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Marginalized Maximum a Posteriori Estimation for
the 4-Parameter Logistic Model under a Mixture
Modeling Framework

Abstract

The 4-parameter logistic model (4PLM) has recently gained great interests in
various applications. Motivated by recent studies that reexpress the 4-parameter
model to be a mixture model with two levels of latent variables, this paper devel-
ops a new Expectation-Maximization (EM) algorithm for marginalized maximum
a posterior (MMAP) estimation of the 4PLM parameters. The mixture modeling
framework of the 4PLM not only makes the proposed EM algorithm more easily to
be implemented in practice, but also provides a natural connection with the popular
cognitive diagnosis models. Simulation studies were constructed to show the good
performance of the proposed estimation method and to investigate the impact of
the additional upper asymptote parameter on the estimation of other parameters.
Moreover, a real data set was analyzed by the 4PLM to show its outperformance

over the 3-parameter logistic model (3PLM).
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1 Introduction

The 4PLM was proposed by Barton and Lord (1981), who introduced an upper asymptote
parameter, d, that is slightly less than 1, to model the uncertainty of a high-ability
examinee missing an easy item. The limitation of Barton and Lord’s modeling approach
is that all items in a test share a common upper asymptote parameter, and they did not
estimate the fourth parameter but rather fitted the model with some fixed values for d.
Recent studies (Rouse et al, 1999; Linacre, 2004; Rupp, 2003; Tavares et al., 2004; Waller
& Reise, 2010) demonstrated that, in most cases, the upper asymptote varies across items
in a test. The formulation of the 4PLM that allows the upper asymptote parameter to
be item-specific is therefore considered more appropriate, which is,
@i (0i—bj)

p; (0s) = P (U = 110:,&) = ¢; + (dj — ) Ty

(1)

where U;; denotes the observed dichotomous response of examinee i (i = 1, ..., N) to item
Jj (j=1,..,M) with U;; = 1 denoting the correct response and U;; = 0 otherwise; 6, €
(—00,+00) is the ability parameter; &; = {a;,b;,c;,d;} is the item parameter set for
the jth item with a; € (0,+00), b; € (—o0,+00), ¢; € [0,1], and d; € (c¢j,1] being
the discrimination, difficulty, guessing, and upper asymptote parameters, respectively.
The parameter d; is the maximum probability of endorsing item j, then 1 — d; can be
considered as the slipping probability of a student who can answer correctly but miss the
item. Here, N and M are used to denote the number of the examinees (sample size) and

the number of the items (test length).

The difficulties in parameter estimation and a lack of evidence supporting the need
likely result in that the 4PLM was not widely applied for a long time (Loken & Ruli-
son, 2010). In recent years, researchers are showing renewed interest in the 4PLM. For

instance, Liao et al. (2012) and Rulison and Loken (2009) argued that the 4PLM can im-

prove the accuracy of ability estimation by taking into account examinees’ early careless



errors in CAT. Reise and Waller (2003) and Waller and Reise (2010) demonstrated that
the item response model including an upper asymptote parameter may be more appro-
priate for measuring psychopathology traits than the 3SPLM or 2PLM, since the situation
of a high-trait subject who is reluctant to self-report attitudes is very common in psy-
chopathology measurement. Ogasawara (2012) gave the asymptotic distribution of the
ability estimation under the 4PLM, and Magis (2013) derived the maximum value of the
information function. Furthermore, several methods on the estimation of the parameters
in the 4-parameter model have been proposed. For instance, Loken and Rulison (2010)
employed a Bayesian approach with the Markov Chain Monte Carlo (MCMC) sampler to
estimate the 4PLM parameters. Feuerstahler and Waller (2014) employed the marginal
maximum likelihood (MML) method to recover the 4PLM using the R package “mirt”.
In comparison to the Bayesian estimation method calculated with the MCMC sampler
algorithm, the MML method requires shorter computation time, but it may not be stable
and the deviant values may be produced in many cases (Baker & Kim, 2004). To over-
come this disadvantage of the MML estimation, Mislevy (1986) proposed the Bayesian
modal (BM) estimation for the 3PLM. The BM estimation can be considered as a MMAP
estimation, it employs an augmented optimization objective that includes the likelihood
and some prior beliefs for the item parameters, these priors were used to prevent de-
viant parameter estimates from occurring. In fact, the BM estimation can be seen as
a regulation of the MML estimation, while the MML estimation is a special case of the
BM estimation that assume the uniform prior distributions of parameters. Waller and
Feuerstahler (2017) recently applied the BM estimation as implemented in the R package
“mirt” for the 4PLM.

In addition to the above researches on estimating the 4PLM, mixture modeling ap-
proaches have been developed by introducing latent variables to deal with the response

process. For instance, Béguin and Glas (2001), San Martin, del Pino and DeBoeck (2006),



and von Davier (2009) interpreted the 3PLM from a two response strategies, guessing and
non-guessing, by revising the 3PLM to be a mixture model. Recently, Culpepper (2016,
2017) further developed a mixture modeling approach to reformulate the 4-parameter
normal ogive model (4PNOM) and multidimensional 4PNOM. To estimate the model
parameters, the existing works mostly focused on the Bayesian estimation with MCMC
sampling procedure and computationally may be time consuming, especially for large
data sets. Motivated by the mixture modeling specification in these researches, this pa-
per proposes a computationally efficient EM algorithm to compute the MMAP estimates
of the 4PLM parameters.

The rest of the article is organized as follows. Section 2 reviews the mixture modeling
reformulation of the 4PLM and discuss the relationship between the 4PLM and cognitive
diagnosis model (CDM). Section 3 presents the derivations of the EM algorithm for the
MMAP estimation of the 4PLM under the mixture modeling framework. Section 4 reports
three simulation studies that were constructed to evaluate the performance of the proposed
method. Section 5 presents an application of the 4PLM to an empirical dataset. Finally,

we provide further discussions on some future research directions in Section 6.

2 An alternative expression of the 4PLM from the
two response processes: guessing versus slipping

From Equation (1), the probability of a correct response in the 4PLM is equivalent to,
P(Uy; = 110;,&) = ¢; x (1 —p3(0;)) + dj x p;(65), (2)

where

cipy . expla;(0; — b))l
PO = T exp oy 0= b)) )

is the 2-parameter Logistic model (2PLM).




