 
Wilson coefficients cG versus cu with cuG set to zero (left), and on cuG 
versus cG with cu set to zero (right). We show best-fit points and 68% 

CL limits based on the rate only (gray), a pT ,�� histogram with 20 bins 
(green), the Sally technique (blue), and the Alices method (red)



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 21 of 25      3 

to a sign-flipped top Yukawa coupling and predicts the 
same total cross section. This degeneracy is broken once 
kinematic information is included. Even the simplest case, 
the histogram-based analysis of a single variable such as 
the di-photon transverse momentum pT ,�� (green line), can 
substantially improve the sensitivity of the analysis.

The blue and red line show the expected limits from 
the new, machine learning-based methods implemented in 
MadMiner . In blue, we show the sensitivity of the Sally 
technique, which uses the estimated score as a vector of 
locally optimal observables. We find clearly stronger limits: 
the score components are indeed more powerful observa-
bles than pT ,�� . Finally, the red line shows the limits from 
the Alices method, in which a neural network learns the 
full likelihood ratio function throughout the entire theory 
parameter space. In contrast to Sally, it also guarantees opti-
mal sensitivity further away from the SM reference point, 
provided that the network was trained successfully—and 
indeed, the Alices technique leads to the strongest expected 
limits on the Wilson coefficients.

Conclusions

In this paper, we introduced MadMiner , a Python pack-
age that implements a range of modern multivariate infer-
ence techniques for particle physics processes. These infer-
ence methods require running Monte Carlo simulations and 
extracting additional information related to the matrix ele-
ments, using this information to train neural networks to 
precisely estimate the likelihood function, and constraining 
physics parameters based on this likelihood function with 
established statistical methods. MadMiner implements all 
steps in this analysis chain.

These inference techniques are designed for high-dimen-
sional event data without requiring a choice of low-dimen-
sional summary statistics. Unlike for instance the matrix ele-
ment method, they model the effect of a realistic shower and 
detector simulation, without requiring any approximations 
on the underlying physics. After an upfront training phase, 
events can be evaluated extremely fast, which can substan-
tially reduce the computational cost compared to other meth-
ods. Finally, the efficient use of matrix element information 
reduces the number of simulated samples required for a suc-
cessful training of the neural networks compared to other, 
physics-agnostic, machine learning methods.
MadMiner currently provides interfaces to the simula-

tors MadGraph5_aMC, Pythia 8, and the fast detec-
tor simulation Delphes 3, which form a state-of-the-art 
toolbox for phenomenological analyses. It supports almost 
any LHC process, arbitrary theory models, reducible and 
irreducible backgrounds, and systematic uncertainties based 
on PDF and scale variations. In the future, we are planning 

to extend MadMiner to support detector simulations based 
on Geant4 as well as new types of systematic uncertainties.

After discussing the implemented inference techniques 
and their implementation, we provided a step-by-step guide 
through an analysis workflow with MadMiner . We then 
demonstrated the tool in an example analysis of three effec-
tive operators in tth production at the high-luminosity run of 
the LHC. The mechanism behind the inference techniques 
was illustrated in a one-dimensional case, and the methods 
validated in a simplified parton-level setup where the true 
likelihood is tractable. We demonstrated how MadMiner 
lets us isolate the important phase-space regions and define 
optimal observables. Finally, we showed that compared 
to analyses of the total rate and standard histograms, the 
machine learning-based techniques lead to stronger expected 
limits on the effective operators. These results demonstrate 
that the techniques implemented in MadMiner have the 
potential to clearly improve the sensitivity of the LHC leg-
acy measurements.

Acknowledgements  We would like to thank Zubair Bhatti, Lukas 
Heinrich, Alexander Held, and Samuel Homiller for their important 
contributions to the development of MadMiner . We are grate-
ful to Joakim Olsson for his help with the tth data generation. We 
also thank Pablo de Castro, Sally Dawson, Gilles Louppe, Olivier 
Mattelaer, Duccio Pappadopulo, Michael Peskin, Tilman Plehn, 
Josh Rudermann, and Leonora Vesterbacka for fruitful discussions. 
Last but not least, we are grateful to the authors and maintainers of 
many open-source software packages, including Delphes 3 [65], 
Docker [108], Jupyter notebooks [109], MadGraph5_aMC [63], 
Matplotlib [110], NumPy [98], pylhe [111], Pythia 8 [112], 
Python [113], PyTorch [85], REANA [93], scikit-hep [114], 
scikit-learn [115], uproot [116], and yadage [117]. This 
work was supported by the U.S. National Science Foundation (NSF) 
under the awards ACI-1450310, OAC-1836650, and OAC-1841471. It 
was also supported through the NYU IT High Performance Computing 
resources, services, and staff expertise. JB and KC are grateful for the 
support of the Moore–Sloan data science environment at NYU. KC is 
also supported through the NSF grant PHY-1505463, while FK is sup-
ported by NSF grant PHY-1620638 and U. S. Department of Energy 
grant DE-AC02-76SF00515.

