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Field-orthogonal temporal mode analysis of optical fields has recently been developed for a new
framework of quantum information science. However, so far, the exact profiles of the temporal modes are
not known, which makes it difficult to achieve mode selection and demultiplexing. Here, we report a novel
method that measures directly the exact form of the temporal modes. This, in turn, enables us to make
mode-orthogonal homodyne detection with mode-matched local oscillators. We apply the method to a
pulse-pumped, specially engineered fiber parametric amplifier and demonstrate temporally multiplexed
multidimensional quantum entanglement of continuous variables in telecom wavelength. The temporal
mode characterization technique can be generalized to other pulse-excited systems to find their eigenmodes
for multiplexing in the temporal domain.
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Any electromagnetic field, no matter what state (quantum
or classical) it is in, is first characterized by its modes, which
are a special class of solutions to the Maxwell equation [1].
Modes of the field become especially important when
quantum fields are involved because quantum interference
requires indistinguishability of photons, whereas modes are
distinct features of photons. While spatial modes are easily
defined through boundary conditions, as in optical cavity and
waveguide systems, temporal modes are less concerned
because they are usually dealt with through spectral analysis
in the frequency domain.
On the other hand, it was discovered recently that field-

orthogonal temporal modes of electromagnetic fields form
a new framework for quantum information [2]. Temporal
mode analysis offers a straightforward way with intrinsi-
cally decoupled modes [3–5] in describing pulse-pumped
parametric processes. Parametric processes, ever since first
proposed by Yuen [6], have been by far the most common
processes to generate experimentally a variety of quantum
states of light [7–13] and are widely used in quantum
information and communication [14,15], quantum simu-
lation [16], and quantum metrology for precision meas-
urement [17]. It should be pointed out that temporal mode
analysis was performed on a pulse-pumped parametric
down-conversion of a femtosecond-frequency comb in an
optical cavity with a complicated quantum wavelength
multiplexing method [18,19], which indirectly revealed
the eigen-temporal mode structure as the supermodes.
Temporal mode functions of photons in spontaneous para-
metric processes were also obtained indirectly by making

the singular-value decomposition of the joint spectral
function that can be measured directly [20]. However, as
we shall see later, this cannot be applied to high gain
parametric processes where quantum entanglement is
exhibited in the continuous variables. So, temporal modes
of a system have never been directly measured so far.
Moreover, temporal modes are not easily separated, even

though quantum pulse gates [21–24] through nonlinear
interaction processes have recently been invented to dis-
tinguish them with some success. The consequence is that
the contributions from different temporal modes add,
leading to some detrimental effects, such as extra noise
due to out-of-sync phases for different modes in optimum
quantum noise reduction [5]. On the other hand, homodyne
detection can also select out and distinguish the contribu-
tions from different temporal modes by a properly matched
local oscillator (LO) [5]. However, this requires the knowl-
edge of the exact forms of the temporal modes in order to
have a matched LO engineered.
In this Letter, we use a feedback-iteration method with a

trial seed pulse to obtain and eventually measure the exact
forms of the temporal modes of the two correlated fields
generated from a pulse-pumped, single-pass broadband
fiber parametric amplifier. We then measure the quantum
correlations between the signal and idler fields by perform-
ing homodyne detection with LOs engineered to match the
specific temporal modes. We observe quantum entangle-
ment in three pairs of mutually orthogonal temporal modes
and confirm the independence between different pairs by
quantum measurement.
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Theoretical background.—Pulse-pumped parametric
processes generate two fields dubbed “signal” and “idler”,
which are quantum mechanically entangled. The spectral
profiles of the entangled fields are extremely complicated
because of the dispersion-dependent phase matching of the
nonlinear medium and the wide spectrum of the pump field.
However, this complicated system can always be thought of
as superposition of its eigenmodes whose temporal or
spectral profiles do not change by the amplifier, as shown
in Fig. 1. That is, there exists an independent set of pairwise
modes fÂk; B̂kgðk ¼ 1; 2;…Þ for the signal and idler fields
that are related by [3–5]

Âout
k ¼ Âin

k coshGk þ B̂in†
k sinhGk;

B̂out
k ¼ B̂in

k coshGk þ Âin†
k sinhGk; ð1Þ

where Âk ≡ R
dωψkðωÞâsðωÞ, B̂k ≡ R

dωφkðωÞâiðωÞ are
the annihilation operators for the kth modes of the signal
and idler fields with respective eigen-temporal profiles of
fkðτÞ≡ R

dωψkðωÞe−iωτ; gkðτÞ≡ R
dωφkðωÞe−iωτ, satis-

fying the orthonormal relations
Z

dωψ�
kðωÞψk0 ðωÞ ¼ δkk0 ¼

Z
dωφ�

kðωÞφk0 ðωÞ: ð2Þ

These eigenmodes are exactly the supermodes studied by
Roslund et al. [18], which are pairwise entangled and form
a multidimensional quantum entangled states.
At relatively low pumping power so that jGkj ≪ 1, the

eigenfunctions fψkðωÞ;φkðωÞg can be obtained by the
singular-value decomposition method from the joint spec-
tral function (JSF)

