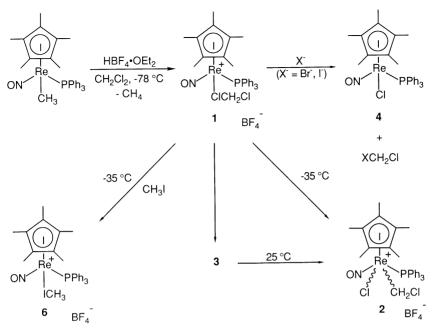
Preliminary communication

Generation of the dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+BF_4^-$, and its conversion to the oxidative addition product $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(Cl)(CH_2Cl)]^+BF_4^-$

Charles H. Winter and J.A. Gladysz *

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (U.S.A.) (Received June 14th, 1988)


Abstract

Reaction of $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CH_3)$ and $HBF_4 \cdot OEt_2$ in CH_2Cl_2 at -78°C gives the dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+$ BF_4^- , which undergoes the title transformation at -35°C. The ReClCH₂Cl carbon is attacked by halide nucleophiles (X^-) to give XCH_2Cl and the chloride complex $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(Cl)$, and exhibits a 13 C NMR resonance that is coupled to phosphorus $(d, ^3J(CP) 5.0 Hz)$ and geminal hydrogens $(t, ^1J(CH) 186 Hz)$.

The oxidative addition of an alkyl halide to a coordinatively unsaturated metal complex is a key step in a variety of important transformations (e.g., Monsanto methanol to acetic acid process [1], carbon–carbon bond-forming cross-coupling reactions [2]). Although several mechanisms have been documented [3], competing or prior alkyl halide coordination remains a possibility in nearly all cases. Alkyl halide complexes have recently been synthesized [4–6], but none have yet been found to directly lead to oxidative addition products. However, Crabtree has made the important observation that addition of an H_2 acceptor reagent to the Ir^{III} methyl iodide complex $[(Ph_3P)_2Ir(H)_2(ICH_3)_2]^+$ gives a dimer of Ir^{III} oxidative addition product $[(Ph_3P)_2Ir(CH_3)(I)]^+$ [4b]. In this communication, we report the generation of dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CICH_2CI)]^+$ BF_4^- (1), and its facile conversion to oxidative addition product $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CI)(CH_2CI)]^+$ BF_4^- (2).

Pentamethylcyclopentadienyl methyl complex [7] $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)$ -(CH₃) and HBF₄·OEt₂ (1.01 equiv.) were combined in CH₂Cl₂ or CD₂Cl₂ at -78°C (Scheme 1). NMR spectra (^{1}H , ^{13}C , $^{31}\text{P}\{^{1}\text{H}\}$, ^{19}F) were immediately recorded at -85°C , and showed the clean formation of a new complex 1 [8*]. An

^{*} Reference number with asterisk indicates a note in the list of references.

Scheme 1. Generation and reactions of dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+BF_4^-(1)$.

analogous reaction of cyclopentadienyl methyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)-(CH_3)$ has been shown to give dichloromethane complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)-(ClCH_2Cl)]^+$ BF₄⁻ [9]. On the basis of spectral similarities, and particularly the dichloromethane carbon ^{13}C NMR chemical shift (22 ppm downfield from free CH₂Cl₂; Fig. 1) and coupling constants, **1** was formulated as the Re¹ pentamethyl-cyclopentadienyl dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+$ BF₄⁻.

The structure of **1** was further supported by reactions with halides salts $[Ph_3P=N=PPh_3]^+$ Br⁻ and $Ph_3P^+CH_3$ I⁻ (1.2–1.4 equiv, $-78\,^{\circ}$ C). Subsequently isolated were mixtures of halide complexes (96–97%) of which chloride complex (η^5 -C₅Me₅)Re(NO)(PPh₃)(Cl) (**4**, Scheme 1) was the major component (92–95%) [10*]. Analysis of the second reaction by GLC and GLC/MS indicated the formation of ICH₂Cl (88%). Dichloromethane is normally inert towards halide ions. Hence, the dichloromethane ligand is significantly activated towards nucleophilic attack, providing a new type of easily generated chloromethylating agent.

