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We analyze the precision limits for a simultaneous estimation of a pair of conjugate parameters in a
displacement channel using Gaussian probes. Having a set of squeezed states as an initial resource, we compute
the Holevo Cramér-Rao bound to investigate the best achievable estimation precisions if only passive linear
operations are allowed to be performed on the resource prior to probing the channel. The analysis reveals the
optimal measurement scheme and allows us to quantify the best precision for one parameter when the precision
of the second conjugate parameter is fixed. To estimate the conjugate parameter pair with equal precision, our
analysis shows that the optimal probe is obtained by combining two squeezed states with orthogonal squeezing
quadratures on a 50:50 beam splitter. If different importance is attached to each parameter, then the optimal
mixing ratio is no longer 50:50. Instead, it follows a simple function of the available squeezing and the relative

importance between the two parameters.
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I. INTRODUCTION

How precise can we make a set of physical measurements?
This is a fundamental question that has driven much of the
progress in science and technology. Improving the precisions
and understanding limitations to measurements have often
led to revolutionary discoveries or new insights in science.
After overcoming technical sources of noise, the presence of
quantum noise imposes a limit to the ultimate measurement
precision. Due to the presence of quantum fluctuations, esti-
mation precision using classical probe fields is limited to the
standard quantum limit for optical measurements. In order
to surpass this limit, a quantum resource such as squeezed
states [1-3] or entangled states [4—17] are required. A notable
example is the use of quadrature squeezed states of light to
enhance the detection of gravitational waves [18,19]. Another
concept in quantum mechanics that distinguishes it from clas-
sical mechanics is that of noncommuting observables. This
imposes a limitation for simultaneously estimating multiple
parameters encoded in noncommuting observables.

In this work, we consider the problem of estimating
two independent parameters 6 = (6, 6,), encoded in two
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conjugate quadratures X and Y of a displacement channel
D) = exp (%’X — %Y). This channel induces a displace-
ment of 6, on the amplitude quadrature X and 6, on the phase
quadrature Y of a single-mode optical field with [X, Y] =
2i. This problem has attracted a lot of attention since the
early days of quantum mechanics [20-22] and continue to
do so [11,14,23]. For example, if a single-mode probe is
used to sense the displacement, the work by Arthurs and
Kelly showed that the estimation mean squared errors v,
and v, are bounded by v,v, > 4 [20]. However, it was theo-
retically shown [16,24,25] and experimentally demonstrated
[15,26,27] that by utilising quantum entanglement between
two systems—for example, through the quantum dense cod-
ing scheme—it is possible to circumvent this limit and es-
timate both parameters with accuracies beyond the standard
quantum limit.

More recently, the pioneering works by Holevo and Hel-
strom on quantum estimation theory [28-30] have been used
to study this problem [11,13,14,31]. Once the probe state is
specified, the quantum Fisher information determines a bound
on the estimation precision thorough the quantum Cramér-
Rao bound (CRB), which holds for every possible mea-
surement strategy. There are many variants of the quantum
CRB—the two most popular being the symmetric logarith-
mic derivative (SLD) [28,29,32,33] and the right logarithmic
derivative (RLD) [33-38] as these yield direct bounds for the
sum of the mean squared error. These have been widely used
since they are relatively easy to compute [39,40]. For single-
parameter estimation, the SLD-CRB offers an asymptotically
tight bound on the precision [41]. However for multiparameter
estimation, neither the SLD-CRB nor the RLD-CRB is neces-
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sarily tight [42,43]. Hence even though the probe might offer
a large quantum Fisher information, their CRB might not be
achievable, which means that the actual achievable precisions
are not known.

Here, we solve this problem by using the Holevo Cramér-
Rao bound to compute the actual asymptotically achievable
precision [30,44—47]. Knowing the achievable precision for
a specific probe allows us to compare metrological perfor-
mances between two different probes. We can then use this
formalism to answer the question: given a fixed quantum
resource such as squeezing, how do we use it to optimally
sense the channel? The resource states that we consider will
be one-mode and two-mode Gaussian states, which we are
allowed to freely mix or rotate before sending one mode to
probe the channel. In doing so, we derive ultimate bounds
on simultaneous parameter estimation which goes beyond
existing restrictions imposed by the SLD or RLD-CRB. These
bounds quantify a resource apportioning principle—the re-
source can be allocated to gain either a precise estimate of 6,
or 0, but not both together [16,48].

The paper is organized as follows. We start with a summary
of the general framework for two-parameter estimation in
Sec. II. Next we apply this framework to derive from the
Fisher information precision limits for a single mode probe in
Sec. III. We then generalize this result to two-mode probes in
Sec. IV. We show that at least 6 dB of squeezing is necessary
to surpass the standard quantum limit. We also elucidate our
results with two examples: the first with a single squeezed
state and the second with two squeezed states with equal
amount of squeezing. Finally, we end with some discussions
in Sec. V.

II. GENERAL FRAMEWORK

Let us begin with a brief review of the two-parameter
estimation problem and the Holevo Cramér-Rao bound. To
estimate the parameters 6, the state pp is sent through the
displacement channel D(6) as a probe. After the interaction,
the state becomes py = D(8)poD(0)’ which now contains
information about the two parameters of interest. Next, we
perform some measurement scheme and use an estimation
strategy which leads to two unbiased estimators 6, and @y.
We quantify the performance of these estimators, through the
mean squared errors

v, o= E[(, — 6,)%] and vy, := E[B, —6,)"]. (1)

When restricted to classical probes, due to quantum noise
we have vy > 1 and v, > 1 which is known as the standard
quantum limit. The aim of this work is to find out what are
the possible values that v, and v, can take simultaneously.
To quantify the performance for estimating both 6, and 6,
simultaneously, we use the weighted sum of the mean squared
eITor: wyvyx + wyv, as a figure of merit where w, and w,
are positive weights that quantify the importance we attach
to parameters 6, and 6, respectively. We want to find an
estimation strategy that minimizes this quantity.

The Holevo-CRB sets an asymptotically attainable bound
on the weighted sum of the mean squared error [30]

Wy Vy + Wy Ly > fHCR = rrgn h@[X] s (2)

where X' = {X}, X} are Hermitian operators that satisfy the
locally unbiased conditions

9o
tr{pgX;}lo=o = 0 and try— A&
00;

=68, ()
=0

for j, k € {x, y} and hy is the function
he[X] = Tr{W ReZs[X]} + VW ImZs[X VW |,.  (4)

Here, Z is the 2-by-2 matrix Zj;, := tr{pp X; X} and W is a
diagonal matrix with entries w, and w,. The bound depends
on the state py only; it does not need for us to specify any
measurement. For quadrature displacements with Gaussian
probes, the bound involves minimisation of a convex function
over a convex domain. This is an instance of convex optimisa-
tion problem which can be calculated efficiently by numerical
methods [14]. Furthermore, the optimisation also reveals an
explicit measurement scheme that saturates the bound. For
Gaussian probes, the optimal measurement will always be an
individual Gaussian measurement.