Appendix: Frequently Asked Questions

Here, we collect questions that are asked often, hoping to 
avoid misconceptions:

•	 Does the whole event history not change when I change 
parameters?

	   No. In probabilistic processes such as those at the 
LHC, any given event history is typically compatible 
with different values of the theory parameters, but might 
be more or less likely. With “event history” we mean the 
entire evolution of a simulated particle collision, ranging 
from the initial-state and final-state elementary particles 
through the parton shower and detector interactions to 



	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 22 of 25

observables. The joint likelihood ratio and joint score 
quantify how much more or less likely one particular 
such evolution of a simulated event becomes when the 
theory parameters are varied.

•	 If the network is trained on parton-level matrix element 
information, how does it learn about the effect of shower 
and detector?

	   It is true that the “labels” that the networks are trained 
on, the joint likelihood ratio and joint score, are based 
on parton-level information. However, the inputs into the 
neural network are observables based on a full simula-
tion chain, after parton shower, detector effects, and the 
reconstruction of observables. It was shown in Ref. [59–
61] that the joint likelihood ratio and joint score are unbi-
ased, but noisy, estimators of the true likelihood ratio 
and true score (including shower and detector effects). A 
network trained in the right way will, therefore, learn the 
effect of shower and detector. We illustrate this mecha-
nism in Sect. 5.1 in a one-dimensional problem.

•	 Can this approach be used for signal-background clas-
sification?

	   Yes. In the simplest case, where the signal and back-
ground hypothesis do not depend on any additional 
parameters, the Carl, Rolr, or Alice techniques can be 
used to learn the probability of an individual event being 
signal or background. If there are parameters of interest 
such as a signal strength or the mass of a resonance, the 
score becomes useful and techniques such as Sally, Ras-
cal, Cascal, and Alices can be more powerful.

	   The techniques that use the joint likelihood ratio or 
score require less training data when the signal and back-
ground processes populate the same phase-space regions. 
If this is not the case, these methods still apply, but will 
not offer an advantage over the traditional training of 
binary classifiers.

•	 What if the simulations do not describe the physics accu-
rately?

	   No simulator is perfect, but many of the techniques 
used for incorporating systematic uncertainties from mis-
modeling in the case of multivariate classifiers can also 
be used in this setting. For instance, often, the effect of 
mismodeling can be corrected with simple scale factors 
and the residual uncertainty incorporated with nuisance 
parameters. MadMiner can handle such systematic 
uncertainties as discussed above. If only particular phase-
space regions are problematic, for instance those with 
low-energy jets, we recommend to exclude these param-
eter regions with suitable selection cuts. If the kinematic 
distributions are trusted, but the overall normalization 
is less well known, a data-driven normalization can be 
used.

	   Of course, there is no silver bullet, and if the simula-
tion code is not trustworthy at all in a particular process 

and the uncertainty cannot be quantified with nuisance 
parameters, these methods (and many more traditional 
analysis methods) will not provide accurate results.

•	 Is the neural network a black box?
	   Neural networks are often criticized for their lack of 

explainability. It is true that the internal structure of 
the network is not directly interpretable, but in Mad-
Miner , the interpretation of what the network is try-
ing to learn is clearly connected to the matrix element. 
In practical terms, one of the challenges is to verify 
whether a network has been successfully trained. For 
that purpose, many cross-checks and diagnostic tools 
are available to make sure that this is the case:

–	 checking the loss function on a separate validation 
sample;

–	 training of multiple network instances with inde-
pendent random seeds, as discussed above;

–	 checking the expectation values of the score and 
likelihood ratio against their known true values, 
see Ref. [61];

–	 varying of the reference hypothesis in the likeli-
hood ratio, see Ref. [61];

–	 training classifiers between data reweighted with 
the estimated likelihood ratio and original data 
from a new parameter point, see Ref. [61];

–	 validating the inference techniques in low-dimen-
sional problems with histograms, see Sect. 5.1;

–	 validating the inference techniques on a parton-
level scenario with tractable likelihood function, 
see Sect. 5.2; and

–	 checking the asymptotic distribution of the likeli-
hood ratio against Wilks’ theorem [69–71].