Cyclopentadienyl dichloromethane complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)-(ClCH_2Cl)]^+$ BF₄⁻ undergoes first-order decomposition at -25 to -10°C to bridging chloride complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)]_2Cl^+$ BF₄⁻ $(k_{obs}\ 3.5\pm0.2\times10^{-4}\ s^{-1}, -10.1°C)$ [9]. However, **1** is less stable thermally. A sample of **1** (-78°C) was inserted into a -35°C NMR probe. NMR spectra showed 1, and two new species (**2** [11*], **3** [12*], in 61-64%, 7-12%, and 24-32% yields, respectively. Complex **1** then underwent first-order decomposition $(k_{obs}\ 5.0\pm0.2\times10^{-4}\ s^{-1})$ to **2** $(k_{obs}\ (appearance)\ 5.0\pm0.2\times10^{-4}\ s^{-1})$. The concentration of **3** did not change. The sample was warmed to room temperature, whereupon **3** underwent first-order

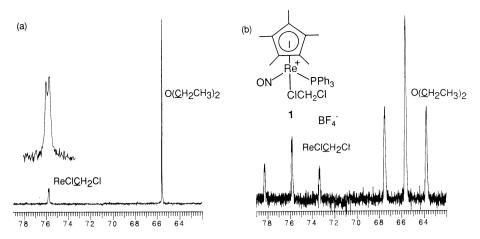


Fig. 1. (a) 13 C{ 1 H} NMR spectrum of dichloromethane complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ClCH_2Cl)]^+$ BF $_4^-$ (1) with inset showing $^{3}J(CP)$ 5.0 Hz. (b) 13 C NMR spectrum of 1 showing $^{1}J(CH)$ 186.0 Hz. All spectra are at -85° C.

decomposition $(k_{\rm obs} 5.1 \pm 0.2 \times 10^{-4} {\rm s}^{-1}, 25\,{}^{\circ}{\rm C})$ to **2**. Hence, **2** is formed by two pathways.

Analogous preparative reactions gave **2** as a gold-yellow, spectroscopically pure powder (60–70%), which was characterized by IR and ^{1}H , $^{13}C\{^{1}H\}$, and ^{31}P NMR spectroscopy [11*]. Complex **2** was assigned as the five-coordinate Re^{III} oxidative addition product $[(\eta^{5}\text{-}C_{5}Me_{5})Re(NO)(PPh_{3})(Cl)(CH_{2}Cl)]^{+}$ BF₄⁻ based upon the following properties: (1) the upfield ^{1}H NMR chemical shifts of the CH₂ protons relative to those of CH₂Cl₂, (2) the upfield ^{13}C NMR chemical shift of the CH₂ carbon relative to that of CH₂Cl₂ and **1**, and its sizeable phosphorus coupling, (3) a mass spectral parent ion for the cation (FAB), and (4) an IR ν (N=O) that is much greater than normal for cationic complexes $[(\eta^{5}\text{-}C_{5}Me_{5})Re(NO)(PPh_{3})(L)]^{+}$ [7]. A similar IR ν (N=O) trend is seen with analogous cyclopentadienyl complexes [9b].

