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Abstract: Multivariate linear regressions are widely to model the associations between mul-
tiple related responses and a set of predictors. To infer such associations, researchers often
test the structure of the regression coefficients matrix, usually using a likelihood ratio test
(LRT). Despite their popularity, classical x? approximations for LRTs are known to fail in
high-dimensional settings, where the dimensions of the responses and the predictors (m, p)
are allowed to grow with the sample size n. Although various corrected LRTs and other test
statistics have been proposed, few studies have examined the important question of when the
classic LRT starts to fail. An answer to this would provide insights for practitioners, espe-
cially when analyzing data in which m/n and p/n are small, but not negligible. Moreover, the
power of the LRT in high-dimensional data analyses remains under-researched. To address
these issues, the first part of this work determines the asymptotic boundary at which the
classical LRT fails, and develops a corrected limiting distribution for the LRT with a general
asymptotic regime. The second part of this work examines the power of the LRT in high-
dimensional settings. In addition to advancing the current understanding of the asymptotic

behavior of the LRT under an alternative hypothesis, these results motivate the development



of a more powerful LRT. The third part of this work considers the setting in which p > n,
where the LRT is not well defined. We propose a two-step testing procedure. First, we per-
form a dimension reduction, and then we apply the proposed LRT. Theoretical properties are
developed to ensure the validity of the proposed method, and simulations demonstrate that

the method performs well.
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1. Introduction

Multivariate linear regressions are widely used in econometrics, financial engineer-
ing, psychometrics, and many other areas to model the relationships between mul-

tiple related responses and a set of predictors. Suppose we have n observations

of m-dimensional responses y; = (¥i1, ..., Yim)T and p-dimensional predictors x; =
(igy ... xip)T, fori=1,...,n. Let Y = (y1,...,¥,)" be the n x m response matrix,
and X = (x1,...,X,)T be the n x p design matrix. The multivariate linear regression

model assumes Y = XB + F, where B is a p X m matrix of unknown regression
parameters, and E = (€1,...,€,)T is an n X m matrix of regression errors, where ¢;
is independently sampled from an m-dimensional Gaussian distribution A (0, X).
Under the multivariate linear regression model, we are interested in testing the
null hypothesis Hy : CB = 0,4,,, where C' is an r X p matrix of rank r < p,
and 0,,, is an all-zero matrix of size r x m. This is often called a general linear

hypothesis in multivariate analyses, and has been widely used in multivariate analysis



of variance (see, e.g., Muirhead, 2009). The choice of the testing matrix C' depends
on the application. For instance, if B is partitioned as BT = [B], B]], where B;
is an r X m matrix, then the null hypothesis of By = 0,y,, is equivalent to taking
C = [I,0,x(p—r], which can be used to test the significance of the first 7 predictors of
X. Another example is to test the equivalence of the effects of a set of r+ 1 predictors
(e.g., different levels of categorical variables), where C' = [I,, 0,5 (p—r—1), —1,], and 1,
represents an r-dimensional vector of ones.

To test Hy : CB = 0,4,,, a popular approach in the literature is the likeli-
hood ratio test (LRT) (Anderson, 2003; Muirhead, 2009). Specifically, when n >
m + p, X is positive definite, and X has rank p, then the LRT statistic is L, =
det(Sg)"/?/{det(Sg + Sx)"/?}. Here Sp = YT[I — X(XTX)"'XT]Y and Sx =
(CB)T[C(XTX)~'CT]~'CB are the residual sum of squares and the regression sum of
squares matrices, respectively, and B = (XTX) 'XTY is the least squares estimator.
Assuming m and p are fixed, it is well known that —2log L,, converges weakly to a
x? distribution as n — oo under the null hypothesis (Anderson, 2003).

However, in high-dimensional settings, where the dimension parameters (p, m, r)
are allowed to increase with n, the LRT suffers from several issues. First, under the
null hypothesis, the limiting distribution of —2log L,, may longer be a y? distribution.
The failure of the x? approximations of LRT distributions under high dimensions has

been studied in various model settings. For instance, Bai et al. (2009) examined



two LRTSs for covariance matrices. They showed that the y? approximations per-
form poorly, and thus proposed corrected normal limiting distributions. Jiang and
Yang (2013) and Jiang and Qi (2015) studied classical LRTs for sample means and
covariance matrices, showing that the x? approximations fail as the dimensions in-
crease. Moreover, Bai et al. (2013) considered the LRT for linear hypotheses in
high-dimensional multivariate linear regressions. They demonstrated the failure of
the x? approximation and derived a corrected LRT. Note that Bai et al. (2013) only
considered high-dimensional settings where m,r, and n — p are proportional to each
other, with m < r. Despite these works, it is still unclear under which asymptotic
regimes the y? approximation of a LRT starts to fail. An answer to this question
would provide insights for practitioners, especially when analyzing data in which m/n
and p/n are small, but not negligible.

The second problem with the LRT is its power performance under high-dimensional
alternative hypotheses. When n > p+m, —2logL, =n Z;n:irll{m’r} log(1+ X\;), where
A is an eigenvalue of S;(/2S§18)1(/2. Therefore, we expect the asymptotic power of
the LRT to depend on an averaged effect of all eigenvalues. However, few studies
have examined the eigenvalues of the random matrix S;(/QS;S)I(/Q under alternative
hypotheses.

The third issue with the LRT arises when the dimension parameters p and m are

large, such that n < p+m. In this situation, the LRT is not well defined, owing to the



singularity of the matrix Sg. This excludes the LRT from many high-dimensional
applications with p > n or m > n (e.g., Donoho, 2000; Fan et al., 2014). When
m > n, the linear hypothesis testing problem has been studied in depth for specific
submodels, such as the one-way MANOVA (Srivastava and Fujikoshi, 2006; Hu et al.,
2017; Zhou et al., 2017; Cai and Xia, 2014, etc.). Li et al. (2018) recently proposed a
modified LRT for general linear hypothesis tests using spectral shrinkage. However,
these works assume that p is fixed.