Following the mixture framework of conceptualizing the process of ability-based re-
sponding and guessing behaviors for 3PLM in von Davier (2009) and the study of 4PNOM
in Culpepper (2016), we present an alternative expression of the 4PLM using a mixture
model. Specifically, we introduce an unobserved latent variable W;; € {0,1} to charac-
terize the two random response status of an examinee: W = 1 indicates the examinee is
“capable” to answer the item based on his/her ability and W = 0 otherwise. Following

the 4PLM representation in (2) and (3), we let W;; follow a Bernoulli distribution
Wij ‘ 91',5]' ~ Bernoulh(p;k(ﬁl)), (4)

where p(0;) is specified in (3), indicating that a higher ability 6; leads to a higher chance
of having W;; = 1. When W;; = 1, the conditional probability of the response U;; is

specified as
Uy | Wi; = 1,&; ~ Bernoulli(d;), (5)

where 1 — d; corresponds to the slipping probability of making an mistake though the
examinee is ”capable” of answering item j. On the other hand, when W;; = 0, that
is the ith examinee does not know the correct answer of the jth item, the conditional

distribution of Uj; is,
Uij | Wij = O,gj ~ Bernoulli(cj), (6)
where ¢; is the guessing probability of a correct response.

We next show that the mixture model specification in (4)—(6) is equivalent to the
4PLM given in (2). Based on the above distributions in (4)—(6), the joint probability

distribution of U;; and W;; (conditionally on #; and ;) can be given as,

Py wiy) (Wi, Wi | 00,&5) = puiws; 0.6, (Wiglwig ) pw 0, ¢, (Wi | 0i, &)

= d;f’”’“ij(l — dj)wij(l—uij)c§1—wij)“ij(1 _ Cj>(1_wij)(1_“ij)
* Wy * 1—wy;
ij(ei) ! [1 - pj(ei)} T (7)
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Hence, the marginal probability distribution of U;; over W;; can be given by,

puy (s 10:,6) = > by (g, wig | 0,6)

wij:I,O

41— )03 (0) + ¢V (1 — ) (1= 5 (0)), (8)

which is a two-class mixture Bernoulli distribution. From Equation (8), we have the

marginal probability of U;; = 1,
pu (g = 11605,6) = pi(0:)-d; + (1= pi(6) - ¢, 9)
which is the same as the 4PLM given in (2).

The above derivations demonstrate that the 4PLM can be considered as a two-
strategies mixture model. What’s more, the mixture model framework offers a new sight
to understand the 4PLM and naturally connects it with the cognitive diagnosis models

as shown in Remark 1.

Remark 1 (Connection to CDMs) From the cognitive diagnosis models (CDMs) lit-
erature, W;; can also be interpreted as the ideal response variable, where W;; = 1 indicates
ith examinee is capable to answer item j and W;; = 0 otherwise. Then the distribution
of U;; specified in (5) and (6) is the same as the DINA model specification, where c; here
corresponds to the guessing parameter and 1 — d; corresponds to the slipping parameter.
Moreover, we show that the 4PLM can also be viewed as a generalization of the Higher-
Order DINA model (de la Torre and Douglas, 2004) with only one latent attribute. In
particular, consider a cognitive diagnosis test with only one latent attribute A € {0,1}.
Then the Q-matriz is J x 1 and we set Q = (1,...,1),,,, that is, all items require the
attribute A. Note that in this special case, the ideal responses of an examinee to all items
are all the same. Let A; be the ith examinee’s latent attribute and the common ideal

responses to all items are I(A; = 1) = A;. The Higher-Order DINA model assumes the



probability of A; =1 is from a 2PLM that

exp [)\0<9Z — /\1)]

(10)

where 0; denotes a latent variable representing general ability in the studied domain and
A\’s are regression parameters. Furthermore, given I(A; = 1) = A;, the ith ezaminee’s re-
sponse Uy to the jth item follows the same models in (5) and (6) under the Higher-Order
DINA model. Therefore, the only difference between the 4PLM and the one-attribute
Higher-Order DINA model lies in how they model the ideal responses (W;; and A;, re-
spectively). Comparing the model setup of the ideal responses between the Higher-Order
DINA model in (10) and the 4PLM in (2), we can see that (10) can be considered as a
special case of (2) with all a;’s replaced by a common parameter X, b;’s replaced by A\,
and W; replaced by a common variable A; not depending on j. From this perspective,
the the one-attribute Higher-Order DINA model can be viewed as a special case of the
4PLM. More generally, we may consider the multi-attribute Higher-Order DINA model
as a sub-model of the multi-dimentional 4PLM.

3 The MMAP estimation for the 4PLM with an EM
algorithm

Under the mixture model framework, we develop an EM algorithm for calculating the
MMAP estimation for the item parameters in the 4PLM. In the following, we first specify
the prior distributions on the 4PLM parameters and then derive the formula of the EM

algorithm to calculate the MMAP estimators of the 4PLM item parameters.

We first introduce some notations. Let w; = (w;, ..., u;s) denote the observed re-
sponse vector of examinee i, w.; = (uy, ..., uNj)/ denote the observed response vector of
item j, and w = (w.1, ..., u.ps) denote the realized response matrix. Let 8 = (6, ...,0y) be

the ability parameter vector of all N examinees, &; = (aj, b;, ¢;, d;) be the item parameter
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vector of item j, and & = (&1, ..., &) be all the item parameters of all M items.

The prior distribution for the ability variable, 6;, is specified to be a normal distri-
bution, 6; ~ N (ug,02). This is the standard choice in calculating the MML or MMAP
estimates of the parameters in IRT models. For the discrimination parameter a;, we firstly
transform a; = e®, then a norm prior is assigned for a;, a; ~ N(uq,02). The prior for b;
is a norm distribution, b; ~ N (i, 02). The prior for ¢; is a Beta prior, ¢; ~ Beta (s, t.).
These prior distributions are commonly used in the applications of the IRT models. Fi-
nally, we assign a truncated Beta prior for d;, d; | ¢; ~ Beta(sq,tq) I(c; < d;), since
d; > ¢j. Such truncated prior has been used in Culpepper (2016) to enforce the mono-
tonicity condition. Here Q := {ug, 03, fla; 02, S, te, Sa, ta} are hyper-parameters to be

prespecified in practice.

According to Bayes theorem, the joint posterior density of @ and £ is, p (€, 0 |u, ), T7)
L(u|€,0)f(0]|T)f(£]Q), where

L(u]0.€) = HHpJ )5 (1= py(6))

i=1 j=1
is the likelihood of the observed response data u, and

N N

felm) =1Jrein, reE)=1[r&l,

i=1 j=1
are the prior distributions of 8 and &, respectively.