III. PRECISION BOUNDS FOR SINGLE-MODE PROBE

We now apply the formalism to a pure single-mode am-
plitude squeezed state probe with quadrature variance e~
and rotated by an angle ¢ as shown in Fig. 1(a). The formal
definitions for the rotation and squeezing operators are given
in Appendix A. As previously stated, the Holevo-CRB only
depends on the probe and how it varies with the parameters.
In the single mode case, as shown in Appendix B, constraints
(3) fully determines fycr. There is no free parameter in the
optimisation and as a result, Holevo-CRB (2) becomes

WyVy + WyVy 2 Wyl + WyVp + 2, /Wewy , 5)

where
Vg i= e 2 cos’ ¢ + ¥ sin’ ¢ (6)
vy i= e 2 sin® ¢ + ¢ cos’ ¢ 7

are the projected variances on the X and Y quadratures. For
every choice of w,/w,, Eq. (5) defines a straight line in
the v,—v, plane and gives a different bound on that plane.
Some of these bounds are plotted in Fig. 1(b) for e = 1/2
and ¢ = 7 /6. For example, to estimate both 6, and 6, with
equal precision, setting w, = wy, = 1 gives the best estima-
tion strategy with v, + vy, = 2(1 4 cosh 2r) independent of
¢. This gets worse with more squeezing. However, if we are
only concerned with estimating 6,, setting w, = 0 results in
vy = V,. By eliminating w, and w, from Eq. (5), we can
collect all these bounds into one stricter bound

(vy = vp)(vx —va) 2 1 ®)

which holds for every ¢. This is plotted in Fig. 1(c) for a
few values of ¢. Every pair of (v,, v,) that satisfies Eq. (8)
can be achieved by a specific measurement strategy. The
same relation is plotted in Fig. 1(d) as a function of the
precisions 1/v, and 1/v,. This relation quantifies the resource
apportioning principle—given a fixed amount of squeezing,
there is only so much improvement in the precision to be had.
The resource can be used to gain a precise estimate of 6,, but
this comes at the expense of an imprecise estimate of 0.
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FIG. 1. (a) A squeezed state is used to sense the parameter 6 of a displacement channel. (b) With 3 dB of squeezing, and for a fixed
squeezing angle ¢ = /6, each of the straight line is the Holevo-CRB (5) with a different value of w,/w,. The shaded area shows the
accessible variance for simultaneously estimating 0, and 6,. (c) The two red dashed and dotted lines can be achieved by an X and P squeezed
state with ¢ = 0 and 7 /2, respectively. The blue line requires an intermediate squeezing angle. The shaded area are all the accessible regions
for a single mode squeezed state. (d) This shows the same region as (c) but as a function of the precision. With a 3 dB squeezed state, we can
reach the grey areas. More squeezing can give a high precision for one parameter but at the expense of a lower precision for the other. The
product of the precisions will never exceed 1/4 regardless of the squeezing level. This is shown as the green line. The three grey dashed lines
plot Eq. (8) when the squeezing angles are fixed at ¢ = 0, 7w /4, and 7 /2. The vacuum probe can only access the blue region.

When ¢ = 0, relation (8) can be written concisely as a
bound on the weighted sum of the precisions
—2r le

+—<1.
Uy vy

e

©))

By using the arithmetic-geometric mean inequality, an imme-
diate corollary of the result is the Arthurs and Kelly relation
vxvy > 4 which holds for all r [16,20]. This reflects the
Heisenberg uncertainty relation imposed on a single mode
system. Every value of squeezing can saturate this inequality
at one value of v, and vy as seen in Fig. 1(d). As we shall show
next, this restriction can be somewhat relaxed using two mode
states, but the sum of the precisions are still constrained by the
total available resource.

IV. PRECISION BOUNDS FOR TWO-MODE PROBE

We now consider a two-mode system where we have access
to two amplitude-squeezed states with quadrature variances
e~ and e~2"2. Furthermore we are allowed to rotate them by
¢ and ¢, and mix the two through a beam-splitter of trans-
missivity ¢ before sending one mode through the displacement
channel as shown in Fig. 2(a). In this case, fycr does not
have a simple form; its computation involves finding the root
of a quartic function. Despite this, the collection of all the
bounds lead to a final expression that is surprisingly simple
and intuitive. This is our main result: given two pure squeezed
states with variances e~>"! and e~>" as a resource where
0 < 1 < rp, and allowing for rotation and mixing operations,
the measurement sensitivity is limited by

— if
=l +e )Y —v if

e~ L, < v,

vy 2> vy Ve SV < Vg,
—2r) .
if vy < vy

Uye
vy—e

(10)

where v, :=e 22 4+ ¢ and vy ;= e 2" 4+ e 172, The
full derivation requires a lengthy but straightforward

minimization and is done in Appendix C. It involves finding
the optimal values of ¢, ¢, and ¢ for every pair of w, and w,.
We outline the main steps in the derivations here. Firstly, for a
fixed value of wy and wy and ¢, we can numerically compute
the Holevo-CRB for each pair of ¢ and ¢,. We find that the
optimal setting for ¢, is when ¢, = ¢; + 7 /2, making the two
squeezed states as different as possible [49]. Secondly, for a
fixed ¢, and ¢, each pair of w, and w, gives a bound which
correspond to one of the straight lines plotted in Fig. 2(b).
The collection of all these bounds give the accessible region
for this probe configuration. Thirdly, we vary ¢ to find the
accessible region for a fixed ¢, as shown in Fig. 2(c). Finally
the optimal value of ¢; is determined to arrive at the final
result (10).

The region described by (10) is plotted in Fig. 2(d). Every
pair of (v,, v,) that satisfies relation (10) can be attained by
a dual homodyne measurement. An immediate corollary of
this is the relation v v, > 4e~21¢=22 [27]. In order to surpass
the standard quantum limit for both parameters, we require
e 2"e 22 < 1/4. In other words, the sum of the squeezed
variances of the resource has to be greater than approximately
6 dB.