This study aims to address the above problems. First, under the null hypothesis,
we derive the asymptotic boundary at which the y? approximation fails as the di-
mension parameters (p, m, r) increase with the sample size n. Moreover, we develop a
corrected limiting distribution for log L,, in a general asymptotic regime of (p, m,r, n).
Second, under alternative hypotheses, we characterize the statistical power of log L,,
in the high-dimensional setting. By analyzing the partial differential equations in-
duced by the test statistic, we show that the LRT is powerful when the trace of the
signal matrix (CB)X~}(CB)T is large, but that it loses power under a low-rank sig-
nal matrix. Given that alternatives tend to be unknown in practice, we propose an
enhanced likelihood ratio test that is also powerful against low-rank alternative sig-
nal matrices. The power-enhanced test statistic combines the LRT statistic and the
largest eigenvalue (Johnstone, 2008, 2009) to further improve the test power against

low-rank alternatives. Third, when n < p and the LRT is not well defined, we pro-



pose a two-step testing procedure: first, we reduce the dimensions of the covariates
and responses, and then we use the proposed (enhanced) LRT. To control the estima-
tion error induced by the dimension reduction in the first step, we employ a repeated
data-splitting approach, and show that the asymptotic type-I error is well controlled
under the null hypothesis. Simulation results confirm that the proposed approach
performs well.

The rest of the paper is organized as follows. In Section 2, we examine when
the classic LRT fails under the null hypothesis, and propose a corrected limiting
distribution for log L,,. In Section 3, we analyze the power of log L,, and propose a
more powerful test statistic. In Section 4, we discuss the multi-split LRT procedure
when n < p. Simulation studies and a real dataset analysis on breast cancer are

reported in Sections 5 and 6, respectively.

2. When the LRT begins to fail?

In traditional multivariate regression analyses, where the dimension parameters (p, m, r)

are considered fixed, the y? approximation of the LRT,

—2log L, 2 Xo, @S T — 00, (2.1)
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is used for Hy : CB = 0,4,, (Muirhead, 2009; Anderson, 2003), where L, denotes
the convergence in distribution. However, this x? approximation is known to perform
poorly in high-dimensional applications (see, e.g., Bai and Saranadasa, 1996; Jiang
et al., 2012; Bai et al., 2009, 2013; Jiang and Yang, 2013).

When the three dimension parameters (m,p,r) are allowed to grow with n, it
is of interest to examine the phase transition boundary where the x? approximation

fails. This is described in the following theorem.

Theorem 1. Consider n > p+m andp > r. Let X2, .(a) denote the upper a-quantile
of a X2, distribution.
(i) When mr — oo and max{p,m,r}/n — 0 as n — oo, P{—2log L,, > 2, (a)} —

a, for any significance level «, if and only if

Jim vmr(p+m/2 —r/2)n"t = 0. (2.2)

(ii) When mr is finite, P{—2log L,, > x2,.(a)} — «, if and only if lim,_,.. p/n = 0.

Theorem 1 gives the sufficient and necessary condition on (m,p,r,n) such that
the x? approximation (2.1) fails. Note that although (2.2) is obtained when mr — oo,
(2.2) becomes lim,, ,, p/n = 0 for finite m and r, supporting the conclusion when mr
is finite. To further examine the implications of (2.2), we consider two special cases.

Specifically, let m = |n"] and p = |[n|, with n and € € (0,1), where |-] denotes



the floor of a number. When r is fixed, (2.2) implies v/m(p + m/2) = o(n); that is,
max{e,n} +1/2 < 1. When r = p = |n¢], (2.2) implies \/mp(p +m) = o(n); that is,
max{e,n}+(n+e)/2 < 1. For these two cases, we give two corresponding (1, €)-regions
in Figure 1 satisfying constraint (2.2). In these two regions, when e approaches zero,
the largest n approaches 2/3. Therefore, when p is small, the largest m such that (2.2)
holds is of order n*?. The same is true for the cases of fixed r and r = p, because
p is small and r < p. In addition, when 1 goes to zero, the largest e-values under
fixed r and r = p converge to one and 2/3, respectively. Thus, when m is small, the
largest p-values satisfying (2.2) are of order n and n%?, respectively. Moreover, when

m = p, the largest orders of m and p for the two cases are n?/® and n'/2, respectively.
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Figure 1: 7 versus e when r is fixed (left) and r = p (right)

To illustrate this phase transition phenomenon, we present a simple simulation
experiment. We set Y = I,,,, and estimate the type-I errors of the x? approximation

(2.1) using 10 repetitions under the following four cases: (a) fixed m =r =2 and p =



[n"];(b) fixedp = r = 2 and m = |n"];(c) fixed m = 2 and p = r = |n"]; and
(d) p=m=r=[n"]. In all cases, n € {1/24,...,23/24}. In Figure 2, we plot the
estimated type-I errors against the n-values for n = 100 and 300. The plots show
consistent patterns with the theoretical results. In particular, when p = m = r =
[n"], the x? approximation begins to fail for n around 1/2. When p and r are fixed
and m = |n"| and when m is fixed and p = r = |n"|, the x* approximation begins to
fail for n around 2/3. When m and r are fixed and p = |n"], the x* approximation
begins to fail for n larger than the other three cases, which is consistent with the

theoretical results.
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Figure 2: Estimated type I errors using x? approximation (2.1)

