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Abstract. Geostatistical inverse modeling (GIM) has be-
come a common approach to estimating greenhouse gas
fluxes at the Earth’s surface using atmospheric observa-
tions. GIMs are unique relative to other commonly used ap-
proaches because they do not require a single emissions in-
ventory or a bottom—up model to serve as an initial guess of
the fluxes. Instead, a modeler can incorporate a wide range
of environmental, economic, and/or land use data to estimate
the fluxes. Traditionally, GIMs have been paired with in situ
observations that number in the thousands or tens of thou-
sands. However, the number of available atmospheric green-
house gas observations has been increasing enormously as
the number of satellites, airborne measurement campaigns,
and in situ monitoring stations continues to increase. This
era of prolific greenhouse gas observations presents com-
putational and statistical challenges for inverse modeling
frameworks that have traditionally been paired with a lim-
ited number of in situ monitoring sites. In this article, we
discuss the challenges of estimating greenhouse gas fluxes
using large atmospheric datasets with a particular focus on
GIMs. We subsequently discuss several strategies for esti-
mating the fluxes and quantifying uncertainties, strategies
that are adapted from hydrology, applied math, or other aca-
demic fields and are compatible with a wide variety of atmo-
spheric models. We further evaluate the accuracy and compu-
tational burden of each strategy using a synthetic CO; case
study based upon NASA’s Orbiting Carbon Observatory 2
(OCO-2) satellite. Specifically, we simultaneously estimate

a full year of 3-hourly CO, fluxes across North America in
one case study — a total of 9.4 x 10 unknown fluxes us-
ing 9.9 x 10* synthetic observations. The strategies discussed
here provide accurate estimates of CO; fluxes that are com-
parable to fluxes calculated directly or analytically. We are
also able to approximate posterior uncertainties in the fluxes,
but these approximations are, typically, an over- or underes-
timate depending upon the strategy employed and the degree
of approximation required to make the calculations manage-
able.

1 Introduction

Atmospheric observations of air pollutants and greenhouse
gases have evolved dramatically over the past decade. At-
mospheric monitoring of carbon dioxide (CO;) is a prime
example. The number of in situ observation sites in the US,
Canada, Europe, and elsewhere has greatly expanded since
the early 2000s. For example, a recent geostatistical inverse
modeling (GIM) study of CO, fluxes across North America
used observations from 6 times as many continuous tower-
based observation sites as a GIM study of the same re-
gion published 6 years earlier (Gourd;ji et al., 2012; Shiga
et al., 2018). Aircraft-based observations have also greatly
expanded, including regular observations from civilian air-
craft based in both Germany and Japan (Petzold et al., 2015;
Machida et al., 2008).
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Several CO,-observing satellites have also launched in the
past decade, greatly expanding both the quantity and spatial
extent of atmospheric CO, observations. For example, the
Greenhouse Gases Observing Satellite (GOSAT) launched in
2009 (e.g., Butz et al., 2011), Orbiting Carbon Observatory 2
(OCO-2) in 2014 (e.g., Eldering et al., 2017), TanSat in 2016
(Yang et al., 2018), GOSAT-2 in 2018 (e.g., Masakatsu et al.,
2012), and OCO-3 in 2019 (e.g., Eldering et al., 2019).

These new in situ and remote-sensing datasets provide an
unprecedented new window into surface fluxes of CO, and
other atmospheric trace gases. However, the sheer quantity
and geographic scope of the data present enormous com-
putational challenges for inverse modeling frameworks that
estimate trace gas emissions. The OCO-2 satellite, for ex-
ample, collects approximately 2 x 10 CO; observations per
month that pass quality screening (Eldering et al., 2017). The
number of total available observations will only increase as
the current fleet of CO;-observing satellites continues to col-
lect observations and as additional satellites launch into orbit.
Approaches to inverse modeling that are well-suited to “big
data” will arguably be able to make the most of these new
datasets to constrain CO; sources and sinks.

This paper discusses the challenges of using large atmo-
spheric air pollution and greenhouse gas datasets through
the lens of GIMs. A GIM is unique relative to a classical
Bayesian inversion that uses a prior emissions inventory or
a bottom—up flux model. In place of a traditional prior emis-
sions estimate, a GIM can incorporate a wide variety of envi-
ronmental, economic, or population data that may help pre-
dict the distribution of surface fluxes (e.g., Gourdji et al.,
2012; Miller et al., 2013, 2016; Shiga et al., 2018). The
GIM will then weight each of these predictor datasets to best
match the atmospheric observations. A GIM will further es-
timate grid-scale flux patterns that are implied by the atmo-
spheric observations but do not match any patterns in the pre-
dictor datasets. For example, existing GIM studies have used
predictors drawn from reanalysis products and satellites, in-
cluding air temperature, soil moisture, and solar-induced flu-
orescence (SIF) (e.g., Gourdji et al., 2012; Miller et al., 2016;
Shiga et al., 2018). Other studies have used predictors of an-
thropogenic activity, including maps of human population
density and agricultural activity (e.g., Miller et al., 2013).
Alternatively, one can also build a GIM without any predic-
tor datasets (e.g., Michalak et al., 2004; Mueller et al., 2008;
Miller et al., 2012). In this case, the GIM will rely entirely on
the atmospheric observations to estimate the surface fluxes.

The purpose of this study is to adapt recent computa-
tional innovations in inverse modeling from other academic
disciplines, including hydrology and seismology, to GIMs
of atmospheric gases. The primary goal is to develop in-
verse modeling strategies that can assimilate very large at-
mospheric datasets. An additional aim of this work is to de-
velop flexible approaches that can be paired with many dif-
ferent types of atmospheric models (e.g., gridded, Eulerian
models and particle-following models). To this end, we first
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provide an overview of GIMs and the specific challenges
posed by large datasets. We subsequently discuss two options
for calculating the best estimate of the fluxes and two op-
tions for estimating the posterior uncertainties, and we have
published the associated code in a public repository (Miller
and Saibaba, 2019). Lastly, we develop a case study using
the OCO-2 satellite as a lens to evaluate the advantages and
drawbacks of each approach. OCO-2 collects millions of ob-
servations per year and is, therefore, prototypical of many
current, and likely future, big data inverse modeling prob-
lems.

