would be expected to attack C5 first, C1 or C2 next, and C9 last, based on substitution patterns 19 and asymmetry in Pt-C bond lengths. 20a,b

The results at hand suggest that CH_3O^- could attack 4a first at platinum to form an intermediate analogous to 23 (R' = CH_3O^-), which then undergoes intramolecular insertion in a manner similar to R' = aryl or alkyl discussed above. However, we have not yet been able to demonstrate $Pt-OCH_3$ bonding prior to insertion, nor can we at this time rule out attack at C5 followed by $C5\rightarrow C9$ interchange.²¹

Conclusion

The goal of this work was the synthesis of a group of molecules of structure 23, followed by a thorough mechanistic study of the R' migration (as in 2). The need for such a base-line study of this type of reaction has been noted before. ^{5f,k,q-s} The exocyclic double bond in coordi-

(19) See: Nucleophilic Attack on Unsaturated Hydrocarbon Ligands; pp 409 et. seq. Collman et al. cited in ref 3 above.

(20) (a) Eisenstein, O.; Hoffmann, R. J. Am. Chem. Soc. 1981, 103, 4308.
(b) Wright, L. L.; Wing, R. M.; Rettig, M. F. J. Am. Chem. Soc. 1982, 104, 610-612.

(21) Preliminary results with $(n\text{-Bu})_3\text{SnOCH}_3/4a/\text{CDCl}_3$ suggest rapid (~ 1 min) methoxylation at both C5 and C9 ($\sim 40/60$ ratio—variable with conditions). The initial C5/C9 product ratio does not change with time, which suggests that the C5 product tends not to migrate to C9—at least in low polarity conditions. Additional preliminary results indicate that pyridines attack C5 of 4a, with rapid C5 \rightarrow C9 migration.

nated 5-methylenecyclooctene is clearly strongly activated toward ligand migration; however, due to the demonstrated extensive dissociation of the exocyclic double bond in the η^2 dimers and to the R' cis to endocyclic double bond in the η^4 monomers, we must infer structures 23 as reactive intermediates which are undetected prior to R' migration. We continue our search for "in-plane" olefin-Pt(II) systems in which we can observe the single step analogous to 2.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work through Grant 15158-AC3. This work also received partial support through the University of California Committee on Research and the Universitywide Energy Research Group.

Registry No. 3, 38960-31-5; 4a, 107681-69-6; 4b, 107681-68-5; 5, 12080-32-9; 6, 33010-47-8; 7, 115826-34-1; 8, 115826-35-2; 9, 115795-82-9; 10, 115795-83-0; 11, 115795-84-1; 12, 115795-85-2; 13, 115826-36-3; 14, 115795-86-3; 15, 115795-87-4; 16 (major isomer), 115888-44-3; 16 (minor isomer), 115795-81-8; [(MCOT)(Br)Pt(Ph)]_2, 115795-88-5; [(MCOT)(Cl)Pt(p-MeOC_6H_4)]_2, 115795-89-6; [(MCOT)(Cl)Pt(Et)]_2, 115795-90-9; Me_3Sn(p-ClC_6H_4), 14064-15-4; Me_3SnPh, 934-56-5; Me_4Sn, 594-27-4.

Supplementary Material Available: For complexes 12 and 16, tables of bond distances, bond angles, least-squares planes and dihedral angles between planes, positional parameters, displacement parameters, and torsion angles (15 pages); listings of structure factors (18 pages). Ordering information is given on any current masthead page.

Synthesis and Reactivity of Functionalized Rhenium Silyl Complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(SiR_2X)$. Anionic Rearrangements Leading to the Disilametallacycle $(\eta^5-C_5H_4Si(CH_3)_2)Re(NO)(PPh_3)(Si(CH_3)_2)$

Guy L. Crocco, Craig S. Young, Kenneth E. Lee, and J. A. Gladysz*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received January 25, 1988