Note that the sufficient and necessary constraint (2.2) also characterizes the

bias of the x? approximation. Specifically, under the conditions of Theorem 1,

E(=2log L, — x2,,)//var(x2,.) = vmr(p+m/2 —r/2+1/2)n" {1 + o(1)}. Thus,

when (p,m, ) are large, such that (2.2) is violated and the y? approximation fails,
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the bias of the x* approximation increases with \/mr(p + m/2 —r/2 4+ 1/2)n~". This
can be seen in Figure 2, and is supported by the simulations reported in Section 5.
In the classic regime with fixed m and p, researchers have also proposed the
Bartlett correction of the LRT, —2plog L, 2 X2, where p=1— (p—71/2+m/2 +
1/2)/n. In particular, for any z € R, this corrected approximation gets rid of the first-
order approximation error O(n~1); that is, for any z, P(—2plog L, < z) — P(x2,. <
z) = O(n™?) when m and p are fixed. Similarly to Theorem 1, the y? approximation
with the Bartlett correction also fails as m and p increase with n. The phase transition

boundary is characterized in the following result.

Theorem 2. Consider n > p+m and p > r.
(i) When mr — oo and max{p, m,r}/n — 0 asn — oo, P{—2plog L,, > x2,.(a)} —
«a, for any significance level o, if and only if lim,, o0 /mr(r* + m?*)n=2 = 0.

(ii) When mr is finite, P{—2plog L,, > x2,.(a)} = «, if and only if n — p — oc.

Theorem 2 suggests that when m and r are fixed, the corrected LRT approxi-
mation holds when n — p — co. When mr — oo, the phase transition threshold in
Theorem 2 only involves m and r. In particular, when r is fixed and m = |n"], and
when m is fixed and r = |n"], the x* approximation with the Bartlett correction fails
when 1 > 4/5; when m = r = |n"], the corrected approximation fails when n > 2/3.

To illustrate this phenomenon, we present a numerical experiment on the x?

approximation with the Bartlett correction in Figure 3. The setup is the same as
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that shown in Figure 2. The results show that when m and r are fixed and p = |n"|,
the type-I errors are well controlled for large 1 approaching one. Moreover, when p
and r are fixed and m = |n"| and when m is fixed and p = r = [n"], the corrected
x? approximation begins to fail around = 4/5. When p = m = r = |n"], the
corrected x? approximation begins to fail around = 2/3. These numerical results

are consistent with the theory.

n=100 n=300

0.8+~

——m,rfixed, p=| n" |

—O—p,rfixed, m=| n" |
m fixed, p=r=| n" |

—¥—p=m=r=| n" |

- - y=2/3

0.8

——m,rfixed, p=| n" |

—O—p,rfixed, m=| n" |
m fixed, p=r=| n” |

—¥—p=m=r=| n" |

- - y=2/3

O

- = y=4/5 - = n=4/5

Estiamted type | error
Estiamted type | error

01 02 03 04 05 0.
Y n

01 02 03 04 05 0.

Figure 3: Estimated type-I error using the y? approximation with the Bartlett correction

More generally, to have a unified limiting distribution for analyzing high-dimensional
data under a general asymptotic region of (m,p,r,n), we derive a corrected normal

limiting distribution for the LRT statistic.

Theorem 3. Whenn >p+m, p>r, mr — 0o, and n —p — max{m — r,0} — oo

as n — oo, the LRT statistic L, has the corrected form Ty satisfying

—2log L, n
Ty := 08 Zn F 11 2y N(0,1),

no,
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where o2 = 2log(n +r —p—m)(n —p) —2log(n —p—m)(n+r —p), and

(n+7—p—m)(n—p)
(n—p—m)(n+r—p)

ftn = n(n—m—p—1/2)log

(n—p)

Theorem 3 covers the asymptotic regime where mr — oo, max{p,m,r}/n — 0,
and the constraint (2.2) holds. Under this region, we can show that u, — —mr
and (no,)? — 2mr, which are consistent with the mean and variance, respectively,
of the x2,. approximation. In addition, although Theorem 3 requires mr — oo, the
normal approximation (2.3) could still perform well when m or r is small, as long as
mr is sufficiently large. The simulations in Section 5 show that the y? and normal
approximations can perform similarly in low dimensions.

Alternatively, under some high-dimensional settings, we can check that no x?
or even noncentral x? distribution matches the asymptotic mean and variance of
—2log L,, in Theorem 3. Specifically, if the distribution of —2log L,, can be approxi-
mated by some x? distribution, we should have —(no,)?/u, — 2, which is, however,
not satisfied as p/n,m/n and r/n increase. If the distribution of —2log L,, can be
approximated by some noncentral x? distribution with degrees of freedom k,, then
we should have k, = —2u,, — n?c?2/2, which can become negative as p/n, m/n and

r/n increase. Thus, the y?-type approximation for —2log L,, can fail fundamentally
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under high dimensions.

Remark 1. A similar result on the asymptotic normality of log L, in Theorem &
is proved in Zheng (2012) and Bai et al. (2013). However, there are several differ-
ences between our result and theirs. First, our asymptotic regime is more general.
Specifically, Zheng (2012) and Bai et al. (2013) require that m < r, min{m,r} — oo,
and m/(n — p) converges to a constant in (0, 1), whereas we only need mr — oo and
n —p—max{m —r,0} — oco. Our analysis covers the case when m/(n —p) — 0,
and even when the limit does not exist. Second, the proofs of Zheng (2012) and Bai
et al. (2013) are based on random matrixz theory, whereas we prove Theorem 3 using

a moment-generating function technique motivated by the work of Jiang and Yang

(2013).

3. Power analysis and an enhanced LRT

Although the limits of LRTs for high-dimensional data have been explored for various
problems, the power of these tests is less well studied and remains a challenging
problem, as discussed in Jiang and Yang (2013). In this section, we focus on the
high-dimensional multivariate linear regression and analyze the power of the LRT
statistic. Moreover, based on the theoretical results, we propose a more powerful
LRT.