As mentioned in the outline of the derivations, not all
regions in (10) can be reached using the same probe. Dif-
ferent region requires the resource to be used differently. For
w, < w,, the best way to use the available resource is to set
¢ =0 and ¢, = 7 /2 and mix them on a beam-splitter with
transmissivity

e’
= — . (11
e + e Jw,/w,

This gives the optimal variances

vy = e 2 4 em ) S jw, (12)
vy = o2 _i_e—(r]-‘rrz)\/m’ (13)
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FIG. 2. (a) Two squeezed states are used to sense the displacement 6. (b) The Holevo-CR bound for a two-mode probe with r; = 0.35,
rn,=0.69,t =04, ¢; =0, and ¢, = 7 /2. Each straight line correspond to a bound with different values of w, /w,. The pink region shows all
the accessible values of v, and v,. (c) Each bluish-green curve gives the accessible boundary for the same probe as (b) except for the value
of ¢ which varies from 0.1 to 0.8 in steps of 0.1. The red curve is the envelope of all the blueish-green curve. (d) The shaded areas show the
relation (10) having two squeezed probes with 6 and 15.6 dB of squeezing. The variance for estimating both parameters can be simultaneously
smaller than 1. The two grey dashed lines are limits when the probe is fixed with ¢, = 0 and 7 /2 given by Eq. (15).

or in terms of 7, (9) with
—2r —2r) 1 e—2r2
=Y and v, =% (14) —+ <1 (18)
1—1¢ ’ t Ux Uy
fort > ﬁ After eliminating #, we arrive at abound on the ~ Which is plotted as the dashed grey line in Fig. 3 for e =
precisions 1/4. For example, it is possible to have v, = 2e~*2 and v, = 2
where the product v,v, = 4e~>". If the resource variance
—2n =2 e 2" < 1/4 (greater than 6 dB), then v,v, < 1, surpassin
e e <1. (15) /4 (g x Uy p g

v, v, what is sometimes called the standard quantum limit.
For w, < w,, we just need to swap the roles of x and y
by setting ¢; = 7 /2 and ¢, = 0. Equations (11)—(15) still 4
hold with all x and y swapped. When w, = w,, there is
a family of estimation strategy that all give the same sum

ll
1
1
1
of variances v, + vy = (e + €™ )2 but different values for l|| D(Q)i,
;
\]

each individual variances. This can be accessed by varying ¢; 3
from O to w /2 with ¢, = ¢; + 7 /2 and keeping ¢ as Eq. (11)
which gives

Y
Y

1 2
zi} _ E(e—rl +e )2 4+ cos2 b1 (e—2r1 _ e—2rz). (16)

In the following, we illustrate these results with two ex-
amples. In these example, we present the optimal probe and

measurement strategy that saturates the estimation precisions
(10).

Precision, 1/v,
(\]

A. Example 1: One squeezed state and one vacuum

In our first example, we consider the case of one squeezed
state and one vacuum state (; = 0) as shown in Fig. 3 inset.
For w, < wy, the optimal use of the probe is to set ¢ = 77/2
and the optimal measurement setup is shown in Fig. 4. The
two quadrature measurements give independent estimates of
0 and 6, with variances

Precision, 1/v,

FIG. 3. In order to surpass the standard quantum limit, v,v, =1
(red dashed line), we require access to an additional ancillary mode.
The accessible region for a squeezed state with 6 dB of squeezing
(17) is shown as the grey shaded region. It can just reach the standard

quantum limit at the two black dots. The dashed and dotted grey
lines plot Eqgs. (18) and (20) which can be accessed by setting ¢, =
For Hﬁ < t < 1, this pair of variances is optimal. Eliminat- 7 /2 and ¢, = 0 respectively. With 9 dB of squeezing, we can clearly
ing ¢, we can improve on the single mode precision relation surpass this limit (brown region). These bounds are given by Eq. (10).

e—2r2

Uy = and v, =

1—1
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FIG. 4. With one squeezed state and for w, < wy, the optimal
probe configuration is to prepare a Y-squeezed and split it on a
-spli ith t = —~—. Th imal i
beam-splitter with ¢ Sy e optimal measurement is to

disentangle the two modes on a second beam-splitter and perform
X and Y quadrature measurements on the two outputs which gives
the variances in (17).

For wy, < w,, the optimal use of the probe is to set ¢ = 0
and the optimal measurement is similar to Fig. 4 but with the
measurements X and Y swapped. Repeating as before, we get

—2r 1

e
and v, = —,
1—1t

Uy = (19)
. . . 1
Whlch is optimal when. TTor

sions, we have the relation
e—2r2 1

Uy vy

<t < 1. In terms of the preci-

which is plotted as the dotted grey line in Fig. 3 for
e 2 =1/4.

Finally to access the remaining region when w, = w,, we
require t = ﬁ and the squeezing angle ¢, to vary between
0 and 7 /2. The optimal measurement is similar to Fig. 4
except that the quadrature measurement angles are set to
¢> + /2 in the upper arm and ¢, in the lower arm. Each of
the measurement carry information on both 6, and 6,. The two
measurement outcomes, denoted by random variables M and
M,;, follow Gaussian distributions with

mean(M;) = ~/1 —1(6) cos ¢ — 6, sin ), 21

var(M;) =1, (22)
and

mean(M,) = +/1(8, sin ¢ + 6, cos ), (23)

var(M,) = e 22 . (24)

With this, we can form two unbiased estimators for 6, and 0,:

_ Mjycos¢, M, sing¢,

0, = , 25
7 T (25)
~ Mjysing, M cos ¢,
6, = (26)
! NG NI
The variances of these estimators are
—27’2 2 : 2
var(d,) = & CIOS 2 Slln ¢;2 7

(1 + e™)e 2 (cos” ¢ + € sin* ¢2),  (28)

and
e sin’ ¢, cos? ¢y
t 1—1¢
= (1 4+ ¢?)e 22 (sin’ ¢, + €2 cos® ¢»),  (30)
which saturates the bound (16).

var(d,) (29)

B. Example 2: Two equally squeezed state

In our second example, we walk through the derivations of
our main result in the special case where the initial resource
are two squeezed states having an equal amount of squeezing
r1 = rp = r. In this case, when ¢, = ¢ + 7 /2, the Holevo-
CRB can be simplified to

Wiy + Wy vy =z fHCR = In)hin{wxfx + wyfy} ’ (31)
where
(14 ate")? + 22(1 —t)e
= , 32
! (A + 1e™)? .
. (1 4+ Ate')? + 22(1 —t)e
fi= 1 Do . (33)

In general, there is no analytical solution for the optimal value
of A. To see how this leads to the main result in Eq. (10), let us
first consider a specific use of the resource by interfering the
two squeezed states on a beam splitter with r = 0.5 as shown
in Fig. 2(a). In this case, the optimal A that minimizes fucr
is given by A* = —e " (1 + y)/+/2 where y is the positive
solution to the quartic equation

D3y —tanh2r) 4+ ytanh2r —1=0.  (34)
w

X

We can solve some special cases analytically:

(wy=wy=1): vy +vy, > de™ at A = —2e77,

r

—e
wy=1lLw,=0:v,> ——atAf=——,
Y ~ cosh2r /2 sinh 2r

(w, = 0 : o> Lo —<
wy=0w,=1:1,> —atA =———.
Y ) cosh 2r ﬁ osh 2r

(35)

For other values of w,/w,, A* can be calculated numerically
and several of these bounds are plotted as the dashed lines
in Fig. 5 when ¢?" = 1/4. The envelope of these bounds is
defined by the parametric equation vy = f; and v, = f, for

<A< -— and by construction can always

e e
V/2sinh2r L. ﬁcosh2( X 7 .
be reached. This is the precision limit attainable by the probe
and is plotted in red in Fig. 5. It is interesting to note that

. . . 1 .
the OptII}Ill;ll variance of vy = ———- can be achieved for any
COS| r

Y7 sinh® 27 .. . . .