2 Context on the geostatistical approach to inverse
modeling

A GIM will estimate a set of fluxes s (dimensions m x 1) that
match atmospheric observations z (n x 1), using a forward
operator H (n x m) which represents an atmospheric transport
model:

z = Hs +e. (1)

The fluxes (s), when passed through the atmospheric model
(H) will never exactly match the data (z) due to a variety of
errors (€, dimensions n X 1), including errors in the measure-
ments (z) and errors in the atmospheric transport model (H).
However, Hs should match the observations within a spec-
ified error, and many inverse models, including a GIM, re-
quire that the modeler input a covariance matrix defining the
characteristics of these errors (e.g., Rodgers, 2000; Michalak
et al., 2004):

e ~ N(O,R), 2

where ~ means “is distributed as”, N is a multivariate nor-
mal distribution, and R (n x n) is the covariance matrix that
must be defined by the modeler before running the GIM.

Furthermore, the fluxes (s) in a GIM have two differ-
ent components, and both components are estimated as part
of the inverse model (e.g., Kitanidis and Vomvoris, 1983;
Michalak et al., 2004):

s = XB+¢, 3)

where X (m X p) is a matrix of p predictor datasets or covari-
ates that may help describe patterns in the unknown fluxes
(s) (refer to Sect. 1). The coefficients § (p x 1) will scale
the variables in X. These coefficients are unknown and esti-
mated as part of the GIM. Collectively, X is referred to as
the model of the trend or the deterministic model. Further-
more, ¢ (m x 1) contains grid-scale patterns in the fluxes that
are implied by the atmospheric observations (z) but do not
exist in any predictor dataset (i.e., do not match any patterns
in X). This term is often referred to as the stochastic com-
ponent of the fluxes and is also estimated as part of the GIM.
This stochastic component () can have a variety of spatial
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or temporal patterns. However, its structure is represented by
a covariance matrix, termed Q (m xm), where £ ~ N (0, Q)
(e.g., Kitanidis and Vomvoris, 1983; Michalak et al., 2004).

Note that it has become standard practice in GIM studies
to estimate the fluxes (s) at the highest spatial and tempo-
ral resolution possible (e.g., Gourdji et al., 2010). This setup
accounts for small-scale variability in surface fluxes down
to the resolution of the atmospheric model, thereby yielding
a more accurate flux estimate and more realistic uncertainty
bounds (e.g., Gourdji et al., 2010). However, the number of
unknown fluxes (s) usually far exceeds the number of obser-
vations (z), and the inverse problem of estimating the fluxes
from the data is typically underdetermined, meaning that
multiple solutions consistent with the data are possible (e.g.,
Mueller et al., 2008; Gourdji et al., 2012; Miller et al., 2013,
2016; Shiga et al., 2018). To address this issue, existing GIM
studies and many classical Bayesian inverse modeling stud-
ies use additional information to help determine the structure
of the fluxes (s). In particular, rather than choosing a diago-
nal prior covariance matrix Q, which ignores spatiotemporal
interactions, these studies include nonzero off-diagonal ele-
ments. These elements guide the spatial and temporal struc-
ture of the flux estimate and help interpolate fluxes in loca-
tions without a perfect data constraint. Kitanidis (1997) and
Wackernagel (2003) review different approaches to modeling
these off-diagonal elements.

The geostatistical approach then uses Bayes formula to de-
rive the posterior distribution p(s, 8|z) as

p(s,Blz) o p(zls,B)psIB) p(B), “4)

where o denotes proportionality. The expressions for the
likelihood p(z|s, B) can be derived from Egs. (1) and (2),
and the prior p(s|B) can be derived from Eq. (3). Further-
more, taking p(f) o 1, we can derive

p (s, Blz) x exp (—%(Z —Hs)"R™ ! (z —Hs)

1
—5 G -XgTQ 7! (s —Xﬂ)). )

The best estimate of the fluxes can be computed by maxi-
mizing p(s, B|z), the posterior distribution; alternatively, it
can be obtained by minimizing the negative logarithm of the
posterior density which yields the objective function (e.g.,
Kitanidis and Vomvoris, 1983; Michalak et al., 2004):

L(s,B) = %(z —Hs)"R™!' (z — Hy)

1
+5(s ~-XpTQ (s —Xp). ©6)

Both the fluxes (s) and the coefficients (8) are unknown in
this equation and are estimated as part of the GIM. Typi-
cally, the number of coefficients () is relatively small (e.g.,
<1x 102), but the number of unknown fluxes can be very
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large (e.g., > 1 x 106) (e.g., Gourdji et al., 2012; Miller et al.,
2016; Shiga et al., 2018). The next section reviews a direct
approach for minimizing the function in Eq. (6) and solving
the GIM.

3 Direct approach to solving the GIM and associated
challenges for large datasets

The classical solution to the GIM requires solving a single
system of linear equations (e.g., Kitanidis, 1996; Saibaba and
Kitanidis, 2012); the best estimate § is obtained by minimiz-
ing Eq. 6:

§ = XB+QH'E, (7

where & (nx 1) is an unknown vector of weights and 8 (p x 1)
are the unknown coefficients, as in Eq. (6). These vectors are
obtained by solving a linear system of equations:

HQH” +R HX|[&] [z g
im0 = ] ®
Note that there are several equivalent sets of equations for
estimating the fluxes (e.g., Michalak et al., 2004), and the
set of equations shown above is commonly referred to as the
dual function form. When this linear system is solved using
a direct method, such as Gaussian elimination, or LU factor-
ization, we refer to it as the direct solution.

