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Marginalized Maximum a Posteriori Estimation for
the 4-Parameter Logistic Model under a Mixture

Modeling Framework

Abstract

The 4-parameter logistic model (4PLM) has recently gained great interests in

various applications. Motivated by recent studies that reexpress the 4-parameter

model to be a mixture model with two levels of latent variables, this paper devel-

ops a new Expectation-Maximization (EM) algorithm for marginalized maximum

a posterior (MMAP) estimation of the 4PLM parameters. The mixture modeling

framework of the 4PLM not only makes the proposed EM algorithm more easily to

be implemented in practice, but also provides a natural connection with the popular

cognitive diagnosis models. Simulation studies were constructed to show the good

performance of the proposed estimation method and to investigate the impact of

the additional upper asymptote parameter on the estimation of other parameters.

Moreover, a real data set was analyzed by the 4PLM to show its outperformance

over the 3-parameter logistic model (3PLM).

Key words: 4-parameter logistic model, marginalized maximum a posteriori esti-

mation, Expectation-Maximization algorithm, mixture model.
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1 Introduction

The 4PLM was proposed by Barton and Lord (1981), who introduced an upper asymptote

parameter, d, that is slightly less than 1, to model the uncertainty of a high-ability

examinee missing an easy item. The limitation of Barton and Lord’s modeling approach

is that all items in a test share a common upper asymptote parameter, and they did not

estimate the fourth parameter but rather fitted the model with some fixed values for d.

Recent studies (Rouse et al, 1999; Linacre, 2004; Rupp, 2003; Tavares et al., 2004; Waller

& Reise, 2010) demonstrated that, in most cases, the upper asymptote varies across items

in a test. The formulation of the 4PLM that allows the upper asymptote parameter to

be item-specific is therefore considered more appropriate, which is,

pj (✓i) = P (Uij = 1 |✓i, ⇠j ) = cj + (dj � cj)
e
aj(✓i�bj)

1 + eaj(✓i�bj)
. (1)

where Uij denotes the observed dichotomous response of examinee i (i = 1, ..., N) to item

j (j = 1, ...,M) with Uij = 1 denoting the correct response and Uij = 0 otherwise; ✓i 2

(�1,+1) is the ability parameter; ⇠j = {aj, bj, cj, dj} is the item parameter set for

the jth item with aj 2 (0,+1) , bj 2 (�1,+1), cj 2 [0, 1] , and dj 2 (cj, 1] being

the discrimination, di�culty, guessing, and upper asymptote parameters, respectively.

The parameter dj is the maximum probability of endorsing item j, then 1 � dj can be

considered as the slipping probability of a student who can answer correctly but miss the

item. Here, N and M are used to denote the number of the examinees (sample size) and

the number of the items (test length).

The di�culties in parameter estimation and a lack of evidence supporting the need

likely result in that the 4PLM was not widely applied for a long time (Loken & Ruli-

son, 2010). In recent years, researchers are showing renewed interest in the 4PLM. For

instance, Liao et al. (2012) and Rulison and Loken (2009) argued that the 4PLM can im-

prove the accuracy of ability estimation by taking into account examinees’ early careless
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errors in CAT. Reise and Waller (2003) and Waller and Reise (2010) demonstrated that

the item response model including an upper asymptote parameter may be more appro-

priate for measuring psychopathology traits than the 3PLM or 2PLM, since the situation

of a high-trait subject who is reluctant to self-report attitudes is very common in psy-

chopathology measurement. Ogasawara (2012) gave the asymptotic distribution of the

ability estimation under the 4PLM, and Magis (2013) derived the maximum value of the

information function. Furthermore, several methods on the estimation of the parameters

in the 4-parameter model have been proposed. For instance, Loken and Rulison (2010)

employed a Bayesian approach with the Markov Chain Monte Carlo (MCMC) sampler to

estimate the 4PLM parameters. Feuerstahler and Waller (2014) employed the marginal

maximum likelihood (MML) method to recover the 4PLM using the R package “mirt”.

In comparison to the Bayesian estimation method calculated with the MCMC sampler

algorithm, the MML method requires shorter computation time, but it may not be stable

and the deviant values may be produced in many cases (Baker & Kim, 2004). To over-

come this disadvantage of the MML estimation, Mislevy (1986) proposed the Bayesian

modal (BM) estimation for the 3PLM. The BM estimation can be considered as a MMAP

estimation, it employs an augmented optimization objective that includes the likelihood

and some prior beliefs for the item parameters, these priors were used to prevent de-

viant parameter estimates from occurring. In fact, the BM estimation can be seen as

a regulation of the MML estimation, while the MML estimation is a special case of the

BM estimation that assume the uniform prior distributions of parameters. Waller and

Feuerstahler (2017) recently applied the BM estimation as implemented in the R package

“mirt” for the 4PLM.

In addition to the above researches on estimating the 4PLM, mixture modeling ap-

proaches have been developed by introducing latent variables to deal with the response

process. For instance, Béguin and Glas (2001), San Martin, del Pino and DeBoeck (2006),
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and von Davier (2009) interpreted the 3PLM from a two response strategies, guessing and

non-guessing, by revising the 3PLM to be a mixture model. Recently, Culpepper (2016,

2017) further developed a mixture modeling approach to reformulate the 4-parameter

normal ogive model (4PNOM) and multidimensional 4PNOM. To estimate the model

parameters, the existing works mostly focused on the Bayesian estimation with MCMC

sampling procedure and computationally may be time consuming, especially for large

data sets. Motivated by the mixture modeling specification in these researches, this pa-

per proposes a computationally e�cient EM algorithm to compute the MMAP estimates

of the 4PLM parameters.

The rest of the article is organized as follows. Section 2 reviews the mixture modeling

reformulation of the 4PLM and discuss the relationship between the 4PLM and cognitive

diagnosis model (CDM). Section 3 presents the derivations of the EM algorithm for the

MMAP estimation of the 4PLM under the mixture modeling framework. Section 4 reports

three simulation studies that were constructed to evaluate the performance of the proposed

method. Section 5 presents an application of the 4PLM to an empirical dataset. Finally,

we provide further discussions on some future research directions in Section 6.

