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Abstract: Multivariate linear regressions are widely to model the associations between mul-

tiple related responses and a set of predictors. To infer such associations, researchers often

test the structure of the regression coefficients matrix, usually using a likelihood ratio test

(LRT). Despite their popularity, classical χ2 approximations for LRTs are known to fail in

high-dimensional settings, where the dimensions of the responses and the predictors (m, p)

are allowed to grow with the sample size n. Although various corrected LRTs and other test

statistics have been proposed, few studies have examined the important question of when the

classic LRT starts to fail. An answer to this would provide insights for practitioners, espe-

cially when analyzing data in which m/n and p/n are small, but not negligible. Moreover, the

power of the LRT in high-dimensional data analyses remains under-researched. To address

these issues, the first part of this work determines the asymptotic boundary at which the

classical LRT fails, and develops a corrected limiting distribution for the LRT with a general

asymptotic regime. The second part of this work examines the power of the LRT in high-

dimensional settings. In addition to advancing the current understanding of the asymptotic

behavior of the LRT under an alternative hypothesis, these results motivate the development
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of a more powerful LRT. The third part of this work considers the setting in which p > n,

where the LRT is not well defined. We propose a two-step testing procedure. First, we per-

form a dimension reduction, and then we apply the proposed LRT. Theoretical properties are

developed to ensure the validity of the proposed method, and simulations demonstrate that

the method performs well.
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1. Introduction

Multivariate linear regressions are widely used in econometrics, financial engineer-

ing, psychometrics, and many other areas to model the relationships between mul-

tiple related responses and a set of predictors. Suppose we have n observations

of m-dimensional responses yi = (yi,1, . . . , yi,m)ᵀ and p-dimensional predictors xi =

(xi,1, . . . , xi,p)
ᵀ, for i = 1, . . . , n. Let Y = (y1, . . . ,yn)ᵀ be the n×m response matrix,

and X = (x1, . . . ,xn)ᵀ be the n× p design matrix. The multivariate linear regression

model assumes Y = XB + E, where B is a p × m matrix of unknown regression

parameters, and E = (ε1, . . . , εn)ᵀ is an n ×m matrix of regression errors, where εi

is independently sampled from an m-dimensional Gaussian distribution N (0,Σ).

Under the multivariate linear regression model, we are interested in testing the

null hypothesis H0 : CB = 0r×m, where C is an r × p matrix of rank r ≤ p,

and 0r×m is an all-zero matrix of size r × m. This is often called a general linear

hypothesis in multivariate analyses, and has been widely used in multivariate analysis
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of variance (see, e.g., Muirhead, 2009). The choice of the testing matrix C depends

on the application. For instance, if B is partitioned as Bᵀ = [Bᵀ
1 , B

ᵀ
2 ], where B1

is an r × m matrix, then the null hypothesis of B1 = 0r×m is equivalent to taking

C = [Ir,0r×(p−r)], which can be used to test the significance of the first r predictors of

X. Another example is to test the equivalence of the effects of a set of r+1 predictors

(e.g., different levels of categorical variables), where C = [Ir,0r×(p−r−1),−1r], and 1r

represents an r-dimensional vector of ones.

To test H0 : CB = 0r×m, a popular approach in the literature is the likeli-

hood ratio test (LRT) (Anderson, 2003; Muirhead, 2009). Specifically, when n >

m + p, Σ is positive definite, and X has rank p, then the LRT statistic is Ln =

det(SE)n/2/{det(SE + SX)n/2}. Here SE = Y ᵀ[I − X(XᵀX)−1Xᵀ]Y and SX =

(CB̂)ᵀ[C(XᵀX)−1Cᵀ]−1CB̂ are the residual sum of squares and the regression sum of

squares matrices, respectively, and B̂ = (XᵀX)−1XᵀY is the least squares estimator.

Assuming m and p are fixed, it is well known that −2 logLn converges weakly to a

χ2 distribution as n→∞ under the null hypothesis (Anderson, 2003).

However, in high-dimensional settings, where the dimension parameters (p,m, r)

are allowed to increase with n, the LRT suffers from several issues. First, under the

null hypothesis, the limiting distribution of −2 logLn may longer be a χ2 distribution.

The failure of the χ2 approximations of LRT distributions under high dimensions has

been studied in various model settings. For instance, Bai et al. (2009) examined
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two LRTs for covariance matrices. They showed that the χ2 approximations per-

form poorly, and thus proposed corrected normal limiting distributions. Jiang and

Yang (2013) and Jiang and Qi (2015) studied classical LRTs for sample means and

covariance matrices, showing that the χ2 approximations fail as the dimensions in-

crease. Moreover, Bai et al. (2013) considered the LRT for linear hypotheses in

high-dimensional multivariate linear regressions. They demonstrated the failure of

the χ2 approximation and derived a corrected LRT. Note that Bai et al. (2013) only

considered high-dimensional settings where m, r, and n− p are proportional to each

other, with m ≤ r. Despite these works, it is still unclear under which asymptotic

regimes the χ2 approximation of a LRT starts to fail. An answer to this question

would provide insights for practitioners, especially when analyzing data in which m/n

and p/n are small, but not negligible.

The second problem with the LRT is its power performance under high-dimensional

alternative hypotheses. When n > p+m, −2 logLn = n
∑min{m,r}

i=1 log(1 + λi), where

λ is an eigenvalue of S
1/2
X S−1

E S
1/2
X . Therefore, we expect the asymptotic power of

the LRT to depend on an averaged effect of all eigenvalues. However, few studies

have examined the eigenvalues of the random matrix S
1/2
X S−1

E S
1/2
X under alternative

hypotheses.

The third issue with the LRT arises when the dimension parameters p and m are

large, such that n < p+m. In this situation, the LRT is not well defined, owing to the
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singularity of the matrix SE. This excludes the LRT from many high-dimensional

applications with p > n or m > n (e.g., Donoho, 2000; Fan et al., 2014). When

m > n, the linear hypothesis testing problem has been studied in depth for specific

submodels, such as the one-way MANOVA (Srivastava and Fujikoshi, 2006; Hu et al.,

2017; Zhou et al., 2017; Cai and Xia, 2014, etc.). Li et al. (2018) recently proposed a

modified LRT for general linear hypothesis tests using spectral shrinkage. However,

these works assume that p is fixed.