Reaction of Li⁺[(η^5 -C₅H₅)Re(NO)(PPh₃)]⁻ (3) with silicon electrophiles (CH₃)₃SiOTf, (CH₃)₂SiHCl, (CH₃)₂Si(CH=CH₂)OTf, and Cl(CH₃)₂SiSi(CH₃)₂Cl gives functionalized silyl complexes (η^5 -C₅H₅)Re-(NO)(PPh₃)(Si(CH₃)₂X) (X = CH₃ (4), H (5), CH=CH₂ (6), and Si(CH₃)₂Cl (7)) in 83-21% yields after workup. Reaction of 4 and n-BuLi/TMEDA gives, as assayed by ³¹P NMR, lithiocyclopentadienyl complex (η^5 -C₅H₄Li)Re(NO)(PPh₃)(Si(CH₃)₃) (8), which rapidly rearranges at -78 °C to silylcyclopentadienyl complex Li⁺[(η^5 -C₅H₄Si(CH₃)₃)Re(NO)(PPh₃)(Si(CH₃)₃) (9). Addition of CH₃OTf gives methyl complex (η^5 -C₅H₄Si(CH₃)₃)Re(NO)(PPh₃)(CH₃) (10, 72%). Similar reaction of 7 and n-BuLi/TMEDA gives (η^5 -C₅H₄Li)-Re(NO)(PPh₃)(Si(CH₃)₂Si(CH₃)₂Cl) (13), which rearranges at -24 °C to Li⁺[(η^5 -C₅H₄Si(CH₃)₂Si-(CH₃)₂Cl)Re(NO)(PPh₃)]⁻ (14). Upon warming, 14 cyclizes to disilametallacycle (η^5 -C₅H₄Si(CH₃)₂)Re-(NO)(PPh₃)(Si(CH₃)₂) (15, 53%).

There has been a great deal of interest in the syntheses and reactions of functionalized metal-silyl complexes, $L_n M SiR_2 X.^1$ Such compounds have attracted attention as precursors to complexes of unsaturated organosilicon

ligands. At the same time, lithiocyclopentadienyl silyl complexes, (η^5 -C₅H₄Li)MSiR₃, have been found to undergo unusual metal-to-carbon silatropic shifts, as shown in eq 1.2-5 This gives metal-centered anions of the general

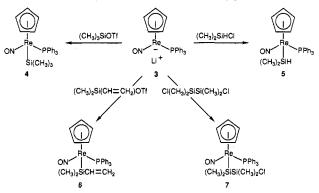
⁽¹⁾ See, inter alia: (a) Straus, D. A.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem. Soc. 1987, 109, 5872. (b) Berry, D. H.; Jiang, Q. Ibid. 1987, 109, 6210. (c) Zybill, C.; Müller, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 669. (d) Marinetti-Mignani, A.; West, R. Organometallics 1987, 6, 141. (e) Pannell, K. H.; Cervantes, J.; Hernandez, C.; Cassias, J.; Vincenti, S. Ibid. 1986, 5, 1056. (f) Tobita, H.; Ueno, K.; Ogino, H. Chem. Lett. 1986, 1777. (g) Bell, L. G.; Gustavson, W. A.; Thanedar, S.; Curtis, M. D. Organometallics 1983, 2, 740. (h) Pakkanen, T.; Kerber, R. C. Inorg. Chim. Acta 1981, 49, 47. (i) Malisch, W.; Panster, P. Chem. Ber. 1975, 108, 2554.

^{(2) (}a) Berryhill, S. R.; Sharenow, B. J. Organomet. Chem. 1981, 221,
143. (b) Berryhill, S. R.; Clevenger, G. L.; Burdurlu, F. Y. Organometallics 1985, 4, 1509.
(3) Thum, G.; Ries, W.; Greissinger, D.; Malisch, W. J. Organomet.

⁽³⁾ Thum, G.; Ries, W.; Greissinger, D.; Malisch, W. J. Organomet Chem. 1983, 252, C67.

⁽⁴⁾ Pasman, P.; Snel, J. J. M. J. Organomet. Chem. 1986, 301, 329.
(5) (a) Pannell, K. H.; Vincenti, S. P.; Scott III, R. C. Organometallics 1987, 6, 1593.
(b) Pannell, K. H.; Rozell, J. M.; Tsai, W.-M. Ibid. 1987, 6, 2085.

The chiral, electron-rich rhenium fragment $(\eta^5-C_5H_5)$ - $Re(NO)(PPh_3)^+$ makes stable complexes with a variety of unsaturated organic ligands (e.g., =CH₂, =C=CH₂, -Hence, we sought to prepare functionalized CHO),6 rhenium-silyl complexes $(\eta^5 - C_5 H_5) Re(NO) (PPh_3) (SiR_2 X)$ for study as precursors to complexes of unsaturated organosilicon ligands. Metal-silyl complexes are frequently synthesized from metal anions and silicon electrophiles. We recently showed that reaction of hydride complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(H)$ (1) and n-BuLi first gives lithiocyclopentadienyl complex $(\eta^5-C_5H_4Li)Re(NO)$ -(PPh₃)(H) (2; eq 2) and then, by a prototropic shift, rhe-


nium-centered anion $Li^+[(\eta^5-C_5H_5)Re(NO)(PPh_3)]^-(3).8$ Hence, we set out to study reactions of anion 3 with functionalized silicon electrophiles. We further sought to deprotonate the target silvl complexes to the corresponding lithiocyclopentadienyl complexes and compare the migratory aptitudes of silyl ligands with that of the hydride ligand in 2.