As known in the literatures (Neyman & Scott, 1948; Baker & Kim, 2004), direct
jointly estimation of the persons’ ability parameters 6;’s and item parameters often lead

to inconstant estimators, therefore 6;’s are generally needed to be integrated over to

estimate the item parameters. Then we have the corresponding marginal distribution as

p (€ .0, 7) :/p<£,0|u,ﬂ,r>d0, (11)



and the modes of the marginal posterior p (£ |u, 2, T),
€ = argmaxp (£ |u,Q, 1), (12)
tco,

are defined as the MMAP estimates of &.

From Equation (7), if the latent variables W = {W,;,i =1,..,N;j=1,..., M} were
observed, the 4PLM could be divided into two Bernoulli models, and the calculation of
the estimators of & would be straightforward. Specifically, let z = (u, W, 0) be the the

complete data. The likelihood of z is

Lz ¢) HHdW“u” — dj)Wis(1=uis) (.1_W”)u”(1 — ¢)) (W) (1)
i=1 j=1

X3 (0:)™" (1= pj(0:)) =" f (0 |7) . (13)

The marginal posterior distribution p (& |u, €2, 7) in (11) can be calculated by,

p(€|u, Q7 // z|u,Q,7)dWde,

P& zlu, Q7)< L(z[§) f(£]2). (14)

where

With the unobserved W in practice, we propose an EM interaction procedures under
the complete data (z) for calculating the MMAP estimators of € in Equation (12). Let
£ be the current values for € at the ¢th iteration, and the EM algorithm performs the

following two steps:

E-step: Given E(t) and w calculate the conditional distribution of the latent vari-
ables W and 6, denoted by p(W, 0|u, £(t)), and then use p(W, 0|u, E(t)) to calculate the

corresponding expectation of Inp (£, z |u,Q, 7), i.e

Q(£€Y) = Bysgpu e {np (2. € [u, 2,7} (15)



M-step: Update the parameter estimate €™V by maximizing Q(&, S(t)), ie.,
£ = argmax Q (5, §(t)>.
We next describe the details in the E- and M-steps. From Equations (13) and (14),
M
np (€ zlu,Q7) = InL(z|§)+ Zlnf(fj |9

M
= Li(c,d) + Lo(a, ) + Zlnfe|T +) I f(&19Q), (16)

where

Li(c,d) = Z

=1 j=

M

{VVijuij In dj + sz(]. - Uz‘j) In (1 - d]> + (1 - Wij)uij In Cj
1
H(1 = Wi)(1 = uig) In (1 = ¢;)},
N M
Lo(a,b) = D) Wylnpi(6;) + (1= W) In (1 — pj(6;)).

i=1 j=1

From Equation (16), we note that the estimators of (¢;,d;) and (o, b;) can be calculated

separately with respect to Li(c,d) and Lo(a,b) in E- and M-steps. Since Li(c,d) is a

linear function of W;;, the E-step is done by simply replace W;; with EW,9|u ¢ (Wij). In

M-step, the estimators of ¢; and d; can then be calculated as

N
Zi:l <1 - EW’9|U7€@) (Wu)> Uij + 5. — 1

g - = | -
D it (1 - EW0| ) (Wz])> + 8c+t.— 2
A = XXy > Y+ (o +0) x [1 -1 > )
where
X > <EW,0|U,5(t> (VI/ZJ)> Ui + 5 — 1
d; = (18)

> (EW,9|u,g<t> (VVZJ)> +5a+ta—2

(t+1)

and I(d; > cﬁ“l) ) is the indicative function of dj > c; Note that to impose the

restriction that d; > ¢;, d§t+1) is assigned to be c Y46 for a small § > 0 when d; < c(tH)
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Based on Equations (7) and (8), we have,
d; - p; (01" [ (1= dj) - p5(0) )"
E w. &t VVZ :/[ d J :| |: J :| P HZ
wone Wl = 1|75, 0) = p,06) (

where pi(-) is defined in (3). A quadrature approximation method is used to compute

u;, €1 ) do,

the integrals in the E-step. In particular, define a grid of K equally-spaced points,
xp (k =1, ..., K), specified for 8, and the associated weights A () is assigned by f (zy, |T) X
(k41 — xx). The posterior probability of z; can be given by,
M t ui; (t 1—u;
" [T P ()" ¢ (2a)' " A ()
i, § > M) g (O -
St TLS vy ()™ @ () ™ Al(a)

p (= , (19)

where
®

_ (D — gy P (e (2 — b))
j j ()
1+ exp (e (2 — b))

and q](-t) (zr) = 1 = p;’(wx). Then Eyy g, ¢t [Wi5] can be approximately calculated by,
K t) *(t)( ) (1 . d( )) x(t) I—uij
~ Py (@)
Evwy ou,gt [Wis] = Z [ (t) ] [ ’ ® - ] P | ui,ﬁﬁ-”),
=1

€9) 1 —p;’ (k)
where i =1,..., N, j =1, ..., M. Finally, plug them into the Equations (17) and (18), the

revise estimators, c§t+1) and dg-tﬂ), can be approximately calculated.

In the M-step, the estimation equations for «; and b; can be approximated by

OF (1 2z |u, Q, K . ) -
wone P& ZBT o S (= ) (Vo) — Rl — e~
Oa; p Ou
(20)
aE t 1 9 7Q7 oy K > a ]
wolng QIEEMBT o S (0w ~ Alapi) ~ 22 <0, 21)
c%j 1 Op
where
) N Tq® . pm(xk) Uij (1 d(t)) *(t)(xk) 1—ug;
N('rk) - [ . / p(‘rk | uiaé('t))7
Z P () 1—p () ’
N
R(zy) = ZP(ﬂfk ui,S(t)>,
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and p(zy|u;, €Y) is calculated as in (19). To solve the non-linear equations (20) and (21),
a Newton-Raphson iterate algorithm is used and the detailed calculation procedure and

the corresponding MATLAB code are presented in the Appendix.

4 Monte Carlo Simulation

This section reports three simulation studies to display the performance of the proposed
MMAP estimation. Specifically, the first simulation study was to investigate the influ-
ences of the prior distributions on the performance of the MMAP estimation; The second
simulation was constructed to study the relationship between the d parameter and the
properties of MMAP estimation; The third simulation was performed to compare the
performances of the proposed MMAP\EM method with the existing BM estimation pro-
cedure implemented in R package “mirt” (Waller & Feuerstahler, 2017).