We presently interpret the formation of dichloromethane complex 1 as proceeding via the coordinatively unsaturated fragment $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)]^+$ BF₄⁻ (5) [9b]. Hence, dichloromethane coordination to 5 is faster than oxidative addition. It is attractive to propose that oxidative addition occurs directly from 1, analogously to pre-coordination in arene C-H oxidative addition [13]. However, our results are equally consistent with prior dichloromethane dissociation from 1 to give 5, followed by an oxidative addition pathway not involving 1 [3]. Importantly, 1 and CH₃I (10 equiv.) react within 5 min at -35° C to give methyl iodide complex $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)(ICH_3)]^+$ BF₄⁻ (6) [14]. This suggests that the dichloromethane ligand of 1 readily dissociates. Finally, pentamethylcyclopentadienyl ligands are more electron releasing than cyclopentadienyl ligands, and hence should facilitate the oxidation of Re¹ to Re^{III}. This rationalizes the greater thermal stability (and alternative decomposition mode) of the cyclopentadienyl analogue of 1. We further suggest that the electron withdrawing spectator chloride in 1 promotes oxidative addition, as methyl iodide complex 6 decomposes chiefly by other pathways.

Several dichloromethane oxidative addition products have been previously reported [15]. Our data suggest that these may form via similar coordination/oxidative

addition sequences. Additional properties of dichloromethane complexes will be described in the near future [9b].

Acknowledgement. We thank the NSF for support of this research and the NIH for a postdoctoral fellowship (CHW).