To examine the power of the LRT statistic, we introduce the classic canonical
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form of the LRT problem, which expresses Hy : C'B = 0 in an equivalent form
as follows (Muirhead, 2009). Specifically, consider the matrix decomposition X =
Ol1,, 0px(n—p)| 7D, where O is an n x n orthogonal matrix, and D is a p x p nonsingular
real matrix. Given D, we have a similar decomposition CD~' = E[I,, 0, —n ]V,
where E is an r X r nonsingular matrix, and V' is a p X p orthogonal matrix. Therefore,
CB =CD'DB =E[I,,0,4,-»|VDB, and, thus, Hy : CB = 0,,, is equivalent to
M = 0,4, where we define M; = [I,.,0,(,—»|VDB =E~'CB.

We next describe the relationship between A; and the LRT statistic through
a linear transformation of Y. Let V) denote the first r rows of V. Define Y|* =
V1, 0rx(n—p)|OTY and Y5 = [0(—p)xp: In—p]OTY. We then know that YY" = Sx
and Y;TYy = Sp. We further define Sy = X7V25y%"12 Sy = u-1/28,n-1/2,
and Q = Y7V2MIM X712, Then, we can write the LRT statistic —2log L, =
n Zf;irf{m’r} log(1 4 \;), where X is an eigenvalue of S;'Sx. Given that E(S;'Sx) =
(rl, +Q)/(n —p) (Muirhead, 2009), we expect the power of the LRT to depend on
an averaged effect of all eigenvalues of €.

We focus on the alternatives where the signal matrix €2 is of low rank and (p, m, r)
increase proportionally with n. In particular, we assume €2 has a fixed rank myg, and
write 2 = nA, where A has fixed nonzero eigenvalues 9y, ..., 0d,,,. Note that this is
reasonable when the entries in M;%~/2 are O(1), because the entries in Q could be

O(n), with r proportional to n. The following theorem specifies how the power of
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the LRT statistic T} depends on the eigenvalues of €2.

Theorem 4. Consider the setting where (p, m,r) increase proportionally with n, and
p/n = pp, m/n = pm, and r/n = p., where py, pm,pr € (0,1) are fized constants
and pp + pm < 1. Given A = Q/n with fired nonzero eigenvalues 6y, ..., 0pm,, define
Wa = 32720 log[1 + 6;(1 + p, — pp) Y. There exists a constant Ay > 0 such that
P(T) > zy) = 1—=®(24—A1Wa), where O(-) and z, denote the cumulative distribution

function and the upper a-quantile, respectively, of N'(0,1).

Theorem 4 establishes the relationship between the eigenvalues of €2 and the
power of 77 under high-dimensional and low-rank signals. It implies that when W
is large, T} has high power. Alternatively, the LRT could be highly underpowered
when Wy is small. Because in real applications the truth is usually unknown, we
require a testing procedure with high statistical power against various alternatives.

To enhance the power of the LRT, we propose combining it with Roy’s test
statistic based on the largest eigenvalue of S;'Sy (Roy, 1953). In particular, John-
stone (2008, 2009) extended Roy’s test to high-dimensional settings, and proposed
the largest eigenvalue test statistic Ty = [log{6,.1/(1 — 1)} — jin]/5,. Here, 0,1 =
Amax{(SE + Sx)'Sg}, with A\nax(+) denoting the largest eigenvalue, and fi,, = 2 X
logtan{(¢ +7/2)} and 62 = 16(n — p + r — 1)"2{sin®*(¢ + ) sinpsiny} 1, with
sin?(y/2) = {min(m,r)—1/2}/(n—p+r—1) and sin?(¢/2) = {max(m,r)—1/2}/(n—

p+r —1). Moreover, Johnstone (2008) proved that under the high-dimensional null
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hypothesis, T, D, TW, where TW denotes a Tracy—Widom distribution. Under
the alternative hypothesis, Dharmawansa et al. (2018) studied the spiked alternative
with Q = rUHUT, where U is an m X mg matrix with orthonormal columns and fixed
mo, and H = diag(hy, ..., hy,) with hy > ... > hy,,,. They showed that the phase
transition threshold for h is a constant that depends on the limit of (p/n, m/n,r/n).
Note that with fixed r/n, there exists a constant co > 0 such that 6; = cyhy. This
implies that when ¢; is a sufficiently large constant, the power of T5 can converge to
one, whereas the LRT statistic 77 may only have power less than one, by Theorem
4. On the other hand, when ¢; is below the phase transition threshold, 77 may be
more powerful than T5.

We therefore propose a combined test statistic T3 = 17 + T x [ (T, > F),), where
F, is a positive constant. With properly chosen F),, the proposed test statistic 75
may enhance the power of 77 under alternative hypotheses, whereas T3 2N (0,1)
under Hy. Specifically, under the null hypothesis, the type-I error rate of T3 is
controlled if P{T, > F,} — 0. On the other hand, under alternative hypotheses,
we have P(T3 > z,) > P(T} > z,) because Ty x [{Ty > F,} > 0 for F,, > 0. This
guarantees that the power of 75 is at least as large as that of the LRT statistic 77.
Moreover, consider the case when W is relatively small, but d; is significantly above
the phase transition threshold, where T5 is more powerful than 77. Then if F,, does

not grow too quickly, T5 would also be powerful. Thus, we can choose F), to be a
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slow-varying function, in which case the combined test statistic T3 may improve the
power of T} with little size distortion. Through extensive simulation studies, we find

F(n) = max{loglogn, 2} exhibits good performance; please see Section 5.