This study aims to address the above problems. First, under the null hypothesis,

we derive the asymptotic boundary at which the χ2 approximation fails as the di-

mension parameters (p,m, r) increase with the sample size n. Moreover, we develop a

corrected limiting distribution for logLn in a general asymptotic regime of (p,m, r, n).

Second, under alternative hypotheses, we characterize the statistical power of logLn

in the high-dimensional setting. By analyzing the partial differential equations in-

duced by the test statistic, we show that the LRT is powerful when the trace of the

signal matrix (CB)Σ−1(CB)ᵀ is large, but that it loses power under a low-rank sig-

nal matrix. Given that alternatives tend to be unknown in practice, we propose an

enhanced likelihood ratio test that is also powerful against low-rank alternative sig-

nal matrices. The power-enhanced test statistic combines the LRT statistic and the

largest eigenvalue (Johnstone, 2008, 2009) to further improve the test power against

low-rank alternatives. Third, when n < p and the LRT is not well defined, we pro-
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pose a two-step testing procedure: first, we reduce the dimensions of the covariates

and responses, and then we use the proposed (enhanced) LRT. To control the estima-

tion error induced by the dimension reduction in the first step, we employ a repeated

data-splitting approach, and show that the asymptotic type-I error is well controlled

under the null hypothesis. Simulation results confirm that the proposed approach

performs well.

The rest of the paper is organized as follows. In Section 2, we examine when

the classic LRT fails under the null hypothesis, and propose a corrected limiting

distribution for logLn. In Section 3, we analyze the power of logLn and propose a

more powerful test statistic. In Section 4, we discuss the multi-split LRT procedure

when n < p. Simulation studies and a real dataset analysis on breast cancer are

reported in Sections 5 and 6, respectively.

2. When the LRT begins to fail?

In traditional multivariate regression analyses, where the dimension parameters (p,m, r)

are considered fixed, the χ2 approximation of the LRT,

−2 logLn
D−→ χ2

mr, as n→∞, (2.1)
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is used for H0 : CB = 0r×m (Muirhead, 2009; Anderson, 2003), where
D−→ denotes

the convergence in distribution. However, this χ2 approximation is known to perform

poorly in high-dimensional applications (see, e.g., Bai and Saranadasa, 1996; Jiang

et al., 2012; Bai et al., 2009, 2013; Jiang and Yang, 2013).

When the three dimension parameters (m, p, r) are allowed to grow with n, it

is of interest to examine the phase transition boundary where the χ2 approximation

fails. This is described in the following theorem.

Theorem 1. Consider n > p+m and p ≥ r. Let χ2
mr(α) denote the upper α-quantile

of a χ2
mr distribution.

(i) When mr →∞ and max{p,m, r}/n→ 0 as n→∞, P{−2 logLn > χ2
mr(α)} →

α, for any significance level α, if and only if

lim
n→∞

√
mr(p+m/2− r/2)n−1 = 0. (2.2)

(ii) When mr is finite, P{−2 logLn > χ2
mr(α)} → α, if and only if limn→∞ p/n = 0.

Theorem 1 gives the sufficient and necessary condition on (m, p, r, n) such that

the χ2 approximation (2.1) fails. Note that although (2.2) is obtained when mr →∞,

(2.2) becomes limn→∞ p/n = 0 for finite m and r, supporting the conclusion when mr

is finite. To further examine the implications of (2.2), we consider two special cases.

Specifically, let m = bnηc and p = bnεc, with η and ε ∈ (0, 1), where b·c denotes



8

the floor of a number. When r is fixed, (2.2) implies
√
m(p+m/2) = o(n); that is,

max{ε, η}+ η/2 < 1. When r = p = bnεc, (2.2) implies
√
mp(p+m) = o(n); that is,

max{ε, η}+(η+ε)/2 < 1. For these two cases, we give two corresponding (η, ε)-regions

in Figure 1 satisfying constraint (2.2). In these two regions, when ε approaches zero,

the largest η approaches 2/3. Therefore, when p is small, the largest m such that (2.2)

holds is of order n2/3. The same is true for the cases of fixed r and r = p, because

p is small and r ≤ p. In addition, when η goes to zero, the largest ε-values under

fixed r and r = p converge to one and 2/3, respectively. Thus, when m is small, the

largest p-values satisfying (2.2) are of order n and n2/3, respectively. Moreover, when

m = p, the largest orders of m and p for the two cases are n2/3 and n1/2, respectively.

fixed r
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Figure 1: η versus ε when r is fixed (left) and r = p (right)

To illustrate this phase transition phenomenon, we present a simple simulation

experiment. We set Σ = Im, and estimate the type-I errors of the χ2 approximation

(2.1) using 104 repetitions under the following four cases: (a) fixed m = r = 2 and p =
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bnηc; (b) fixed p = r = 2 and m = bnηc; (c) fixed m = 2 and p = r = bnηc; and

(d) p = m = r = bnηc. In all cases, η ∈ {1/24, . . . , 23/24}. In Figure 2, we plot the

estimated type-I errors against the η-values for n = 100 and 300. The plots show

consistent patterns with the theoretical results. In particular, when p = m = r =

bnηc, the χ2 approximation begins to fail for η around 1/2. When p and r are fixed

and m = bnηc and when m is fixed and p = r = bnηc, the χ2 approximation begins to

fail for η around 2/3. When m and r are fixed and p = bnηc, the χ2 approximation

begins to fail for η larger than the other three cases, which is consistent with the

theoretical results.