Fðω1;ω2Þ ¼ G
X
k

rkψkðω1Þφkðω2Þ; ð3Þ

which is defined via the interaction Hamiltonian [3,25]

1

iℏ

Z
dtĤ¼

Z
dω1dω2Fðω1;ω2Þâ†sðω1Þâ†i ðω2ÞþH:c: ð4Þ

Here, frkg ≥ 0 are the mode numbers satisfying the
normalization relation

P
k r

2
k ¼ 1. G > 0 is a parameter

proportional to the peak amplitudes of the pump fields,
nonlinear coefficient, and nonlinear medium length. Then,
we have Gk ¼ rkG with rk independent of G.

At high pump power, when stimulated emission domi-
nates, Eq. (1) still holds, but frkg and fψkðωÞ;φkðωÞg now
depend on the pump parameter G [26,27].
So far, mode functions fψkðω1Þ;φkðω2Þg are only

obtained in simulations but have never been measured
directly. In the following, we will describe a method to
directly measure these mode functions experimentally.
Temporal modes determination.—Our procedure to find

the mode functions ψkðωÞ;φkðωÞ is based on Eq. (1). We
inject a seed into the signal field and observe its output.
This is somewhat similar to the method of stimulated
emission tomography [28,29]. However, here, after the
measurement of the output, we feed the result back to
modify the input seed and iterate the process. This part is
similar to the adaptive method of Polycarpou et al. [30]. To
see what this leads to, we consider a coherent pulse of
spectral shape α0ðωÞ injected into field A. Because of the
orthonormality in Eq. (2), we can expand it as

α0ðωÞ ¼
X
k

ξkψkðωÞ; ð5Þ

with ξk ¼
R
dωψ�

kðωÞα0ðωÞ. Using Eq. (1) and assuming
jξkj2 ≫ 1 to ignore spontaneous emission, we find

αoutðωÞ ¼
X
k

ξk coshGkψkðωÞ: ð6Þ

So, each mode is amplified but with different gain. Now let
us exploit this gain difference: we can measure the output
spectral function (amplitude and phase) and then program a
new input field with a wave shaper according to the
measured function. To keep the input power low, we can
attenuate the output by a factor, say ðcoshG1Þ−1, so that the
new input becomes

α1ðωÞ ¼
X
k

ξkðcoshGk= coshG1ÞψkðωÞ: ð7Þ

FIG. 1. Conceptual diagram for the entangled states in various
temporal modes (Ak, Bk) from a pulse-pumped parametric
process.
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FIG. 2. Simulation results for the amplitudes (top) and con-
verged phases (bottom) of the output spectral functions ψkðΩsÞ
(Ωs ≡ ωs − ωs0 in the unit of pump bandwidth σp) for (a) k ¼ 1,
(b) k ¼ 2, (c) k ¼ 3. The green curves are the input spectral
functions, while the blue and red curves are intermediate outputs
after the iteration steps indicated in the legends. The dashed
curves are the final outputs.
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Since Gk’s are different for different k, let us arrange mode
order: G1 > G2 > � � � and coshGk= coshG1 < 1 for all
except k ¼ 1. We iterate the procedure N times and the
field after N iterations becomes

αNðωÞ ¼
X
k

ξkðcoshGk= coshG1ÞNψkðωÞ: ð8Þ

With N large enough, ðcoshGk= coshG1ÞN → 0 for k ≠ 1
and we are left with only the first mode: αNðωÞ ∝ ψ1ðωÞ.
To obtain the mode function for k ¼ 2, we need to have

an input field that is orthogonal to ψ1ðωÞ, that is, ξ1 ¼ 0. To
achieve this, we use the Gram-Schmidt process: with ψ1ðωÞ
known, we set the input as α0ðωÞ ¼ αðωÞ − ξ1ψ1ðωÞ,
which has ξ01 ¼ 0. Then the dominating mode is k ¼ 2.
We perform orthogonalization after each iteration to ensure
ξ01 ¼ 0. Subsequent modes can be obtained in a similar way
but with the orthogonalization changed to α0ðωÞ ¼ αðωÞ −P

k−1
i¼1 ξiψ iðωÞ for mode k.
In order to demonstrate the validity of the method, we

run some simulations based on Eq. (8) for the JSF given in
Ref. [5] but with a chirped pump phase of eiΩ