The optimal precision as given by Eq. (10) is plotted in
grey in Fig. 5. We see that setting + = 0.5 is only optimal
when w, = w, which gives v, = v, = 2¢~%" [27]. For every
other points on the grey line, a different probe configuration
is needed to achieve it. In other words, assigning different
weights to the precisions of the two quadratures will require
the resource to be used differently. In the extreme case where
we are interested in only one quadrature, the optimal scheme
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FIG. 5. Precision limits with two 6 dB squeezed resource. Each
black dashed line is a Holevo-CRB (31) determined by a value of
w, and w, for a specific probe where ¢ = 0.5. The Holevo-CRB is
an attainable bound, which means that for each of this line, there
is a measurement that can reach at least one point on it. The three
dots corresponds to the three special cases discussed in the main text
in Eq. (35). The red line, which is the collection of all the black
line bounds, gives the achievable variances for this probe. The grey
shaded area, defined by Eq. (38) is the collection of all accessible
regions we can attain by varying ¢. We see that the red region touches
the grey line at only one point when v, = v,. To reach the other points
on the grey line, we need to use the resource in a different way with
t #0.5.

would be to just use one mode to sense the displacement,
as in squeezed state interferometry [1-3]. In general, when
wy # w,, the optimal way to use the available resource is to
mix the two squeezed states on an unbalanced beam-splitter

with transmissivity * = %17 At this value of 7, fucr

in Eq. (31) is minimized when A* = —e™"/+/t* which gives
Holevo-CRB as

fucr = (Vwy + Jwy) e (36)

The measurement that saturates this bound is shown in
Fig. 6. After the second beam-splitter, the displaced two-mode
probe is separated into two independent single-mode probes
with displacements +/1 — %0 and +/*0. Measuring X on the
first mode and Y on the second gives

672r 672r
w=o— and uy=— (37)
Upon eliminating ¢*, we have
1 1
—+—=¢, (38)
vy Uy

which saturates the bound (10). This precision relation quan-
tifies the resource apportioning principle and implies that the
quantum resource available through the squeezed states has

FIG. 6. When r| = r, for a fixed w, and wy, the optimal probe

that saturates the Holevo-CR bound is obtained by mixing the two
NC
NCEN
measurement is to disentangle the probe into a product of single-
mode states and measure X on the first mode and Y on the second

mode. This gives the variances in Eq. (37).

squeezed states on a beam-splitter with 7 set to The optimal

to be shared between the two conjugate quadratures [48]. The
effects of channel noise and inefficient detectors are presented
in Appendix D.

V. DISCUSSIONS AND CONCLUSION

To summarize, we find precision bounds in the simultane-
ous estimation of two conjugate quadratures. These bounds
quantify a resource apportioning principle that limits how
much precision is achievable with a given resource. While
we restrict to pure states and two-mode states in this work
to derive transparent analytical results, our formalism can
be generalized to mixed and multimode Gaussian probes.
These results can be applied to channel estimation when the
amplitude and phase displacements have different strengths.
For example, the phase signal can be much weaker than the
amplitude signal we are trying to detect. This problem can
also be formulated in a resource theory framework [50-55],
where squeezing is a resource and passive transformations
are free operations. In this framework, the monotone that
quantifies the value of the resource will depend on the weights
w, and w, assigned to each parameter. What optimal means
must depend on the application which assigns the weights w;
and wy,.
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APPENDIX A: PRELIMINARIES AND NOTATIONS

We introduce some preliminaries and notations that will be
used in Appendices B and C to derive the results in the main
text. We define the following operators.
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X =a+al

Y =i(at —a)

D(¢) = exp(ip a’a)
D(b,,6,) = exp (2X — )
S(r) = exp (%(a2 - aTz))
B(®) = exp(¥(a}a, — a1a}))

Amplitude quadrature operator
Phase quadrature operator
Phase shift operator
Displacement operator
Squeezing operator
Beam-mixing operator

The beam-splitter transmission is ¢ = cos® 1. Some useful el-
ementary relations for single mode operators are listed below.

&' ($)D(6,. 6,)D($) = D(6y cos ¢ + 6, sin b, 6, cos ¢
— O, sin¢), (AD)

a%((dﬂ(fﬁ)l)(@x, 6y)P(P)o=0 = —éX sin¢ — éY cos ¢,
(A2)
|

9 i i
9 (ot _ iy
8ey(cp (@)D (6. 6,)D(§))lg—o = X cosp — -V sing.
(A3)

The squeezed state |S(r)) = S(r)|0) has the following expec-
tation values

(S(rIX[S(r) =0, (SMIYIS(r) =0,

(S(IX?IS(r)) = exp(=2r), (A4)
(S(MIY?IS(r)) = exp(2r) , (A5)
(SMIXY|S(r) =i. (A6)

Some useful elementary relations for two mode operators are
listed below:

(¢, ¢2)BJ{2(I)D2(0)0 0,)B1a(1)®(¢1, $2) = D' (¢, ¢2)312(I)D1(—v1 — 10y, —/1 — 10,)Ds(V16,, V/16,)D (1, ¢)
= Di(—+/1 —t;cos ¢ — +/1 —t0,sin¢p;, —+/1 — 16, cos ¢; + /1 — 10, sin ;)
®D2(\/;9x cos ¢y + \ﬁey sin ¢, \/;6}, cos ¢ — /16, sin b2),

0

a

= (%«/1 — tX| sin¢; + %«/1 —tY) cos¢1) + (—%\/;Xz sin ¢, — %\/;Yg cos¢2>,

2 (@' (¢, ¢2)BIQ(I)D2(9x, 0,)B12(1) P (1, $2))|o=0

(A7)

0
ﬁ(dﬂ (¢1, ¢2)B()D2 (6., 6,)B12(1) (1, $2))]o—0
y

= (—é\/l —tX|cos ¢ + %«/1 —tY) sin¢1> + <%\/;X2 cos ¢, — %\/ZYz sin¢2>.