4.1 Simulation Study 1

In this simulation, the test length was M = 20 and the true values of a;,b; and c;
(j=1,..., M) were randomly drawn from a large scale achievement test that was ana-
lyzed in Wang, Chang, and Douglas (2013). Following a similar setup to that of Loken
and Rulison (2010), the parameters d; (j = 1,..., M) were randomly generated from a
truncated Beta distribution, d; ~ Beta (8,2) with the constrain of d; > ¢;. The true
values of these item parameters are shown in the left four columns of Table 2. The exam-
inees’ ability variables, 0; (i = 1,..., N ), were randomly drawn from the standard normal
distribution, 8; ~ N (0,1). As the sample size is an important data characteristic deter-
mining the properties of the item parameter estimation, we generated response data with

three sample sizes of N = {1000, 5000, 10000}.
To investigate the influence of the prior distributions of parameters a,b,c, and d,
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the MMAP estimation was implemented under three groups of priors, please refer to
Table 1. Specifically, among the three groups of priors, those in the first line (denoted
as MMAP1) provide the strongest prior information. The distributions shown in the
third line (denoted as MMAP3) are the weakest informative priors, where Beta(1,1) is
the uniform distribution on [0, 1], and N(0,10?%) is close to non-informative prior. That
is, the MMAP estimators calculated under this group of priors can be considered as an
approximation of the MML estimators. The prior distributions shown in the middle line

(denoted as MMAP2) are weaker than the MMAP1 but stronger than the MMAP3.

To reduce the Monte Carlo error, 500 replications of the response data sets were
randomly generated, and the MMAP estimates were calculated for each of the 500 data
sets. The number of quadrature points in the MMAP estimation was set to be 20, and
both the convergence criterions for the EM algorithm and the N-R iterations were specified
to be 0.001. Finally, the root mean squared error (RMSE) and mean error(ME) were
calculated across the 500 replications to evaluate the accuracy and bias of the MMAP

estimators. The RMSE is defined as

RMSE (5;) = \/ G—lel (3 - 5j>2, (22)

and the ME is defined as,

ME (5,) = G~ Zjl (3 - 5). (23)

where ¢; is the item parameter (any «;,b;,¢;,d;) of interest, 3gj denotes the estimate of

d; in the g-th repetition, and G is the number of replications (G = 500 in this study).

In this simulation, there was not any deviant parameter estimate or any unsuccessful
iteration, even in the case of the weakly informative priors given in MMAP3. We consider
that the proposed estimation method based on the mixture model interpretation is helpful
for improving the convergence rate of the EM algorithm. Furthermore, the implementa-

tion of the EM procedure was generally fast. For instance, the average calculation time did
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not exceed 0.8, 2.5 and 10.0 seconds under the three sample sizes N = {1000, 5000, 10000}.
(The PC information: Intel Core i5-8200 CPU(1.6 GHz)),RAM(8G)). Tables 2-4 show
the obtained values of RMSEs for the MMAP estimators with the three prior specifica-
tions (MMAP1, MMAP2 and MMAP3) across the three sample sizes (N =1000, 5000

and 10000). Observing these results, the following trends can be observed.

1. Under the sample size of N = 1000, there are slight differences in the values of RMSE
of the MMAP estimators under the three groups of priors (MMAP1, MMAP2, and
MMAP3). Overall, the MMAP3 estimators displayed larger values of RMSE than
that of the MMAP1 and MMAP2 estimators. However, as the sample size increased,
the differences in the RMSE of the three estimators become much smaller. For
instance, under the sample sizes of N = 5000 and 10000, the differences in RMSE
of the three MMAP estimators were negligible for most item parameters. The same
phenomenon was observed on the values of ME (the values of ME are not reported
here due to space limitation). This suggests that when the number of examinees
is large, the MMAP estimators are mainly determined by the response data and
the specification of the prior distributions is not less crucial. On the other hand,
when the sample size is small, the prior information will have a larger impact on
the performance of the MMAP estimation, so to avoid the subjective error from
the misspecification of prior distributions, weakly informative or non-informative
priors may be recommended in practice. Additionally, we also calculated the BM
estimates of the 4PLM by implementing the “mirt” package. The results showed
that the BM estimators with informative priors perform similar to our method,
while the BM with the non-informative priors not only displayed lower accuracy
but also suffered from unsuccessful convergences frequently. It can be considered
that the mixture strategies framework of the 4PLM is helpful for the convergence

of the EM algorithm. The results of BM estimation were not reported here as they
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are not the main focus of this simulation study and more comparisons between our

method and the BM estimation are provided in Simulation Study 3.

2. It can be observed that the RMSE(d) of the items j = {4,7, 8,12, 19} are much larger
than those of the other items. The common characters of these items are: their a-
parameters were much lower than the other items, as well as the b- and d-parameters
were relative larger. This phenomenon was also observed in Culpepper(2016). In-
spired by the research of Lord (1975) and Mislevy (1986), which verified under the
3PLM that the estimation accuracy of ¢; and b; — 2/a; are positively correlated,
we may explain this phenomenon by a negative correlation between the estimation
accuracy of d; and the value of b; + 2/a; under the 4PLM. Heuristically, a larger
value of b; + 2/a; implies fewer examinees satisfying a;(6; — b;) > 2, and therefore
less information on d; is provided by the responses, which then reduces the estima-
tion accuracy of d;. The scatter plots with the Pearson correlation coefficients were
created to display the influence of b; + 2/a; on the estimation errors and biases of
the MMAP estimators of d, seeing Figure 1. It can be found that across the three
sample sizes, both the RMSE(d) and absolute ME(d) were positively correlated with
bj +2/a;, and the correlations increase with the sample size. These results demon-
strated that the higher the difficult and the lower the discrimination, the poorer the
estimation accuracy for the d parameter in terms of both mean squared error and

bias.

4.2 Simulation Study 2

The main purpose of this simulation is to investigate the impact of the d parameter on
the performance of the MMAP estimation. An artificial test with 4 levels of d, d €
{0.65,0.75,0.85,0.95}, were constructed, where each d-level included 5 items and the test

length was M = 20. To produce a controlled experiment, the values of a,b and ¢ were
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identical for all items with @ = 1.0,b = 0.0, and ¢ = 0.2. Following to the simulation
study 1, the sample sizes were set to be N = {1000, 5000, 10000}, and the examinees’
ability parameter 6’s were randomly drawn from N (0, 1). Additionally, 500 response data
sets were randomly generated, and the MMAP estimate were calculated with the three
groups of priors in Table 1. Finally, the RMSE and ME of the MMAP estimates were
calculated to display the properties (efficiency and bias) of the estimator. Because the
trends on the MMAP estimators with the three groups of priors were consistent, we only

report the results under the priors of MMAP1 here.