Over the past decade, the in situ and satellite greenhouse
gas observation networks have expanded and so have the di-
mensions of the data and unknown parameters of many in-
verse problems, resulting in major computational costs asso-
ciated with solving Eq. (8). The first issue involves comput-
ing the prior covariance matrix Q, which is affected by the
number of unknown fluxes (). This number is typically the
product of the number of model grid boxes and the number
of time periods in the inverse model, and the total number
of unknown fluxes can therefore exceed 1 x 10° even if the
number of model grid boxes or the number of time periods is
modest (e.g., Gourdji et al., 2012; Miller et al., 2016; Shiga
et al., 2018). The second issue involves multiplying H and
Q, and the third involves solving the linear system in Eq. (8).
We examine each of these issues and possible strategies to
address them.

The first issue is that the covariance matrix Q can be too
large to store in memory, to invert, and/or to feasibly use
in matrix—matrix multiplication if the number of unknown
fluxes is large. The covariance matrix Q is often defined by
a relatively small number of parameters (e.g., a variance, a
decorrelation length, and a decorrelation time; Gourdji et al.,
2012; Miller et al., 2016), but the matrix is nonetheless large
and is often non-sparse (e.g., Yadav and Michalak, 2013).

Several studies develop strategies for solving the GIM sys-

tem of equations when the number of unknown fluxes is large
(e.g., Fritz et al., 2009; Yadav and Michalak, 2013; Saibaba
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and Kitanidis, 2012; Ambikasaran et al., 2013a, b). Many
GIM studies circumvent this computational bottleneck by de-
composing the covariance matrix Q into a spatial component
and a temporal component (Yadav and Michalak, 2013):

Q = 0, (DRE) )
o -1 -1
Q! = — (D 'gE"). (10)
o
0
where aé is a parameter that controls the variance in Q, D

describes the temporal covariance, E describes the spatial co-
variance, and ® is the Kronecker product. One can multiply
Q or Q! by a vector or matrix using oé, D, and E without
ever explicitly formulating Q. This approach can dramati-
cally improve computational tractability and is described in
detail in Yadav and Michalak (2013). In this paper, we also
model the entries of Q using a spherical covariance model
(e.g., Kitanidis, 1997; Wackernagel, 2003). Unlike other po-
tential choices of covariance models, a spherical model de-
cays to zero at the correlation length and correlation time.
This property means that D and E will be sparse matrices,
saving both memory and computing time. Several recent pa-
pers discuss additional strategies if D and E still pose a com-
putational bottleneck. These include formulating the compo-
nents of Q as a hierarchical matrix or a structured matrix
(such as Toeplitz or block Toeplitz) (e.g., Fritz et al., 2009;
Saibaba and Kitanidis, 2012; Ambikasaran et al., 2013a, b).

A second computational bottleneck is the cost of forming
the matrix ¥ = HQH” + R. Many atmospheric models do
not explicitly formulate H. Instead, these atmospheric mod-
els pass a vector through the forward or adjoint model. In
other words, they calculate the product of H or H” and a
vector. In these cases, the direct solution to the GIM would
require thousands or millions of atmospheric model simula-
tions to calculate HQHY , an approach that would be com-
putationally burdensome and impractical. Many studies that
employ classical Bayesian inverse modeling circumvent this
problem by iterating toward the solution in a way that does
not require calculating the product HQ (e.g., Baker et al.,
2006; Henze et al., 2007; Meirink et al., 2008). This approach
is often referred to as a variational or adjoint-based inverse
model (e.g., Brasseur and Jacob, 2017).

A third issue involves solving the linear system in Eq. (8)
when the number of measurements (n) is large. The direct
solution to the GIM requires inverting a matrix of dimen-
sions (n+ p) x (n+ p) that is often non-sparse. Greenhouse-
gas-observing satellites can collect millions of observations
per year, yielding a matrix that is too large to feasibly invert.
The number of available observations will continue to grow
as more greenhouse-gas-observing satellites launch into orbit
and as the existing observational record becomes longer.

To solve this third issue, one could reduce the dimensions
of the inverse model to the point where it is computation-
ally manageable, but these strategies have drawbacks. First,
one could average down the data until n is much smaller, and

Geosci. Model Dev., 13, 1771-1785, 2020

the matrix inverse required by the direct solution is compu-
tationally feasible. However, this strategy can require a large
degree of averaging, and one might average over meaning-
ful variability in the observations and/or in the meteorology,
reducing the accuracy of the flux estimate. A second option
is to break up the inverse model into smaller time periods
until the number of data points (n) in each time period is
manageable. This approach, however, brings several pitfalls.
The number of satellite observations can be large even for
relatively short time periods. In addition, the stochastic com-
ponent of the fluxes may covary across long time periods or
from one year to another, and it can be important to account
for these covariances in the inverse model via the covariance
matrix Q. Furthermore, one may want to make inferences
about the fluxes across longer time periods. For example, in-
verse modeling studies commonly report estimated total an-
nual carbon budgets and associated uncertainties. A third op-
tion is to use ensemble-based approaches (e.g., an ensemble
Kalman smoother) (e.g., Chatterjee et al., 2012; Chatterjee
and Michalak, 2013). These approaches generally require a
large number of ensemble members to accurately reproduce
the flux field, and one must run the forward model once for
each ensemble member. As a result, this approach can re-
quire hundreds or thousands of forward model simulations
to produce an estimate that is close to the direct solution,
depending upon the dimensions and complexity of the in-
verse problem (e.g., Chatterjee et al., 2012). In this study, we
explore several approaches to GIMs (Eq. 6) that are practi-
cal for very large datasets and do not necessarily require the
dimension reduction strategies described above. These ap-
proaches are also compatible with atmospheric models that
do not explicitly formulate the matrix H (i.e., the variational
or adjoint-based approach).

4 Approaches to calculating the best estimate

The direct solution is often intractable for inverse problems
with large datasets. An alternate is to use an iterative or vari-
ational approach to reach the best estimate of the fluxes, and
we discuss two approaches. Each uses a different form of the
GIM equations and uses a different type of numerical solver
to iterate toward the best estimate.