Results

Hydride complex $(\eta^5\text{-}C_5H_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{H})$ (1) and n-BuLi were reacted (THF, -15 °C) to give rhenium-centered anion Li⁺[$(\eta^5-C_5H_5)Re(NO)(PPh_3)$]⁻ (3; 45.2 ppm, ³¹P NMR).8 Subsequent addition of silyl chloride (CH₃)₃SiCl (2-5 equiv, -78 °C) was monitored by ³¹P NMR. A 38.2 ppm intermediate cleanly and rapidly formed but decomposed to a multitude of products upon warming to room temperature. In contrast, addition of silyl triflate (CH₃)₃SiOTf (2.0 equiv, -78 °C) cleanly gave a 24.8 ppm product. No decomposition occurred upon warming, and workup gave trimethylsilyl complex (η⁵-C₅H₅)Re(NO)-(PPh₃)(Si(CH₃)₃) (4; Scheme I) in 42% yield. The structure of 4 followed readily from its spectroscopic properties. which are summarized in Table I. Satisfactory microanalyses were obtained for all new complexes (Experimental Section).

Reactions of functionalized silicon electrophiles were examined next. Treatment of anion 3 with (CH₃)₂SiHCl, $(CH_3)_2Si(CH=CH_2)OTf$, and $Cl(CH_3)_2SiSi(CH_3)_2Cl$ (1.1-2.0 equiv, -78 °C) followed by workup gave silyl complexes $(\eta^5 - C_5 H_5) \text{Re}(\text{NO}) (\text{PPh}_3) (\text{Si}(\text{CH}_3)_2 \text{H}) (5, 83\%),$ $(\eta^5 - C_5 H_5) \text{Re(NO)}(PPh_3) (\text{Si(CH}_3)_2 \text{CH} = \text{CH}_2) (6, 21\%), \text{ and}$ $(\eta^5-C_5H_5)Re(NO)(PPh_3)(Si(CH_3)_2Si(CH_3)_2Cl)$ (7, 55%), respectively (Scheme I). These reactions appeared quantitative when monitored by ³¹P NMR. Treatment of 3 with (CH₃)₂Si(Cl)OTf (1.2-1.4 equiv) also appeared to cleanly give silyl complex (η^5 -C₅H₅)Re(NO)(PPh₃)(Si(CH₃)₂Cl) (³¹P NMR, 25.8 ppm). However, the product could only be

Scheme I. Syntheses of Silyl Complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(Si(CH_3)_2X)$

Scheme II. Formation of a Silylcyclopentadienyl Ligand via a Metal-to-Ligand Silatropic Shift

isolated as a viscous oil (26.0 ppm), the mass and appearance of which suggested contamination by a THF polymer.

Reactions of silyl complexes with base were studied next. First, complex 4 was treated with 1.2 equiv of n-BuLi/ TMEDA in THF at -78 °C. After 1.5 h, CH₃OTf (3.8 equiv) was added. This gave silylcyclopentadienyl complex $(\eta^5-C_5H_4Si(CH_3)_3)Re(NO)(PPh_3)(CH_3)$ (10; Scheme II) in 72% yield upon workup. The structure of 10 followed from its ¹H and ¹³C NMR spectra, which showed resonances characteristic of a monosubstituted cyclopentadienyl ligand a ReCH₃ moiety (Table I). Complex 10 was independently synthesized in 66% yield by reaction of methyl complex (η⁵-C₅H₅)Re(NO)(PPh₃)(CH₃) (11; Scheme II) 6a with n-BuLi/TMEDA (1.0 equiv, -78 °C) to give lithiocyclopentadienyl complex (n5-C5H4Li)Re(NO)-(PPh₃)(CH₃) (12), 10 followed by addition of (CH₃)₃SiOTf.