Figures 2 and 3 show the values of RMSE and ME for the MMAP estimators of a, b, ¢
and d at the four different levels of d. Observing these plots, the following trends can be

found.

1. For the a-parameters and b-parameters, it can be seen that the values of RMSE(a)
and RMSE(b) at d = {0.75,0.85} were smaller than d = {0.65,0.95}. Similarly,
the values of ME(a) were closer to 0 (smaller biases) for d = {0.75,0.85} than
d ={0.65,0.95}. This indicates the parameters a and b are more difficult to estimate

when d takes more extremal values.

2. For the c-parameters. it can be seen that the relationships between d and RMSE(c)
were the weakest among the four types of item parameters, and the highest values
were not larger than 0.05. The values of ME(c) were very close to 0. These results
demonstrated that the parameter of d have the smallest impact on the MMAP

estimator of c.

3. For the d-parameters, the RMSE(d) displays substantial differences under the four
levels of d, for the two middle levels of d, d = {0.75,0.85}, the RMSE(d) were smaller
than that of the two sides levels of d, d = {0.65,0.95} and had smaller biases. It

suggests that the estimators of the middle d values are more accurate than that of
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the extreme d values.

4.3 Simulation Study 3

Many researchers have studied the application of 4PLM to the psychopathology testing
(Culpepper, 2016; Reise & Waller, 2003; Waller & Reise, 2010), where subjects with higher
levels of psychopathology may be reluctant to self-report attitudes, behaviors, and/or
experiences. Therefore, in this simulation, we compared the performance of the proposed
MMAP estimation with that of the BM estimation for estimating the 4PLM with a set of
psychopathology items. Following Culpepper (2016) and Waller and Feuerstahler (2017),
this study generated responses based on the 4PLM with the M = 23 psychopathology
item parameters from Waller and Reise (2010) as the true values; please refer to Table
5. The same as the above two simulation studies, the examinees’ abilities (0’s) were
randomly drawn from N(0,1), and three sample sizes of N = {1000, 5000, 10000} were

considered.

The MMAP estimates were calculated with the informative prior distributions that
were given in the MMAP1 of Tablel. In the “mirt” R library, the logistic model was
design by a slope-threshold parameterizations, that is 1.7a; and 1.7a;b; were estimated
instead of directly estimating a; and b;. According to Waller and Feuerstahler (2017),
the priors for 1.7a and 1.7ab were set to be 1.7a ~ LN(1,1%) and 1.7ab ~ N(0,2%). In
addition, the prior distributions for ¢ and d were set to be logistic(c) ~ N(—1.2,0.5%) and
logistic(d) ~ N(1.2,0.5%), which are approximately equal to Beta(5,17) and Beta(17,5);
please see Figure 4. To sum up, the prior distributions for the two estimation methods
were very close. The MMAP and BM estimations of the 4PLM were calculated across 500
replications, and the RMSE were calculated to evaluate the properties of the estimators;

please see Figures 5-7.
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From these plots, it can be observed that, for most of the 23 items, the MMAP
estimators of the item parameters (a, b, ¢, d) provided lower values of RMSEs than those
of the BM estimators across the three sample sizes. It is indicated that the accuracy of
the MMAP estimators were superior to that of the BM estimator. It is obviously that
the RMSEs of MMAP and BM estimators both display decreasing trends as the sample
size increased. That is, increasing sample size can improve the estimation accuracy,
which is expected. Finally, the differences between the RMSEs of the MMAP and BM
estimators were still exist under the sample size of N = 10000, but the superiorities of
MMAP estimator were weaken, especially for the parameters of ¢, the two estimators were

extremely close.

5 Empirical study

This section demonstrated an application of the 4PLM with an empirical example. The
data set is from a state reading assessment test that was previously analyzed in Tao,
Shi and Chang (2012). The dataset includes 50 dichotomous items and the sample size
is N = 2000. In our study, the response data of the 50 dichotomous items was fitted
by the 4PLM. The item parameters were estimated using the MMAP method, and the
examinees’ abilities were estimated using the Warm’s weighted maximum likelihood es-
timation (WMLE). The Warm’s WMLE has been proved to be superior to the ML and
EAP estimates by many studies (Penfield & Bergeron, 2005; Warm,1989; Wand & Wang,
2001; Meng, Tao & Chen, 2016). The results of the parameter estimation and the model

fitting evaluation are reported in the following.
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5.1 Results of the item parameter estimation

The item parameter estimates from the 3PLM and 4PLM are presented in Table 6. It
can be observed that the estimates of the parameters (a,b,and ¢) in the two models
(3PLM and 4PLM) are close for most items, while for the items with lower level of
d, the differences between the estimates are more substantial. For instance, for items
7 = 5,9,18 and 50, their a parameters estimated from the 3PLM are extremely small,
while the estimates from the 4PLM are much larger. This may be because that there were
a large proportion of examinees slipping their responses to these items, resulting in the
3PLM underestimate their discrimination; see also the model fitting evaluation results

given in Table 6 to be discussed in the next subsection.

The Pearson correlation coefficients between the parameters estimates of the 3PLM
and the 4PLM are obtained: TopL) gaprn)y = 0.68, ryerr) yary = 0.94, 1. sprr) (arn = 0.88,
and the corresponding scatter plots are shown in the left column of Figure 8. We also
illustrate the differences of the distributions of a, b and ¢ between the 3SPLM and the 4PLM
by estimating their kernel density curves across the test; please see the right column in
Figure 8. The estimates of a,b and ¢ in 4PLM are highly correlated with those in 3PLM.
Furthermore, it can be observed that the a parameter of the 4PLM was consistently higher
than that of the 3PLM for each item, but the b parameter presented the opposite trend.
This phenomenon has also been found in Loken and Rulison (2010). The reason for this
may be that the upper asymptote less than 1 results in the response function does not

have to flatten out to accommodate the poorly fitting responses (Loken & Rulison, 2010).