	    Finally, when limits are set based on the Neyman 
construction with toy experiments (rather than using 
the asymptotic properties of the likelihood ratio), there 
is a coverage guarantee: the exclusion contours con-
structed in this way will not exclude the true point more 
often than the confidence level. No matter how wrong 
the likelihood, likelihood ratio, or score function esti-
mated by the neural network is, the final limits might 
lose statistical power, but will never be too optimistic.

•	 Are you trying to replace PhD students with a machine?
	   As a preemptive safety measure against scientists being 

made redundant by automated inference algorithms, we 
have implemented a number of bugs in MadMiner . It 
will take skilled physicists to find them, ensuring safe jobs 
for a while. More seriously, just as MadGraph automated 
the process of generating events for an arbitrary hard 
scattering process, MadMiner aims to contribute to the 
automation of several steps in the inference chain. Both 
developments enhance the productivity of physicists.



Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 23 of 25      3 

References

	 1.	 Brehmer J, Cranmer K, Espejo I, Kling F, Louppe G, Pavez J 
(2019) Effective LHC measurements with matrix elements and 
machine learning. arxiv​: 1906.01578​

	 2.	 Cranmer KS (2001) Kernel estimation in high-energy physics. 
Comput Phys Commun 136:198

	 3.	 Cranmer K, Lewis G, Moneta L, Shibata A, Verkerke W (2012) 
(ROOT) HistFactory: a tool for creating statistical models for use 
with RooFit and RooStats

	 4.	 Frate M, Cranmer K, Kalia S, Vandenberg-Rodes A, Whiteson 
D (2017) Modeling smooth backgrounds and generic localized 
signals with gaussian processes. arxiv​: 1709.05681​

	 5.	 Rubin DB (1984) Bayesianly justifiable and relevant frequency 
calculations for the applied statistician. Ann Statist 12(4):1151

	 6.	 Beaumont MA, Zhang W, Balding DJ (2002) Approximate bayes-
ian computation in population genetics. Genetics 162(4):2025

	 7.	 Alsing J, Wandelt B, Feeney S (2018) Massive optimal data 
compression and density estimation for scalable, likelihood-free 
inference in cosmology. arxiv​: 1801.01497​

	 8.	 Charnock T, Lavaux G, Wandelt BD (2018) Automatic physical 
inference with information maximizing neural networks. Phys. 
Rev. D 97(8):083004

	 9.	 Brehmer J, Cranmer K, Kling F, Plehn T (2017) Better Higgs 
boson measurements through information geometry. Phys Rev 
D95(7):073002

	 10.	 Brehmer J, Kling F, Plehn T, Tait TMP (2018) Better Higgs-CP 
tests through information geometry. Phys Rev D97(9):095017

	 11.	 Kondo K (1988) Dynamical likelihood method for reconstruction 
of events with missing momentum. I. Method and toy models. J 
Phys Soc Jpn 57:4126

	 12.	 Abazov VM et al (2004) A precision measurement of the mass 
of the top quark. Nature 429:638 (DO)

	 13.	 Artoisenet P, Mattelaer O (2008) MadWeight: automatic event 
reweighting with matrix elements. PoS CHARGED2008:025

	 14.	 Gao Y, Gritsan AV, Guo Z, Melnikov K, Schulze M, Tran NV 
(2010) Spin determination of single-produced resonances at had-
ron colliders. Phys Rev D81:075022

	 15.	 Alwall J, Freitas A, Mattelaer O (2011) The matrix element 
method and QCD radiation. Phys Rev D83:074010

	 16.	 Bolognesi S, Gao Y, Gritsan AV et al (2012) On the spin and 
parity of a single-produced resonance at the LHC. Phys Rev 
D86:095031

	 17.	 Avery P et al (2013) Precision studies of the Higgs boson decay 
channel H → ZZ → 4l with MEKD. Phys Rev D87(5):055006

	 18.	 Andersen JR, Englert C, Spannowsky M (2013) Extracting pre-
cise Higgs couplings by using the matrix element method. Phys 
Rev D87(1):015019