4. Likelihood ratio test when p > n

When the number of predictors is large, such that p > n, Sg becomes singular, and
the test statistics 77, Tb, and T3 cannot be applied directly. To deal with this issue,
we propose a multiple data-splitting procedure that repeatedly splits the data into
two random subsets. We use the first subset to perform the dimension reduction
and obtain a manageable size of predictors. Then we apply the proposed LRT to
the second subset. The test statistics from different data splittings are aggregated to
provide the final test statistic. The random splits of data ensure correct size control
of the test’s type-I error. Similar ideas are used in other high-dimensional problems
(Meinshausen et al., 2009; Berk et al., 2013, etc.). We next describe the proposed
procedure.

Consider the setting when p > n and m < n. Denote B = [by,...,b,|™ and
M, ={k:bp # 0,1 <k < p}. We assume a “sparsity” structure in which the
responses depend only on a subset of the predictors (or transformed predictors), such
that n > m+|M,|. Let X, be the n x | M, | submatrix of X with columns indexed

by M., and let By, be the |M,| x m submatrix of B with rows indexed by M.,.
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The underlying model then satisfies Y = X, By, + E. Under this model, for any
subset M C {1,...,p} such that M O M, and n > m + |[M|, testing CB = 0 is
equivalent to C'\y By = 0, and the LRT is then applicable. Here, C'y; denotes the
r X | M| submatrix of C' with columns indexed by M, and B, denotes the |[M| x m
submatrix of B with rows indexed by M.

To obtain such a set M D M,, we propose a screening method for a multivariate
linear regression. The seminal work of Fan and Lv (2008) first introduced a sure
independence screening procedure that significantly reduces the number of predic-
tors, while preserving the true linear model with an overwhelming probability. This
procedure has been extended in various settings (e.g., Fan and Song, 2010; Wang and
Leng, 2016; Barut et al., 2016). However, many of these works focus on the settings
with a univariate response variable.

To use the joint information from multivariate response variables, we propose
a screening method that selects the columns of X based on their canonical cor-
relations with Y. The canonical correlation is a widely used dimension-reduction
criterion inferring information from cross-covariance matrices in a multivariate anal-
ysis (Muirhead, 2009). Specifically, for each column vector x/ = (z1,..., 2, )T, for
7 =1,...,p, we first compute its canonical correlation with Y, denoted by

a(Y — 1,Y)T(x) — 271,,)

w; = max )

Toacen STar(Y — 1,Y)1(Y — 1,Y)a} x {(xi — 21,)7(x) — 291,)}
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where 27 = Y"1 | x; j/n, Y is the row mean vector of Y, and 1,, is an all-one column
vector of length n. Then, for 0 < 6 < 1, we select |dp| columns of X with the highest
canonical correlations with Y, and define the selected column set as Ms = {j : |wj|
is among the largest [dp] of all, 1 < j < p}. In practice, we choose an integer |dp],
such that np > |0p| + m, to apply the LRT. On the other hand, we keep |dp| large
to increase the probability of Ms O M,. The following theoretical result provides

the desired screening property that P(M, C M) — 1 for properly chosen 0.

Theorem 5. Under Conditions 1-3 given in Supplementary Material Section S5.1,
for some constant cg > 0, P(M, C M;s) = 1 — Olexp{—con'~*/logn}], where the

constant ¢+ < 1 1s defined in Condition 3.

Remark 2. When testing the coefficients of the first r predictors of X, such as
C = [I,,0,x(p—r)], we can keep the first r predictors, denoted by Xy, in the model,
while screen the remaining predictors, denoted by Xo. In particular, we can apply
the screening procedure to the residuals ]-?, from the regression of Y on X1, and Xs.
More generally. when C' is a matriz of rank r, we can use this conditional screening
procedure by employing a linear transformation of the data. In particular, given the
singular value decomposition C = UV DT, we can transform X and B into X = XD
and B = DTB, respectively. Then, testing Hy : CB = O,y is equivalent to testing
Hy : [I, OTX(p_T)]B = O, under the model of the transformed dataY = XB+E. A

theoretical result similar to that in Theorem 5 can be obtained under properly adjusted
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assumptions.

Remark 3. The proposed procedure uses the canonical correlation, which is an exten-
sion of the marginal correlation in Fan and Lv (2008). The computation of a canoni-
cal correlation is fast, and is pre-implemented in many software packages. Moreover,
the proposed method aggregates the joint information of the response variables, and
thus may be better than simply applying marginal screening to each response vari-
able. On the other hand, the correlation-based method has potential issues when the
predictors are highly correlated (Dutta and Roy, 2017). To study the effect of highly
correlated predictors, we performed a preliminary simulation, documented in the Sup-
plementary Material, Section S7.4. Here, we compared our method with that of using
a lasso with cross-validation to select predictors, which is expected to account for the
dependence in the predictors, but not in the responses. Under the considered settings
with correlated predictors, our method outperforms the lasso. The comparison results
also show that over- and under-selecting predictors can both cause substantial loss of
test power. To further enhance this power, we may extend existing high-dimensional
screening methods, such as Wang and Leng (2016), to a multivariate regression set-
ting. In this way, we account for the dependence in both the predictors and responses.

This topic is left to future research.

Given a proper screening approach, we propose a data-splitting procedure to

apply the LRT. We randomly split n observations into two independent sets: the
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screening data {Xg, Ys} of size ng, and the test data { Xz, Y7} of size np. We use
{Xs,Ys} to select M, and apply the proposed LRT to {Xr, Yr} using the selected
predictors in M. Data splitting avoids the influence of the screening step on the
inference step and provides a valid inference, as is widely recognized in the literature
(Berk et al., 2013; Taylor and Tibshirani, 2015). We also demonstrate that the type-I
error rate cannot be controlled without splitting the data in the simulation studies
in Section 5.