APPENDIX B: HOLEVO CRAMER-RAO BOUND FOR A
SINGLE-MODE PROBE

Here, we detail the steps leading to the results for a
single mode probe. Starting with the squeezed state |S(r;)) =
S(r1)|0), we apply a phase rotation ¢; and pass the state
through the displacement channel to get the probe

D(0y, 0,)P(p1)IS(r1)) -

To compute the Holevo-CR bound, we first rotate the probe
state by —¢;. This is done to simplify the computations, it is
a unitary transformation which does not change the bound as
it can be absorbed as part of the optimal measurement. The
rotated probe state is then

[¥g) = @1 (¢1)D(By, ,)D(d1)|S(r1))
= D(6, cos ¢ + 0y singy, O, cos p; — 6, sing1)|S(r1)) .

1. Inner products between the probe and its derivatives

The probe state at 6 = 0 is

[Yo) = 1S(r)) .

(A8)

(

Using Eqgs. (A2) and (A3), differentiating |1y) with respect to
0 and 0,, we get

) . .
W) = gl = (—%X sin ¢ — éYcos¢l>|S<r1)>

6=0

and

\ . .
W= sglvel| = (%x cos ¢y — %Y sin¢1)|sm>> .

6=0

Using Egs. (A4) and (AS), the inner products between |,)
and |/,) are

W) = -2, (ylhy) = -
x|1¥Yxl = 4 yi¥Wy) = 4
and
W) = F Sinh(zg)m@‘m) _ @ew,
where

vy = e 2 sin? ¢y + ¥ cos ¢y ,

vy = e 2" cos? ¢y + € sin® ¢,

023182-7



SYED M. ASSAD et al.

PHYSICAL REVIEW RESEARCH 2, 023182 (2020)

are the projected variances of the rotated probe on the X and
Y quadratures and the angle ¢ satisfies

sinh(2r) sin(2¢, )

V VixV1y — 1
—7

cos @ = = sign(r) tan ¢;)
/VixVly A/ VixVly
) 1
SN = .
4/ VixV1y

Together, the inner products between [V/o), |/,) and [v,) are

1 0 0
1 1 i
(Yily) =10 V1 1/onvne? |,
1 —i 1
0 7/ V1xV1ye e 7V1x

for {j, k} € {0, x, y}. Note that the determinant of this matrix
is zero because |/,) and [/,) are in fact linearly dependent.
To proceed, we introduce a basis and write

- —ip/2
Vo) = ((1)) ) = %(‘1’)

vie’? (0
gy L 0)

2. Computation of the Z matrix

In this basis, after applying the conditions

= Jjk,

ap
tr{ps Xj}lo=o = 0, tr{—exk}
6=0

30,

for j, k € {x, y}, the relevant entries for the two matrices X
and X, are fully determined with

ne( ) ae(0)

v 1 < 1 i 1 )
2, /viy \cos(¢/2) sin(gp/2)

where

1 1 . 1
R Wors <cos<<o/2> - ’sin«p/z)) '
Substituting this into Zy[X'] jx:=tr{ps X; X} }, we get

x| xy>

Z=|\"

(xy yI?
_ Vix —sinh(2r;) sin(2¢p) + i
— \—sinh(2ry) sin(2¢) — i iy ’

which does not depend on ¢.

3. Holevo-CR bound for a fixed weight matrix

With a diagonal weighting matrix

w, 0
W:<O wy>’

the function

h =Tr{WReZ} + [¥VWImZ VW],
= WyV1y + Wyv1y + 2,/ Wewy.

Hence the Holevo-CR bound is
Wyly + WyVy = Wyliy + WV, + 2,/ W Wy, . (B1)

Each value of w, and w, in Eq. (B1) restricts the values v, and
vy can take. For some values of w, and w,, we get

(wy=wy=1): v+ vy, 2 v +viy, +2
= 2(1 4 cosh 2ry),
(w, =1, Wy = 0): vy 2 vy, (BZ)

(wy =0, w, =1) : vy > vy,. (B3)

4. Collecting all the bounds with different weighting matrix

To find all the possible values for v, and v,, we look for
solutions to Eq. (B1) valid for all w, and w,. Rearranging
Eq. (B1), we have

w(vy - vly) - 2\/E+ (vx - le) > O,

where w = wy/w,. This is a quadratic equation in \/w and
the statement is true for all w if and only if

4— 4(”)' - vly)(vx —v) <0
= (vy — i) (v — Vi) 2 1, (B4)

where we already know from Eqs. (B2) and (B3) that v, > vy,
and vy > vy,.

5. Optimising the rotation angle ¢

For every rotation angle ¢, and v, > vy,, relation (B4)
gives the smallest value of vy, as

1

Uy — Vix

Uy = vy +

Finally, we want to find the rotation angle that minimizes vy
for a fixed v,. Without any loss of generality, we can consider
r1 > 0 so that v, > e 2. Performing the minimisation, we
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find
v;‘ = min {vly + } subject to vy, < vy
¢ Ux — Vix
P p— atgp =0
Uxiefzrl
Y =132+ 2cosh2r; — v, at¢ = arccos <
-2 1 _
e 4+ - at ¢ = 7T/2

which is plotted in Fig. 1(c).

APPENDIX C: HOLEVO CRAMER-RAO BOUND FOR A
TWO-MODE PROBE

This Appendix details the steps leading to the main result
for the two-mode probe. An arbitrary two-mode passive linear
optical network can be realized by two phase-shifts at the
input port, a beam-splitter and a phase-shift at one of the
exit port. The phase shift on the exit port can be placed on
the mode that is not the probe. Hence this does not have
any effect on the estimation precision because it can be
undone in the measurement stage. Therefore, starting with
the two squeezed states |S(ry, 7)) = S(r1) ® S(r2)[0, 0), it is
sufficient to consider just two rotations ¢; and ¢, on each, and
mix them through a beam-splitter with splitting ratio ¢ as the
most general passive linear operation. The probe state is then

D>(0x, 6,)B12 ()P (1, $2)IS(r1, 12)).

To compute the Holevo-CR bound, we first undo the mixing
and rotation operation on the probe state by performing By, (t)
and ® (¢, ¢,) in reverse. Once again, this is done to simplify
the computations, it is a unitary transformation which does not
change the bound as it can be absorbed as part of the optimal
measurement. The two-mode probe state is then

Vo) = @ ($1. 2)B],(1)D2(0s, 6,)Bia(t)D(¢1. 2)
X |8(r1, r2)).

1. Inner products between the probe and its derivatives

The probe state at 6 = 0 is

[Vo) = 1S(r1, 12)).