	 19.	 Campbell JM, Ellis RK, Giele WT, Williams C (2013) Finding 
the Higgs boson in decays to Z� using the matrix element method 
at Next-to-Leading Order. Phys Rev D87(7):073005

	 20.	 Artoisenet P, de Aquino P, Maltoni F, Mattelaer O (2013) 
Unravelling tth via the Matrix Element Method. Phys Rev Lett 
111(9):091802

	 21.	 Gainer JS, Lykken J, Matchev KT, Mrenna S, Park M (2013) The 
matrix element method: past, present, and future. In: Proceed-
ings of community summer study on the future of U.S. particle 
physics: snowmass on the Mississippi (CSS2013): Minneapolis, 
MN, USA, July 29–August 6 2013. arxiv​: 1307.3546

	 22.	 Schouten D, DeAbreu A, Stelzer B (2015) Accelerated matrix 
element method with parallel computing. Comput Phys Commun 
192:54

	 23.	 Martini T, Uwer P (2015) Extending the matrix element method 
beyond the born approximation: calculating event weights at 
next-to-leading order accuracy. JHEP 09:083

	 24.	 Gritsan AV, Röntsch R, Schulze M, Xiao M (2016) Constraining 
anomalous Higgs boson couplings to the heavy flavor fermions 
using matrix element techniques. Phys Rev D94(5):055023

	 25.	 Martini T, Uwer P (2017) The Matrix Element Method at next-to-
leading order QCD for hadronic collisions: single top-quark pro-
duction at the LHC as an example application. arxiv​: 1712.04527​

	 26.	 Kraus M, Martini T, Uwer P (2019) Predicting event weights at 
next-to-leading order QCD for jet events defined by 2 → 1 jet 
algorithms. arxiv​: 1901.08008​

	 27.	 Atwood D, Soni A (1992) Analysis for magnetic moment 
and electric dipole moment form-factors of the top quark via 
e
+
e
−
→ tt̄ . Phys Rev D45:2405

	 28.	 Davier M, Duflot L, Le Diberder F, Rouge A (1993) The Opti-
mal method for the measurement of tau polarization. Phys Lett 
B306:411

	 29.	 Diehl M, Nachtmann O (1994) Optimal observables for the meas-
urement of three gauge boson couplings in e+e− → W

+
W

− . Z 
Phys C62:397

	 30.	 Soper DE, Spannowsky M (2011) Finding physics signals with 
shower deconstruction. Phys Rev D84:074002

	 31.	 Soper DE, Spannowsky M (2013) Finding top quarks with 
shower deconstruction. Phys Rev D87:054012

	 32.	 Soper DE, Spannowsky M (2014) Finding physics signals with 
event deconstruction. Phys Rev D89(9):094005

	 33.	 Englert C, Mattelaer O, Spannowsky M (2016) Measuring 
the Higgs-bottom coupling in weak boson fusion. Phys Lett 
B756:103

	 34.	 Fan Y, Nott DJ, Sisson SA (2012) Approximate Bayesian com-
putation via regression density estimation. ArXiv e-prints arxiv​
: 1212.1479

	 35.	 Dinh L, Krueger D, Bengio Y (2014) NICE: Non-linear 
Independent Components Estimation. ArXiv e-prints arxiv​: 
1410.8516

	 36.	 Germain M, Gregor K, Murray I, Larochelle H (2015) MADE: 
masked autoencoder for distribution estimation. ArXiv e-prints 
arxiv​: 1502.03509​

	 37.	 Cranmer K, Pavez J, Louppe G (2015) Approximating likeli-
hood ratios with calibrated discriminative classifiers. arxiv​: 
1506.02169​

	 38.	 Cranmer K, Louppe G (2016) Unifying generative models and 
exact likelihood-free inference with conditional bijections. J. 
Brief Ideas

	 39.	 Louppe G, Cranmer K, Pavez J (2016) carl: a likelihood-free 
inference toolbox. J Open Source Softw 1(1):11

	 40.	 Dinh L, Sohl-Dickstein J, Bengio S (2016) Density estimation 
using Real NVP. ArXiv e-prints arxiv​: 1605.08803​

	 41.	 Papamakarios G, Murray I (2016) Fast �-free inference of simula-
tion models with Bayesian conditional density estimation. arXiv 
e-prints arXiv​:1605.06376​