The result of a test based on a single random split is known to be sensitive to
the arbitrary split choice, making it difficult to reproduce the result (Meinshausen
et al., 2009; Meinshausen and Biithlmann, 2010). Therefore we propose using multiple
splits and aggregating the results. Note that computing test statistics by splitting
the data can be viewed as a resampling method. Such methods usually do not
perform well when approximating statistics that depend on the eigenvalues of high-
dimensional random matrices (Karoui and Purdom, 2016). Furthermore, the test
statistics computed after splitting the data are correlated. As a result, it is challenging
to combine the statistics into a valid and efficient method.

In this study, we adopt the general p-value combination method proposed by
Meinshausen et al. (2009). Specifically, we randomly split the data J times, and com-
pute the J p-values for different splits. For each j = 1,...,J, we compute the p-value

pl¥) with data splitting. Then, for v € (0,1), define Q(v) = min{1, ¢, ({p" /7;j =
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1,...,J})}, where g, denotes the empirical y-quantile function. Because a proper
selection of v may be difficult, we use the adaptive version below. Let yyin € (0,1)
be a lower bound for v, and define the adjusted p-value p; as p, = min{l, (1 —
108 Yanin) Infy e (yin,1) @(7) }- The extra correction factor 1 —log ymin ensures the type-I
error is controlled, despite the adaptive search for the best quantile. For the adaptive
multi-split adjusted p-value p;, the null hypothesis is rejected when p, < «, where
« is the prespecified threshold. Following the proof of Theorem 3.2 in Meinshausen

et al. (2009), we have the proposition below.

Proposition 6. Under Hy, for any J random sample splits, if Theorem 5 holds for

each split, then limsup,, .. P(p; < a) < a.

Proposition 6 shows that the multi-split and aggregation procedure can con-
trol the type-1 error. To apply the multi-split procedure, we need to choose two
parameters, J and vu,. In practice, we choose J slightly large and of the same
order of n. We next discuss the choice of v,;,,. To improve the test power, we
want to choose Yy such that limsup,,_,.. P(p; < «) in Proposition 6 is maximized
to be close to a under Hy. By the proof of Proposition 6, it suffices to make
argmax. o 1) P{Q(7) < a} € (Ymin, 1), because the adaptive search of v in p; is
adjusted by the correction factor 1 — logymin. Note that {Q(y) < a} is equiva-
lent to {¢(ay) > ~}, with ¥(u) = J~* Z}]=1 1{p"¥) < u}. It is then equivalent to

finding the y-value such that P{¢)(ay) > ~} is the closest to the upper bound «a.
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To evaluate this, we consider two extreme cases for a given J. When the p'¥) are
highly dependent, P{¢(ay) > v} ~ P{p") < ay} = av, which approaches a when
7 is close to one. When the p'¥) are nearly independent, Jy < 1, and oy is small,
P{(ay) > 4} = P{min; p¥) < ay} ~ 1 — (1 — ay)’! ~ Jav; then, Jay — « if
v — J~1. When the dependence between the pl/) is between these two extreme cases,
we expect the maximum P{v¢(a~y) > 7} to be achieved at some vy € [J~!,1). Because
the true correlation is unknown in practice, in the simulations, we recommend takking
Ymin Slightly smaller than J~! so that the candidate v range contains [J~1,1). We
performed a simulation study to illustrate how the value of P{¢)(ay) > 7} depends
on the correlations of the p-values. The results are provided in the Supplementary
Material, Section S7.3, and are consistent with the theoretical analysis presented
here.
The following is a summary of the testing procedure for large p.

Procedure Forj=1,...,J,

1. Randomly split the data into a screening data set {Xg, Ys} and a test data set

{XT, YT}

2. On {Xg,Ys}: compute the canonical correlations between Yg and each column
of Xg; then, select the columns with the largest |dp| corresponding correlations.

The selected column indices form a set S¢ C {1,...,p}.
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3. On {Xr,Yr}: choose the columns of X7 indexed by S¢ to obtain Xg,. Use

{Xs.,Yr} to compute the test statistic 73 and obtain the p-value p¥/).

After obtaining the set of p-values, {p¥) : j = 1,...,J}, we compute the adjusted

p-value p;. Reject the null hypothesis if p; < a.

Remark 4. When the dimension of the response Y is large (m > n), we also need
to reduce the dimension of the response vectors in order to apply the LRT. We can
use a principal component analysis (PCA) or factor analysis method to perform the
dimension reduction. In the simulation studies, we select the first mqg principal com-
ponents of Ys as the columns of a matrix W, where my satisfies mo+p < np and can
be chosen using a parallel analysis (Buja and Eyuboglu, 1992; Dobriban and Owen,
2017). Then, we transform the responses Yr in the test data to obtain jir = YTW,
which only has mq columns. We then use the transformed data { X, fir} to examine
CBW = 0. The independence between the screening and test data sets ensures that
the test 1s valid. Under the sparse model setting, the signal matrix X, Byp, has a
low rank decomposition; thus, we expect the dimension-reduction procedure to main-
tain high power. This is verified by the simulation studies in Section 5, which show
that reducing the dimensions of the responses may even boost the power of certain
sparse models. Alternatively, other dimension-reduction techniques can be applied
(e.g., Yuan et al., 2007; Ma, 2013). When both m and p are large, we can apply the

dimension reduction to'Y and X simultaneously to reduce both m and p.
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5. Simulations

In this section, we report the results of several simulation studies used to evaluate

the theoretical results and proposed methods for n > p+m and n < p + m.

5.1 n>p+m

For n > p + m, we conduct simulations under null and alternative hypotheses to
examine the type-I error and power of our proposed test statistics.

In the first setting, we sample the test statistics by simulating data following the
canonical form introduced in Section 3. Specifically, we generate random matrices Y;*
of size r x m and Y5" of size (n—p) x m, where the rows of Y}* and Y," are independent
m-variate Gaussian with covariance I,,,, and E(Y}") = M; and E(Y5) = 0. Under the
canonical form, we know Hj is equivalent to M; = 0, as discussed. In the following,
each simulation is based on 10,000 replications with significance level 0.05.