Figure 2: Estimated type I errors using χ2 approximation (2.1)

Note that the sufficient and necessary constraint (2.2) also characterizes the

bias of the χ2 approximation. Specifically, under the conditions of Theorem 1,

E(−2 logLn − χ2
mr)/

√
var(χ2

mr) =
√
mr(p + m/2 − r/2 + 1/2)n−1{1 + o(1)}. Thus,

when (p,m, r) are large, such that (2.2) is violated and the χ2 approximation fails,
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the bias of the χ2 approximation increases with
√
mr(p+m/2− r/2 + 1/2)n−1. This

can be seen in Figure 2, and is supported by the simulations reported in Section 5.

In the classic regime with fixed m and p, researchers have also proposed the

Bartlett correction of the LRT, −2ρ logLn
D−→ χ2

mr, where ρ = 1− (p− r/2 +m/2 +

1/2)/n. In particular, for any z ∈ R, this corrected approximation gets rid of the first-

order approximation error O(n−1); that is, for any z, P (−2ρ logLn < z)− P (χ2
mr <

z) = O(n−2) when m and p are fixed. Similarly to Theorem 1, the χ2 approximation

with the Bartlett correction also fails asm and p increase with n. The phase transition

boundary is characterized in the following result.

Theorem 2. Consider n > p+m and p ≥ r.

(i) When mr →∞ and max{p,m, r}/n→ 0 as n→∞, P{−2ρ logLn > χ2
mr(α)} →

α, for any significance level α, if and only if limn→∞
√
mr(r2 +m2)n−2 = 0.

(ii) When mr is finite, P{−2ρ logLn > χ2
mr(α)} → α, if and only if n− p→∞.

Theorem 2 suggests that when m and r are fixed, the corrected LRT approxi-

mation holds when n − p → ∞. When mr → ∞, the phase transition threshold in

Theorem 2 only involves m and r. In particular, when r is fixed and m = bnηc, and

when m is fixed and r = bnηc, the χ2 approximation with the Bartlett correction fails

when η ≥ 4/5; when m = r = bnηc, the corrected approximation fails when η ≥ 2/3.

To illustrate this phenomenon, we present a numerical experiment on the χ2

approximation with the Bartlett correction in Figure 3. The setup is the same as
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that shown in Figure 2. The results show that when m and r are fixed and p = bnηc,

the type-I errors are well controlled for large η approaching one. Moreover, when p

and r are fixed and m = bnηc and when m is fixed and p = r = bnηc, the corrected

χ2 approximation begins to fail around η = 4/5. When p = m = r = bnηc, the

corrected χ2 approximation begins to fail around η = 2/3. These numerical results

are consistent with the theory.

Figure 3: Estimated type-I error using the χ2 approximation with the Bartlett correction

More generally, to have a unified limiting distribution for analyzing high-dimensional

data under a general asymptotic region of (m, p, r, n), we derive a corrected normal

limiting distribution for the LRT statistic.

Theorem 3. When n > p + m, p ≥ r, mr →∞, and n− p−max{m− r, 0} → ∞

as n→∞, the LRT statistic Ln has the corrected form T1 satisfying

T1 :=
−2 logLn + µn

nσn

D−→ N (0, 1), (2.3)
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where σ2
n = 2 log(n+ r − p−m)(n− p)− 2 log(n− p−m)(n+ r − p), and

µn = n(n−m− p− 1/2) log
(n+ r − p−m)(n− p)
(n− p−m)(n+ r − p)

+ nr log
(n+ r − p−m)

(n+ r − p)

+ nm log
(n− p)

(n+ r − p)
.

Theorem 3 covers the asymptotic regime where mr → ∞, max{p,m, r}/n → 0,

and the constraint (2.2) holds. Under this region, we can show that µn → −mr

and (nσn)2 → 2mr, which are consistent with the mean and variance, respectively,

of the χ2
mr approximation. In addition, although Theorem 3 requires mr → ∞, the

normal approximation (2.3) could still perform well when m or r is small, as long as

mr is sufficiently large. The simulations in Section 5 show that the χ2 and normal

approximations can perform similarly in low dimensions.

Alternatively, under some high-dimensional settings, we can check that no χ2

or even noncentral χ2 distribution matches the asymptotic mean and variance of

−2 logLn in Theorem 3. Specifically, if the distribution of −2 logLn can be approxi-

mated by some χ2 distribution, we should have −(nσn)2/µn → 2, which is, however,

not satisfied as p/n,m/n and r/n increase. If the distribution of −2 logLn can be

approximated by some noncentral χ2 distribution with degrees of freedom kn, then

we should have kn = −2µn − n2σ2
n/2, which can become negative as p/n,m/n and

r/n increase. Thus, the χ2-type approximation for −2 logLn can fail fundamentally
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under high dimensions.

Remark 1. A similar result on the asymptotic normality of logLn in Theorem 3

is proved in Zheng (2012) and Bai et al. (2013). However, there are several differ-

ences between our result and theirs. First, our asymptotic regime is more general.

Specifically, Zheng (2012) and Bai et al. (2013) require that m < r, min{m, r} → ∞,

and m/(n− p) converges to a constant in (0, 1), whereas we only need mr →∞ and

n − p − max{m − r, 0} → ∞. Our analysis covers the case when m/(n − p) → 0,

and even when the limit does not exist. Second, the proofs of Zheng (2012) and Bai

et al. (2013) are based on random matrix theory, whereas we prove Theorem 3 using

a moment-generating function technique motivated by the work of Jiang and Yang

(2013).

3. Power analysis and an enhanced LRT

Although the limits of LRTs for high-dimensional data have been explored for various

problems, the power of these tests is less well studied and remains a challenging

problem, as discussed in Jiang and Yang (2013). In this section, we focus on the

high-dimensional multivariate linear regression and analyze the power of the LRT

statistic. Moreover, based on the theoretical results, we propose a more powerful

LRT.