	 42.	 Dutta R, Corander J, Kaski S, Gutmann MU (2016) Likeli-
hood-free inference by ratio estimation. ArXiv e-prints arxiv​: 
1611.10242​

	 43.	 Uria B, Côté M-A, Gregor K, Murray I, Larochelle H (2016) 
Neural autoregressive distribution estimation. ArXiv e-prints 
arxiv​: 1605.02226​

	 44.	 Gutmann MU, Dutta R, Kaski S, Corander J (2017) Likelihood-
free inference via classification. Stat Comput 1–15

	 45.	 Tran D, Ranganath R, Blei DM (2017) Hierarchical implicit mod-
els and likelihood-free variational inference. ArXiv e-prints arxiv​
: 1702.08896​

	 46.	 Louppe G, Cranmer K (2017) Adversarial variational optimi-
zation of non-differentiable simulators. ArXiv e-prints arxiv​: 
1707.07113​

	 47.	 Papamakarios G, Pavlakou T, Murray I (2017) Masked autore-
gressive flow for density estimation. ArXiv e-prints arxiv​: 
1705.07057​

http://arxiv.org/abs/1906.01578
http://arxiv.org/abs/1709.05681
http://arxiv.org/abs/1801.01497
http://arxiv.org/abs/1307.3546
http://arxiv.org/abs/1712.04527
http://arxiv.org/abs/1901.08008
http://arxiv.org/abs/1212.1479
http://arxiv.org/abs/1212.1479
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1410.8516
http://arxiv.org/abs/1502.03509
http://arxiv.org/abs/1506.02169
http://arxiv.org/abs/1506.02169
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.06376
http://arxiv.org/abs/1611.10242
http://arxiv.org/abs/1611.10242
http://arxiv.org/abs/1605.02226
http://arxiv.org/abs/1702.08896
http://arxiv.org/abs/1702.08896
http://arxiv.org/abs/1707.07113
http://arxiv.org/abs/1707.07113
http://arxiv.org/abs/1705.07057
http://arxiv.org/abs/1705.07057


	 Computing and Software for Big Science             (2020) 4:3 

1 3

    3   Page 24 of 25

	 48.	 Lueckmann J-M, Goncalves PJ, Bassetto G, Öcal K, Nonnen-
macher M, Macke JH (2017) Flexible statistical inference for 
mechanistic models of neural dynamics. arXiv e-prints arXiv​
:1711.01861​

	 49.	 Huang C-W, Krueger D, Lacoste A, Courville A (2018) Neural 
autoregressive flows. ArXiv e-prints arxiv​: 1804.00779​

	 50.	 Papamakarios G, Sterratt DC, Murray I (2018) Sequential neu-
ral likelihood: fast likelihood-free inference with autoregres-
sive flows. ArXiv e-prints arxiv​: 1805.07226​

	 51.	 Lueckmann J-M, Bassetto G, Karaletsos T, Macke JH (2018) 
Likelihood-free inference with emulator networks. arXiv 
e-prints arXiv​:1805.09294​

	 52.	 Chen TQ, Rubanova Y, Bettencourt J, Duvenaud DK 
(2018) Neural ordinary differential equations. CoRR arxiv​: 
abs/1806.07366​

	 53.	 Kingma DP, Dhariwal P (2018) Glow: generative flow with 
invertible 1x1 convolutions. arXiv e-prints arXiv​:1807.03039​,

	 54.	 Grathwohl W, Chen RTQ, Bettencourt J, Sutskever I, Duvenaud 
D (2018) FFJORD: free-form continuous dynamics for scalable 
reversible generative models. ArXiv e-prints arxiv​: 1810.01367​

	 55.	 Dinev T, Gutmann MU (2018) Dynamic likelihood-free inference 
via ratio estimation (DIRE). arXiv e-prints arXiv​:1810.09899​

	 56.	 Hermans J, Begy V, Louppe G (2019) Likelihood-free MCMC 
with approximate likelihood ratios. arxiv​: 1903.04057​

	 57.	 Alsing J, Charnock T, Feeney S, Wandelt B (2019) Fast likeli-
hood-free cosmology with neural density estimators and active 
learning. arxiv​: 1903.00007​

	 58.	 Greenberg DS, Nonnenmacher M, Macke JH (2019) Automatic 
posterior transformation for likelihood-free inference. arXiv 
e-prints arXiv​:1905.07488​

	 59.	 Brehmer J, Louppe G, Pavez J, Cranmer K (2018) Mining gold 
from implicit models to improve likelihood-free inference. arxiv​
: 1805.12244​