Under the null hypothesis, we compare the traditional y? approximation (2.1)
with the normal approximations for 7} in (2.3) and T3. In particular, we study how
the dimension parameters (p,m,r) influence these approximations by varying one
parameter each time. Figure 4 gives the estimated type-I errors as p increases. The
figure shows that as p becomes larger, the y? approximation (2.1) performs poorly,
whereas the normal approximations for 7} and T3 still control the type-1 error well.

Other simulation results with varying m or r are given in the Supplement Material
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Section S7.1; similar patterns are observed.
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Figure 4: Estimated type I error versus p

Under the alternative hypotheses, we compare the power of the test statistics 77,
T,, and T3, and show the power improvement of 75 over T} and T5. Specifically, under
the canonical form, we simulate data with M; = diag(dy,...,0,,,0,...,0), that is, a

3 Orys
diagonal matrix with 7, nonzero elements. It follows that Q = diag(7,...,67,,0,...,0)
has rank r,. Under this setup, we test four cases: (a) 7, = 1; (b) 1, = 2 and 6; =
do; (¢) e = 2 and §; = 100y; and (d) . = 3 and §; = Jy = 3. In all cases,
n = 100,m = 20,p = 50, and r = 30. For each case, we plot the estimated power
versus tr(§2)/m in Figure 5. The results show that when the rank of €, 7, is small
or the significant entries in 2 have low rank, 75 is more powerful than 77; however,
when 7, or the rank of significant entries in €2 increases, 77 becomes more powerful.

Moreover, in both sparse and nonsparse cases, the combined statistic T3 has power

close to the better of 77 and 75, with the type-I error well controlled. These patterns
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are consistent with the results of our theoretical power analysis in Section 3.
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Figure 5: Powers of T}, Ty and T3 versus tr(€2)/m

In addition, we conduct simulations when X and Y are generated following Y =
X B+ E, where the rows of E follow multivariate Gaussian distributions. The results
are given in the Supplementary Material, Section S7.1, and show that T3 is powerful
under both dense and sparse B cases. Moreover, we conduct similar studies when
X and Y take discrete values and when the statistical error follows a heavy-tail ¢
distribution. The results are provided in the Supplementary Material, Section S7.1.

We observe similar patterns to the normal cases in Section S7.1, which suggests that
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the proposed test statistic is robust to the normal assumption of the statistical error.

5.2 n<p+m

This section presents the results of the simulations for n < p + m and evaluates
the performance of our proposed procedure in Section 4. Specifically, we take C' =
1, Orx(p_r)}, and let B be a p x m diagonal matrix with o, in the first r, diagonal
entries, where o, represents the signal size that varies in the simulations. The rows
of X and E are independent multivariate Gaussian with covariance matrices ¥, =
(Pl xp and B = (pl=91),, 5, Tespectively. We set n = 100, p = 120, and r = 120,
and test the cases when m € {20,120}, € {5,10}, and p € {0.3,0.7}. We conduct
each simulation with 200 replications, and split the data into screening and test data
sets with ratio 3:7 (the ratios 2:8 and 4:6 performed similarly in our simulations).
Figure 6 reports the simulation results when r, = 10; all other results are presented
in the Supplementary Material, Section S7.2. In Figure 6, “screening” represents the
proposed screening procedure on X (with 20% features selected); “PCA” represents
the PCA on Y, as in Remark 4; and J represents the number of splits, where J = 0
represents a test on the same data without splitting.

Figure 6 shows that when we do not split the data (J = 0), the type-I errors
cannot be controlled under all cases. If we split the data once (J = 1), the type-I

errors become closer to the significance level, but can still be unstable. If we use the
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Figure 6: Estimated powers versus signal sizes when n < m +p

multi-split method with 200 splits (J = 200), the type-I errors become well controlled.
The results imply that data splitting is necessary for the proposed two-stage testing
procedure, and show that multiple splits help us to obtain stable results. In addition,
in the four cases, the multi-split method (J = 200) achieves higher power than that
of the single split (J = 1) as the signal size increases. Moreover, for cases (a) and
(b) in Figure 6, with the single split of data (J = 1), we also compare the test power
when screening only on X with that when performing a dimension reduction on both

X and Y. The results are given by the curves “J = 1, only screening” and “J = 1,
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PCA & screening”, respectively. We observe that the test power is slightly enhanced
by performing a dimension reduction on both X and Y.

In addition, we conduct similar studies when X and Y take discrete values and
when the statistical error follows a heavy-tail ¢ distribution; see the Supplementary
Material, Section S7.2. We observe similar patterns to those in Figure 6, which sug-
gests that the proposed method is robust to the normal assumption of the statistical

CITror.

6. Real-Data Analysis

We demonstrate our proposed method by analyzing the breast cancer dataset from
Chin et al. (2006), which was also studied by Chen et al. (2013) and Molstad and
Rothman (2016). The data set is available in the R package PMA, and consists of
measured gene expression profiles (GEPs) and DNA copy-number variations (CVNs)
for n = 89 subjects. Prior studies have demonstrated a link between DNA copy-
number variations and cancer risk (see, e.g., Peng et al., 2010). Here, we examine
the relationship between CNVs and GEPs using a multivariate regression method.
We examine the three chromosomes 8, 17, and 22, and test whether they are
related (i.e., C' = I,). We report the regression results for the CNVs on the GEPs
in this section; we provide the regression results for the GEPs on the CNVs in the

Supplementary Material, Section S8, where similar patterns are observed. Here, the
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m-variate response is the CNV data and the p-variate predictor is the GEP data,
where the dimension parameters are (p,m) = (673, 138), (1161, 87), (516, 18) for the
respective chromosomes. Because the parameters p and m are either comparable to
or larger than the sample size n = 89, we apply the proposed testing procedure in
Section 4. In particular, we choose the screening data size ng = 26 and the test data
size np = 63, where ng : np is approximately 3 : 7. We reduce the dimension of
the response CNV data matrix using a parallel analysis, and select the columns of
the GEP data matrix using the screening method in Section 4. To include as much
information on the predictors as possible, we select between 40 and 50 predictors
when screening. For each chromosome, we split the data J = 2000 times. Then, we
obtain the corresponding p-values, p¥), for j = 1,. .., J, from the limiting distribution
of the test statistic T3. Lastly, we compute the final p-value, p;, and reject the null
hypothesis if p; < a.