2 An alternative expression of the 4PLM from the
two response processes: guessing versus slipping

From Equation (1), the probability of a correct response in the 4PLM is equivalent to,

P (Uij = 1|✓i, ⇠j) = cj ⇥
�
1� p

⇤
j
(✓i)
�
+ dj ⇥ p

⇤
j
(✓i), (2)

where

p
⇤
j
(✓i) =

exp [aj(✓i � bj)]

1 + exp [aj(✓i � bj)]
, (3)

is the 2-parameter Logistic model (2PLM).
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Following the mixture framework of conceptualizing the process of ability-based re-

sponding and guessing behaviors for 3PLM in von Davier (2009) and the study of 4PNOM

in Culpepper (2016), we present an alternative expression of the 4PLM using a mixture

model. Specifically, we introduce an unobserved latent variable Wij 2 {0, 1} to charac-

terize the two random response status of an examinee: W = 1 indicates the examinee is

“capable” to answer the item based on his/her ability and W = 0 otherwise. Following

the 4PLM representation in (2) and (3), we let Wij follow a Bernoulli distribution

Wij | ✓i, ⇠j ⇠ Bernoulli(p⇤
j
(✓i)), (4)

where p⇤
j
(✓i) is specified in (3), indicating that a higher ability ✓i leads to a higher chance

of having Wij = 1. When Wij = 1, the conditional probability of the response Uij is

specified as

Uij | Wij = 1, ⇠j ⇠ Bernoulli(dj), (5)

where 1 � dj corresponds to the slipping probability of making an mistake though the

examinee is ”capable” of answering item j. On the other hand, when Wij = 0, that

is the ith examinee does not know the correct answer of the jth item, the conditional

distribution of Uij is,

Uij | Wij = 0, ⇠j ⇠ Bernoulli(cj), (6)

where cj is the guessing probability of a correct response.

We next show that the mixture model specification in (4)–(6) is equivalent to the

4PLM given in (2). Based on the above distributions in (4)–(6), the joint probability

distribution of Uij and Wij (conditionally on ✓i and ⇠j) can be given as,

p(Uij ,Wij)(uij, wij | ✓i, ⇠j) = pUij |Wij ,✓i,⇠j(uij|wij)pWij |✓i,⇠j(wij | ✓i, ⇠j)

= d
wijuij

j
(1� dj)

wij(1�uij)c
(1�wij)uij

j
(1� cj)

(1�wij)(1�uij)

⇥p
⇤
j
(✓i)

wij
⇥
1� p

⇤
j
(✓i)
⇤1�wij

. (7)
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Hence, the marginal probability distribution of Uij over Wij can be given by,

pUij(uij | ✓i, ⇠j) =
X

wij=1,0

p(Uij ,Wij)(uij, wij | ✓i, ⇠j)

= d
uij

j
(1� dj)

(1�uij)p
⇤
j
(✓i) + c

uij

j
(1� cj)

(1�uij)(1� p
⇤
j
(✓i)), (8)

which is a two-class mixture Bernoulli distribution. From Equation (8), we have the

marginal probability of Uij = 1,

pUij(uij = 1 | ✓i, ⇠j) = p
⇤
j
(✓i) · dj + (1� p

⇤
j
(✓i)) · cj, (9)

which is the same as the 4PLM given in (2).

The above derivations demonstrate that the 4PLM can be considered as a two-

strategies mixture model. What’s more, the mixture model framework o↵ers a new sight

to understand the 4PLM and naturally connects it with the cognitive diagnosis models

as shown in Remark 1.

Remark 1 (Connection to CDMs) From the cognitive diagnosis models (CDMs) lit-

erature, Wij can also be interpreted as the ideal response variable, where Wij = 1 indicates

ith examinee is capable to answer item j and Wij = 0 otherwise. Then the distribution

of Uij specified in (5) and (6) is the same as the DINA model specification, where cj here

corresponds to the guessing parameter and 1� dj corresponds to the slipping parameter.

Moreover, we show that the 4PLM can also be viewed as a generalization of the Higher-

Order DINA model (de la Torre and Douglas, 2004) with only one latent attribute. In

particular, consider a cognitive diagnosis test with only one latent attribute A 2 {0, 1}.

Then the Q-matrix is J ⇥ 1 and we set Q = (1, . . . , 1)0
J⇥1, that is, all items require the

attribute A. Note that in this special case, the ideal responses of an examinee to all items

are all the same. Let Ai be the ith examinee’s latent attribute and the common ideal

responses to all items are I(Ai = 1) = Ai. The Higher-Order DINA model assumes the
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probability of Ai = 1 is from a 2PLM that

P (Ai = 1 | ✓i,�) =
exp [�0(✓i � �1)]

1 + exp [�0(✓i � �1)]
. (10)

where ✓i denotes a latent variable representing general ability in the studied domain and

�’s are regression parameters. Furthermore, given I(Ai = 1) = Ai, the ith examinee’s re-

sponse Uij to the jth item follows the same models in (5) and (6) under the Higher-Order

DINA model. Therefore, the only di↵erence between the 4PLM and the one-attribute

Higher-Order DINA model lies in how they model the ideal responses (Wij and Ai, re-

spectively). Comparing the model setup of the ideal responses between the Higher-Order

DINA model in (10) and the 4PLM in (2), we can see that (10) can be considered as a

special case of (2) with all aj’s replaced by a common parameter �0, bj’s replaced by �1,

and Wij replaced by a common variable Ai not depending on j. From this perspective,

the the one-attribute Higher-Order DINA model can be viewed as a special case of the

4PLM. More generally, we may consider the multi-attribute Higher-Order DINA model

as a sub-model of the multi-dimentional 4PLM.

3 The MMAP estimation for the 4PLM with an EM
algorithm

Under the mixture model framework, we develop an EM algorithm for calculating the

MMAP estimation for the item parameters in the 4PLM. In the following, we first specify

the prior distributions on the 4PLM parameters and then derive the formula of the EM

algorithm to calculate the MMAP estimators of the 4PLM item parameters.

We first introduce some notations. Let ui· = (ui1, ..., uiM) denote the observed re-

sponse vector of examinee i, u·j = (u1j, ..., uNj)
0
denote the observed response vector of

item j, and u = (u·1, ...,u·M) denote the realized response matrix. Let ✓ = (✓1, ..., ✓N) be

the ability parameter vector of all N examinees, ⇠j = (aj, bj, cj, dj) be the item parameter
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vector of item j, and ⇠ = (⇠1, ..., ⇠M) be all the item parameters of all M items.

The prior distribution for the ability variable, ✓i, is specified to be a normal distri-

bution, ✓i ⇠ N (µ✓, �
2
✓
). This is the standard choice in calculating the MML or MMAP

estimates of the parameters in IRT models. For the discrimination parameter aj, we firstly

transform aj = e
↵j , then a norm prior is assigned for ↵j, ↵j ⇠ N(µ↵, �

2
↵
). The prior for bj

is a norm distribution, bj ⇠ N (µb, �
2
b
). The prior for cj is a Beta prior, cj ⇠ Beta (sc, tc).

These prior distributions are commonly used in the applications of the IRT models. Fi-

nally, we assign a truncated Beta prior for dj, dj | cj ⇠ Beta (sd, td) I(cj < dj), since

dj > cj. Such truncated prior has been used in Culpepper (2016) to enforce the mono-

tonicity condition. Here ⌦ := {µ✓, �
2
✓
, µ↵, �

2
↵
, sc, tc, sd, td} are hyper-parameters to be

prespecified in practice.