Using Eqs. (A7) and (AS8), we can differentiate |yy) with
respect to 6, and 6, to get

0
[¥x) = a—gxllﬂe)

6=0

(%Jl 71X, sin ) + %\/1 1Y, cos ¢1)|S(r1, "))

+ (_%«/;Xz sin ¢ — éx/;Yz cos ¢2> IS(r1, r2))

e/ 146> 1 —u, if
Ver—1

if e o< l4en

l+e 2 Lu, < 1421,

if v > 14en

(

and

a
|vy) = a—eylwe)

0=0
- <_%«/1_—tX1 cos ¢y + émyl Sin(pl)'Sm’ )

Using Eqs. (A4) and (AS), the inner products between |y,)
and |/,) are

1—1¢ 1
(Yl W) = Uiy + ZUZy ,
Wolty) =~ Lo+
) = —VUix — U2y
yIVy g Ul 7V
and
i 1—-1 . )
(Uxlry) = 1 + 2 sinh(2r)) sin(2¢;)
t
+ I sinh(2r,) sin(2¢,)
1—1¢ ; t ;
= —— Juune? + ZA/vnggye Z3
where

viy = e 2" sin% ¢y + > cos® @y
vy = e 21 cos? ¢y + ¥ sin? ¢
vy = e 22 sin® ¢y + € cos® ¢ |
vy = €22 cos® ¢y + > sin® ¢y

are the projected variances of the rotated probe on the X and
Y quadratures and the angles ¢; and @, satisfy

sinh(2r) sin(2 JUevry — 1
cos @ = (2r1) sin2¢1) = sign(r; tan qbl)—l il ,
/VixVly 4/ VixV1y
. 1
sin g = ,
& A/ VixVly
sinh(2r,) Sin(2¢2) . v V2xV2y — 1
cos @y = = sign(r tan¢p)————,
+/ V2xV2y / V2xV2y
. 1
sin g, = .
v2 A/ V2x U2y
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Together, the inner products between [), [,), and [,) are

1 0

1—t t
0 Tvly + szy

(Vi) =

0
1—1 1 t 1
T ViV, e + i /U2, Uz, €'

1—t — i ! — i 1—t !
0 . J/vnvye " + 7/ Unvy e T VL T U2

for {j, k} € {0, x, y}. To proceed, we introduce a basis and
write

1
[Yo) = |01,
0

0
J1=1 111ye_"*"‘/2
NNk
0
V1T =1 /ve/?

NN

1
W) = 3

1
|1//y) = 5

2. Computation of the Z matrix

In this basis, after applying the conditions

tr{po Xj}o=0 = 0,

d
tr{ﬁXk}

=8,
36, 7

0=0

for j, k € {x, y}, we can write the relevant entries for the two
matrices Xy and &), as

0 xleilﬂl/z X2ei<ﬂ2/2
X, = )_Cle_i(p‘/z R
)_6267[‘/’2/2
0 y1e? /2 yzel'tpz/z
X = )_’leilfﬂl/2 : : )
yze—lwz/Z

where the complex entries x|, x, y;, and y, must satisfy the
constraints

V1 =1 /vy Relxi} + Vi /oy Relo} = 1, (C1)
V1 =1 /v, Re{x1”} + v1/v; Re{xpe?} =0, (C2)
V1 —1/visRefy} + Vi /iy Rely} =0, (C3)
VI =1/ Refyie”} + Vi Jon Refyre®} = 1. (C4)

Substituting this into Zy[X] jx:=tr{ps X; X}, we get
7 — 2 + el x5+ 0
Ty + By P+ nel?

3. Computation for the Holevo-CR bound

With a diagonal weighting matrix

w, 0
W:<O u)y> ’

(

the function £ can be written as

h = Tr(W ReZ} + |[VW ImZVW |,
= wy (Jx1 1> + [x2?) +w, (y1 1> + [y21?)

f 5
+ 2 /wewy Abs{ Im{x;3; + x23,} }. (C5)
N——

4

The Holevo-CR bound is obtained by the following
minimisation

min h
X1,X2,Y1,)2
subject to the four constraints (C1)-(C4). When the probe
parameters 7y, 2, @1, ¢, and ¢ as well as the weights w,
and w, are specified, this is an instance of a semidefinite
programme which can be solved efficiently using numerical
methods. Furthermore, every semidefinite programme has a
dual problem which can be used to verify the solution. The
minimum point occurs when g =0 at which we obtain a
solution for the extremal point as v, = f, and vy, = f,. The
locus of the extremal points (vy, vy) as we vary the ratio
w,/w, from O to infinity gives the boundary of the accessible
region for a specified probe. To find the optimal use of a
given resource characterized by r; and r,, we need to further
minimize fycg over the parameters ¢, ¢, and ¢. This is what
we have done to plot Fig. 2 of the main text.

While solving the semidefinite programme can give us
numerical solutions, we can also solve the minimisation prob-
lem by solving for the Karush-Kuhn-Tucker conditions for
optimality.

WyVx + Wy Vy P fHCR =

4. Proof of main result

In what follows, we provide a proof our main result. We
break up the proof into four steps. First, we prove that h
is minimized when g = 0. Second, we provide numerical
evidence that fycr is minimized when ¢; and ¢, are either 0
or it /2. Third, we compute the Holevo-CR bound for a fixed
t. Lastly, we vary ¢ to find all the accessible values for v,
and v,.

Step 1: h is minimized when g = 0

We claim that 4 in Eq. (C5) is minimized when g = 0. To
proof this claim, we first introduce the rescaled variables

X1 =/ WxX1, X2 = /WxX2, Y1 = JWyY1, Y2 = JWyy2.

In the rescaled variables, function to be minimized Eq. (C5)
can be written as

h= X117 4 X + |y11? + Iy2l* + 2 Abs{Im{x, ¥ + XaY2}}

= max{|X +yI*, [X — ¥I*},
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where

X = (Rex; Imx; Rey2 Imyz)T s

37: (—Imy1 Rey1 Im X, —RCXz)T .