We summarize the test results in Table 1. The column “py” indicates the number
of selected predictors, and the columns “k; — k»” under “Chromosome pair” indicate
that we use GEPs from the kith chromosome to predict the CNVs from the ksth
chromosome. For each setting, the symbols “x” and “v"” indicate that we reject and
accept the null hypothesis, respectively. The test results show that the null hypothesis
is rejected when the CNVs and GEPs are from the same chromosome, which makes

biological sense. On the other hand, if we use GEPs from the eighth chromosome
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Chromosome pair

P | 8 =8 17T—17 2222 | 8—=17 17—22 8— 22
40 X X X X X v
45 X X X X X v
50 X X X X X v

Table 1: Decision results

to predict the CNVs from the 17th chromosome, or use the GEPs from the 17th
chromosome to predict the CNVs from the 22nd chromosome, the null hypotheses
are rejected; if we use GEPs from the eighth chromosome to predict the CNVs from
the 22nd chromosome, the null hypothesis is accepted. These conclusions indicate
different relationships between the CNVs and GEPs of different chromosomes, which
might deserve closer investigation.

To further illustrate the test results, Figure 7 provides box plots of {p\¥) : j =
1,...,J} with respect to different chromosome pairs when py = 45. We find that the
medians of the p-values obtained from the regressions of 8 — 17, 17 — 22, and the
same chromosome pairs are smaller than 0.05, which are consistent with the rejection
decisions shown in Table 1. Moreover, for 8 — 22, the majority of the p-values
are larger than 0.05. This is thus consistent with the decision to accept the null
hypothesis when using the GEPs from the eighth chromosome to predict the CNVs

from the 22nd chromosome.



33

0.8

0.6 -

p values
o
N
T
+—-¢-.-IHO-I'H+H-H-+ +
|

0.2 |

ST T e e W

8->8 17 ->17 22 ->22 8->17 17 -> 22 8 ->22

Figure 7: Box plot of p-values for regressions on different chromosome pairs

7. Conclusion

We have examined the LRT for Hy : CB = 0,,, in a high-dimensional multivariate
linear regression, where p and m are allowed to increase with n. Under the null
hypothesis, we derive the asymptotic boundary where the classical x? approximation
fails, and propose a corrected limiting distribution for log L,, in a general asymptotic
regime of (p,m,r,n). Under alternative hypotheses, we characterize the statistical
power of log L,, in the high-dimensional setting, and propose a power-enhanced test
statistic. In addition, when n < p +m and the LRT is not well defined, we propose
using a two-step testing procedure with repeated data-splitting.

This study on the LRT of a multivariate linear regression can be extended to
vector nonparametric regression models. Specifically, for kK = 1,...,m, suppose the

kth response variable depends on the p-dimensional predictor vector x through the
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regression equation y = My (x) + e, where M, is an unknown smooth function, and
er is an error term. We begin with the case when the predictor is univariate. Then, we
can model My(z) using regression splines: My (z) = Zj\il b,j¢;(z), where ® = (¢, :
k=1,...,M)T are some basis functions. Write y = (y1,...,¥m)7, € = (€1,...,€x)T,
and B = (by;)mxm; then, y = BT® + e, which is in the form of the multivariate
linear regression. To test the coefficients B, we can apply the proposed method.
More generally, when the predictors are multivariate, additive models (Hastie and
Tibshirani, 1986) are commonly used to finesse the “curse of dimensionality”. The
multivariate functions M, are written as My (x) = My 1(z1) + ... + Mg, (), for
k=1,...,m, where M (-),..., My ,(-) are univariate functions. Suppose @4,..., P,
are the basis functions for Ml 1 (-), ..., My ,(-), respectively. Then,y = BT®+e, where
B = (B],.. ., BI)T and d = (P, .. ., ®T)T. Therefore, we can apply the proposed
LRT method to test the structure of the coefficient matrix B.

This work establishes its theoretical results under the assumption that the er-
ror terms F follow Gaussian distributions; nevertheless, we expect our conclusions
to hold over a larger range of distributions. Numerically, we conduct simulations
when the error terms follow discrete distributions or heavy-tail ¢ distributions, which
are provided in the Supplementary Material. The simulation results show similar
patterns to the Gaussian cases, implying that the theoretical results may be valid.

Theoretically, Bai et al. (2013) showed that the linear spectral of the F-matrix S;.5;*
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also has an asymptotic normal distribution, without specifying that the distributions
of the entries of S7 and Sy must be normal. However, they assumed that entries of
S1 and Sy are independent and identically distributed, which is usually not satisfied
in a general multivariate regression analysis. Recently, Li et al. (2018) proposed a
modified LRT using a nonlinear spectral shrinkage, and established its asymptotic
normality without the normal assumption on £/ when m is proportional to n. How-
ever, they assumed that p, the number of predictors, is fixed. Thus, the asymptotic
distribution of log L,, for general high-dimensional nonGaussian cases remains an

open question.

Supplementary Material

The online Supplementary Material includes proofs and additional simulations.
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