	 60.	 Brehmer J, Cranmer K, Louppe G, Pavez J (2018) Constrain-
ing effective field theories with machine learning. Phys Rev Lett 
121(11):111801

	 61.	 Brehmer J, Cranmer K, Louppe G, Pavez J (2018) A guide to 
constraining effective field theories with machine learning. Phys 
Rev D 98(5):052004

	 62.	 Stoye M, Brehmer J, Louppe G, Pavez J, Cranmer K (2018) Like-
lihood-free inference with an improved cross-entropy estimator. 
arxiv​: 1808.00973​

	 63.	 Alwall J, Frederix R, Frixione S et al (2014) The automated 
computation of tree-level and next-to-leading order differential 
cross sections, and their matching to parton shower simulations. 
JHEP 07:079

	 64.	 Sjostrand T, Mrenna S, Skands PZ (2008) A Brief Introduction 
to PYTHIA 8.1. Comput Phys Commun 178:852

	 65.	 de Favereau J, Delaere C, Demin P et al (2014) (DELPHES 3): 
DELPHES 3, A modular framework for fast simulation of a 
generic collider experiment. JHEP 02:057

	 66.	 Agostinelli S et al (2003) (GEANT4): GEANT4: A Simulation 
toolkit. Nucl. Instrum. Meth. A506:250

	 67.	 Cranmer K Practical Statistics for the LHC. In Proceedings, 2011 
European School of High-Energy Physics (ESHEP 2011): Cheile 
Gradistei, Romania, September 7–20, 2011, pp 267-308, 2015. 
[247(2015)] arxiv​: 1503.07622​

	 68.	 Baldi P, Cranmer K, Faucett T, Sadowski P, Whiteson D (2016) 
Parameterized neural networks for high-energy physics. Eur Phys 
J C76(5):235

	 69.	 Wilks SS (1938) The large-sample distribution of the likeli-
hood ratio for testing composite hypotheses. Ann Math Stat 
9(1):60

	 70.	 Wald A (1943) Tests of statistical hypotheses concerning 
several parameters when the number of observations is large. 
Trans Am Math Soc 54(3):426

	 71.	 Cowan G, Cranmer K, Gross E, Vitells O (2011) Asymptotic 
formulae for likelihood-based tests of new physics. Eur Phys J 
C 71:1554 (Erratum: Eur Phys J C73:2501–2013)

	 72.	 Alsing J, Wandelt B (2018) Generalized massive optimal data 
compression. Mon Not R Astron So. 476(1):L60

	 73.	 Efron B (1975) Defining the curvature of a statistical prob-
lem (with applications to second order efficiency). Ann Stat 
3(6):1189

	 74.	 Amari S-I (1982) Differential geometry of curved exponential 
families-curvatures and information loss. Ann Statist 10(2):357

	 75.	 Brehmer J (2017) New ideas for effective higgs measurements. 
Ph.D. thesis, U. Heidelberg (main) http://www.thphy​s.uni-
heide​lberg​.de/~plehn​/inclu​des/these​s/brehm​er_d.pdf

	 76.	 Radhakrishna Rao C (1945) Information and the accuracy 
attainable in the estimation of statistical parameters. Bull Cal-
cutta Math Soc 37:81

	 77.	 Cramér H (1946) Mathematical methods of statistics. Princeton 
University Press, ISBN 0691080046

	 78.	 Edwards TDP, Weniger C (2018) A fresh approach to forecast-
ing in astroparticle physics and dark matter searches. JCAP 
1802(02):021

	 79.	 Degrande C, Duhr C, Fuks B, Grellscheid D, Mattelaer O, 
Reiter T (2012) UFO—The Universal FeynRules Output. Com-
put Phys Commun 183:1201

	 80.	 Mattelaer O (2016) On the maximal use of Monte Carlo 
samples: re-weighting events at NLO accuracy. Eur Phys J 
C76(12):674

	 81.	 Aad G et al (2015) A morphing technique for signal modelling in 
a multidimensional space of coupling parameters. Physics note 
ATL-PHYS-PUB-2015-047. http://cds.cern.ch/recor​d/20669​80 
(ATLAS)

	 82.	 Alsing J, Wandelt B (2019) Nuisance hardened data compression 
for fast likelihood-free inference. arxiv​: 1903.01473​