4.1 Quasi-Newton approach

Many existing variational or adjoint-based inverse model-
ing studies use an iterative, quasi-Newton approach to esti-
mate the fluxes (e.g., Baker et al., 2006; Henze et al., 2007).
This strategy requires creating scripts that calculate the cost
function (Eq. 6) and gradient, and the quasi-Newton solver
will iterate toward the solution using these two inputs. The
most common quasi-Newton solver in existing studies is the
limited-memory Broyden—Fletcher—Goldfarb—Shanno algo-
rithm (L-BFGS) (Nocedal, 1980; Liu and Nocedal, 1989).
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Furthermore, one variant of this algorithm, L-BFGS-B, will
estimate the fluxes (s) subject to a bound. For example, some
trace gases do not have large surface sinks, and L-BFGS-B
can ensure that the estimated fluxes are non-negative. Refer
to Miller et al. (2014) for a full discussion of strategies to
enforce bounds on atmospheric inverse problems.

The implementation of L-BFGS or L-BFGS-B for a GIM
is more complicated than in a classical Bayesian inverse
model. Specifically, the goal is to use one of these algorithms
to estimate the fluxes (s), but the cost function in the GIM has
an additional unknown variable (8, Eq. 6). We substitute the
equation for the unknown coefficients () into the GIM cost
function (Eq. 6), thereby removing 8 (e.g., Kitanidis, 1995):

1 Tp—1 1 T
L(s) = 5(z~H)'R™ z—Hs) + 5" Gs (11)

G =0Q"! —Q_1X<XTQ_1X>_1(Q_1X)T, (12)

where G has dimensions m x m. Note that we never formu-
late G explicitly when calculating Eq. (11) because it is of-
ten a large, non-sparse m x m matrix. Rather, we successively
multiply s by the individual components of Eq. (12) to avoid
formulating a full m x m matrix. In addition, we use the Kro-
necker product identity in Eq. (10) to avoid explicitly formu-
lating Q. The SI describes this approach in greater detail.

We can further speed up the convergence of L-BFGS using
a variable transformation. We transform the fluxes from s to
s*, similar to the approach used in a handful of atmospheric
inverse modeling studies (e.g., Baker et al., 2006; Meirink
et al., 2008). The strategy is to first solve a transformed op-
timization problem for s* and then to obtain s using the fol-
lowing relations:

§* = Q ls, (13)
s = QIs*, (14)
Q: = gy (D%@;E%), (15)

1. .
where Q2 is the symmetric square root of Q. Note that we
. 1 . .
never explicitly formulate Q2 but instead do all matrix opera-

. T 1 .
tions on the individual components of Q2. We then substitute
the equation for s* into the cost function (Ly):

L(s*) = %(z _ HQ%S*>TR’] (z _ HQ%s*)

+ —s*T G*s*, (16)

N =

1 1
VL(s*) = —EQ%HTR*‘ (Z _ HQ%s*) +5G'% (D)
-1
G* = I—Q*%X(XTQ”X) x7Q 2. (18)
The functions Lg+ and VL(s*) are then used as inputs to the

L-BFGS algorithm, and the resulting optimization can con-
verge in fewer iterations than using the cost function without
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the transformation (Eq. 11). Section 7 includes further dis-
cussion of why L-BFGS without a transformation may con-
verge slowly and how a variable transformation can remedy
the problem.

4.2 Minimum-residual approach

The minimum-residual approach described here uses a very
different strategy for the iterative optimization (Paige and
Saunders, 1975). The quasi-Newton approach described
above will search for the minimum of the cost function with
the help of the gradient (Eqgs. 16-17). By contrast, there is
a class of solvers that will estimate the solution to a linear
system of equations where one side is too large to invert,
and this class of solvers offers an alternative strategy. Specif-
ically, these methods will solve a system of equations of the
form Ax = b, where x is a vector of unknown values, b is
a known vector, and A is a matrix that is too large to store
in memory or too expensive to form explicitly. This strategy
has been employed by inverse modeling studies in hydrology
and seismology (Saibaba and Kitanidis, 2012; Saibaba et al.,
2012; Liu et al., 2014b; Lee et al., 2016).

This strategy can also be employed to estimate the fluxes
using Eq. (8). We cannot solve these equations directly for
inverse problems with large datasets (i.e., large n); the left-
hand side of Eq. (8) becomes too large to invert and too ex-
pensive to explicitly form. Instead, we use the minimum-
residual method to estimate & and B (e.g., Barrett et al.,
1994). This class of algorithms only require a function that
will calculate the left-hand side of Eq. (8) given some guess
for & and B. Then, one can iteratively compute an approx-
imate solution by forming a series of matrix—vector prod-
ucts — the product of & and § with the matrices on the left-
hand side of Eq. (8). This approach also makes it feasible to
estimate the fluxes (s) even if the atmospheric model does
not explicitly calculate H or H” . One can pass the vector &
through the model adjoint to calculate H” £ and then pass
the vector QH” & through the forward model to calculate
H(QHT’;‘). As a result, one never needs to calculate or store
the (n 4+ p) x (n 4 p) matrix on the left-hand side of Eq. (8)
or invert that matrix.

Note that some studies use a preconditioner to help the
minimum-residual algorithm converge more quickly to a so-
lution (e.g., Saibaba and Kitanidis, 2012; Liu et al., 2014b;
Lee et al., 2016). The preconditioner can speed up conver-
gence by reducing the condition number and/or clustering
the eigenvalues near 1. Saibaba and Kitanidis (2012) detail
one possible strategy for preconditioning the GIM, and this
approach has subsequently been employed in several studies
(e.g., Liu et al., 2014b; Lee et al., 2016). We do not detail
the implementation here, but Saibaba and Kitanidis (2012)
describe the step-by-step procedure. The preconditioner de-
tailed in that study can dramatically speed up convergence
(Sect. 7) but may require tens to thousands of forward model
runs as a precomputational cost to realize these improve-
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ments in convergence, depending upon the complexity of the
covariance matrix Q. Note that these forward model runs can
be done simultaneously in parallel. A discussion of the com-
putational cost is provided in Sect. 7.