Finally, we compare the performances of the 4PLM and the 3PLM on estimating the
examinees’ abilities 6’s. The scatter plot between the estimates of #’s from the 3PLM and
the 4PLM and their kernel probability density function curves are presented in Figure 9. It

can be seen that the estimates of ’s from the two models are highly correlated with their
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Pearson correlation ryarr) gurr) = 0.98. However, when 6 > 1.0, the estimates of ¢’s from
the 4PLM are a little larger than that from the 3PLM. This indicates that the 3PLM is
likely to underestimate the high-ability examinees. Furthermore, from the kernel density
curves, it can be observed that the two curves of 6’s are mostly overlapped, except for the
right tail, where 3PLM may fail to capture the behaviors of the high ability students. It
would be interesting to further investigate whether the result obtained in the empirical
study still holds in general and how it would impact test taking strategies if 4PLM is
known to be the scoring model beforehand. We would like to leave this interesting topic

for future study.

5.2 Assessing model data fit

Assessing model fit is a routine and important procedure in IRT domain. IRT models
can be implemented effectively for analyzing educational and psychological test data only
when the fit of the model is met at least to a reasonable degree. In this study, the fit of

the model to data was evaluated at the test and item levels respectively.

At the test level, the Chi-Square statistic, —2Log-Likelihood (—2logL) and AIC
(Akaike,1973) were calculated. The test Chi-Square statistic is defined as,

2
s U Sl
Xtest — Zh:l feh ’
where f,, and f., is the observed and expected frequency of score h, (h =0,1,...,50).
The obtained results are displayed in Table 8. It can be seen that the three test-model

fitting indexes consistently support that the 4PLM fits the data better than the 3PLM.

Moreover, to display the difference between the observed and the model predicted
number-correct score distributions, the test fitting plot (Hambleton & Traub, 1973; Swami-
nathan, et al., 2006) is reported in Figure 10. It can be observed that the differences of

the lines between the two models are very small for the test takers with test scores < 40,
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but when the test scores > 40, the fitting frequency curve of the 4PLM is much closer
to the observed score distribution than that of the 3SPLM. That is, the 4PLM can better

describe the data of the high-scores by modeling the slipping behaviors.

Following one reviewer’s suggestion, we also fitted the 4PLM with several fixed upper
asymptotes that are less than 1. We calculated the fitting indexes of the 4PLM under
fixed d = 0.98,0.95 and 0.90. The obtained results of the model-data fitting assessment
are given in the bottom panel of Table 8. All the model indexes consistently support
that the fitting of the 4PLM (without specifying d) is the best among all the considered
models. This suggests that the 4PLM is a better choice in practice than the 4PLM with

a fixed upper asymptote.

At the item level, the Pearson Chi-Square fit statistic (Hambleton & Han, 2005;
Hambleton et al., 1991; Rogers & Hattie, 1987),

2
2 T (O — Ey)
e =Y N
Xitem =1 t Et (1 _ Et)’

and the likelihood ratio statistic (Mislevy & Bock, 1990; McKinley & Mills, 1985) provided
in BILOG-MG,

2 T % . 1_Ot
G —QZtht(OtlnEtJr(l Ot)lnl_Et :

were calculated for assessing the model fitting. Here O, denotes the observed proportion
correct in trait interval ¢, E; denotes the expected proportion correct in the interval under
the given model, N, is the number of persons in the interval, and 7T is the number of the
trait intervals. In this study, 7' = 15 equal size intervals between —2.5 and 2.5 were chosen
and the mean of the probabilities of a correct response was calculated as the expected.
The obtained results are shown in Table 7. It can be found that the values of x?%.,, and
G of the 4PLM are smaller than that of the 3PLM for most items, and the number of
significant x%,,, and G? statistics of the 4PLM is fewer, indicating that the 4PLM fits the
data better than that of the 3PLM.
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To further illustrate, we use graphical display to examine the discrepancy between
observed and expected proportions (Swaminathan, et al., 2006). For illustration purposes,
the fitting plot of item 5 is displayed in Figure 11. It shows that the upper asymptote
of the probability of correct response gets close to 0.85 rather than approaching 1, as
the ability level increases. Hence, the fitting of the 3PLM for this item shows serious

deviation while the 4PLM can better captures the response behavior on this item.

6 Discussion

In this paper, we utilize a mixture model representation of the 4PLM and propose a
MMAP approach for estimating the 4PLM with an EM algorithm. The mixture model-
ing revision of the 4PLM not only made the EM algorithm more easily to be implemented
but also provided a natural connection with the popular cognitive diagnosis models. Three
simulation studies were conducted to investigate the properties of the MMAP\EM estima-
tion under various conditions. The first simulation study was designed to investigate the
impacts of prior distributions on the accuracy of the MMAP estimation. The simulation
results demonstrated that the accuracy of the MMAP estimators under different specifi-
cations of priors were almost equivalent when the sample size as large as N = 5000 and
10000. In the case of a smaller sample size N = 1000, the prior information has a larger
impact on the MMAP estimation. This phenomenon is consistent with the simulation
results reported in the discussion of Culpepper (2016). Thus uninformative priors should
be recommended in the case of the sample size is small and a accurate prior information
can not be obtained beforehand. The second simulation was to study the influences of the
upper asymptote parameter d on the MMAP estimation. The results of this simulation
demonstrated that the parameter d displayed substantial impacts on the MMAP estimates
of a,b and d, where extreme values of d leaded to the decrease of the accuracy of MMAP

estimators, but the influences of d on ¢ were weaker. The goal of the third simulation was
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to compare the performance of the MMAP estimation with the BM estimation in Waller
and Feuerstahler (2017). The obtained results suggested that our MMAP estimators are
more accurate than that of the BM estimators across different sample sizes. Finally, a real
data from a state reading assessment testing was analyzed using the 4PLM. The obtained
results suggested that the upper asymptote parameter was needed, and in comparison
with the 3PLM, the 4PLM can better fit this data. Additionally, the relationships of the
common parameters estimators of the two models (3PLM and 4PLM) were investigated

in this empirical study, which further illustrates the outperformance of the 4PLM.