To examine the power of the LRT statistic, we introduce the classic canonical
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form of the LRT problem, which expresses H0 : CB = 0 in an equivalent form

as follows (Muirhead, 2009). Specifically, consider the matrix decomposition X =

O[Ip,0p×(n−p)]
ᵀD, where O is an n×n orthogonal matrix, and D is a p×p nonsingular

real matrix. Given D, we have a similar decomposition CD−1 = E[Ir,0r×(p−r)]V ,

where E is an r×r nonsingular matrix, and V is a p×p orthogonal matrix. Therefore,

CB = CD−1DB = E[Ir,0r×(p−r)]V DB, and, thus, H0 : CB = 0r×m is equivalent to

M1 = 0r×m, where we define M1 = [Ir,0r×(p−r)]V DB = E−1CB.

We next describe the relationship between M1 and the LRT statistic through

a linear transformation of Y . Let V1 denote the first r rows of V . Define Y ∗1 =

[V1,0r×(n−p)]O
ᵀY and Y ∗2 = [0(n−p)×p, In−p]O

ᵀY . We then know that Y ∗1
ᵀY ∗1 = SX

and Y ∗2
ᵀY ∗2 = SE. We further define S̃X = Σ−1/2SXΣ−1/2, S̃E = Σ−1/2SEΣ−1/2,

and Ω = Σ−1/2Mᵀ
1M1Σ−1/2. Then, we can write the LRT statistic −2 logLn =

n
∑min{m,r}

i=1 log(1 + λi), where λ is an eigenvalue of S̃−1
E S̃X . Given that E(S̃−1

E S̃X) =

(rIm + Ω)/(n− p) (Muirhead, 2009), we expect the power of the LRT to depend on

an averaged effect of all eigenvalues of Ω.

We focus on the alternatives where the signal matrix Ω is of low rank and (p,m, r)

increase proportionally with n. In particular, we assume Ω has a fixed rank m0, and

write Ω = n∆, where ∆ has fixed nonzero eigenvalues δ1, . . . , δm0 . Note that this is

reasonable when the entries in M1Σ−1/2 are O(1), because the entries in Ω could be

O(n), with r proportional to n. The following theorem specifies how the power of
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the LRT statistic T1 depends on the eigenvalues of Ω.

Theorem 4. Consider the setting where (p,m, r) increase proportionally with n, and

p/n = ρp, m/n = ρm, and r/n = ρr, where ρp, ρm, ρr ∈ (0, 1) are fixed constants

and ρp + ρm < 1. Given ∆ = Ω/n with fixed nonzero eigenvalues δ1, . . . , δm0, define

W∆ =
∑m0

j=1 log[1 + δj(1 + ρr − ρp)
−1]. There exists a constant A1 > 0 such that

P (T1 > zα)→ 1−Φ(zα−A1W∆), where Φ(·) and zα denote the cumulative distribution

function and the upper α-quantile, respectively, of N (0, 1).

Theorem 4 establishes the relationship between the eigenvalues of Ω and the

power of T1 under high-dimensional and low-rank signals. It implies that when W∆

is large, T1 has high power. Alternatively, the LRT could be highly underpowered

when W∆ is small. Because in real applications the truth is usually unknown, we

require a testing procedure with high statistical power against various alternatives.

To enhance the power of the LRT, we propose combining it with Roy’s test

statistic based on the largest eigenvalue of S−1
E SX (Roy, 1953). In particular, John-

stone (2008, 2009) extended Roy’s test to high-dimensional settings, and proposed

the largest eigenvalue test statistic T2 = [log{θn,1/(1− θn,1)} − µ̃n]/σ̃n. Here, θn,1 =

λmax{(SE + SX)−1SE}, with λmax(·) denoting the largest eigenvalue, and µ̃n = 2 ×

log tan{(φ+ γ/2)} and σ̃3
n = 16(n − p + r − 1)−2{sin2(φ + γ) sinφ sin γ}−1, with

sin2(γ/2) = {min(m, r)−1/2}/(n−p+r−1) and sin2(φ/2) = {max(m, r)−1/2}/(n−

p+ r− 1). Moreover, Johnstone (2008) proved that under the high-dimensional null



16

hypothesis, T2
D−→ TW , where T W denotes a Tracy–Widom distribution. Under

the alternative hypothesis, Dharmawansa et al. (2018) studied the spiked alternative

with Ω = rUHUᵀ, where U is an m×m0 matrix with orthonormal columns and fixed

m0, and H = diag(h1, . . . , hm0) with h1 > . . . > hm0 . They showed that the phase

transition threshold for h is a constant that depends on the limit of (p/n,m/n, r/n).

Note that with fixed r/n, there exists a constant c2 > 0 such that δ1 = c2h1. This

implies that when δ1 is a sufficiently large constant, the power of T2 can converge to

one, whereas the LRT statistic T1 may only have power less than one, by Theorem

4. On the other hand, when δ1 is below the phase transition threshold, T1 may be

more powerful than T2.

We therefore propose a combined test statistic T3 = T1 + T2 ∗ I(T2 ≥ Fn), where

Fn is a positive constant. With properly chosen Fn, the proposed test statistic T3

may enhance the power of T1 under alternative hypotheses, whereas T3
D−→ N (0, 1)

under H0. Specifically, under the null hypothesis, the type-I error rate of T3 is

controlled if P{T2 ≥ Fn} → 0. On the other hand, under alternative hypotheses,

we have P (T3 > zα) ≥ P (T1 > zα) because T2 ∗ I{T2 > Fn} ≥ 0 for Fn > 0. This

guarantees that the power of T3 is at least as large as that of the LRT statistic T1.

Moreover, consider the case when W∆ is relatively small, but δ1 is significantly above

the phase transition threshold, where T2 is more powerful than T1. Then if Fn does

not grow too quickly, T3 would also be powerful. Thus, we can choose Fn to be a
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slow-varying function, in which case the combined test statistic T3 may improve the

power of T1 with little size distortion. Through extensive simulation studies, we find

F (n) = max{log log n, 2} exhibits good performance; please see Section 5.