The reaction sequence leading from silyl complex 4 to methyl complex 10 was monitored by 31P NMR. A spectrum was recorded 15 min after the addition of n-BuLi/ TMEDA to 4. This showed some starting 4 (24.9 ppm, ca. 55%), a sharp resonance with a chemical shift characteristic of rhenium-centered anions Li⁺[$(\eta^5-C_5H_4X)$ Re-(NO)(PPh₃)]⁻ (44.8 ppm, ca. 40%),^{8,10} and a resonance slightly downfield from that of 4 (28.6 ppm, ca. 5%). Small downfield ³¹P NMR shifts occur upon cyclopentadienyl ligand lithiation in $(\eta^5-C_5H_5)Re(NO)(PPh_3)(X)$ complexes.^{8,10-12} The 44.8 ppm resonance intensified as the others

^{(6) (}a) Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141. (b) Merrifield, J. H.; Lin, G.-Y.; Kiel, W. A.; Gladysz, J. A. Ibid. 1983, 105, 5811. (c) Senn, D. R.; Wong, A.; Patton, A. T.; Marsi, M.; Strouse, C. E.; Gladysz, J. A. Ibid. 1988, 110, 6096.

⁽⁷⁾ Gladysz, J. A. Acc. Chem. Res. 1984, 17, 326. (8) (a) Crocco, G. L.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1985, 283. (b) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110,

^{(9) (}a) Johnston, P.; Loonat, M. S.; Ingham, W. L.; Carlton, L.; Coville, N. J. Organometallics 1987, 6, 2121. (b) Carlton, L.; Johnston, P.; Coville, N. J. J. Organomet. Chem. 1988, 339, 339.

⁽¹⁰⁾ Heah, P. C.; Patton, A. T.; Gladysz, J. A. J. Am. Chem. Soc. 1986,

⁽¹¹⁾ Zwick, B. D.; Arif, A. M.; Patton, A. T.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 910.

⁽¹²⁾ Crocco, G. L.; Gladysz, J. A. Chem. Ber. 1988, 121, 375.

Complexes
Rhenium
of New
terization
Charac
rable I.

 o At 300 MHz and ambient probe temperature; all couplings are to hydrogen, unless noted. b At 75 MHz and ambient probe temperature and referenced to external 85% H₃PO₄. d Spectrum taken in C₆D₆ and referenced to solvent at b 7.15 (1 H NMR) and 128.00 ppm (13 C NMR). e Portion of doublet; other line obscured by solvent. f At 17 eV. g (+)-FAB (Ar, 7KV, thioglycerol), m Z. h Spectrum taken in CDCl₃ and referenced to solvent at b 7.24 (1 H NMR) and 77.0 ppm (13 C NMR). i Ipso carbon not observed. j Spectrum taken in CD₂Cl₂.

Scheme III. Formation of a Disilametallacycle via a Metal-to-Ligand Silatropic Shift

diminished. After 1 h, only the 44.8 ppm resonance remained, and addition of CH₃OTf gave methyl complex 10 (25.4 ppm). These data suggest that 4 is slowly deprotonated to lithiocyclopentadienyl complex (η^5 -C₅H₄Li)-Re(NO)(PPh₃)(Si(CH₃)₃) (8) at -78 °C and that 8 undergoes a rapid subsequent silatropic rearrangement to give anion Li⁺[(η^5 -C₅H₄Si(CH₃)₃)Re(NO)(PPh₃)]⁻ (9).

The reaction of disilyl complex 7 (25.2 ppm) and n-BuLi/TMEDA was similarly monitored by ^{31}P NMR. A new species with a ^{31}P NMR resonance at 27.9 ppm slowly appeared at -78 °C and was assigned to lithiocyclopentadienyl complex (η^5 -C₅H₄Li)Re(NO)(PPh₃)(Si-(CH₃)₂Si(CH₃)₂Cl) (13). The reaction was kept at -45 °C for 1 h, after which time resonances of equal intensity were present at 25.7, 28.0, and 45.1 ppm. These were assigned to 7, 13, and the rhenium-centered anion Li⁺[(η^5 -C₅H₄Si(CH₃)₂Si(CH₃)₂Cl)Re(NO)(PPh₃)]⁻ (14), respectively. The reaction was kept at -15 °C for 45 min. A new resonance appeared at 24.3 ppm and intensified with time. After 2–3 h, only the 24.3 ppm resonance remained. The corresponding species was isolated in 53% yield in a preparative experiment and on the basis of ¹H and ¹³C NMR data (Table I) was assigned the disilametallacycle structure (η^5 -C₅H₄Si(CH₃)₂)Re(NO)(PPh₃)(Si(CH₃)₂) (15).

structure $(\eta^5\text{-}C_5\text{H}_4\text{Si}(\text{CH}_3)_2)\text{Re}(\text{NO})(\text{PPh}_3)(\text{Si}(\text{CH}_3)_2)$ (15). Hence, the sluggish deprotonation of disilyl complex 7 is followed by a slow silatropic shift to give anion 11, which subsequently cyclizes to disilametallacycle 15 (Scheme III).