According to Bayes theorem, the joint posterior density of ✓ and ⇠ is, p (⇠,✓ |u,⌦, ⌧ ) /

L (u |⇠,✓ ) f (✓ |⌧ ) f (⇠ |⌦) , where

L(u | ✓, ⇠) =
NY

i=1

MY

j=1

pj (✓i)
uij (1� pj(✓i))

1�uij

is the likelihood of the observed response data u, and

f (✓ |⌧ ) =
NY

i=1

f(✓i|⌧), f (⇠ |⌦) =
NY

j=1

f(⇠j | ⌦),

are the prior distributions of ✓ and ⇠, respectively.

As known in the literatures (Neyman & Scott, 1948; Baker & Kim, 2004), direct

jointly estimation of the persons’ ability parameters ✓i’s and item parameters often lead

to inconstant estimators, therefore ✓i’s are generally needed to be integrated over to

estimate the item parameters. Then we have the corresponding marginal distribution as

p (⇠ |u,⌦, ⌧ ) =

Z
p (⇠,✓ |u,⌦, ⌧ ) d✓, (11)
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and the modes of the marginal posterior p (⇠ |u,⌦, ⌧ ),

⇠̂ = argmax
⇠2⇥⇠

p (⇠ |u,⌦, ⌧ ) , (12)

are defined as the MMAP estimates of ⇠.

From Equation (7), if the latent variables W = {Wij, i = 1, ..., N ; j = 1, ...,M} were

observed, the 4PLM could be divided into two Bernoulli models, and the calculation of

the estimators of ⇠ would be straightforward. Specifically, let z = (u,W ,✓) be the the

complete data. The likelihood of z is

L(z | ⇠) =
NY

i=1

MY

j=1

d
Wijuij

j
(1� dj)

Wij(1�uij)c
(1�Wij)uij

j
(1� cj)

(1�Wij)(1�uij)

⇥p
⇤
j
(✓i)

Wij(1� p
⇤
j
(✓i))

1�Wijf (✓i |⌧ ) . (13)

The marginal posterior distribution p (⇠ |u,⌦, ⌧ ) in (11) can be calculated by,

p (⇠ |u,⌦, ⌧ ) =

Z Z
p (⇠, z |u,⌦, ⌧ ) dW d✓,

where

p (⇠, z |u,⌦, ⌧ ) / L (z |⇠ ) f (⇠ |⌦) . (14)

With the unobserved W in practice, we propose an EM interaction procedures under

the complete data (z) for calculating the MMAP estimators of ⇠ in Equation (12). Let

⇠(t) be the current values for ⇠ at the tth iteration, and the EM algorithm performs the

following two steps:

E-step: Given ⇠(t) and u calculate the conditional distribution of the latent vari-

ables W and ✓, denoted by p(W ,✓|u, ⇠(t)), and then use p(W ,✓|u, ⇠(t)) to calculate the

corresponding expectation of ln p (⇠, z |u,⌦, ⌧ ), i.e.,

Q

⇣
⇠, ⇠(t)

⌘
= EW,✓|u,⇠(t) {ln p (z, ⇠ |u,⌦, ⌧ )} . (15)
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M-step: Update the parameter estimate ⇠(t+1) by maximizing Q(⇠, ⇠(t)), i.e.,

⇠(t+1) = argmaxQ
⇣
⇠, ⇠(t)

⌘
.

We next describe the details in the E- and M-steps. From Equations (13) and (14),

ln p (⇠, z |u,⌦, ⌧ ) = lnL(z | ⇠) +
MX

j=1

ln f(⇠j | ⌦)

= L1(c, d) + L2(↵, b) +
NX

i=1

ln f(✓i|⌧) +
MX

j=1

ln f(⇠j | ⌦), (16)

where

L1(c, d) =
NX

i=1

MX

j=1

{Wijuij ln dj +Wij(1� uij) ln (1� dj) + (1�Wij)uij ln cj

+(1�Wij)(1� uij) ln (1� cj)},

L2(↵, b) =
NX

i=1

MX

j=1

Wij ln p
⇤
j
(✓i) + (1�Wij) ln (1� p

⇤
j
(✓i)).

From Equation (16), we note that the estimators of (cj, dj) and (↵j, bj) can be calculated

separately with respect to L1(c, d) and L2(↵, b) in E- and M-steps. Since L1(c, d) is a

linear function of Wij, the E-step is done by simply replace Wij with EW,✓|u,⇠(t) (Wij). In

M-step, the estimators of cj and dj can then be calculated as

c
(t+1)
j

=

P
N

i=1

⇣
1� EW,✓|u,⇠(t) (Wij)

⌘
uij + sc � 1

P
N

i=1

⇣
1� EW,✓|u,⇠(t) (Wij)

⌘
+ sc + tc � 2

, (17)

d
(t+1)
j

= d
⇤
j
⇥ I(d⇤

j
> c

(t+1)
j

) + (cj + �)⇥
h
1� I(d⇤

j
> c

(t+1)
j

))
i
,

where

d
⇤
j
=

P
N

i=1

⇣
EW,✓|u,⇠(t) (Wij)

⌘
uij + sd � 1

P
N

i=1

⇣
EW,✓|u,⇠(t) (Wij)

⌘
+ sd + td � 2

, (18)

and I(d⇤
j
> c

(t+1)
j

) is the indicative function of d
⇤
j
> c

(t+1)
j

. Note that to impose the

restriction that dj > cj, d
(t+1)
j

is assigned to be c(t+1)
j

+� for a small � > 0 when d
⇤
j
 c

(t+1)
j

.
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Based on Equations (7) and (8), we have,

EW ,✓|u,⇠t [Wij] =

Z 
dj · p⇤j(✓i)
pj(✓i)

�uij (1� dj) · p⇤j(✓i)
1� pj(✓i)

�1�uij

p

⇣
✓i

���ui, ⇠
(t)
⌘
d✓i,

where p
⇤
j
(·) is defined in (3). A quadrature approximation method is used to compute

the integrals in the E-step. In particular, define a grid of K equally-spaced points,

xk (k = 1, ..., K), specified for ✓, and the associated weightsA (xk) is assigned by f (xk |⌧ )⇥

(xk+1 � xk). The posterior probability of xk can be given by,

p

⇣
xk

���ui, ⇠
(t)
⌘
⇠=

Q
M

j=1 p
(t)
j

(xk)
uij

q
(t)
j

(xk)
1�uij

A (xk)
P

K

k=1

Q
M

j=1 p
(t)
j

(xk)
uij

q
(t)
j

(xk)
1�uij

A (xk)
, (19)

where

p
(t)
j
(xk) = c

(t)
j

� (d(t)
j

� c
(t)
j
)

exp (e↵
(t)
j (xk � b

(k)
j
))

1 + exp (e↵
(t)
j (xk � b

(k)
j
))

and q
(t)
j
(xk) = 1� p

(t)
j
(xk). Then EW ,✓|u,⇠t [Wij] can be approximately calculated by,

EW ,✓|u,⇠t [Wij] ⇠=
KX

k=1

"
d
(t)
j

· p⇤(t)
j

(xk)

p
(t)
j
(xk)

#uij
"
(1� d

(t)
j
) · p⇤(t)

j
(xk)

1� p
(t)
j
(xk)

#1�uij

p(xk | ui, ⇠
(t)
j
),

where i = 1, ..., N , j = 1, ...,M . Finally, plug them into the Equations (17) and (18), the

revise estimators, c(t+1)
j

and d
(t+1)
j

, can be approximately calculated.