5 Uncertainty estimation

It is often not possible to estimate the full, posterior covari-
ance matrix when the number of observations and the num-
ber of unknown fluxes are large. Two very different gen-
eral approaches are often used in atmospheric and hydrologic
data assimilation, and we discuss both here in the context of
GIMs. One entails creating an ensemble of randomized sim-
ulations or realizations. The other uses a low-rank approxi-
mation of one matrix in the posterior covariance calculations,
and this approximation makes the overall calculations com-
putationally feasible.

5.1 Conditional realizations or simulations

One approach to estimate the posterior uncertainties is to
generate conditional realizations or Monte Carlo simulations,
and several variational or adjoint-based studies of green-
house gases have employed this strategy (e.g., Chevallier
et al., 2007; Liu et al., 2014a; Bousserez et al., 2015). A
conditional realization is a random sample from the poste-
rior distribution (e.g., Kitanidis, 1995; Michalak et al., 2004;
Chevallier et al., 2007), and the statistics of many conditional
realizations will approximate the posterior variances and co-
variances. These variances and covariances can have com-
plex spatial and temporal patterns, and it can be challeng-
ing to adequately sample the tails of the posterior distribu-
tion. As a result, several studies of atmospheric trace gases
use thousands of realizations to sample the posterior distri-
bution and approximate the uncertainties (e.g., Rigby et al.,
2011; Ganesan et al., 2014). In other cases, computational
constraints make it impractical to generate more than tens
or hundreds of realizations, especially for very large vari-
ational or adjoint-based inverse problems (e.g., Chevallier
et al., 2007; Liu et al., 2014a).

One approach for generating a single conditional realiza-
tion is similar to the procedure for calculating the best es-
timate of the fluxes. To generate a conditional realization,
we first generate random samples from A/(0, R) and A/ (0, Q)
and use these samples to perturb the data and the parameters
respectively; we then solve the GIM using any of the three
approaches described previously. In each case, the equations
are slightly different, and we therefore do not list all of the
equations here. Michalak et al. (2004) and Saibaba and Ki-
tanidis (2012) describe how to generate conditional realiza-
tions using the direct approach in Sect. 3, Kitanidis (1995)
and Snodgrass and Kitanidis (1997) and the SI describe
how to generate realizations using quasi-Newton methods
(Sect. 4.1), and Kitanidis (1996) and Saibaba and Kitani-
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dis (2012) describe how to generate realizations using the
minimum-residual approach (Sect. 4.2).

5.2 Reduced-rank approach

A number of studies reduce the computational burden of un-
certainty estimation by replacing one matrix in the calcula-
tions with a low-rank approximation. This strategy is based
upon the direct calculation of the posterior covariance matrix
(V;) (e.g., Saibaba and Kitanidis, 2015):

Vi =V +V,oV3Vl, 19)

2 =<Q_1+HTR_1H>7], (20)

V> =ViQ X, 21
T -1

Vs =(XTQ‘1X—<Q‘1X) Vlo—IX) , (22)

where V; and V| have dimensions m x m, Vo dimensions
m x p, and V3 dimensions p x p. Note that Vi is the poste-
rior covariance matrix in a classical Bayesian inverse model.
The uncertainty calculations in a GIM include an additional
term, notably V2V3V2T . This term accounts for the effect of
uncertain coefficients (8) on the estimated fluxes. These co-
efficients are estimated as part of the GIM, and uncertainty
in these coefficients contributes additional uncertainty to the
posterior flux estimate (§). Also note that there are many
equivalent equations for calculating the posterior covariance
matrix, and the form in Eq. (19) is particularly conducive to
a low-rank approximation strategy.

This direct calculation of the posterior covariance matrix
is not tractable for large inverse problems, in part, because
it requires inverting the matrix sum in Vj. Furthermore, it
requires computing the matrix-matrix product H' R™'H, a
step that can be impractical for models that do not explicitly
formulate H.

Instead, we use a specific low-rank approximation in the
calculations for V. In other words, we approximate a ma-
trix using a limited number of eigenvectors and eigenvalues,
thereby making the calculations for V| computationally fea-
sible. A number of studies discuss this strategy in the context
of classical Bayesian inverse modeling (e.g., Meirink et al.,
2008; Flath et al., 2011; Spantini et al., 2015). Here, we re-
view how this approach can be applied in the context of a
GIM (e.g., Saibaba and Kitanidis, 2015). We summarize the
procedure here, but refer to Flath et al. (2011), Spantini et al.
(2015), and Saibaba and Kitanidis (2015) for additional de-
tail. The main idea is to consider the matrix

1 Tr—1 1
Q:H’R'HQ:, (23)

where Q% can be the symmetric square root or Cholesky
decomposition of Q. This matrix is sometimes referred to
as the prior-preconditioned data-misfit part of the Hessian.
Previous studies have leveraged the fact that, in many ap-
plications, this matrix has rapidly decaying eigenvalues and
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therefore, can be accurately approximated using a low-rank
matrix (e.g., Meirink et al., 2008; Flath et al., 2011; Spantini
et al., 2015). This low-rank representation has a dual pur-
pose: it is more efficient to store this matrix in memory and
improves the efficiency of computations. There are several
methods to compute this low-rank approximation, and these
methods can estimate the eigenvalues and vectors without
storing the above matrix (Eq. 23) in memory. Instead, these
algorithms (e.g., Krylov subspace methods) iteratively esti-
mate the largest eigenvalues and eigenvectors of a matrix A
given some function that calculates Ax, where x is a vec-
tor that is provided by the algorithm and does not need to
be specified by the user. For example, the eigs function in
MATLAB offers an interface to these algorithms.