Discussion

The above data show that the rhenium anion Li⁺[(η^5 -C₅H₅)Re(NO)(PPh₃)]⁻ (3) reacts with a variety of silicon electrophiles to give functionalized silyl complexes. However, as noted in the reaction of 3 and (CH₃)₃SiCl, a product with a ³¹P NMR resonance in the 34–38 ppm region sometimes cleanly forms instead. This appears to happen less with silyl triflates than silyl chlorides. We speculate that these may be nitrosyl ligand silylation products, (η^5 -C₅H₅)Re(\equiv NOSiR₃)(PPh₃). However, in all cases a multitude of decomposition products are generated upon warming.

Reactions involving migrations of silyl ligands to lithicyclopentadienyl ligands were first observed by Berryhill. He found that addition of n-BuLi or LiNR₂ to iron silane complex $(\eta^5\text{-}C_5H_5)$ Fe(CO)₂(Si(CH₃)₃) at -78 °C gave anion Li⁺[$(\eta^5\text{-}C_5H_4\text{Si}(\text{CH}_3)_3)$ Fe(CO)₂]⁻, which was characterized spectroscopically and by alkylation reactions. Earlier, Graham had reported an analogous reaction of

germyl complex $(\eta^5\text{-}C_5H_5)\text{Mo}(\text{CO})_3(\text{GePh}_3).^{14}$ Subsequent studies by Berryhill, ^{2b} Malisch, ³ Pasman and Snel, ⁴ and Pannell⁵ have extended the scope of this rearrangement to several other systems. However, only with complexes 4 and 7 has it proved possible to spectroscopically observe the lithiocyclopentadienyl intermediate prior to silyl ligand migration.

Comparison of Schemes II and III with eq 2 indicates that silyl ligands have better migratory aptitudes than hydride ligands. This is in agreement with observations of Pasman and Snel, who reacted the rhenium silyl hydride complex $(\eta^5\text{-}C_5H_5)\text{Re}(\text{CO})_2(\text{SiPh}_3)(\text{H})$ and $t\text{-BuCH}_2\text{Li}$ at $-78~^{\circ}\text{C}.^4$ Only the silyl ligand migration product Li⁺-[$(\eta^5\text{-}C_5H_4\text{SiPh}_3)\text{Re}(\text{CO})_2(\text{H})]^-$ formed, as assayed spectroscopically and by protonation reactions. Our data further show that the trimethylsilyl ligand, $-\text{Si}(\text{CH}_3)_3$, migrates faster than the disilyl ligand $-\text{Si}(\text{CH}_3)_2\text{Si}(\text{CH}_3)_2\text{Cl}$.

In other studies, we have shown that acyl ligands have slightly better migratory aptitudes than silyl ligands. ¹⁰ In contrast, halide and alkyl ligands in lithiocyclopentadienyl complexes $(\eta^5\text{-}\mathrm{C}_5\mathrm{H_4Li})\mathrm{Re}(\mathrm{NO})(\mathrm{PPh_3})(\mathrm{X})$ and $(\eta^5\text{-}\mathrm{C}_5\mathrm{H_4Li})\mathrm{Re}(\mathrm{NO})(\mathrm{PPh_3})(\mathrm{R})$ show no tendency to migrate. ^{10,12} This gives the following order of ligand migratory aptitudes: acyl > silyl > hydride \gg halide \gtrsim alkyl. Berryhill has proposed that vacant silicon d orbitals play a key role in these reactions. ^{2b} Accordingly, acyl ligands, which have low-lying π^* -acceptor orbitals, also migrate readily.

The disilametallacycle 15 is to our knowledge a new type of ring system, and the reactivity of the silicon linkage is under investigation. Carbocyclic analogues of 15, $(\eta^5$ -

 $C_5H_4\dot{C}H_2)M(L)_n(\dot{C}H_2)$, have been prepared and undergo a variety of bridge reactions.¹⁵ Interestingly, lithiocyclopentadienyl complex 13 (Scheme III) can in principle directly cyclize to 15. However, we see no evidence by NMR for this reaction pathway.

In summary, we have shown that functionalized silyl complexes can be prepared from anion 3 and that the corresponding lithiocyclopentadienyl complexes undergo facile metal-to-ligand silatropic shifts. Additional reactions of these functionalized silyl complexes will be described in future reports.¹⁶

Experimental Section

General Data. All reactions were conducted under a dry N_2 atmosphere. IR spectra were recorded on a Perkin-Elmer 1500 (FT) spectrometer. NMR spectra were recorded on Varian XL-300 (1 H, 13 C) and FT-80A (31 P) spectrometers as outlined in Table I. Mass spectra were obtained on a VG 770 spectrometer. Microanalyses were conducted by Galbraith Laboratories.