In the M-step, the estimation equations for ↵j and bj can be approximated by

@EW ,✓|u,⇠t (ln p (⇠, z |u,⌦, ⌧ ))

@↵j

⇠=
KX

k=1

(xk � bj)(N̂(xk)� R̂(xk)p
⇤
j
(xk))�

↵j � µ↵

�↵

= 0,

(20)

@EW ,✓|u,⇠t (ln p (⇠, z |u,⌦, ⌧ ))

@bj

⇠= �e
e
↵j

KX

k=1

(N̂(xk)� R̂(xk)p
⇤
j
(xk))�

bj � µb

�b

= 0, (21)

where

N̂(xk) =
NX

i=1

"
d
(t)
j

· p⇤(t)
j

(xk)

p
(t)
j
(xk)

#uij
"
(1� d

(t)
j
) · p⇤(t)

j
(xk)

1� p
(t)
j
(xk)

#1�uij

p(xk | ui, ⇠
(t)
j
),

R̂(xk) =
NX

i=1

p

⇣
xk

���ui, ⇠
(t)
⌘
,
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and p(xk|ui, ⇠
(t)) is calculated as in (19). To solve the non-linear equations (20) and (21),

a Newton-Raphson iterate algorithm is used and the detailed calculation procedure and

the corresponding MATLAB code are presented in the Appendix.

4 Monte Carlo Simulation

This section reports three simulation studies to display the performance of the proposed

MMAP estimation. Specifically, the first simulation study was to investigate the influ-

ences of the prior distributions on the performance of the MMAP estimation; The second

simulation was constructed to study the relationship between the d parameter and the

properties of MMAP estimation; The third simulation was performed to compare the

performances of the proposed MMAP\EM method with the existing BM estimation pro-

cedure implemented in R package “mirt” (Waller & Feuerstahler, 2017).

4.1 Simulation Study 1

In this simulation, the test length was M = 20 and the true values of aj, bj and cj

(j = 1, . . . ,M) were randomly drawn from a large scale achievement test that was ana-

lyzed in Wang, Chang, and Douglas (2013). Following a similar setup to that of Loken

and Rulison (2010), the parameters dj (j = 1, . . . ,M) were randomly generated from a

truncated Beta distribution, dj ⇠ Beta (8, 2) with the constrain of dj > cj. The true

values of these item parameters are shown in the left four columns of Table 2. The exam-

inees’ ability variables, ✓i (i = 1, . . . , N), were randomly drawn from the standard normal

distribution, ✓i ⇠ N (0, 1). As the sample size is an important data characteristic deter-

mining the properties of the item parameter estimation, we generated response data with

three sample sizes of N = {1000, 5000, 10000}.

To investigate the influence of the prior distributions of parameters a, b, c, and d,
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the MMAP estimation was implemented under three groups of priors, please refer to

Table 1. Specifically, among the three groups of priors, those in the first line (denoted

as MMAP1) provide the strongest prior information. The distributions shown in the

third line (denoted as MMAP3) are the weakest informative priors, where Beta(1, 1) is

the uniform distribution on [0, 1], and N(0, 102) is close to non-informative prior. That

is, the MMAP estimators calculated under this group of priors can be considered as an

approximation of the MML estimators. The prior distributions shown in the middle line

(denoted as MMAP2) are weaker than the MMAP1 but stronger than the MMAP3.

To reduce the Monte Carlo error, 500 replications of the response data sets were

randomly generated, and the MMAP estimates were calculated for each of the 500 data

sets. The number of quadrature points in the MMAP estimation was set to be 20, and

both the convergence criterions for the EM algorithm and the N-R iterations were specified

to be 0.001. Finally, the root mean squared error (RMSE) and mean error(ME) were

calculated across the 500 replications to evaluate the accuracy and bias of the MMAP

estimators. The RMSE is defined as

RMSE (�j) =

r
G�1

XG

g=1

⇣
�̂gj � �j

⌘2
, (22)

and the ME is defined as,

ME (�j) = G
�1
XG

g=1

⇣
�̂gj � �j

⌘
, (23)

where �j is the item parameter (any ↵j, bj, cj, dj) of interest, �̂gj denotes the estimate of

�j in the g-th repetition, and G is the number of replications (G = 500 in this study).

In this simulation, there was not any deviant parameter estimate or any unsuccessful

iteration, even in the case of the weakly informative priors given in MMAP3. We consider

that the proposed estimation method based on the mixture model interpretation is helpful

for improving the convergence rate of the EM algorithm. Furthermore, the implementa-

tion of the EM procedure was generally fast. For instance, the average calculation time did
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not exceed 0.8, 2.5 and 10.0 seconds under the three sample sizes N = {1000, 5000, 10000}.

(The PC information: Intel Core i5-8200 CPU(1.6 GHz)),RAM(8G)). Tables 2–4 show

the obtained values of RMSEs for the MMAP estimators with the three prior specifica-

tions (MMAP1, MMAP2 and MMAP3) across the three sample sizes (N =1000, 5000

and 10000). Observing these results, the following trends can be observed.

1. Under the sample size ofN = 1000, there are slight di↵erences in the values of RMSE

of the MMAP estimators under the three groups of priors (MMAP1, MMAP2, and

MMAP3). Overall, the MMAP3 estimators displayed larger values of RMSE than

that of the MMAP1 and MMAP2 estimators. However, as the sample size increased,

the di↵erences in the RMSE of the three estimators become much smaller. For

instance, under the sample sizes of N = 5000 and 10000, the di↵erences in RMSE

of the three MMAP estimators were negligible for most item parameters. The same

phenomenon was observed on the values of ME (the values of ME are not reported

here due to space limitation). This suggests that when the number of examinees

is large, the MMAP estimators are mainly determined by the response data and

the specification of the prior distributions is not less crucial. On the other hand,

when the sample size is small, the prior information will have a larger impact on

the performance of the MMAP estimation, so to avoid the subjective error from

the misspecification of prior distributions, weakly informative or non-informative

priors may be recommended in practice. Additionally, we also calculated the BM

estimates of the 4PLM by implementing the “mirt” package. The results showed

that the BM estimators with informative priors perform similar to our method,

while the BM with the non-informative priors not only displayed lower accuracy

but also su↵ered from unsuccessful convergences frequently. It can be considered

that the mixture strategies framework of the 4PLM is helpful for the convergence

of the EM algorithm. The results of BM estimation were not reported here as they
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are not the main focus of this simulation study and more comparisons between our

method and the BM estimation are provided in Simulation Study 3.