Our claim is then: 4 is minimized when X - § = 0. We can write the constraints (C1)—(C4) as

C1 0 Re X1 T 0
c3  C4 Im X, Ce

0 c1)(—Imy; n 2
—Cc4 3 Rey; Cs
cr =41 — 1 /Vy, (3= V11—t /v cosp;, cs = \/Z«/UZXCOS(pQ,
2=Vt Uy, ca=—V1—tvising , cg = —v1/v sing, .

where

We can invert these equations to find ¥ in terms of X

—c Imx Wy
—ci) (—Re)2(2> - ( 0 ) ’ (CO)
O\(Rey,\ ([ O
o)) = () ©)
(C8)
(€9

—Imy;\ (0 ¢ o (0 c e 0 Rey,
Rey; ) 7 \—c «c3 /Wy —c4 €3 ¢s  ¢g)\Imy, )’

Im X, _ 0
—Re X, B Ceo

. 0 - 0
whenever the matrices (_C4 Zl) and (Ce

can write § = AX + b, where

-1
0 C1
(L) o
A=—
0 )\
1
()
b=

Given X, the vector V is fixed which means we can perform an
unconstrained minimisation over X only

. > =02 - =12
fucr = minmax{|X +y|°, X — Y|} .
X

Because fycr is continuous in X and bounded below by
zero, it has a minimum. To proof our claim we shall show that
the alternative statement: “h is minimized when X -y # 0.
leads to a contradiction. Suppose /4 is minimized by X, and its
corresponding , such that X, -y, > 0. This implies

facr = min X + yI*.
X

. - -2 . ..
However, the function |X + Y|~ attains a minimum of zero
when

X, =—(A+1)"'b

such that §, = —X, which implies X, -y, = —|X,|> <0
leading to a contradiction. Following a similar argument,
supposing X, - ¥, < 0 also leads to a contradiction. Since the
minimum cannot occur when X - y = 0, at the minimum point,
we must have X - § = 0 which proves our claim. Hence, we

=) ()

_.) are invertible. This is always true when 7 is not exactly 0 or 1 in which case we

0 —C) - C1 0 Re x;
C6e —Cs ¢z cg)\Imx, )’

can write the Holevo-CR bound as

ficr = min [X + Y|, subjecttoX -y =0. (C10)
X

Step 2: Numerical evidence that the minimum can be attained
when ¢ =0and ¢, = /2 0r ¢y =n/2and ¢, =0

For any given values of 7, 2, t, wy, and wy, we conjecture
that the minimum for 4 can always be attained when ¢; = 0
and ¢, = 7w /2 or when ¢p; = /2 and ¢, = 0. For each value
of ¢ and ¢, we can solve a semi-definite program to find the
minimum fycr(@P1, ¢2). We can then scan over the angles ¢,
and ¢, to look for the minimum fycr. Doing this, we find
that the minimum of fycr always occur when ¢; and ¢, are
equal to either 0 or /2. A simulation for a typical setting
with r; =0.35, r, =0.69,t =04, w, =0.7, and w, =0.3
is shown in Fig. 7(a).

In the special case when w, = w,, we find that any value
every value of ¢; and ¢, satisfying ¢, = ¢; + 7 /2 gives the
same optimal fycr. A typical simulation result is shown in
Fig. 7(b).
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FIG. 7. (a) A typical contour plot of fycgr for a fixed r; = 0.35, r, = 0.69, t = 0.4, w, = 0.7 and w, = 0.3 as we scan the angles ¢, and
¢». In this case, fycgr is minimized when ¢; = 7 /2 and ¢, = 0. (b) With the same values of r, r, and ¢ but for w, = w, = 0.5, fucr is now
minimized when ¢, = ¢ + /2.

Step 3: Minimizing h for a fixed w,, w, and t, when ¢, and ¢, are subject to the condition
equal to 0 or i [2
g= —Imy;Rex; + Rey;Imx; + Imx;Rey, — Rex,Imy,
When ¢; and ¢, are equal O or 7 /2 the products v, vy, =

vy V2y = 1 and ¢ = ¢o = /2. This simplifies the inner _ Imx;Rey, Rexjlmy, Rex; Imy,

products between the states of interest to C1C6 C2€C4 C4 c2
(Yilg) = | 0 %vly + fTUZy 3 . To find the minimum value of &, we introduce the Lagrangian
0 -1 T+ oo function
The coefficients ¢3 =c¢5 =0, ¢4 = —+/1 —t. /vy, and cg = L=h+Ag,
_,_“/;V' vz"_}m qu' (C6) and (C7). The matrix A and vector  ypere 3 s the Lagrange multiplier. To find the stationary
b relating y and X are now points for £ we differentiate with respect to x; and y, and
0 0 0 co/ca set them to zero:
0 0 -/ 0 L 2¢3 Rey
A=— = 2Im AIm A 2) =0
0 —ca/cs 0 0 mx; wx|: X1+ cé x|+ crce ,
c1/ca 0 0 0 (Cl11)
d oL Im
an = wy [2Rey2 + —Reyz] ( x1> =0,
—J/Wy/c4 dRey, C1C6
. 0 (C12)
b= 0 ’ oL IR, C] 1 —clRexl
= w,|2Rex
—Jwx/c2 dRe x| b [653
. .. . I 1
The relation between the original variables becomes B A( my; " _) —0. C13)
1 4 Co2Cy C4
Rex; = —(1 —ciRex;), Imx; = ——Imux, L 2¢6 (1 — cglmy,
€2 Co =w,|2Imy, - — ———
c 1 dlm y, Cy Cy
2
Rey; = ——Rey,;, Imy; = —(1 —c¢Rexy). Re x| 1
C C4 — A( —) =0 (C14)
To compute the Holevo-CR bound (C10), we now have to G
_-ocomp ’ 0L Imx;Rey, Rex;Imy, Rex; Imy,
minimize over x; and y, — = — — — =0.
A CiCq CrCy C4 2
h = wyfy +wyfy, (C15)
where From Egs. (C11) and (C12), we have
1-— clRexl 2 C4ImX1 2 A
= 2 2 _ Imx, = — Reyg,
f;f (Rexl) + (Imxl) + ( s ) + Ce ) 2wa]C6(1 + C%/Cé)
1 — ceImy, \? cRey, \? 2wycrce(1 4 c3/c?
fyz(Rey2)2+(Imy2)2+<+y2) +< 20 yz) Imx; = ——~ (k 2 1)Reyg,
4 1
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which implies either of the two cases.

Case A: Rey, = Imx; = 0.

2 2
c c
Case B: A* = 4wxwyc%cé<l + —%) (1 + —‘;)
c c
1 6

= dwywy(cf + c3) (¢f + )

== :tZ\/wxwy(c% +c3) (3 +cd) .