	 83.	 Lukas M Feickert, Stark G, Turra R, Forde J (2018) diana-hep/
pyhf v0.0.15 https​://doi.org/10.5281/zenod​o.14641​39

	 84.	 Frederix R, Frixione S, Hirschi V, Maltoni F, Pittau R, Torrielli P 
(2012) Four-lepton production at hadron colliders: aMC@NLO 
predictions with theoretical uncertainties. JHEP 02:099

	 85.	 Paszke A, Gross S, Chintala S et al. (2017) Automatic differentia-
tion in pytorch. In: NIPS-W

	 86.	 Qian N (1999) On the momentum term in gradient descent learn-
ing algorithms. Neural Netw 12(1):145

	 87.	 Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv e-prints arXiv​:1412.6980

	 88.	 Reddi SJ, Kale S, Kumar S (2018) On the convergence of 
adam and beyond. In: International conference on learning 
representations

	 89.	 Lakshminarayanan B, Pritzel A, Blundell C (2016) Simple and 
scalable predictive uncertainty estimation using deep ensembles. 
arXiv e-prints arXiv​:1612.01474​

	 90.	 Brehmer J, Kling F, Espejo I, Cranmer K (2019) MadMiner code 
repository. https​://doi.org/10.5281/zenod​o.14891​47

	 91.	 Brehmer J, Kling F, Espejo I, Cranmer K (2019) MadMiner tech-
nical documentation. https​://madmi​ner.readt​hedoc​s.io/en/lates​t/

	 92.	 Espejo I, Brehmer J, Cranmer K (2019) MadMiner Docker repos-
itories. https​://hub.docke​r.com/u/madmi​nerto​ol

	 93.	 Šimko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D 
(2018) REANA: a system for reusable research data analyses. 
Technical Report CERN-IT-2018-003, CERN, Geneva. https​://
cds.cern.ch/recor​d/26523​40

	 94.	 Espejo I, Brehmer J, Kling F, Cranmer K (2019) MadMiner 
Reana deployment. https​://githu​b.com/irina​espej​o/workf​low-
madmi​ner

	 95.	 The HDF Group: Hierarchical data format version 5, 2000–2010. 
http://www.hdfgr​oup.org/HDF5

http://arxiv.org/abs/1711.01861
http://arxiv.org/abs/1711.01861
http://arxiv.org/abs/1804.00779
http://arxiv.org/abs/1805.07226
http://arxiv.org/abs/1805.09294
http://arxiv.org/abs/abs/1806.07366
http://arxiv.org/abs/abs/1806.07366
http://arxiv.org/abs/1807.03039
http://arxiv.org/abs/1810.01367
http://arxiv.org/abs/1810.09899
http://arxiv.org/abs/1903.04057
http://arxiv.org/abs/1903.00007
http://arxiv.org/abs/1905.07488
http://arxiv.org/abs/1805.12244
http://arxiv.org/abs/1805.12244
http://arxiv.org/abs/1808.00973
http://arxiv.org/abs/1503.07622
http://www.thphys.uni-heidelberg.de/%7eplehn/includes/theses/brehmer_d.pdf
http://www.thphys.uni-heidelberg.de/%7eplehn/includes/theses/brehmer_d.pdf
http://cds.cern.ch/record/2066980
http://arxiv.org/abs/1903.01473
https://doi.org/10.5281/zenodo.1464139
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1612.01474
https://doi.org/10.5281/zenodo.1489147
https://madminer.readthedocs.io/en/latest/
https://hub.docker.com/u/madminertool
https://cds.cern.ch/record/2652340
https://cds.cern.ch/record/2652340
https://github.com/irinaespejo/workflow-madminer
https://github.com/irinaespejo/workflow-madminer
http://www.hdfgroup.org/HDF5


Computing and Software for Big Science             (2020) 4:3 	

1 3

Page 25 of 25      3 

	 96.	 Dobbs M, Hansen JB (2001) The HepMC C++ Monte Carlo 
event record for High Energy Physics. Comput Phys Commun 
134:41

	 97.	 Rodrigues E, Marinangeli M, Pollack B et al (2019) scikit-hep/
scikit-hep: scikit-hep-0.5.1 https​://doi.org/10.5281/zenod​o.32346​
83