2. It can be observed that the RMSE(d) of the items j = {4, 7, 8, 12, 19} are much larger

than those of the other items. The common characters of these items are: their a-

parameters were much lower than the other items, as well as the b- and d-parameters

were relative larger. This phenomenon was also observed in Culpepper(2016). In-

spired by the research of Lord (1975) and Mislevy (1986), which verified under the

3PLM that the estimation accuracy of cj and bj � 2/aj are positively correlated,

we may explain this phenomenon by a negative correlation between the estimation

accuracy of dj and the value of bj + 2/aj under the 4PLM. Heuristically, a larger

value of bj + 2/aj implies fewer examinees satisfying aj(✓i � bj) > 2, and therefore

less information on dj is provided by the responses, which then reduces the estima-

tion accuracy of dj. The scatter plots with the Pearson correlation coe�cients were

created to display the influence of bj + 2/aj on the estimation errors and biases of

the MMAP estimators of d, seeing Figure 1. It can be found that across the three

sample sizes, both the RMSE(d) and absolute ME(d) were positively correlated with

bj + 2/aj, and the correlations increase with the sample size. These results demon-

strated that the higher the di�cult and the lower the discrimination, the poorer the

estimation accuracy for the d parameter in terms of both mean squared error and

bias.

4.2 Simulation Study 2

The main purpose of this simulation is to investigate the impact of the d parameter on

the performance of the MMAP estimation. An artificial test with 4 levels of d, d 2

{0.65, 0.75, 0.85, 0.95}, were constructed, where each d-level included 5 items and the test

length was M = 20. To produce a controlled experiment, the values of a, b and c were
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identical for all items with a = 1.0, b = 0.0, and c = 0.2. Following to the simulation

study 1, the sample sizes were set to be N = {1000, 5000, 10000}, and the examinees’

ability parameter ✓’s were randomly drawn from N(0, 1). Additionally, 500 response data

sets were randomly generated, and the MMAP estimate were calculated with the three

groups of priors in Table 1. Finally, the RMSE and ME of the MMAP estimates were

calculated to display the properties (e�ciency and bias) of the estimator. Because the

trends on the MMAP estimators with the three groups of priors were consistent, we only

report the results under the priors of MMAP1 here.

Figures 2 and 3 show the values of RMSE and ME for the MMAP estimators of a, b, c

and d at the four di↵erent levels of d. Observing these plots, the following trends can be

found.

1. For the a-parameters and b-parameters, it can be seen that the values of RMSE(a)

and RMSE(b) at d = {0.75, 0.85} were smaller than d = {0.65, 0.95}. Similarly,

the values of ME(a) were closer to 0 (smaller biases) for d = {0.75, 0.85} than

d = {0.65, 0.95}. This indicates the parameters a and b are more di�cult to estimate

when d takes more extremal values.

2. For the c-parameters. it can be seen that the relationships between d and RMSE(c)

were the weakest among the four types of item parameters, and the highest values

were not larger than 0.05. The values of ME(c) were very close to 0. These results

demonstrated that the parameter of d have the smallest impact on the MMAP

estimator of c.

3. For the d-parameters, the RMSE(d) displays substantial di↵erences under the four

levels of d, for the two middle levels of d, d = {0.75, 0.85}, the RMSE(d) were smaller

than that of the two sides levels of d, d = {0.65, 0.95} and had smaller biases. It

suggests that the estimators of the middle d values are more accurate than that of
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the extreme d values.

4.3 Simulation Study 3

Many researchers have studied the application of 4PLM to the psychopathology testing

(Culpepper, 2016; Reise &Waller, 2003; Waller & Reise, 2010), where subjects with higher

levels of psychopathology may be reluctant to self-report attitudes, behaviors, and/or

experiences. Therefore, in this simulation, we compared the performance of the proposed

MMAP estimation with that of the BM estimation for estimating the 4PLM with a set of

psychopathology items. Following Culpepper (2016) and Waller and Feuerstahler (2017),

this study generated responses based on the 4PLM with the M = 23 psychopathology

item parameters from Waller and Reise (2010) as the true values; please refer to Table

5. The same as the above two simulation studies, the examinees’ abilities (✓’s) were

randomly drawn from N(0, 1), and three sample sizes of N = {1000, 5000, 10000} were

considered.

The MMAP estimates were calculated with the informative prior distributions that

were given in the MMAP1 of Table1. In the “mirt” R library, the logistic model was

design by a slope-threshold parameterizations, that is 1.7ai and 1.7aibi were estimated

instead of directly estimating ai and bi. According to Waller and Feuerstahler (2017),

the priors for 1.7a and 1.7ab were set to be 1.7a ⇠ LN(1, 12) and 1.7ab ⇠ N(0, 22). In

addition, the prior distributions for c and d were set to be logistic(c) ⇠ N(�1.2, 0.52) and

logistic(d) ⇠ N(1.2, 0.52), which are approximately equal to Beta(5, 17) and Beta(17, 5);

please see Figure 4. To sum up, the prior distributions for the two estimation methods

were very close. The MMAP and BM estimations of the 4PLM were calculated across 500

replications, and the RMSE were calculated to evaluate the properties of the estimators;

please see Figures 5–7.
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From these plots, it can be observed that, for most of the 23 items, the MMAP

estimators of the item parameters (a, b, c, d) provided lower values of RMSEs than those

of the BM estimators across the three sample sizes. It is indicated that the accuracy of

the MMAP estimators were superior to that of the BM estimator. It is obviously that

the RMSEs of MMAP and BM estimators both display decreasing trends as the sample

size increased. That is, increasing sample size can improve the estimation accuracy,

which is expected. Finally, the di↵erences between the RMSEs of the MMAP and BM

estimators were still exist under the sample size of N = 10000, but the superiorities of

MMAP estimator were weaken, especially for the parameters of c, the two estimators were

extremely close.

5 Empirical study

This section demonstrated an application of the 4PLM with an empirical example. The

data set is from a state reading assessment test that was previously analyzed in Tao,

Shi and Chang (2012). The dataset includes 50 dichotomous items and the sample size

is N = 2000. In our study, the response data of the 50 dichotomous items was fitted

by the 4PLM. The item parameters were estimated using the MMAP method, and the

examinees’ abilities were estimated using the Warm’s weighted maximum likelihood es-

timation (WMLE). The Warm’s WMLE has been proved to be superior to the ML and

EAP estimates by many studies (Penfield & Bergeron, 2005; Warm,1989; Wand & Wang,

2001; Meng, Tao & Chen, 2016). The results of the parameter estimation and the model

fitting evaluation are reported in the following.
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5.1 Results of the item parameter estimation

The item parameter estimates from the 3PLM and 4PLM are presented in Table 6. It

can be observed that the estimates of the parameters (a, b, and c) in the two models

(3PLM and 4PLM) are close for most items, while for the items with lower level of

d, the di↵erences between the estimates are more substantial. For instance, for items

j = 5, 9, 18 and 50, their a parameters estimated from the 3PLM are extremely small,

while the estimates from the 4PLM are much larger. This may be because that there were

a large proportion of examinees slipping their responses to these items, resulting in the

3PLM underestimate their discrimination; see also the model fitting evaluation results

given in Table 6 to be discussed in the next subsection.