In this study, we estimate the eigenvectors and eigenval-
ues using a randomized algorithm developed in Halko et al.
(2011). This approach requires just over two forward model
runs and two adjoint model runs per (approximate) eigen-
pair, and this algorithm is therefore less computationally in-
tensive than many other available algorithms. Furthermore,
these forward and adjoint model runs can be generated in
parallel, reducing the required computing time. Using this
approach, we obtain the low-rank approximation

T p-1 I T
Q:H'RTHQ2 ~UAU’, (24)

where U (n x £) contains the approximate eigenvectors, A
(¢ x £) is a diagonal matrix whose diagonals contain the
approximate eigenvalues, and ¢ is the number of approxi-
mate eigenpairs computed. Note that Saibaba and Kitanidis
(2015) and Saibaba et al. (2016) provide an alternative ap-
proach that does not require taking the symmetric square root
or Cholesky decomposition of Q. That approach is a good
choice if the symmetric square root or Cholesky decomposi-
tion of D and/or E are difficult to compute.

We can use these eigenvalues or vectors to approximate
V1 using the Woodbury matrix identity (Flath et al., 2011;
Spantini et al., 2015):

Vi ~ (Q-QiUAd+A)'UTQY). 25)

In this setup, V1 is written as an update to the prior covari-
ance matrix. An intuitive way of understanding is that by ob-
serving data, the variance (i.e., the uncertainty) is reduced
since we know more about the fluxes or emissions of inter-
est. The prior covariance matrix (Q) in Eq. (25) is taken to
be a positive definite, full-rank matrix and is not affected at
all by the approximation. Rather, the update is approximated
using a limited number of eigenvectors and eigenvalues. We
subtract this positive semidefinite update, ensuring that the
variance in V1 is reduced. The more eigenvectors and eigen-
values used in Eq. (25), the better the approximation of this
update. The estimate for V| can subsequently be plugged into
the expression for Vi to obtain an approximation for the pos-
terior covariance matrix.
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This reduced-rank approach greatly improves the tractabil-
ity of posterior uncertainty calculations, but one computa-
tional road block remains; V; is usually too large to store
in memory. However, one can calculate uncertainties for in-
dividual grid boxes or for aggregate regions without storing
V;. To do so, multiply the right-hand side of Eq. (19) by a
vector, resulting in a series of matrix—vector calculations. In
this case, the vector should have a 1 in the flux grid box(es)
of interest and a 0 elsewhere. If that vector has a 1 for mul-
tiple elements, then the calculation will yield the uncertainty
in the flux estimate summed across several model grid boxes.
For example, the following equation will compute the uncer-
tainty in the total flux summed over all locations and times:

17Vi1+17 (V2 (V3 (Vi1))), (26)

where 1 (m x 1) is a vector of ones. Note that it may be
necessary to convert the units of the fluxes in the course of
these calculations. For example, atmospheric models that use
a latitude—longitude grid will have grid boxes with different
areas, and it may be necessary to multiply the vector 1 by
the area of each grid box to account for these differing grid
box areas.

6 Case study from the OCQO-2 satellite

We evaluate the inverse modeling algorithms described in
this paper using two case studies based on NASA’s OCO-
2 satellite. OCO-2 was launched in September 2014 and
is NASA’s first satellite dedicated to observing atmospheric
CO, from space. This section provides an overview of the
case studies while the Supplement provides additional, de-
tailed descriptions.

The first case study is small enough such that it can be
solved using the direct approach. We can therefore use it to
compare the iterative GIM algorithms against the direct so-
Iution. The second case study, by contrast, is too large for
a direct solution but is indicative of the typical size of the
datasets encountered in satellite-based inverse modeling. In
the first case study, we estimate 6 weeks of CO» fluxes across
terrestrial North America from late June through July 2015;
we use a total of 1.92 x 10* synthetic OCO-2 observations
to estimate 1.05 x 10° unknown CO; fluxes. In the latter
case study, we estimate a full year of CO; fluxes (Septem-
ber 2014—August 2015) for the same geographic domain, a
total of 9.88 x 10* synthetic observations, and 9.41 x 10° un-
known CO; fluxes.

We build these case studies using a synthetic data setup;
we model XCO; using CO, fluxes from CarbonTracker
(CT2017) (Peters et al., 2007; NOAA Global Monitoring
Division, 2019) and an atmospheric transport model, add
random noise to the model outputs to simulate measure-
ment and model errors, and finally estimate CO, fluxes us-
ing these synthetically generated XCO, observations. Both
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CarbonTracker and the randomly generated noise are esti-
mates that may differ from real-world conditions. Hence,
the analysis presented in this synthetic case study is an ap-
proximation or prototypical example of the computational
challenges one might encounter in an inverse model. For
this case study, we specifically estimate the fluxes at a 3-
hourly temporal resolution and a 1° x 1° latitude—longitude
resolution. The atmospheric transport simulations used here
are from NOAA’s CarbonTracker-Lagrange program (e.g.,
Hu et al., 2019; NOAA Global Monitoring Division, 2019)
and were generated using the Weather Research and Fore-
casting (WRF) Stochastic Time-Inverted Lagrangian Trans-
port Model (STILT) modeling system (e.g., Lin et al., 2003;
Nehrkorn et al., 2010).

Note that one could also pair the inverse modeling algo-
rithms here with an adjoint-based model that does not pro-
duce an explicit H matrix. However, WRF-STILT produces
an explicit H matrix, making it straightforward to evaluate
each GIM algorithm against the direct solution.

We also use a non-informative deterministic model (X8)
in the case studies. In this setup, the matrix X only consists of
columns of ones. As a result, any spatial or temporal patterns
in the fluxes are only the result of the observational constraint
and are not the reflection of any prior flux estimate.

In addition, the covariance matrix Q includes both spatial
and temporal covariances. We estimate the spatial and tem-
poral properties (e.g., variances and covariances) of CT2017
fluxes for 2014-2015 and use those properties to populate Q.
The covariance matrix R is diagonal for the setup here, and
we set the diagonal values at (2 ppm)2. This value is com-
parable to the combined model and data errors estimated in
Miller et al. (2018). That study included a detailed error anal-
ysis using OCO-2 observations and atmospheric model sim-
ulations from the same time period as this study. In future
studies, it may be important to include off-diagonal elements
in R, and Sect. 7.1 details computational considerations for
doing so.