4. Likelihood ratio test when p > n

When the number of predictors is large, such that p > n, SE becomes singular, and

the test statistics T1, T2, and T3 cannot be applied directly. To deal with this issue,

we propose a multiple data-splitting procedure that repeatedly splits the data into

two random subsets. We use the first subset to perform the dimension reduction

and obtain a manageable size of predictors. Then we apply the proposed LRT to

the second subset. The test statistics from different data splittings are aggregated to

provide the final test statistic. The random splits of data ensure correct size control

of the test’s type-I error. Similar ideas are used in other high-dimensional problems

(Meinshausen et al., 2009; Berk et al., 2013, etc.). We next describe the proposed

procedure.

Consider the setting when p > n and m < n. Denote B = [b1, . . . ,bp]
ᵀ and

M∗ = {k : bk 6= 0, 1 ≤ k ≤ p}. We assume a “sparsity” structure in which the

responses depend only on a subset of the predictors (or transformed predictors), such

that n > m+ |M∗|. Let XM∗ be the n×|M∗| submatrix of X with columns indexed

by M∗, and let BM∗ be the |M∗| × m submatrix of B with rows indexed by M∗.
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The underlying model then satisfies Y = XM∗BM∗ + E. Under this model, for any

subset M ⊆ {1, . . . , p} such that M ⊇ M∗ and n > m + |M|, testing CB = 0 is

equivalent to CMBM = 0, and the LRT is then applicable. Here, CM denotes the

r× |M| submatrix of C with columns indexed byM, and BM denotes the |M|×m

submatrix of B with rows indexed by M.

To obtain such a setM⊇M∗, we propose a screening method for a multivariate

linear regression. The seminal work of Fan and Lv (2008) first introduced a sure

independence screening procedure that significantly reduces the number of predic-

tors, while preserving the true linear model with an overwhelming probability. This

procedure has been extended in various settings (e.g., Fan and Song, 2010; Wang and

Leng, 2016; Barut et al., 2016). However, many of these works focus on the settings

with a univariate response variable.

To use the joint information from multivariate response variables, we propose

a screening method that selects the columns of X based on their canonical cor-

relations with Y . The canonical correlation is a widely used dimension-reduction

criterion inferring information from cross-covariance matrices in a multivariate anal-

ysis (Muirhead, 2009). Specifically, for each column vector xj = (x1,j, . . . , xn,j)
ᵀ, for

j = 1, . . . , p, we first compute its canonical correlation with Y , denoted by

ωj = max
a∈Rm

aᵀ(Y − 1nȲ )ᵀ(xj − x̄j1n)√
{aᵀ(Y − 1nȲ )ᵀ(Y − 1nȲ )a} × {(xj − x̄j1n)ᵀ(xj − x̄j1n)}

,
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where x̄j =
∑n

i=1 xi,j/n, Ȳ is the row mean vector of Y , and 1n is an all-one column

vector of length n. Then, for 0 < δ < 1, we select bδpc columns of X with the highest

canonical correlations with Y , and define the selected column set as Mδ = {j : |ωj|

is among the largest bδpc of all, 1 ≤ j ≤ p}. In practice, we choose an integer bδpc,

such that nT > bδpc+m, to apply the LRT. On the other hand, we keep bδpc large

to increase the probability of Mδ ⊇ M∗. The following theoretical result provides

the desired screening property that P (M∗ ⊆Mδ)→ 1 for properly chosen δ.

Theorem 5. Under Conditions 1–3 given in Supplementary Material Section S5.1,

for some constant c0 > 0, P (M∗ ⊆ Mδ) = 1 − O[exp{−c0n
1−ι/ log n}], where the

constant ι < 1 is defined in Condition 3.

Remark 2. When testing the coefficients of the first r predictors of X, such as

C = [Ir,0r×(p−r)], we can keep the first r predictors, denoted by X1, in the model,

while screen the remaining predictors, denoted by X2. In particular, we can apply

the screening procedure to the residuals R̃, from the regression of Y on X1, and X2.

More generally. when C is a matrix of rank r, we can use this conditional screening

procedure by employing a linear transformation of the data. In particular, given the

singular value decomposition C = UV Dᵀ, we can transform X and B into X̃ = XD

and B̃ = DᵀB, respectively. Then, testing H0 : CB = 0r×m is equivalent to testing

H0 : [Ir,0r×(p−r)]B̃ = 0r×m under the model of the transformed data Y = X̃B̃+E. A

theoretical result similar to that in Theorem 5 can be obtained under properly adjusted
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assumptions.

Remark 3. The proposed procedure uses the canonical correlation, which is an exten-

sion of the marginal correlation in Fan and Lv (2008). The computation of a canoni-

cal correlation is fast, and is pre-implemented in many software packages. Moreover,

the proposed method aggregates the joint information of the response variables, and

thus may be better than simply applying marginal screening to each response vari-

able. On the other hand, the correlation-based method has potential issues when the

predictors are highly correlated (Dutta and Roy, 2017). To study the effect of highly

correlated predictors, we performed a preliminary simulation, documented in the Sup-

plementary Material, Section S7.4. Here, we compared our method with that of using

a lasso with cross-validation to select predictors, which is expected to account for the

dependence in the predictors, but not in the responses. Under the considered settings

with correlated predictors, our method outperforms the lasso. The comparison results

also show that over- and under-selecting predictors can both cause substantial loss of

test power. To further enhance this power, we may extend existing high-dimensional

screening methods, such as Wang and Leng (2016), to a multivariate regression set-

ting. In this way, we account for the dependence in both the predictors and responses.

This topic is left to future research.

Given a proper screening approach, we propose a data-splitting procedure to

apply the LRT. We randomly split n observations into two independent sets: the
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screening data {XS, YS} of size nS, and the test data {XT , YT} of size nT . We use

{XS, YS} to select M, and apply the proposed LRT to {XT , YT} using the selected

predictors in M. Data splitting avoids the influence of the screening step on the

inference step and provides a valid inference, as is widely recognized in the literature

(Berk et al., 2013; Taylor and Tibshirani, 2015). We also demonstrate that the type-I

error rate cannot be controlled without splitting the data in the simulation studies

in Section 5.