The Pearson correlation coe�cients between the parameters estimates of the 3PLM

and the 4PLM are obtained: r
a(3PL),a(4PL) = 0.68, r

b(3PL),b(4PL) = 0.94, r
c(3PL),c(4PL) = 0.88,

and the corresponding scatter plots are shown in the left column of Figure 8. We also

illustrate the di↵erences of the distributions of a, b and c between the 3PLM and the 4PLM

by estimating their kernel density curves across the test; please see the right column in

Figure 8. The estimates of a, b and c in 4PLM are highly correlated with those in 3PLM.

Furthermore, it can be observed that the a parameter of the 4PLM was consistently higher

than that of the 3PLM for each item, but the b parameter presented the opposite trend.

This phenomenon has also been found in Loken and Rulison (2010). The reason for this

may be that the upper asymptote less than 1 results in the response function does not

have to flatten out to accommodate the poorly fitting responses (Loken & Rulison, 2010).

Finally, we compare the performances of the 4PLM and the 3PLM on estimating the

examinees’ abilities ✓’s. The scatter plot between the estimates of ✓’s from the 3PLM and

the 4PLM and their kernel probability density function curves are presented in Figure 9. It

can be seen that the estimates of ✓’s from the two models are highly correlated with their
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Pearson correlation r
✓(3PL),✓(4PL) = 0.98. However, when ✓ > 1.0, the estimates of ✓’s from

the 4PLM are a little larger than that from the 3PLM. This indicates that the 3PLM is

likely to underestimate the high-ability examinees. Furthermore, from the kernel density

curves, it can be observed that the two curves of ✓’s are mostly overlapped, except for the

right tail, where 3PLM may fail to capture the behaviors of the high ability students. It

would be interesting to further investigate whether the result obtained in the empirical

study still holds in general and how it would impact test taking strategies if 4PLM is

known to be the scoring model beforehand. We would like to leave this interesting topic

for future study.

5.2 Assessing model data fit

Assessing model fit is a routine and important procedure in IRT domain. IRT models

can be implemented e↵ectively for analyzing educational and psychological test data only

when the fit of the model is met at least to a reasonable degree. In this study, the fit of

the model to data was evaluated at the test and item levels respectively.

At the test level, the Chi-Square statistic, �2Log-Likelihood (�2logL) and AIC

(Akaike,1973) were calculated. The test Chi-Square statistic is defined as,

�
2
test

=
XH

h=1

(foh � feh)
2

feh
,

where foh and feh is the observed and expected frequency of score h, (h = 0, 1, ..., 50).

The obtained results are displayed in Table 8. It can be seen that the three test-model

fitting indexes consistently support that the 4PLM fits the data better than the 3PLM.

Moreover, to display the di↵erence between the observed and the model predicted

number-correct score distributions, the test fitting plot (Hambleton & Traub, 1973; Swami-

nathan, et al., 2006) is reported in Figure 10. It can be observed that the di↵erences of

the lines between the two models are very small for the test takers with test scores  40,
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but when the test scores > 40, the fitting frequency curve of the 4PLM is much closer

to the observed score distribution than that of the 3PLM. That is, the 4PLM can better

describe the data of the high-scores by modeling the slipping behaviors.

Following one reviewer’s suggestion, we also fitted the 4PLM with several fixed upper

asymptotes that are less than 1. We calculated the fitting indexes of the 4PLM under

fixed d = 0.98, 0.95 and 0.90. The obtained results of the model-data fitting assessment

are given in the bottom panel of Table 8. All the model indexes consistently support

that the fitting of the 4PLM (without specifying d) is the best among all the considered

models. This suggests that the 4PLM is a better choice in practice than the 4PLM with

a fixed upper asymptote.

At the item level, the Pearson Chi-Square fit statistic (Hambleton & Han, 2005;

Hambleton et al., 1991; Rogers & Hattie, 1987),

�
2
item

=
XT

t=1
Nt

(Ot � Et)
2

Et (1� Et)
,

and the likelihood ratio statistic (Mislevy & Bock, 1990; McKinley & Mills, 1985) provided

in BILOG-MG,

G
2 = 2

XT

t=1
Nt

✓
Ot ln

Ot

Et

+ (1�Ot) ln
1�Ot

1� Et

◆
,

were calculated for assessing the model fitting. Here Ot denotes the observed proportion

correct in trait interval t, Et denotes the expected proportion correct in the interval under

the given model, Nt is the number of persons in the interval, and T is the number of the

trait intervals. In this study, T = 15 equal size intervals between �2.5 and 2.5 were chosen

and the mean of the probabilities of a correct response was calculated as the expected.

The obtained results are shown in Table 7. It can be found that the values of �2
item

and

G of the 4PLM are smaller than that of the 3PLM for most items, and the number of

significant �2
item

and G
2 statistics of the 4PLM is fewer, indicating that the 4PLM fits the

data better than that of the 3PLM.
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To further illustrate, we use graphical display to examine the discrepancy between

observed and expected proportions (Swaminathan, et al., 2006). For illustration purposes,

the fitting plot of item 5 is displayed in Figure 11. It shows that the upper asymptote

of the probability of correct response gets close to 0.85 rather than approaching 1, as

the ability level increases. Hence, the fitting of the 3PLM for this item shows serious

deviation while the 4PLM can better captures the response behavior on this item.

6 Discussion

In this paper, we utilize a mixture model representation of the 4PLM and propose a

MMAP approach for estimating the 4PLM with an EM algorithm. The mixture model-

ing revision of the 4PLM not only made the EM algorithm more easily to be implemented

but also provided a natural connection with the popular cognitive diagnosis models. Three

simulation studies were conducted to investigate the properties of the MMAP\EM estima-

tion under various conditions. The first simulation study was designed to investigate the

impacts of prior distributions on the accuracy of the MMAP estimation. The simulation

results demonstrated that the accuracy of the MMAP estimators under di↵erent specifi-

cations of priors were almost equivalent when the sample size as large as N = 5000 and

10000. In the case of a smaller sample size N = 1000, the prior information has a larger

impact on the MMAP estimation. This phenomenon is consistent with the simulation

results reported in the discussion of Culpepper (2016). Thus uninformative priors should

be recommended in the case of the sample size is small and a accurate prior information

can not be obtained beforehand. The second simulation was to study the influences of the

upper asymptote parameter d on the MMAP estimation. The results of this simulation

demonstrated that the parameter d displayed substantial impacts on the MMAP estimates

of a, b and d, where extreme values of d leaded to the decrease of the accuracy of MMAP

estimators, but the influences of d on c were weaker. The goal of the third simulation was
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to compare the performance of the MMAP estimation with the BM estimation in Waller

and Feuerstahler (2017). The obtained results suggested that our MMAP estimators are

more accurate than that of the BM estimators across di↵erent sample sizes. Finally, a real

data from a state reading assessment testing was analyzed using the 4PLM. The obtained

results suggested that the upper asymptote parameter was needed, and in comparison

with the 3PLM, the 4PLM can better fit this data. Additionally, the relationships of the

common parameters estimators of the two models (3PLM and 4PLM) were investigated

in this empirical study, which further illustrates the outperformance of the 4PLM.