2=2σ2p and set
G ¼ 2.5. The results are shown in Fig. 2 for the first three
modes. The green and dashed curves are the initial input
and the final output spectral functions, respectively. The
blue and red curves are for the intermediate steps with the
step numbers shown in the legends. Because of over-
crowdedness, only the final converged functions are shown
for the phase part (bottom).
Experimental procedures and results.—The experimen-

tal setup is shown in Fig. 3, in which the pulse-pumped
fiber optical parametric amplifier (FOPA) consists of two
dispersion-shifted fibers and a single-mode fiber, which,
through a quantum interference effect, modifies the JSF so
that it is well behaved for the iteration method to converge
[31] (see Supplemental Material [32] for details). The pump
and the seed, with their path lengths carefully balanced
through a delay line (not shown), are combined with a
90=10 beam splitter and simultaneously launched into the
FOPA. The output of FOPA is either measured by an
optical spectral analyzer (OSA) to determine the spectral
profile or separated by coarse wavelength division multi-
plexer (CWDM) for quantum measurement by homodyne
detection.

We first determine directly the temporal mode profiles of
the fiber parametric amplifier by the feedback-iteration
method described previously. For this, we use the recorded
spectrum of the signal field by an OSA to reshape the input
seed with a wave shaper (WS). Although an OSA only
measures the spectral intensity, here, in the first order
approximation, we assume that there is no dispersion in the
phases of the mode functions, except a jump of π at zeros
for higher order modes. Such an assumption is valid
because the spectral phases are relatively flat within the
spectral width (∼3.5 nm) of the specially engineered source
(see Ref. [31] and Supplemental Material [32]). So, we
implement a sign change for the high order mode cases
whenever the spectral intensity goes to zero. After a
number of iterations (∼6–8 depending on the shape of
the initial injection), a steady shape is reached, which
corresponds to one of the eigen-temporal modes from
the parametric amplifier. We follow the steps described
previously to find other eigen-temporal modes. The blue
curves in Fig. 4 are the converged spectral intensity of the
first three temporal modes [Figs. 4(a)–4(c)] together with
those for the corresponding idler field [Figs. 4(d)–4(f)].
The curves are normalized to the maximum values. The
dotted lines are the initially injected seed [only for
Figs. 4(a) and 4(b)]. The pink curve in Fig. 4(a) is the
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FIG. 3. Experimental setup. WS, wave shaper; FM, flip mirror; BS, beam splitter; T, terminator; HD, homodyne detection; FOPA,
fiber optical parametric amplifier; OSA, optical spectrum analyzer; CWDM, coarse wavelength division multiplexer.
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FIG. 4. Measured spectral intensity jψkðωÞj2 for k ¼ (a) 1,
(b) 2, (c) 3, and those [(d)–(f)] for the corresponding idler field.
The dotted lines are the initially injected seed [not shown for
(c) due to crowdedness]. The pink curve in (a) is the output after
two iterations. The blue lines are the output signal and the red
lines are the feedback to the input [red is covered by blue in (a)].

PHYSICAL REVIEW LETTERS 124, 213603 (2020)

213603-3



output after only two iterations, showing fast convergence
of the iteration. For the higher order modes (k ¼ 2, 3), there
is a slight difference between the feedback input (red) and
the output (blue). This is caused by the nonuniform spectral
response of the detector, as well as dispersion in phase of
the higher order modes.
The temporal mode structure is characterized by the

distribution of the Gk values, which can be obtained from
the power gain cosh2Gk for eachmode. Themeasured power
gains for the first fivemodes under different pumppowers are
shown in Fig. 5(a) with the extracted rk=r1ð≡Gk=G1Þ values
shown in Fig. 5(b). The dashed red boxes on order numbers 4
and 5 in the figure indicate that the output is not stable. This is
because the bandwidths of the higher orders are toobroad and
run outside the range of the well-behaved JSF and into the
next region of the JSF (see Supplemental Material [32] on
JSF). As can be seen from Fig. 5(b), the mode parameters
frkg change with pump power increase and the changes
becomemore prominent for the highorders. Furthermore,we
also observe some significant changes in the convergedmode
profiles (Fig. 4) as the pump power changes. This is in
support of the theory in Refs. [26,27] that mode structure
changes with the pump power. However, the mode changes
may also be caused byother nonlinear effects in fibers such as
self-phase modulation, which occur at high pump power.
Once the temporal mode profiles are determined, we can

perform homodyne detection with local oscillators (LOs
and LOi) tailored to match the specific temporal mode of
our interest. Since temporal modes are orthogonal to each
other, when the LO is matched to a specific mode, there is
no contribution from other modes for the homodyne
detection [5]. So we can use homodyne detection to select
the mode of our interest. With this, we first check the
correlation between different modes by measuring the

covariance matrix Cmn ≡ hΔÔmΔÔni=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔ2ÔmihΔ2Ôni