The result of a test based on a single random split is known to be sensitive to

the arbitrary split choice, making it difficult to reproduce the result (Meinshausen

et al., 2009; Meinshausen and Bühlmann, 2010). Therefore we propose using multiple

splits and aggregating the results. Note that computing test statistics by splitting

the data can be viewed as a resampling method. Such methods usually do not

perform well when approximating statistics that depend on the eigenvalues of high-

dimensional random matrices (Karoui and Purdom, 2016). Furthermore, the test

statistics computed after splitting the data are correlated. As a result, it is challenging

to combine the statistics into a valid and efficient method.

In this study, we adopt the general p-value combination method proposed by

Meinshausen et al. (2009). Specifically, we randomly split the data J times, and com-

pute the J p-values for different splits. For each j = 1, . . . , J , we compute the p-value

p(j) with data splitting. Then, for γ ∈ (0, 1), define Q(γ) = min{1, qγ({p(j)/γ; j =
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1, . . . , J})}, where qγ denotes the empirical γ-quantile function. Because a proper

selection of γ may be difficult, we use the adaptive version below. Let γmin ∈ (0, 1)

be a lower bound for γ, and define the adjusted p-value pt as pt = min{1, (1 −

log γmin) infγ∈(γmin,1)Q(γ)}. The extra correction factor 1− log γmin ensures the type-I

error is controlled, despite the adaptive search for the best quantile. For the adaptive

multi-split adjusted p-value pt, the null hypothesis is rejected when pt < α, where

α is the prespecified threshold. Following the proof of Theorem 3.2 in Meinshausen

et al. (2009), we have the proposition below.

Proposition 6. Under H0, for any J random sample splits, if Theorem 5 holds for

each split, then lim supn→∞ P (pt ≤ α) ≤ α.

Proposition 6 shows that the multi-split and aggregation procedure can con-

trol the type-I error. To apply the multi-split procedure, we need to choose two

parameters, J and γmin. In practice, we choose J slightly large and of the same

order of n. We next discuss the choice of γmin. To improve the test power, we

want to choose γmin such that lim supn→∞ P (pt ≤ α) in Proposition 6 is maximized

to be close to α under H0. By the proof of Proposition 6, it suffices to make

argmaxγ∈(0,1)P{Q(γ) ≤ α} ∈ (γmin, 1), because the adaptive search of γ in pt is

adjusted by the correction factor 1 − log γmin. Note that {Q(γ) ≤ α} is equiva-

lent to {ψ(αγ) ≥ γ}, with ψ(u) = J−1
∑J

j=1 1{p(j) ≤ u}. It is then equivalent to

finding the γ-value such that P{ψ(αγ) ≥ γ} is the closest to the upper bound α.
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To evaluate this, we consider two extreme cases for a given J . When the p(j) are

highly dependent, P{ψ(αγ) ≥ γ} ' P{p(1) ≤ αγ} = αγ, which approaches α when

γ is close to one. When the p(j) are nearly independent, Jγ ≤ 1, and αγ is small,

P{ψ(αγ) ≥ γ} ' P{minj p
(j) ≤ αγ} ' 1 − (1 − αγ)J ' Jαγ; then, Jαγ → α if

γ → J−1. When the dependence between the p(j) is between these two extreme cases,

we expect the maximum P{ψ(αγ) ≥ γ} to be achieved at some γ ∈ [J−1, 1). Because

the true correlation is unknown in practice, in the simulations, we recommend takking

γmin slightly smaller than J−1 so that the candidate γ range contains [J−1, 1). We

performed a simulation study to illustrate how the value of P{ψ(αγ) ≥ γ} depends

on the correlations of the p-values. The results are provided in the Supplementary

Material, Section S7.3, and are consistent with the theoretical analysis presented

here.

The following is a summary of the testing procedure for large p.

Procedure For j = 1, . . . , J ,

1. Randomly split the data into a screening data set {XS, YS} and a test data set

{XT , YT}.

2. On {XS, YS}: compute the canonical correlations between YS and each column

of XS; then, select the columns with the largest bδpc corresponding correlations.

The selected column indices form a set SC ⊆ {1, . . . , p}.
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3. On {XT , YT}: choose the columns of XT indexed by SC to obtain XSC . Use

{XSC , YT} to compute the test statistic T3 and obtain the p-value p(j).

After obtaining the set of p-values, {p(j) : j = 1, . . . , J}, we compute the adjusted

p-value pt. Reject the null hypothesis if pt ≤ α.

Remark 4. When the dimension of the response Y is large (m > n), we also need

to reduce the dimension of the response vectors in order to apply the LRT. We can

use a principal component analysis (PCA) or factor analysis method to perform the

dimension reduction. In the simulation studies, we select the first m0 principal com-

ponents of YS as the columns of a matrix Ŵ , where m0 satisfies m0 +p < nT and can

be chosen using a parallel analysis (Buja and Eyuboglu, 1992; Dobriban and Owen,

2017). Then, we transform the responses YT in the test data to obtain µ̂T = YT Ŵ ,

which only has m0 columns. We then use the transformed data {XT , µ̂T} to examine

CBŴ = 0. The independence between the screening and test data sets ensures that

the test is valid. Under the sparse model setting, the signal matrix XM∗BM∗ has a

low rank decomposition; thus, we expect the dimension-reduction procedure to main-

tain high power. This is verified by the simulation studies in Section 5, which show

that reducing the dimensions of the responses may even boost the power of certain

sparse models. Alternatively, other dimension-reduction techniques can be applied

(e.g., Yuan et al., 2007; Ma, 2013). When both m and p are large, we can apply the

dimension reduction to Y and X simultaneously to reduce both m and p.
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5. Simulations

In this section, we report the results of several simulation studies used to evaluate

the theoretical results and proposed methods for n > p+m and n < p+m.

5.1 n > p+m

For n > p + m, we conduct simulations under null and alternative hypotheses to

examine the type-I error and power of our proposed test statistics.