There are several issues to be pursued in the future. First, it is interesting to study

the MMAP estimation based on a hierarchical prior distribution that jointly models all the

item parameters. The more flexible priors would allow to reduce the subjective error when

specifying the prior distributions. On the other hand, this is also likely to increase the

computational complexity which may result in a decrease in the accuracy of the parameter

estimation. Second, the results of the empirical study demonstrated that scaling the high-

ability examinees based on the 4PLM is more accurate than 3PLM. It is needed to further

study the estimation performance under di↵erent simulation conditions. Furthermore, it

would be interesting to study how it would impact test takers’ strategies to answer items

if the scoring model (such as 4PLM or 3PLM) is known beforehand. This is an important

issue in practice and will be studied in the future. Third, the distribution of the ability

parameter ✓ is specified to be the standard normal distribution in this study, which is

commonly used in IRT. However, this assumption is likely to fail in practice, as suggested

by the kernel density curves in Figure 9. It would be interesting to apply the joint

likelihood estimation approach to estimate item parameters and ✓ simultaneously, which

relaxes the normality assumption of ✓. On the other hand, as known in the literature

that joint estimation may su↵er from inconsistency estimation issue when the number of

items are not large enough. Therefore we would like to leave this interesting topic as a
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future study.
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Table 1: The prior distributions of item parameters in the 4PLM.

Prior (↵) Prior (b) Prior (c) Prior (d)
MMAP 1 (µ↵ = 0, �2

↵
= 12) (µb = 0, �2

b
= 12) (sc = 5, tc = 17) (sd = 17, td = 5)

MMAP 2 (µ↵ = 0, �2
↵
= 52) (µb = 0, �2

b
= 52) (sc = 3, tc = 9) (sd = 9, td = 3)

MMAP 3 (µ↵ = 0, �2
↵
= 102) (µb = 0, �2

b
= 102) (sc = 1, tc = 1) (sd = 1, td = 1)
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Table 5: The values of item parameters for the psychopathology item in Waller and Reise
(2010).

Item parameters Item parameters
Item a b c d Item a b c d

1 1.91 �0.28 0.04 0.52 14 0.84 0.72 0.04 0.75
2 1.95 �0.16 0.02 0.48 15 1.13 0.15 0.03 0.61
3 1.50 0.05 0.02 0.60 16 0.79 1.19 0.04 0.73
4 1.12 0.06 0.02 0.63 17 1.27 0.48 0.01 0.84
5 0.89 0.45 0.04 0.82 18 0.94 1.37 0.09 0.94
6 1.08 �0.50 0.06 0.83 19 0.84 1.44 0.02 0.82
7 1.16 �0.47 0.07 0.71 20 1.14 1.52 0.00 0.82
8 1.10 0.01 0.04 0.73 21 1.10 0.25 0.02 0.93
9 0.78 0.45 0.05 0.57 22 0.72 0.53 0.24 0.95
10 1.23 0.19 0.01 0.90 23 0.88 1.56 0.06 0.91
11 1.34 0.41 0.02 0.85
12 1.54 �0.48 0.06 0.59
13 1.16 0.18 0.02 0.40
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Figure 1: The left column show the scatter plots between b+2/a and RMSE of the MMAP
estimators for the d-parameter across the sample sizes of N = {1000, 5000, 10000}; The
right column show the scatter plots between b + 2/a and absolute ME of the MMAP
estimators for the d-parameter across the sample sizes of N = {1000, 5000, 10000}.
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Figure 2: The values of RMSE of the MMAP estimators for the 4PLM item parameters
under the four levels of d = {0.65, 0.75, 0.85, 0.95} and the three sample sizes of N =
{1000, 5000, 10000}.
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Figure 3: The values of ME of the MMAP estimators for the 4PLM item parameters
under the four levels of d = {0.65, 0.75, 0.85, 0.95} and the three sample sizes of N =
{1000, 5000, 10000}.
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Figure 4: The probability density function curves for the distributions of Beta(5,17) and
Logistic-Normal(-1.2,0.5), Beta(17,5) and Logistic-Normal(1.2,0.5).
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Figure 5: The values of RMSE for the MMAP and BM estimators of the 4PLM item
parameters under the sample size is N = 1000.
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Figure 6: The values of RMSE for the MMAP and BM estimators of the 4PLM item
parameters under the sample size is N = 5000.
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Figure 7: The values of RMSE for the MMAP and BM estimators of the 4PLM item
parameters under the sample size is N = 10000.
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Table 7: The item model fit indices for 4PLM and 3PLM.

�
2
item

G
2

�
2
item

G
2

Item 4PL 3PL 4PL 3PL Item 4PL 3PL 4PL 3PL
1 21.56 23.34⇤ 19.51 25.79⇤ 26 14.81 6.98 20.17⇤ 8.34
2 5.58 11.27 7.97 12.70 27 20.12⇤ 16.00 19.96⇤ 16.13
3 4.24 6.85 4.39 5.24 28 13.14 10.96 12.38 12.52
4 18.15 28.04⇤ 22.11⇤ 27.72⇤ 29 14.34 13.91 17.99 15.78
5 5.14 48.02⇤ 7.81 45.26⇤ 30 17.79 9.26 21.07⇤ 10.06
6 6.94 6.78 10.19 7.61 31 9.93 13.11 9.25 15.76
7 10.61 15.19 14.44 15.85 32 24.91⇤ 13.46 22.22⇤ 12.85
8 14.79 10.66 16.65 11.76 33 19.39 18.74 22.06⇤ 22.13⇤

9 16.51 21.47⇤ 15.69 19.12 34 15.58 13.68 15.06 15.71
10 24.07⇤ 24.49⇤ 27.83⇤ 23.28⇤ 35 11.48 25.55⇤ 12.43 21.88⇤

11 6.57 7.66 8.98 7.58 36 14.52 28.88⇤ 17.21 25.99⇤

12 11.74 9.07 12.20 10.05 37 11.13 14.85 14.14 13.36
13 11.03 14.39 14.03 13.81 38 9.37 16.36 9.80 17.22
14 7.81 15.75 7.54 18.61 39 32.99⇤ 17.97 31.28⇤ 16.69
15 5.40 9.42 13.17 12.03 40 16.32 14.27 18.04 15.49
16 7.10 12.50 8.01 14.12 41 9.30 17.08 12.78 20.84
17 9.28 9.28 10.38 9.75 42 12.50 22.64⇤ 11.42 19.81⇤