Solvents were purified as follows: THF, ether, and benzene, distilled from Na/benzophenone; hexane, heptane, and toluene, distilled from Na; CH₂Cl₂, distilled from P₂O₅; ethyl acetate, used as received; C₆D₆, vacuum transferred from CaH₂; CD₂Cl₂ and CDCl₃, vacuum transferred from P₂O₅.

Base n-BuLi (Aldrich) was standardized¹⁷ before use. Reagents were purified as follows: CH_3OTf (Aldrich), $(CH_3)_3SiOTf$ (Petrarch), $(CH_3)_2SiHCl$ (Petrarch), $(CH_3)_2SiHCl$ (Petrarch), and TMEDA (Aldrich), distilled from CaH_2 ; $Cl(CH_3)_2SiSi(CH_3)_2Cl$, prepared by a literature procedure (16-h reaction time)¹⁸ and purified by preparative GLC; AgOTf (Aldrich), used as received.

 ⁽¹⁴⁾ Dean, W. K.; Graham, W. A. G. Inorg. Chem. 1977, 16, 1061.
 (15) Barretta, A.; Cloke, F. G.; Feigenbaum, A.; Green, M. L. H.;
 Gourdon, A.; Prout, K. J. Chem. Soc., Chem. Commun. 1981, 156.

 ⁽¹⁶⁾ Young, C. S. M.S. Thesis, University of Utah, 1988.
 (17) Silveira, A., Jr.; Bretherick, H. D., Jr.; Negishi, E. J. Chem. Educ.
 1979, 56, 560.

^{(18) (}a) Sakurai, H.; Tominaga, K.; Watanabe, T.; Kumada, M. Tetrahedron Lett. 1966, 5493. (b) Bertrand, G. Université Paul Sabatier, personal communication.

⁽¹³⁾ Becker, R. unpublished results, University of Utah.

Preparation of $(CH_3)_2Si(CH\longrightarrow CH_2)OTf$. A Schlenk flask was charged with AgOTf (3.85 g, 15 mmol), ether (50 mL), and a stir bar. The solution was cooled to 0 °C and stirred. Then $(CH_3)_2Si(CH\longrightarrow CH_2)Cl$ (1.53 g, 2.04 mL, 15 mmol) was added dropwise by syringe. The mixture was stirred for 6 h and allowed to slowly warm to room temperature. The flask was transferred to a N₂ atmosphere glovebox. The reaction mixture was filtered, and solvent was removed from the filtrate by rotary evaporation. The remaining liquid was vacuum distilled (40 °C, 0.1 mmHg) into a N₂-cooled receiving flask to give $(CH_3)_2Si(CH\longrightarrow CH_2)OTf$ (3.2 g, 14 mmol, 95%). ¹H NMR (δ, 500 MHz, C₆D₆): 5.79 (dd, J=20, 14 Hz, 1 H), 5.71 (dd, J=14, 4 Hz, 1 H), 5.55 (dd, J=20, 4 Hz, 1 H), 0.04 (s, 2CH₃).

Preparation of $(\eta^5\text{-}\text{C}_5\text{H}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{Si}(\text{CH}_3)_3)$ (4). A Schlenk tube was charged with $(\eta^5\text{-}\text{C}_5\text{H}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{H})$ (1, 0.35 g, 0.63 mmol), THF (15 mL), and a stir bar. The yellow solution was cooled to -15 °C and stirred. Then n-BuLi (0.36 mL, 2.5 M in hexane) was added, and the solution turned dark red. After 0.5 h, the solution was cooled to -98 °C, and (CH₃)₃SiOTf (0.29 g, 1.3 mmol) was added. After 0.5 h, the yellow solution was warmed to room temperature, and solvents were removed in vacuo. The flask was transferred to a N₂ atmosphere glovebox, and the residue was extracted with hexane. The extract was filtered, and the filtrate was kept at -40 °C for 3 days. Light orange crystals formed, which were collected by filtration and dried in vacuo to give 4 (0.17 g, 0.27 mmol, 42%), mp 155–157 °C dec. Anal. Calcd for C₂₈H₂₉NOPReSi: C, 50.63; H, 4.74. Found: C, 50.63; H, 4.87.