Ao

From Egs. (C13) and (C14), we require

2w,y (cf + c%)Rexl

)»Cz

AcgRexy + 2wycace + Acf
2oy + 2)

2
—2wycic4 — ACy

Imy, = s (Cl1e6)

Imy, = (C17)

Let’s first consider case B. Substituting A = A into the two
equations above, we get from Eq. (C16)

044/11)x,/c‘1 + 02
Rexl
JWy e+ ¢t Aoc2
and from Eq.(C17)
CaJwy [t + 3
+— Rex
/Wy cﬁ + cé

Except in the special case where

2wycicy

Im Yy =

2wycrce £ Aocﬁ
Imy, = o (2 42
2c2wy (e} + <)

2w,cicy

2wycace + Aoch
—_ 2 = —-—----------uQ N
)\()Cz ZCwa (Cﬁ + C%)

case B will not have a solution.
Next we consider case A. Now the constraint (C15)
becomes
RexImy, 4+ c;Rex; + ¢c4Imy, =0 . (C18)

The remaining task is to solve for Rex;, Imy,, and A from
Egs. (C16), (C17), and (C18). The solution to this is given by

B 2w,y (c% + c%)Rexl — 2wycicy

)

c% + cImy,
C4Im y2

Rex; = —————,
! ¢ +Imy,

and Im y; is given by the solution to

3
2 2 C4
— wycalcy + ¢ _— Im
x4(1 2)<C2+I y2> »2

4
— wycicy| ——
¢+ Imy,

(C19)

2
2 2
) = wycz(c4 + CG)Imyz — WyC2C.

When w, = 0, we have

Ce T Uy

Imy, = = =: (Im ax -
¥2 Ci n C% [ V2 — 1 U1, + U1y ( y2)mdx
When w, = 0, we have
Cc1C W
ImyZ = - = - - = (ImyZ)min .

c+ C4(C% + c%) T vy — I Uy
The Holevo-CR bound becomes
ci(Imyz)2 + (1 — cImy,)?
(c2 +1Imy;y)?
fx

WV + Wy Vy = fHCR = Wy

ci(Imyz)* 4 (1 = cglmy,)?

y 2 )
Cy

f

where (Im yp )min < Imy; < (Im y;)max 1S obtained by solving
(C19). Each value of w,/w, defines a straight line in the
(vx, vy) plane. Several of these lines are plotted in Fig. 2(b).
The envelope of these lines as we vary w,/w, defines the
curve parametrized by v, = fi(Imy,) and v, = f,(Imy;,).
This is plotted as the red curve in Fig. 2(b) where the two
end points Imy, = (Imy;)min and Imy, = (Imy; )iax are in-
dicated by the two black dots.

Step 4: Optimising the splitting ratio t
Next, we want to find the accessible variances as we change
the splitting ratio ¢. Each value of ¢ parametrizes a curve
given by
vy = fe(Imys, 1)
_ (L =nui(Imyy)* + (1 + 7 opImy,)?

. (C20
(/fvay 4+ Imy,)? e

vy = fy(Imyz, 1)
_ (- Do (Imy)* + (1 + /7 vpImyy) (C21)

(1 - t)le

Several of these are plotted as the greenish-blue curves in
Fig. 2(c). The envelope of all these curves can be obtained
by solving

O Of _ 0f 0f
3t dlmy, oImy, af

The solution to this is given by

2
Imy2=— Ty .

Substituting this into Eqs. (C20) and (C21) gives

Voy
fe@) = S0 = —)
which can also be written as
LAERL (C22)
Uy vy
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FIG. 8. We model the added noise in the channel by a ran-
dom gaussian modulation with amplitude V, in both quadratures.
Inefficient detectors are modelled by inserting a beam-splitter with
transmissivity 7. In the ideal setup with V. =0 and n =1, the
optimal measurement consist of interfering the two beams on a
beam-splitter with transmissivity #; that depends on fy, squeezing
level r, and weighting ratios w, and w,.

This is plotted as the red enveloping curve in Fig. 2(c). When
¢1 = 0and ¢, = /2, Eq. (C22) becomes

e—2r| —2r

¢ (C23)

+

Uy vy

and when ¢; = /2 and ¢, = 0, it becomes

672"2 efzrl

+ =1. (C24)

Uy vy
These two bounds are plotted in Fig. 2(d). When w, = w,,
both values of ¢; = 0 and ¢ = 7 /2 perform equally well.
In this case, as we have seen in Fig. 7(b), any value of ¢, =
¢1 + /2 will give the same fycg. These allow us to access
the regions in between the two bounds (C23) and (C24).

APPENDIX D: EFFECT OF CHANNEL NOISE AND LOSSY
DETECTORS

In this Appendix, we consider the effects of channel noise
and lossy detectors for the two-mode probe example presented
in the main text. The channel noise is modelled by adding a
random Gaussian noise with variance V, in both quadratures.
The lossy detectors are modelled by adding a beam-splitter
with transmissivity 7 before every detector.

We first consider the case where the first beam-splitter used
to mix the probe has a fixed transmissivity 7o = 0.5. The opti-
mal measurement that minimizes the Holevo-CR bound for a
given w,/w, is shown in Fig. 8 where the transmissivity of the
beam-splitter #; depends on the ratio of the weights w, /w,. It
is straightforward to show that the estimation variances with
added noise V, and detector transmissivities 1 are given by the
pair (v}, v;‘) where

. cosh2r —2/t1(1 —t;)sinh2r + (1 — 1)V,
vy =
(I—1)
1—1n

+ —7
nl—1n)

. cosh2r —2./t;(1 —t;)sinh 2r 4+ #,V, N 1—n
i = .

Y 1 ni

0.9 :
(b)

0.8}
s S 0.7F
£ oo
3 S
= > 0.5}

0.4+ 8

083 04 05 06 07 08 09 993 04 05 0.6 0.7 08 0.9

Variance, v, Variance, v,
0.9 0.9 T
(d)

0.8 0.8F -
0.7 0.7
g g
g 08 200
> 0.5 > 0.5F )

0.4 0.4} *
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Variance, v,
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Variance, v,

FIG. 9. (a) The accessible regions with two 6 dB squeezed
resource (r = 0.69) assuming an ideal channel and perfect detectors
are shown. The red line is the boundary for the probe with 7y = 0.5
and where the optimal measurement is obtained by varying #,. The

grey line plots the performance of the optimal probe where 7, =
—

0= Zagm

n = 0.95 which shrinks the accessible region. In (c), we simulate the

effect of added noise with V, = 0.05—five percent of the vacuum
fluctuations. Finally in (d), we consider both channel noise V., = 0.05
and inefficient detectors n = 0.95. For comparison, the dotted lines
in (b), (c) and (d) are the boundaries for the perfect channel.

In (b), we simulate the effect of lossy detectors with

The accessible variances for some values of V. and n are
shown as the red shaded region in Fig. 9.

As mentioned in the main text, for the given weights w,
and w,, the optimal probe is formed by setting 1) = %W
The optimal measurement is to set #; = #; in Fig. 8. It is once
again straightforward to show that the estimation variances
with added noise V, and detector transmissivities 1 are given

by the pair (vy, vy) where

. nEe+ (A —1)V)+1—n

vy = )
n(l—1)

. nEe T +nVo+1—n

Uy = .
nlo

The accessible variances for some values of V. and 7 are
shown as the grey shaded region in Fig. 9.
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