18 21.59⇤ 31.20⇤ 23.35⇤ 31.74⇤ 43 18.41 7.75 20.29⇤ 8.72
19 11.13 11.88 12.09 11.15 44 8.84 8.59 12.59 7.98
20 13.60 12.98 14.62 14.31 45 9.54 15.06 11.00 13.97
21 19.02 24.35⇤ 19.01 29.91⇤ 46 13.82 29.57⇤ 15.33 19.78⇤

22 6.01 8.72 6.88 9.62 47 16.58 8.97 18.56 10.68
23 19.56 19.98 18.25 17.60 48 9.06 9.81 11.30 13.85
24 13.55 60.45⇤ 20.77⇤ 51.16⇤ 49 4.32 10.38 5.87 10.39
25 8.73 6.26 9.77 8.17 50 8.97 21.56⇤ 8.78 24.45⇤

Note:* denotes the valus of �2
test

and G
2 are greater than the critical values at the

significance level of 5%.
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Figure 8: The three plots in the left column are the scatter plots between the estimates of
the item parameter (a, b and c) in the 4PLM and the 3PLM; The three plots in the right
column are the kernel probability density function curves of a, b and c under the 4PLM
and the 3PLM
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Table 8: The test model fit indices for the 4PLM, 3PLM, and the 4PLM with three
constrained upper asymptotes (d = 0.98, 0.95, 0.90).

�
2
test

�2LogL AIC

4PLM 99.87 104631 105031
3PLM 112.25 104896 105196

4PLM�0.98 101.20 104944 105244
4PLM�0.95 103.20 105124 105424
4PLM�0.90 301.57 105850 106150
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Figure 9: The scatter plots between the estimates of ✓ in the 4PLM and the 3PLM, and
the kernel density function curves of the estimates of ✓ in the 4PLM and the 3PLM.
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Appendix A: The Newton-Raphson interaction for solv-
ing equations 20 and 21.

Let ↵(r)
j

and b
(r)
j

be the current estimates, then the next estimates are given by,
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where

L↵j(↵j, bj) =
@EW ,✓|u,⇠t (ln p (⇠, z |u,⌦, ⌧ ))

@↵j

,

Lbj(↵j, bj) =
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are given in Equations (20) and (21), and
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where p
⇤
j
(·) is defined in (3).
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Appendix B: Matlab code of MMAP\EM for 4PLM

function [R_a, R_b, R_c, R_d]=MMAP(u, n, prior_a, prior_b, prior_c, prior_d)

% u: is the response matrix

% prior_a: is the prior of a

% prior_b: is the prior of b

% prior_c: is prior of c

% prior_d: is prior of d

% M: is the number of test takers

% N: is the number of items

% ntime: is number of the Fisher-Scoring iteration

% NTIME: is number of the EM algorithm

% a0: is initial value of a parameter

% b0: is initial value of b parameter

% c0: is initial value of c parameter

% d0: is initial value of d parameter

% n: is the number of the quadrature points

% x: is quadrature points

indice=1;

INDICE=1;

ntime=0;

NTIME=0;

[M,N]=size(u);

x=linspace(-4,4,n);

x1=x’;

d=x1(2)-x1(1);

Ak=normpdf(x1,0,1)*d;

r0=identify(u);

a0=r0./sqrt(1-r0.^2);

a0=log(a0)*0;

b0=sum(u)./M;

b0=-norminv(b0,0,1)./r0;

c0=0*a0+0.25;

d0=0*a0+0.8;

P=@(a,b,c,d,x)c+(d-c)./(1+exp(-a.*(x-b)));

% -------------------------------------------

MM=ones(M,1);

a1=MM*a0;

b1=MM*b0;

c1=MM*c0;

d1=MM*d0;

amu=prior_a(1);
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asigma2=prior_a(2);

bmu=prior_b(1);

bsigma2=prior_b(2);

for k=1:n

p=P(exp(a1),b1,c1,d1,x(k));

L=p.^u.*((1-p).^(1-u));

LL(:,k)=prod(L,2)*Ak(k);

end

LL0=sum(LL,2);

LH=sum(log(LL0));

% E-step and M-step

NM=ones(1,n);

while INDICE==1 && NTIME<Niteration

LL1=LL0*nn;

h=LL./LL1;

f=sum(h);

for i=1:N

U=(u(:,i))*NM;

p=MM*P(exp(a0(i)),b0(i),c0(i),d0(i),x);

ppp=(p-c0(i))/(d0(i)-c0(i));

pz=(d0(i)*ppp./p).*U+((1-d0(i))*ppp./(1-p)).*(1-U);

PZ=pz.*h;

r=sum(PZ);

c0(i)=(sum(u(:,i).*(1-sum(PZ,2)))+prior_c(1))/(sum(1-sum(PZ,2))+prior_c(2));

S=(sum(sum(PZ,2).*u(:,i))+prior_d(1))/(sum(sum(PZ,2))+prior_d(2));

if S>c0(i)

d0(i)=S;

else

d0(i)=c0(i)+0.1;

end

at=a0(i);

bt=b0(i);

while indice==1 && ntime<50

Pi=P(exp(at),bt,0,1,x);

w=Pi.*(1-Pi);

la1=exp(at)*sum((x-bt).*(r-f.*Pi))-(at-amu)/asigma2;

lb1=-exp(at)*sum(r-f.*Pi)-(bt-bmu)/bsigma2;

laa=-exp(2*at)*sum((f.*(x-bt).^2.*w))-1/asigma2;

lbb=-exp(2*at)*sum((f.*w))-1/bsigma2;

lab=exp(2*at)*sum((x-bt).*f.*w) ;

res=[at;bt]-[laa,lab;lab,lbb]^(-1)*[la1;lb1];

at1=res(1);

bt1=res(2);

if norm([at1-at;bt1-bt],2)<0.0001
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indice=0;

else

at=at1;

bt=bt1;

ntime=ntime+1;

end

end

ntime=1;

indice=1;

a0(i)=at1;

b0(i)=bt1;

end

a1=MM*a0;

b1=MM*b0;

c1=MM*c0;

d1=MM*d0;

for k=1:n

p=P(exp(a1),b1,c1,d1,x(k));

L=p.^u.*((1-p).^(1-u));

LL(:,k)=prod(L,2)*Ak(k);

end

LL0=sum(LL,2);

LH1=sum(log(LL0));

if abs(LH-LH1)<10^(-3)

INDICE=0;

else

NTIME=NTIME+1;

LH=LH1;

end

RL(NTIME)=LH1;

end

Ra=exp(a0);

Rb=b0;

Rc=c0;

Rd=d0;
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