Preparation of $(\eta^5-C_5H_5)Re(NO)(PPh_3)(Si(CH_3)_2H)$ (5). Complex 1 (0.064 g, 0.12 mmol), THF (4 mL), and n-BuLi (0.064 mL, 2.4 M in hexane) were combined as described in the preparation of 4. After 0.5 h, the solution was cooled to -78 °C, and (CH₃)₂SiHCl (0.036 g, 0.39 mmol) was added. After 0.5 h, the dark yellow solution was warmed to room temperature, and solvents were removed in vacuo. The flask was transferred to a N₂ atmosphere glovebox, and the residue was extracted with benzene. The extract was filtered through a 2-cm plug of silica gel, and the filtrate was concentrated to an orange oil by rotary evaporation. The resulting oil was dissolved in CH₂Cl₂ (5 mL), heptane was added (20 mL), and the solvents were removed by rotary evaporation. The resulting yellow powder was collected and dried in vacuo to give 5 (0.054 g, 0.96 mmol, 83%), mp 124-125 °C. Anal. Calcd for C₂₅H₂₇NOPReSi: C, 49.82; H, 4.52. Found: C, 50.10; H, 4.46.

Preparation of $(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(Si(CH₃)₂CH=CH₂) (6). Complex 1 (0.74 g, 1.4 mmol), THF (5 mL), and n-BuLi (0.72 mL, 2.0 M in hexane) were combined as described in the preparation of 4. Then (CH₃)₂Si(CH=CH₂)OTf (0.35 g, 1.5 mmol) was added (-78 °C). After 15 min, the solution was warmed to room temperature and solvents were removed in vacuo. The flask was transferred to a N2 atmosphere glovebag. The dark residue was extracted with a minimum of CH₂Cl₂. The extract was loaded on a preparative TLC plate (silica gel G) and eluted with 50:50 (v/v) CH₂Cl₂/hexane. A leading yellow-orange band was collected and transferred to a N₂ atmosphere glovebox. The product was washed from the silica gel with benzene. The benzene was removed by rotary evaporation, and the resulting orange residue was dissolved in ether. Slow evaporation gave small waxy orange plates. These were collected and vacuum dried to give 6 (0.19 g, 0.30 mmol, 21%). Anal. Calcd for C₂₇H₂₉NOPReSi: C, 52.93; H, 4.77; Si, 5.23. Found: C, 52.59; H, 4.81; Si, 5.06.

Preparation of $(\eta^5\text{-}\mathrm{C}_5\mathrm{H}_5)\mathrm{Re}(\mathrm{NO})(\mathrm{PPh}_3)(\mathrm{Si}(\mathrm{CH}_3)_2\mathrm{Si}(\mathrm{CH}_3)_2\mathrm{Cl})$ (7). Complex 1 (0.53 g, 0.98 mmol), THF (25 mL), and n-BuLi (0.50 mL, 2.4 M in hexane) were combined as described in the preparation of 4. Then $\mathrm{Cl}(\mathrm{CH}_3)_2\mathrm{SiSi}(\mathrm{CH}_3)_2\mathrm{Cl}$ (0.30 g, 1.6 mmol) was added (-78 °C). After 1 h, the dark yellow solution was warmed to room temperature and solvents were removed in vacuo. The flask was transferred to a N_2 atmosphere glovebox and the residue was extracted with benzene. The extract was filtered, and solvent was removed from the filtrate by rotary evaporation. The resulting dark residue was washed with cold toluene (2 × 10 mL) and filtered. The resulting yellow powder was dried in vacuo to give 7 (0.37 g, 0.54 mmol, 55%). The powder was dissolved in $\mathrm{CH}_2\mathrm{Cl}_2$ (10 mL), layered with hexane, and kept

at -40 °C for 2 days to give yellow crystals of 7, mp 151–154 °C. Anal. Calcd for $C_{27}H_{32}ClNOPReSi_2$: C, 46.64; H, 4.64. Found: C, 46.32; H, 4.56.