References

- 1 D. Forster, Adv. Organomet. Chem., 17 (1979) 255.
- 2 (a) L.S. Hegedus and R.K. Stiverson, J. Am. Chem. Soc., 96 (1974) 3250; (b) E. Negishi, Acc. Chem. Res., 15 (1982) 340.
- 3 J.P. Collman, L.S. Hegedus, J.R. Norton, and R.G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, California, 1987, pp 306–310.
- 4 (a) R.H. Crabtree, J.W. Faller, M.F. Mellea, and J.M. Quirk, Organometallics, 1 (1982) 1361; (b) M.J. Burk, B. Segmuller, and R.H. Crabtree, ibid., 6 (1987) 2241; (c) R.J. Kulawiec and R.H. Crabtree, ibid., 7 (1988) 1891.
- 5 (a) C.H. Winter, A.M. Arif, and J.A. Gladysz, J. Am. Chem. Soc., 109 (1987) 7560; (b) C.H. Winter, A.M. Arif, and J.A. Gladysz, Organometallics, in press.
- 6 (a) F.J. Liotta Jr., G. van Duyne, and B.K. Carpenter, Organometallics 6 (1987) 1010; (b) M.R. Colsman, M.D. Noirot, M.M. Miller, O.P. Anderson, and S.H. Strauss, J. Am. Chem. Soc., in press.
- 7 A.T. Patton, C.E. Strouse, C.B. Knobler, and J.A. Gladysz, J. Am. Chem. Soc., 105 (1983) 5804.
- 8 Data on 1 (CD₂Cl₂ or CH₂Cl₂, -85° C): ¹H NMR (δ) 1.68 (s, 5Me); ¹³C{¹H} NMR (ppm) 102.58 (s, C_5 Me₅), 75.76 (d, ³J(CP) 5.0 Hz, CH₂), 9.37 (s, C_5 Me₅); ³¹P{¹H} NMR (ppm) 16.3 (s); ¹⁹F NMR (δ) -152.68 (s).
- 9 (a) J.M. Fernández and J.A. Gladysz, Inorg. Chem., 25 (1986) 2672; (b) J.M. Fernández and J.A. Gladysz, Organometallics, in press.
- 10 Authentic samples of halide complexes ($η^5$ -C₅Me₅)Re(NO)(PPh₃)(X) were prepared in high yields by reactions of ($η^5$ -C₅Me₅)Re(NO)(PPh₃)(CH₃) and HCl (CH₂Cl₂), HBr (C₆H₆), and HI (C₆H₆), respectively. These were characterized by microanalyses (C,H), and IR (cm⁻¹, KBr: ν(N≡O) 1635, 1642, 1644), ¹H NMR (δ, CDCl₃: C₅Me₅ (s) 1.63, 1.66, 1.73), ¹³C{¹H} NMR (ppm, CDCl₃: C₅Me₅ (d, J(CP) 1.8–2.0 Hz) 100.36, 100.14, 99.78; C₅Me₅ (s) 9.75, 10.02, 10.65), and ³¹P{¹H} NMR (ppm, CDCl₃: 18.2, 16.8, 14.8 (s)) spectroscopy.
- 11 Data on 2: 1 H NMR (δ , CDCl₃) 7.75–7.36 (m, 15H), 4.58 (dd, J(HH) 7.1 Hz, J(HP) 3.1 Hz, CHH'), 4.22 (dd, J(HH) 7.2 Hz, J(HP) 3.0 Hz, CHH'), 1.93 (s, 5Me); 13 C{ 1 H} NMR (ppm, CDCl₃) 135.10 (d, J(CP) 9.0 Hz), 133.49 (s), 132.9 (d, J(CP) 52.5 Hz), 129.07 (d, J(CP) 11.0 Hz), 115.91 (s, C_5 Me₅), 47.68 (d, J(CP) 15.5 Hz, CH_2), 10.22 (s, C_5 Me₅); 31 P{ 1 H} NMR (ppm, CDCl₃) 10.1 (s); IR (cm $^{-1}$, KBr) ν (NO) 1739, ν (BF) 1084, 1055; mass spectrum ((+)-FAB, 7 kV, Ar, 3-nitrobenzyl alcohol; m/Z (relative intensity), 187 Re, 35 Cl) 698 (M^+ , 26%), 649 (M^+ CH_2 Cl, 84%), 436 (M^+ PPh₃, 59%), 262 (Ph₃P $^+$, 63%), 154 (100%). Compound 2 forms as one geometric isomer, and decomposes over the course of 24 h in CH_2 Cl₂; analytically pure samples have not been obtained: Found: C, 45.06; H, 4.11; Cl, 7.89. $C_{29}H_{32}$ BCl₂F₄NOPRe calcd.: C, 44.34; H, 4.11; Cl, 9.03%.
- 12 Data on 3 (CD₂Cl₂, -85° C): ¹H NMR (δ) 1.60 (s, 5Me); ¹³C{¹H} NMR (ppm) 101.35 (s, C_5 Me₅), 9.74 (s, C_5 Me₅); ³¹P{¹H} NMR (ppm) 22.2 (s); ¹⁹F NMR (δ) -152.16 (s). We have not been able to identify a fourth ligand in 3. No NMR evidence is observed for ether or BF₄⁻ coordination, and an identical species forms under argon. Addition of [Ph₃P=N=PPh₃]⁺ I⁻ immediately gives iodide complex (η^5 -C₅Me₅)Re(NO)(PPh₃)(I). We are reluctant to formulate 3 as the unencumbered Lewis acid [(η^5 -C₅Me₅)Re(NO)(PPh₃)]⁺ BF₄⁻ (5).
- 13 W.D. Jones and F.J. Feher, J. Am. Chem. Soc., 106 (1984) 1650.
- 14 Data on **6**: ¹H NMR (δ, CD₂Cl₂) 7.54–7.26 (m, 15H), 2.44 (s, ICH₃), 1.85 (s, 5Me); ³¹P{¹H} NMR (ppm, CD₂Cl₂) 15.8 (s); IR (cm⁻¹, nujol) ν(N≡O) 1681. Ether precipitates **6** (72%) as a tan powder of ca. 90% purity; decomposition occurs over several hours in chlorinated solvents.
- 15 (a) E.G. Burns, S.S.C. Chu, P. de Meester, and M. Lattman, Organometallics, 5 (1986) 2383 and references therein; (b) W.L. Olson, D.A. Nagaki, and L.F. Dahl, ibid., 5 (1986) 630; (c) J. Chang and R.G. Bergman, J. Am. Chem. Soc., 109 (1987) 4298; (d) T.B. Marder, W.C. Fultz, J.C. Calabrese, R.L. Harlow, and D.A. Milstein, J. Chem. Soc., Chem. Commun., (1987) 1543.