In the first setting, we sample the test statistics by simulating data following the

canonical form introduced in Section 3. Specifically, we generate random matrices Y ∗1

of size r×m and Y ∗2 of size (n−p)×m, where the rows of Y ∗1 and Y ∗2 are independent

m-variate Gaussian with covariance Im, and E(Y ∗1 ) = M1 and E(Y ∗2 ) = 0. Under the

canonical form, we know H0 is equivalent to M1 = 0, as discussed. In the following,

each simulation is based on 10,000 replications with significance level 0.05.

Under the null hypothesis, we compare the traditional χ2 approximation (2.1)

with the normal approximations for T1 in (2.3) and T3. In particular, we study how

the dimension parameters (p,m, r) influence these approximations by varying one

parameter each time. Figure 4 gives the estimated type-I errors as p increases. The

figure shows that as p becomes larger, the χ2 approximation (2.1) performs poorly,

whereas the normal approximations for T1 and T3 still control the type-I error well.

Other simulation results with varying m or r are given in the Supplement Material
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Section S7.1; similar patterns are observed.
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Figure 4: Estimated type I error versus p

Under the alternative hypotheses, we compare the power of the test statistics T1,

T2, and T3, and show the power improvement of T3 over T1 and T2. Specifically, under

the canonical form, we simulate data with M1 = diag(δ1, . . . , δrk , 0, . . . , 0), that is, a

diagonal matrix with rk nonzero elements. It follows that Ω = diag(δ2
1, . . . , δ

2
rk
, 0, . . . , 0)

has rank rk. Under this setup, we test four cases: (a) rk = 1; (b) rk = 2 and δ1 =

δ2; (c) rk = 2 and δ1 = 10δ2; and (d) rk = 3 and δ1 = δ2 = δ3. In all cases,

n = 100,m = 20, p = 50, and r = 30. For each case, we plot the estimated power

versus tr(Ω)/m in Figure 5. The results show that when the rank of Ω, rk, is small

or the significant entries in Ω have low rank, T2 is more powerful than T1; however,

when rk or the rank of significant entries in Ω increases, T1 becomes more powerful.

Moreover, in both sparse and nonsparse cases, the combined statistic T3 has power

close to the better of T1 and T2, with the type-I error well controlled. These patterns
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are consistent with the results of our theoretical power analysis in Section 3.
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Figure 5: Powers of T1, T2 and T3 versus tr(Ω)/m

In addition, we conduct simulations when X and Y are generated following Y =

XB+E, where the rows of E follow multivariate Gaussian distributions. The results

are given in the Supplementary Material, Section S7.1, and show that T3 is powerful

under both dense and sparse B cases. Moreover, we conduct similar studies when

X and Y take discrete values and when the statistical error follows a heavy-tail t

distribution. The results are provided in the Supplementary Material, Section S7.1.

We observe similar patterns to the normal cases in Section S7.1, which suggests that
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the proposed test statistic is robust to the normal assumption of the statistical error.

5.2 n < p+m

This section presents the results of the simulations for n < p + m and evaluates

the performance of our proposed procedure in Section 4. Specifically, we take C =

[Ir,0r×(p−r)], and let B be a p ×m diagonal matrix with σs in the first rk diagonal

entries, where σs represents the signal size that varies in the simulations. The rows

of X and E are independent multivariate Gaussian with covariance matrices Σx =

(ρ|i−j|)p×p and Σ = (ρ|i−j|)m×m, respectively. We set n = 100, p = 120, and r = 120,

and test the cases when m ∈ {20, 120}, rk ∈ {5, 10}, and ρ ∈ {0.3, 0.7}. We conduct

each simulation with 200 replications, and split the data into screening and test data

sets with ratio 3:7 (the ratios 2:8 and 4:6 performed similarly in our simulations).

Figure 6 reports the simulation results when rk = 10; all other results are presented

in the Supplementary Material, Section S7.2. In Figure 6, “screening” represents the

proposed screening procedure on X (with 20% features selected); “PCA” represents

the PCA on Y , as in Remark 4; and J represents the number of splits, where J = 0

represents a test on the same data without splitting.

Figure 6 shows that when we do not split the data (J = 0), the type-I errors

cannot be controlled under all cases. If we split the data once (J = 1), the type-I

errors become closer to the significance level, but can still be unstable. If we use the
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Figure 6: Estimated powers versus signal sizes when n < m+ p

multi-split method with 200 splits (J = 200), the type-I errors become well controlled.

The results imply that data splitting is necessary for the proposed two-stage testing

procedure, and show that multiple splits help us to obtain stable results. In addition,

in the four cases, the multi-split method (J = 200) achieves higher power than that

of the single split (J = 1) as the signal size increases. Moreover, for cases (a) and

(b) in Figure 6, with the single split of data (J = 1), we also compare the test power

when screening only on X with that when performing a dimension reduction on both

X and Y . The results are given by the curves “J = 1, only screening” and “J = 1,
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PCA & screening”, respectively. We observe that the test power is slightly enhanced

by performing a dimension reduction on both X and Y .

In addition, we conduct similar studies when X and Y take discrete values and

when the statistical error follows a heavy-tail t distribution; see the Supplementary

Material, Section S7.2. We observe similar patterns to those in Figure 6, which sug-

gests that the proposed method is robust to the normal assumption of the statistical

error.

6. Real-Data Analysis

We demonstrate our proposed method by analyzing the breast cancer dataset from

Chin et al. (2006), which was also studied by Chen et al. (2013) and Molstad and

Rothman (2016). The data set is available in the R package PMA, and consists of

measured gene expression profiles (GEPs) and DNA copy-number variations (CVNs)

for n = 89 subjects. Prior studies have demonstrated a link between DNA copy-

number variations and cancer risk (see, e.g., Peng et al., 2010). Here, we examine

the relationship between CNVs and GEPs using a multivariate regression method.