	 98.	 Oliphant T (2006): NumPy: A guide to NumPy. USA: Trelgol 
Publishing. http://www.numpy​.org/

	 99.	 Butterworth J et al (2016) PDF4LHC recommendations for LHC 
Run II. J Phys G43:023001

	100.	 de Florian D et al, (LHC Higgs Cross Section Working Group) 
(2016) Handbook of LHC Higgs cross sections: 4. Deciphering 
the Nature of the Higgs Sector arXiv​:1610:07922​

	101.	 Giudice GF, Grojean C, Pomarol A, Rattazzi R (2007) The 
strongly-interacting light Higgs. JHEP 06:045

	102.	 Alloul A, Fuks B, Sanz V (2014) Phenomenology of the Higgs 
Effective Lagrangian via FEYNRULES. JHEP 04:110

	103.	 Maltoni F, Vryonidou E, Zhang C (2016) Higgs production in 
association with a top-antitop pair in the standard model effective 
field theory at NLO in QCD. JHEP 10:123

	104.	 Cepeda M, et al (Physics of the HL-LHC Working Group) (2019) 
Higgs physics at the HL-LHC and HE-LHC. arxiv​: 1902.00134​

	105.	 Plehn T, Schichtel P, Wiegand D (2014) Where boosted signifi-
cances come from. Phys Rev D89(5):054002

	106.	 Kling F, Plehn T, Schichtel P (2017) Maximizing the significance 
in Higgs boson pair analyses. Phys Rev D95(3):035026

	107.	 Gonçalves D, Han T, Kling F, Plehn T, Takeuchi M (2018) Higgs 
boson pair production at future hadron colliders: From kinemat-
ics to dynamics. Phys Rev D97(11):113004

	108.	 Merkel D (2014) Docker: Lightweight linux containers for con-
sistent development and deployment. Linux J 2014:239

	109.	 Kluyver T, Ragan-Kelley B, Pérez F et al. (2016) Jupyter note-
books—a publishing format for reproducible computational 
workflows. In: ELPUB

	110.	 Hunter JD (2007) Matplotlib: A 2d graphics environment. Com-
put Sci Eng 9(3):90

	111.	 Lukas: lukasheinrich/pylhe v0.0.4, 2018. https​://doi.org/10.5281/
zenod​o.12170​32

	112.	 Sjstrand T, Ask S, Christiansen JR et al (2015) An Introduction 
to PYTHIA 8.2. Comput Phys Commun 191:159

	113.	 Van Rossum G, Drake FL Jr (1995) Python tutorial. Centrum 
voor Wiskunde en Informatica Amsterdam, The Netherlands

	114.	 Rodrigues E (2019) The Scikit-HEP Project. In: 23rd Inter-
national conference on computing in high energy and nuclear 
physics (CHEP 2018) Sofia, Bulgaria, 9–13 July 2018. arxiv​: 
1905.00002​

	115.	 Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: 
machine learning in python. J Mach Learn Res 12:2825

	116.	 Pivarski J, Das P, Smirnov D et al. (2019) scikit-hep/uproot: 
3.7.2. https​://doi.org/10.5281/zenod​o.32562​57

	117.	 Heinrich L, Cranmer K (2017) diana-hep/yadage v0.12.13. https​
://doi.org/10.5281/zenod​o.10018​16

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.3234683
https://doi.org/10.5281/zenodo.3234683
http://www.numpy.org/
http://arxiv.org/abs/1610:07922
http://arxiv.org/abs/1902.00134
https://doi.org/10.5281/zenodo.1217032
https://doi.org/10.5281/zenodo.1217032
http://arxiv.org/abs/1905.00002
http://arxiv.org/abs/1905.00002
https://doi.org/10.5281/zenodo.3256257
https://doi.org/10.5281/zenodo.1001816
https://doi.org/10.5281/zenodo.1001816

	MadMiner: Machine Learning-Based Inference for Particle Physics
	Abstract
	Introduction
	Inference Techniques
	LHC Measurements as a Likelihood-Free Inference Problem
	Learning the Likelihood Function
	Learning Locally Optimal Observables
	The Fisher Information
	Practical Analysis Aspects
	Recommendations for Getting Started

	Using MadMiner
	Analysis Specification and Event Generation
	Detector Effects and Observables
	Sample Unweighting and Augmentation
	Machine Learning
	Inference
	Fisher Information

	Physics Example
	Illustration of Analysis Techniques
	Signal Only
	Adding Backgrounds

	Validation at Parton Level
	Realistic Physics Analysis
	Fisher Information
	Exclusion Limits


	Conclusions
	Acknowledgements 
	References