There are several issues to be pursued in the future. First, it is interesting to study
the MMAP estimation based on a hierarchical prior distribution that jointly models all the
item parameters. The more flexible priors would allow to reduce the subjective error when
specifying the prior distributions. On the other hand, this is also likely to increase the
computational complexity which may result in a decrease in the accuracy of the parameter
estimation. Second, the results of the empirical study demonstrated that scaling the high-
ability examinees based on the 4PLM is more accurate than 3PLM. It is needed to further
study the estimation performance under different simulation conditions. Furthermore, it
would be interesting to study how it would impact test takers’ strategies to answer items
if the scoring model (such as 4PLM or 3PLM) is known beforehand. This is an important
issue in practice and will be studied in the future. Third, the distribution of the ability
parameter 6 is specified to be the standard normal distribution in this study, which is
commonly used in IRT. However, this assumption is likely to fail in practice, as suggested
by the kernel density curves in Figure 9. It would be interesting to apply the joint
likelihood estimation approach to estimate item parameters and 6 simultaneously, which
relaxes the normality assumption of #. On the other hand, as known in the literature
that joint estimation may suffer from inconsistency estimation issue when the number of

items are not large enough. Therefore we would like to leave this interesting topic as a
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future study.
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Table 1: The prior distributions of item parameters in the 4PLM.

Prior («) Prior (b) Prior (c) Prior (d)

MMAP 1 (in=0,02 =17 (m=0,02=1%) (s, =5,4o=17) (sq=17,t4=5)
MMAP 2 (jiq = 0,02 =5%)  (jy=0,02 =5 (se=3,t.=9) (sq=09,ts=23)
MMAP 3 (o = 0,02 =10%) (= 0,07 =10%) (sc=1Lt.=1) (sqa=1,tq=1)

2
«a
2
«a
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Table 5: The values of item parameters for the psychopathology item in Waller and Reise
(2010).

Item parameters Item parameters
[tem «a b c d Item «a b c d
1 1.91 —-0.28 0.04 0.52 14 084 0.72 0.04 0.75
2 1.95 —-0.16 0.02 048 15 113 0.15 0.03 0.61
3 1.50 0.05 0.02 0.60 16 079 1.19 0.04 0.73
4 .12 0.06 0.02 0.63 17 127 0.48 0.01 0.84
5 089 045 0.04 0.82 18 094 1.37 0.09 0.94
6
7
8

1.08 —0.50 0.06 0.83 19 084 1.44 0.02 0.82
1.16 —0.47 0.07 0.71 20 1.14 152 0.00 0.82
1.10 0.01 0.04 0.73 21 1.10 0.25 0.02 0.93
9 078 045 0.05 0.57 22 0.72 053 024 0.95
10 1.23 0.19 0.01 0.90 23 0.88 1.56 0.06 0.91
11 134 041 0.02 0.85
12 154 —-0.48 0.06 0.59
13 116 0.18 0.02 0.40
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Figure 1: The left column show the scatter plots between b+2/a and RMSE of the MMAP
estimators for the d-parameter across the sample sizes of N = {1000, 5000, 10000}; The
right column show the scatter plots between b + 2/a and absolute ME of the MMAP
estimators for the d-parameter across the sample sizes of N = {1000, 5000, 10000}.
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Figure 2: The values of RMSE of the MMAP estimators for the 4PLM item parameters
under the four levels of d = {0.65,0.75,0.85,0.95} and the three sample sizes of N =
{1000, 5000, 10000} .
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Figure 3: The values of ME of the MMAP estimators for the 4PLM item parameters
under the four levels of d = {0.65,0.75,0.85,0.95} and the three sample sizes of N =
{1000, 5000, 10000} .
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Figure 4: The probability density function curves for the distributions of Beta(5,17) and
Logistic-Normal(-1.2,0.5), Beta(17,5) and Logistic-Normal(1.2,0.5).
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Figure 5: The values of RMSE for the MMAP and BM estimators of the 4PLM item
parameters under the sample size is N = 1000.
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Figure 6: The values of RMSE for the MMAP and BM estimators of the 4PLM item
parameters under the sample size is N = 5000.
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Table 7: The item model fit indices for 4PLM and 3PLM.

Xitem G Xitem

Item 4PL 3PL 4PL 3PL  Item 4PL 3PL 4PL 3PL
1 21.56  23.34% 19.51  25.79* 26 14.81  6.98 20.17*  8.34
2 5.58  11.27 797 1270 27 20.12* 16.00 19.96* 16.13
3 4.24 6.85 4.39 5.24 28 13.14  10.96 12.38  12.52
4 18.15  28.04* 2211 27772 29 14.34 1391 17.99  15.78
5 5.14  48.02% 7.81  45.26* 30 1779 9.26 21.07  10.06
6 6.94 6.78 10.19  7.61 31 993 13.11 9.25  15.76
7 10.61  15.19 14.44 1585 32 2491 13.46 22.22%  12.85
8 14.79  10.66 16.65 11.76 33 19.39 18.74 22.06* 22.13*
9 16.51 21.47 15.69 19.12 34 15.58  13.68 15.06 15.71
10 24.07 24.49* 27.83* 23.28% 35 11.48  25.55* 12.43  21.88*
11 6.57 7.66 8.98 7.58 36 14.52  28.88* 17.21  25.99*
12 11.74  9.07 1220 10.06 37 11.13 14.85 14.14  13.36
13 11.03 14.39 14.03 13.81 38 937  16.36 9.80 17.22
14 7.81  15.75 7.54  18.61 39 32,99 17.97 31.28"  16.69
15 5.40 9.42 13.17  12.03 40 16.32  14.27 18.04 15.49
16 7.10 1250 8.01 14.12 41 9.30  17.08 12.78  20.84
17 9.28 9.28 10.38  9.75 42 12.50  22.64* 11.42  19.81*
18 21.59* 31.207 23.35" 31.74* 43 18.41  7.75 20.29*  8.72
19 11.13  11.88 12.09 11.15 44 8.84 8.59 12.59  7.98
20 13.60  12.98 14.62 1431 45 9.54  15.06 11.00  13.97
21 19.02  24.35* 19.01 2991 46 13.82  29.57* 15.33  19.78*
22 6.01 8.72 6.88 9.62 47 16.58 897 18.56  10.68
23 19.56  19.98 18.25 17.60 48 9.06 9.81 11.30  13.85
24 13.55 60.45* 20.77  51.16* 49 4.32  10.38 5.87  10.39
25 8.73 6.26 9.77 8.17 20 8.97  21.56% 8.78  24.45*

Note:* denotes the valus of x%,, and G? are greater than the critical values at the
significance level of 5%.
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Figure 8: The three plots in the left column are the scatter plots between the estimates of
the item parameter (a,b and ¢) in the 4PLM and the 3PLM; The three plots in the right
column are the kernel probability density function curves of a,b and ¢ under the 4PLM

and the 3PLM
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Table 8: The test model fit indices for the 4PLM, 3PLM, and the 4PLM with three
constrained upper asymptotes (d = 0.98,0.95,0.90).

ot —2LogL AIC
4PLM 99.87 104631 105031
3PLM 112.25 104896 105196
4PLM—0.98 101.20 104944 105244
4PLM—-0.95 103.20 105124 105424
4PLM—0.90 301.57 105850 106150

Correlation=0.98 Kernel Density Curves

0.5

——4PLM
04l - - - 3PLM

Oapim
o
Density function

94PLM 4

Figure 9: The scatter plots between the estimates of # in the 4PLM and the 3PLM, and
the kernel density function curves of the estimates of 8 in the 4PLM and the 3PLM.
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Appendix A: The Newton-Raphson interaction for solv-
ing equations 20 and 21.