We examine the three chromosomes 8, 17, and 22, and test whether they are

related (i.e., C = Ip). We report the regression results for the CNVs on the GEPs

in this section; we provide the regression results for the GEPs on the CNVs in the

Supplementary Material, Section S8, where similar patterns are observed. Here, the
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m-variate response is the CNV data and the p-variate predictor is the GEP data,

where the dimension parameters are (p,m) = (673, 138), (1161, 87), (516, 18) for the

respective chromosomes. Because the parameters p and m are either comparable to

or larger than the sample size n = 89, we apply the proposed testing procedure in

Section 4. In particular, we choose the screening data size nS = 26 and the test data

size nT = 63, where nS : nT is approximately 3 : 7. We reduce the dimension of

the response CNV data matrix using a parallel analysis, and select the columns of

the GEP data matrix using the screening method in Section 4. To include as much

information on the predictors as possible, we select between 40 and 50 predictors

when screening. For each chromosome, we split the data J = 2000 times. Then, we

obtain the corresponding p-values, p(j), for j = 1, . . . , J , from the limiting distribution

of the test statistic T3. Lastly, we compute the final p-value, pt, and reject the null

hypothesis if pt < α.

We summarize the test results in Table 1. The column “p0” indicates the number

of selected predictors, and the columns “k1 → k2” under “Chromosome pair” indicate

that we use GEPs from the k1th chromosome to predict the CNVs from the k2th

chromosome. For each setting, the symbols “x” and “X” indicate that we reject and

accept the null hypothesis, respectively. The test results show that the null hypothesis

is rejected when the CNVs and GEPs are from the same chromosome, which makes

biological sense. On the other hand, if we use GEPs from the eighth chromosome
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Chromosome pair
p0 8→ 8 17→ 17 22→ 22 8→ 17 17→ 22 8→ 22
40 x x x x x X
45 x x x x x X
50 x x x x x X

Table 1: Decision results

to predict the CNVs from the 17th chromosome, or use the GEPs from the 17th

chromosome to predict the CNVs from the 22nd chromosome, the null hypotheses

are rejected; if we use GEPs from the eighth chromosome to predict the CNVs from

the 22nd chromosome, the null hypothesis is accepted. These conclusions indicate

different relationships between the CNVs and GEPs of different chromosomes, which

might deserve closer investigation.

To further illustrate the test results, Figure 7 provides box plots of {p(j) : j =

1, . . . , J} with respect to different chromosome pairs when p0 = 45. We find that the

medians of the p-values obtained from the regressions of 8 → 17, 17 → 22, and the

same chromosome pairs are smaller than 0.05, which are consistent with the rejection

decisions shown in Table 1. Moreover, for 8 → 22, the majority of the p-values

are larger than 0.05. This is thus consistent with the decision to accept the null

hypothesis when using the GEPs from the eighth chromosome to predict the CNVs

from the 22nd chromosome.
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Figure 7: Box plot of p-values for regressions on different chromosome pairs

7. Conclusion

We have examined the LRT for H0 : CB = 0r×m in a high-dimensional multivariate

linear regression, where p and m are allowed to increase with n. Under the null

hypothesis, we derive the asymptotic boundary where the classical χ2 approximation

fails, and propose a corrected limiting distribution for logLn in a general asymptotic

regime of (p,m, r, n). Under alternative hypotheses, we characterize the statistical

power of logLn in the high-dimensional setting, and propose a power-enhanced test

statistic. In addition, when n < p + m and the LRT is not well defined, we propose

using a two-step testing procedure with repeated data-splitting.

This study on the LRT of a multivariate linear regression can be extended to

vector nonparametric regression models. Specifically, for k = 1, . . . ,m, suppose the

kth response variable depends on the p-dimensional predictor vector x through the
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regression equation yk = Mk(x) + ek, where Mk is an unknown smooth function, and

ek is an error term. We begin with the case when the predictor is univariate. Then, we

can model Mk(x) using regression splines: Mk(x) =
∑M

j=1 bk,jφj(x), where Φ = (φj :

k = 1, . . . ,M)ᵀ are some basis functions. Write y = (y1, . . . , ym)ᵀ, e = (e1, . . . , em)ᵀ,

and B = (bk,j)M×m; then, y = BᵀΦ + e, which is in the form of the multivariate

linear regression. To test the coefficients B, we can apply the proposed method.

More generally, when the predictors are multivariate, additive models (Hastie and

Tibshirani, 1986) are commonly used to finesse the “curse of dimensionality”. The

multivariate functions Mk are written as Mk(x) = Mk,1(x1) + . . . + Mk,p(xp), for

k = 1, . . . ,m, where Mk,1(·), . . . ,Mk,p(·) are univariate functions. Suppose Φ1, . . . ,Φp

are the basis functions for Mk,1(·), . . . ,Mk,p(·), respectively. Then, y = B̃ᵀΦ̃+e, where

B̃ = (Bᵀ
1 , . . . , B

ᵀ
p)ᵀ and Φ̃ = (Φᵀ

1, . . . ,Φ
ᵀ
p)

ᵀ. Therefore, we can apply the proposed

LRT method to test the structure of the coefficient matrix B̃.

This work establishes its theoretical results under the assumption that the er-

ror terms E follow Gaussian distributions; nevertheless, we expect our conclusions

to hold over a larger range of distributions. Numerically, we conduct simulations

when the error terms follow discrete distributions or heavy-tail t distributions, which

are provided in the Supplementary Material. The simulation results show similar

patterns to the Gaussian cases, implying that the theoretical results may be valid.

Theoretically, Bai et al. (2013) showed that the linear spectral of the F -matrix S1S
−1
2
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also has an asymptotic normal distribution, without specifying that the distributions

of the entries of S1 and S2 must be normal. However, they assumed that entries of

S1 and S2 are independent and identically distributed, which is usually not satisfied

in a general multivariate regression analysis. Recently, Li et al. (2018) proposed a

modified LRT using a nonlinear spectral shrinkage, and established its asymptotic

normality without the normal assumption on E when m is proportional to n. How-

ever, they assumed that p, the number of predictors, is fixed. Thus, the asymptotic

distribution of logLn for general high-dimensional nonGaussian cases remains an

open question.

Supplementary Material

The online Supplementary Material includes proofs and additional simulations.
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