7 Discussion
7.1 Best estimate of the fluxes

We test several algorithms for estimating the fluxes (s), and
all but one of these algorithms converges quickly toward the
solution. The minimum-residual approach (with and without
a preconditioner) and the L-BFGS with a variable transfor-
mation converge quickly for both case studies (Figs. 1, 2,
and 3). Note that we cannot compare the larger case study to
a direct solution, but we do compare the results against CO,
fluxes estimated using a very large number of iterations (250
in this case).

By contrast, the L-BFGS algorithm without a variable
transformation converges very slowly to the solution (Figs. 1
and 3). The L-BFGS algorithm makes a simple approxima-
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Figure 1. Root mean squared error (RMSE) relative to the di-
rect solution for the 6-week case study. The top panel (a) displays
RMSE calculated using each of the 1.05 x 106 flux grid boxes. The
minimum-residual method with a preconditioner converges most
quickly on the direct solution while L-BFGS shows poor conver-
gence. We also average the 3-hourly posterior flux estimate to ob-
tain a monthly averaged flux for each model grid box, and the error
in this monthly average is displayed in panel (b). The flux estimate,
when averaged up to this aggregate monthly scale, converges more
quickly to the direct solution than the individual 3-hourly fluxes.

tion for the posterior covariance matrix at each iteration (i.e.,
the inverse Hessian); it uses this approximation and the gra-
dient of the cost function to determine the direction of steep-
est descent and iterate toward the solution (e.g., Nocedal,
1980; Liu and Nocedal, 1989). Most L-BFGS algorithms use
a memory-saving sparse matrix like the identity matrix as
an initial guess for the inverse Hessian. In the case studies
here, the inverse Hessian without the variable transformation
has complex off-diagonal elements, and the identity matrix
is therefore a poor approximation. By contrast, the inverse
Hessian with the variable transformation has relatively small
off-diagonal elements, and the identity matrix is a much bet-
ter approximation. This difference likely explains why the
L-BFGS algorithm without the variable transformation con-
verges far more slowly than the algorithm with the transfor-
mation.

Of all algorithms, the minimum-residual algorithm with
preconditioning converges in the fewest number of iterations
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Figure 2. The “true” CO; fluxes from CT2017 used in the 6-week case study (a) and the direct estimate of the fluxes (b). We estimate
3-hourly fluxes but average them across the month of July in this figure. Panels (c—e) display the flux estimate from L-BFGS as a function
of iteration number, panels (f-=h) those from L-BFGS with a variable transformation, and panels (i-k) those from the minimum-residual
approach. Both L-BFGS with the transformation and the minimum-residual approach resemble the direct solution after about 20 iterations

(panels d, g, and j).

(Fig. 1). However, this faster convergence comes at a cost.
We test a preconditioner with £ = 400 and £ = 2500 approx-
imate eigenvectors. Only the preconditioner with 2500 eigen-
vectors yields faster convergence and only in the smaller of
the two case studies. To construct this preconditioner, we had
to apply each of the 2500 eigenvectors to the forward model
(H). These forward model runs may be achievable if an ex-
plicit H matrix is available, if the forward model is not com-
putationally expensive, and/or if a large computing cluster is
available to distribute these runs across many cores. How-
ever, there are many instances when it may be impractical to
generate such a large number of forward model runs. Since

www.geosci-model-dev.net/13/1771/2020/

the preconditioner can be used for computing the best esti-
mate as well as generating the conditional realizations, the
upfront cost of constructing the preconditioner may be reuti-
lized in the uncertainty quantification step in the following
ways: (1) the cost can be amortized if hundreds or thousands
of conditional realizations are generated, and (2) informa-
tion collected during the construction can also be used in
the reduced-rank computations. Moreover, the use of the ran-
domized algorithm for constructing the preconditioners can
be parallelized across the forward model runs. It may also be
possible to develop a more computationally efficient precon-
ditioner, but that objective is beyond the scope of this study.
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Figure 3. RMSE relative to the direct solution for the full-year case
study. The top panel (a) displays RMSE calculated using each of
the 9.4 x 100 fluxes. We also average the 3-hourly posterior flux
estimate to obtain an annually averaged flux for each model grid
box (b). The full-year case study is much larger than the 6-week
case study (i.e., includes more observations and unknowns), yet the
flux estimate converges to the solution after a similar number of
iterations.

It is also important to note that these algorithms converge
more quickly on an accurate flux estimate for aggregate space
and timescales. In this study, we always estimate the fluxes
at a 3-hourly time resolution. After estimating the fluxes, we
average the estimate within each grid box across the entire
month or year and compare this time-averaged flux to the
direct solution (Figs. 1 and 3). These monthly and annual av-
erages are comparable to the direct solution after only a few
iterations of the L-BFGS or minimum-residual algorithms.
By contrast, it takes more iterations for each algorithm to
converge on a flux estimate that is accurate relative to the di-
rect solution for each 3 h time interval. Many GIM studies
of CO; report monthly flux totals (e.g., Gourdji et al., 2012;
Shiga et al., 2018), and these monthly totals may therefore be
a more important quantity to robustly estimate than 3-hourly
fluxes.

Furthermore, the number of iterations required to converge
on the solution does not appear to change dramatically with
the size of the problem (Figs. 1 and 3). Most algorithms con-
verge for aggregate time periods (Fig. 1b) after 50 iterations
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in the 6-week case study and after about 75 iterations in the
year-long case study (Fig. 3b).