Let a ) and b( be the current estimates, then the next estimates are given by,

r+1 r I 7“ r r -1 . .
e ) - § Loy, (0)7.57) Lo, (07.07) ) (Lo, (@), 57)
’ AH_ ! Lajbi (Oz§~T), bjr)) Lbjbj <a§r), bjr)> Lbj (Oég‘r)a bg”) 7

J

(A.1)
where
aEW79 'U,,Et (lnp (5, z |'u/, Q, T))
Laj (Oéj,bj) = | (9063‘ )
aE t l Y 7Q7
Lb.(aj,bj) _ W ,0|u,¢ (Inp (&, 2z |u 7'))’
i ob;
are given in Equations (20) and (21), and
aLa]<a7 j - * * 1
Loja;(aj,bj) = T; = —e ; [ ) (e — by) P () (1 _pj(mk))] T o
(A.2)
aLb (CY ; . K
L, (. b5) = abj = —e* Zz:; [ o )p; () (1 = pj(xk’))] oy (A-3)
Ly a; (ajvb ) Lajb] (O@» bj)
OLq,(j, b N -
= S e 3 [R(a) (a — b)p () (- 5 ()] - (A4)
J i=k

where p3(-) is defined in (3).
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Appendix B: Matlab code of MMAP\EM for 4PLM

function [R_a, R_b, R_c, R_d]=MMAP(u, n, prior_a, prior_b, prior_c, prior_d)
% u: is the response matrix

% prior_a: is the prior of a

% prior_b: is the prior of b

% prior_c: is prior of c

% prior_d: is prior of d

% M: is the number of test takers

% N: is the number of items

% ntime: is number of the Fisher-Scoring iteration
% NTIME: is number of the EM algorithm

% a0: is initial value of a parameter

% b0: is initial value of b parameter

% cO0: is initial value of c parameter

% d0: is initial value of d parameter

% n: is the number of the quadrature points
% x: is quadrature points

indice=1;

INDICE=1;

ntime=0;

NTIME=0;

[M,N]=size(u);

x=linspace(-4,4,n);

x1=x’;

d=x1(2)-x1(1);

Ak=normpdf (x1,0,1)*d;

rO0=identify(u);

a0=r0./sqrt(1-r0."2);

a0=log(a0)*0;

bO=sum(u) . /M;

bO=-norminv(b0,0,1)./r0;

c0=0%a0+0.25;

d0=0%*a0+0.8;
P=@(a,b,c,d,x)c+(d-c)./(1+exp(-a.*(x-b)));

Y
MM=ones (M, 1) ;

al=MMx*a0;

b1=MM*b0;

c1=MMx*cO;

d1=MM*d0;

amu=prior_a(1);
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asigma2=prior_a(2);
bmu=prior_b(1);
bsigma2=prior_b(2);
for k=1:n
p=P(exp(al),bl,cl,dl,x(k));
L=p. u.*((1-p) .~ (1-w);
LL(:,k)=prod(L,2)*Ak(k);
end
LLO=sum(LL,2);
LH=sum(log(LLO));
% E-step and M-step
NM=ones (1,n) ;
while INDICE==1 && NTIME<Niteration
LL1=LLO*nn;
h=LL./LL1;
f=sum(h) ;
for i=1:N
U=(u(:,i))*NM;
p=MM*P (exp (20 (1)) ,b0(i),c0(i),d0(i),x);
ppp=(p-c0(i))/(d0(i)-c0(i));
pz=(d0 (1) *ppp./p) . *U+((1-d0(i))*ppp./(1-p)) . *x(1-U);
PZ=pz.*h;
r=sum(PZ) ;
c0(i)=(sum(u(:,i).*(1-sum(PZ,2)))+prior_c(1))/(sum(1-sum(PZ,2))+prior_c(2));
S=(sum(sum(PZ,2) .*u(:,i))+prior_d(1))/(sum(sum(PZ,2))+prior_d(2));
if S$>c0(i)
do(i)=S;
else
d0(i)=c0(i)+0.1;
end
at=a0(i);
bt=b0(1);
while indice==1 && ntime<50
Pi=P(exp(at),bt,0,1,x);
w=Pi.*(1-Pi);
lal=exp(at)*sum((x-bt) .*(r-f.*Pi))-(at-amu) /asigma?2;
lbl=-exp(at)*sum(r-f.*Pi)-(bt-bmu) /bsigma2;
laa=-exp(2*at) *sum((f.*(x-bt) . 2.*w))-1/asigma2;
1bb=-exp(2*at)*sum((f.*w))-1/bsigma?2;
lab=exp(2*at)*sum((x-bt) .*f.*w) ;
res=[at;bt]-[laa,lab;lab,1bb] ~(-1)*[1lal;1bl];
atl=res(1);
btil=res(2);
if norm([atl-at;bt1-bt],2)<0.0001
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end

indice=0;

else
at=atl;
bt=bt1;
ntime=ntime+1;
end
end
ntime=1;
indice=1;
a0(i)=atl;
b0(i)=bt1;
end
al=MMx*a0;
b1=MM*DbO0;
c1=MMx*cO;
d1=MMx*dO;
for k=1:n
p=P(exp(al),bl,cl,d1,x(k));
L=p. u.*((1-p) .~ (1-u));
LL(:,k)=prod(L,2)*Ak (k) ;
end

LLO=sum(LL,2);

LH1=sum(log(LLO));

if abs(LH-LH1)<10"(-3)
INDICE=0;

else
NTIME=NTIME+1;
LH=LH1;

end

RL(NTIME)=LH1;

Ra=exp(a0) ;
Rb=b0;
Rc=cO0;
Rd=d0;
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