Preparation of $(\eta^5 - C_5H_4Si(CH_3)_3)Re(NO)(PPh_3)(CH_3)$ (10). A. A Schlenk tube was charged with 4 (0.085 g, 0.14 mmol), THF (4 mL), and a stir bar. The solution was cooled to -78 °C, and TMEDA (0.021 g, 0.18 mmol) and n-BuLi (0.075 mL, 2.5 M in hexane) were added with stirring. After 2 h, CH₃OTf (0.087 g, 0.53 mmol) was added to the dark red solution. After 5 min, the resulting orange solution was transferred to a round-bottom flask, and solvents were removed by rotary evaporation. The residue was extracted with benzene. The extract was filtered, and solvent was removed from the filtrate by rotary evaporation. The resulting red oil was chromatographed on a 12 × 2.5 cm silica gel column with 10:90 (v/v) ethyl acetate/hexane. The yellow band was collected and concentrated to an oil. The oil was dissolved in ca. 10 mL of hexane and kept at -24 °C for 3 days. Orange crystals formed, which were collected by filtration and dried in vacuo to give 10 (0.061 g, 0.10 mmol, 72%), mp 173-175 °C. Anal. Calcd for C₂₇H₃₁NOPReSi: C, 51.41; H, 4.95. Found: C, 51.65; H, 4.91. **B.** A Schlenk tube was charged with $(\eta^5-C_5H_5)Re(NO)(PPh_3)$ -(CH₃)^{6a} (0.31 g, 0.58 mmol), THF (15 mL), and a stir bar. The solution was cooled to -78 °C, and n-BuLi (0.42 mL, 1.4 M in hexane) was added with stirring. After 0.5 h, (CH₃)₃SiOTf (0.14 mL, 0.77 mmol) was added, and the solution was stirred for 1 h. The solution was warmed to room temperature, and solvents were removed in vacuo. The flask was transferred to a N2 atmosphere glovebox, and the orange oil was extracted with CH₂Cl₂. The extract was loaded on a preparative TLC plate (silica gel G) and eluted with 50:50 (v/v) CH₂Cl₂/hexane. A leading orange band was collected, and the product was washed from the silica gel with benzene. The benzene was removed by rotary evaporation. The resulting oil was dissolved in hexane and kept at -24 °C for 2 days. Orange crystals of 10 formed and were collected by filtration and dried in vacuo (0.23 g, 0.38 mmol, 66%).

Preparation of (η^5 -C₅H₄Si(CH₃)₂)Re(NO)(PPh₃)(Si-(CH₃)₂) (15). A Schlenk tube was charged with 7 (0.22 g, 0.31 mmol), THF (15 mL), and a stir bar. The solution was cooled to -78 °C, and TMEDA (0.42 g, 0.36 mmol) and n-BuLi (0.23 mL, 1.5 M in hexane) were added with stirring. The solution was warmed to room temperature over 1 h and then stirred an additional hour. The solvents were removed in vacuo, and the flask was transferred to a N₂ atmosphere glovebox. The residue was extracted with benzene. The extract was filtered, and solvent was removed from the filtrate by rotary evaporation. The resulting orange oil was dissolved in pentane (25 mL). Slow evaporation of the pentane gave small orange crystals. The crystals were collected by filtration and vacuum dried at 78 °C to give 15 (0.11 g, 0.16 mmol, 53%), mp 155-157 °C. Anal. Calcd for C₂₇H₃₁NOPReSi₂: C, 49.22; H, 4.74. Found: C, 49.35; H, 4.53. Monitoring of Reactions by ³¹P NMR. The following ex-

Monitoring of Reactions by ³¹P NMR. The following experiment is representative. A 5-mm NMR tube was charged with 4 (0.032 g, 0.052 mmol) and THF (0.5 mL) and capped with a septum. A ³¹P NMR spectrum was recorded at -78 °C (24.9 ppm). The tube was immersed in a -78 °C bath. Then TMEDA (0.007 g, 0.63 mmol) and n-BuLi (0.028 mL, 2.0 M in hexane) were added. The sample was shaken and immediately transferred back to the -78 °C NMR probe. Sharp singlets were observed at 44.8, 28.6, and 24.9 ppm (55:5:40). After 30 min, a spectrum was recorded, and a sharp singlet was observed at 44.8 ppm. The tube was immersed in a -78 °C bath. Then CH₃OTf (0.012 g, 0.073 mmol) was added, and the sample was shaken. A ³¹P NMR was immediately recorded (-78 °C), and a sharp singlet was observed at 25.4 ppm.

Acknowledgment. We thank the NSF for support of this research and Dr. Richard Becker for experimental observations involving related reactions.

Registry No. 1, 79919-58-7; **4**, 97396-46-8; **5**, 115827-21-9; **6**, 115827-22-0; **7**, 115827-23-1; **10**, 115827-24-2; **11**, 71763-18-3; **15**, 115827-25-3; $(CH_3)_2Si(CH \longrightarrow CH_2)OTf$, 115827-19-5; $(CH_3)_2Si(CH \longrightarrow CH_2)Cl$, 1719-58-0; $Cl(CH_3)_2SiSi(CH_3)_2Cl$, 4342-61-4.