Ultimately, the best or optimal algorithm will likely de-
pend upon the specifics of the inverse modeling problem in
question. For example, several existing variational or adjoint-
based inverse models are already built to work with the L-
BFGS algorithm, and it may be more convenient to adapt this
existing infrastructure to the geostatistical approach (e.g.,
Baker et al., 2006; Henze et al., 2007). By contrast, the
minimum-residual approach does not require inverting or de-
composing the covariance matrix components (e.g., R, D, E),
and this approach is advantageous if any of these components
is difficult to invert. For example, existing inverse modeling
studies using OCO-2 observations construct R as a diago-
nal matrix, comparable to the setup here (e.g., Crowell et al.,
2019). In future applications, it may be important to include
off-diagonal elements or spatial and temporal error covari-
ances in R — to better capture the information content of
the satellite observations and to estimate robust uncertainty
bounds, among other reasons. The quasi-Newton approach
using L-BFGS requires inverting R, but this calculation may
not be computationally feasible if R has off-diagonal ele-
ments. By contrast, the minimum-residual approach does not
require the inverse of R. As a result, one could compute ele-
ments of R on the fly, without ever storing R in its entirety. In
addition to these considerations, the choice of whether or not
to use a preconditioner with minimum-residual approach de-
pends upon the computational burden of passing many vec-
tors through the forward model. However, the development
of new preconditioning strategies could alter this trade-off.

7.2 Uncertainty quantification

The reduced-rank approach produces the most conservative
uncertainty estimates; it will typically approximate uncer-
tainties that are equal to or larger than the true uncertainties.
By contrast, the conditional realizations will typically under-
estimate the posterior uncertainties. Figures 4 and 5 show
the uncertainties estimated for both case studies as a func-
tion of the number of forward or adjoint model runs. Both
approaches converge toward the true posterior uncertainties
as the number of eigenvectors or conditional realizations in-
creases.

These approaches will tend to under- and overestimate the
uncertainties due to the approximations involved in each ap-
proach. Conditional realizations randomly sample from the
posterior uncertainties, and one may need to generate hun-
dreds or thousands of realizations to effectively sample the
entire uncertainty space, particularly for large, complex in-
verse problems. By contrast, the reduced-rank approach ap-
proximates the posterior uncertainties by subtracting an up-
date from the prior covariance matrix (Q) (Eq. 25). This up-
date will always be too small if it is approximated using
a limited number of eigenvectors and eigenvalues, yielding
posterior uncertainties that are too large.
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Figure 4. Estimated uncertainties using conditional realizations
and the reduced-rank approach for the 6-week case study. Panel
(a) shows the estimated uncertainty in the total estimated CO;
flux for the US and panel (b) for New England. Both approaches
converge on the direct estimate as the number of realizations and
eigenpairs increase. Note that we estimate the uncertainties for each
model grid box and each 3 h time period, but we report the uncer-
tainties for broader aggregate regions in this figure. Most existing
GIM studies report the uncertainties for large regions because these
regions are either more ecologically or policy relevant than the indi-
vidual model grid boxes. Additionally, the uncertainties are almost
always smaller proportional to the total flux for large regions than
for individual grid boxes; atmospheric observations usually provide
a much more robust constraint on regional flux totals than for indi-
vidual model grid boxes.

Neither of these approaches provides a silver bullet, so to
speak, for estimating the uncertainties. Both require a large
number of forward and adjoint model runs, a requirement
that can be computationally intensive, depending on the re-
quirements for the forward and adjoint models. These model
runs can be generated in parallel for either approach, ame-
liorating this computational burden. By contrast, one can
produce an uncertainty estimate using a smaller number of
model runs, but the resulting uncertainty estimates will ei-
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Figure 5. Estimated uncertainties for the full-year case study, anal-
ogous to Fig. 4. The uncertainties estimated by the reduced-rank
approach are consistently higher than the conditional realizations,
though they begin to converge as the number of realizations and
eigenpairs increases. Note that it is not possible to obtain a direct
estimate for the uncertainties given the size of this case study, so
we cannot evaluate the accuracy of the uncertainty estimates shown
here.

ther be too small (using conditional realizations) or too large
(using the reduced-rank approach). It is arguably more con-
servative to generate posterior uncertainties that are too large
than too small; the latter may cause a modeler to overstate
the results or incorrectly conclude that a result is statistically
significant when it is not. However, neither of these outcomes
is ideal.

8 Conclusions

The sheer number of global, atmospheric greenhouse gas ob-
servations has grown dramatically with the launch of new
satellites and the expansion of in situ monitoring efforts. This
article discusses several practical strategies for GIMs when
the number of atmospheric observations is large. Specifically,
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we adapt computational and statistical strategies from a va-
riety of academic disciplines to the problem of estimating
greenhouse gas fluxes. We then use synthetic CO; observa-
tions for OCO-2 as a lens to evaluate the strengths and weak-
nesses of each strategy.

We discuss two strategies for generating the best estimate
of the fluxes: one that iterates toward the solution using
a quasi-Newton approach and the other using a minimum-
residual approach. Both strategies provide feasible options
for estimating millions of unknown fluxes using large satel-
lite or in situ atmospheric datasets. Both can be paired with
different types of atmospheric transport models, including
particle trajectory models like STILT or gridded Eulerian
models that do not save an explicit adjoint matrix. The
choice between these two approaches likely depends upon
the specifics of the inverse problem in question and the ease
of integrating each into any existing model infrastructure
or code.

We further explore two possible strategies for approximat-
ing the posterior uncertainties — the generation of conditional
realizations and a reduced-rank approach. Conditional real-
izations have numerous and varied applications in inverse
problems (e.g., Kitanidis, 1997; Michalak et al., 2004), but
we do not recommend them as the only means of estimat-
ing the posterior uncertainties unless it is tractable to gen-
erate hundreds to thousands of realizations. Otherwise, the
estimated uncertainties will likely be too small and provide
a misleading level of confidence in the estimated fluxes. The
reduced-rank approach, by contrast, will not underestimate
the posterior uncertainties and therefore provides a more con-
servative uncertainty estimate that will not overstate the re-
sults.
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is available on GitHub at https://doi.org/10.5281/zenodo.3241524
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