q
,

where indices m, n denote different modes and Ô is either
the amplitude quadrature X̂ ≡ âþ â† or the phase quad-
rature Ŷ ≡ ðâ − â†Þ=i when properly locking the phases
between LOs (LOi) and signal (idler) beam to either 0 or
π=2 (see Supplemental Material [32] for the details).
Figure 6 shows the results of either amplitude [Fig. 6(a)]

or phase [Fig. 6(b)] quadrature for six modes of
fs1; s2; s3; i3; i2; i1g with sk; ik (k ¼ 1, 2, 3) denoting
the kth order conjugate modes of signal and idler fields (for
exact numerical values, see Supplemental Material [32]).
We only measure up to 3 orders because higher orders are
not stable (see Fig. 5). In Fig. 6, we take out the diagonal
elements that are all equal to 1. The antidiagonal elements
correspond to Cs1i1; Cs2i2; Cs3i3, whose nonzero values
show the strong pairwise correlation (amplitude X̂) or
anticorrelation (phase Ŷ) between the corresponding signal
and idler modes of the same order, whereas the other off-
diagonal elements are near zero, indicating the total
independence between different orders of the temporal
modes and confirming the orthogonality of the modes.
Next, we check the quantum entanglement between the

signal and idler fields by measuring hΔ2ðX̂sk − X̂ikÞi and
hΔ2ðŶsk þ ŶikÞi (k ¼ 1, 2, 3) for the kth modes and
verifying the inseparability criterion of entanglement: Ik≡
hΔ2ðX̂sk − X̂ikÞi=hΔ2ðX̂sk − X̂ikÞiu þ hΔ2ðŶsk þ ŶikÞi=
hΔ2ðŶsk þ ŶikÞiu < Iu ¼ 2, with the subscript u denot-
ing the unentangled vacuum case [36]. At pump power of
about 1.3 mW, resulting in power gains of the FOPA of 2.1,
1.5, and 1.3 for the first three modes, the measured values
of Ik=Iu (k ¼ 1, 2, 3) are obtained in log scale as −2.56,
−1.50, and −1.17 dB for the first three order modes,
respectively.
Taking the total detection efficiency into consideration,

we obtain the corrected value of I=Iu as −3.70, −2.00, and
−1.60 dB or I ¼ 0.85; 1.26; 1.38 < 2 for the first three
modes, respectively. This shows pairwise entanglement
between the signal and idler modes of the same order. The
worsening for the higher orders is mostly because of the
decreasing gains for the higher order modes, but is also
partly because of the mode mismatching due to inaccurate
mode function measurement.
In summary, we show theoretically and demonstrate

experimentally a method that directly determines the
temporal or spectral profiles of the eigenmodes for the
signal and idler fields generated from a fiber-based

1 2 3 4 5
0

2

4

6

8

10
Po

w
er

ga
in

Order of Temporal Mode

1.5mW
2.0mW
2.5mW

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

r k/r
1

Order of Temporal Mode

1.5mW
2.0mW
2.5mW

(a) (b)

FIG. 5. (a) Power gain for the first five modes under different
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unstable output.

FIG. 6. Covariance matrix elements for (a) amplitude quad-
rature (X) and (b) phase quadrature (Y). The trivial diagonal
elements of Cii ¼ 1 are taken out, while the nonzero antidiagonal
elements show strong pairwise correlation between the corre-
sponding modes of signal and idler beams. Other near-zero, off-
diagonal elements indicate total independence between different
modes. See Supplemental Material [32] for exact numerical
values.
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parametric amplifier pumped by a short pulse. We further
show experimentally that they are pairwise entangled.
In our proof-of-principle experiment, we do not measure

phase part of the pulses because we assume constant phase
across the spectrum, which is fulfilled by the specially
engineered source. Our experimental approach thus cannot
measure any spectral phase variations and will not work for
sources with large phase changes. Our simulations, on the
other hand, demonstrate the general applicability of the
method once intensity and phase are both considered
(Fig. 2). So, for the general case, a full measurement in
both intensity and phase is necessary. This can be done via
pulse characterization techniques [37] such as frequency-
resolved optical gating (FROG) [38], the interferometric
method [39], and cross-correlation FROG [40].
We also demonstrate that the mode structure depends on

the gain of the parametric amplifier. However, the method
described here is only suitable for the high gain parametric
amplifier, which gives rise to quantum entanglement in
continuous variables. For the low gain case, which produces
a two-photon entangled state, the method fails because the
gain is near unity for all modes. Nevertheless, the feedback-
iteration idea in the current method can still be applied to the
low gain case by involving the stimulated emission in the
idler field. The detail is presented in another paper [41].
The technique can be generalized to other pulse-pumped

systems, such as frequency conversion processes or other
degrees of freedom, such as spatial modes to find the
eigenmodes of the system. So, the potential applications of
the technique are not limited only to quantum optics but can
be applied to classical systems as well.
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