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Abstract

We propose a class of power-transformed linear quantile regression models for time-
to-event observations subject to censoring. By introducing a process of power trans-
formation with different transformation parameters at individual quantile levels, our
framework relaxes the assumption of logarithmic transformation on survival times and
provides dynamic estimation of various quantile levels. With such formulation, our pro-
posal no longer requires the potentially restrictive global linearity assumption imposed
on a class of existing inference procedures for censored quantile regression. Uniform
consistency and weak convergence of the proposed estimator as a process of quan-
tile levels are established via the martingale-based argument. Numerical studies are
presented to illustrate the outperformance of the proposed estimator over existing con-

tenders under various settings.
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1 Introduction

Quantile regression (QR) has become a popular technique to model the entire conditional
distribution of the response variable since Koenker and Bassett (1978). Whilst the ordi-
nary least squares regression models the conditional mean response given the regressors,
the quantile regression relates the conditional quantile function of the response of interest
with the explanatory variables, which in turns offers a more comprehensive description that
relates the quantity of interest with the collected covariates. Given its wide applicability
and modeling flexibility, the model has attracted enormous interest in various fields in the
literature. Examples include economics (Koenker and Hallock, 2001; Engle and Maganelli,
2004), growth chart (Wei et al., 2006; Wei and He, 2006) and modeling of time-to-event data
(Portnoy, 2003; Peng and Huang, 2008; Wang and Wang, 2009; Wu and Yin, 2013, amongst
others); see also Koenker (2005) and, more recently, Koenker et al. (2017) for extensive
literature reviews on the corresponding development.

When the data are completely observed, we denote {(T},Z;),i = 1,...,n} a random
sample from the target population, where T; is a scalar response while Z; is a p X 1 vector
of explanatory variables. The linear quantile regression model stipulates that, for a fixed
7€ (0,1),

Qr,(T | Zs) = Z By(7), (1.1)

where Q7(7 | Z) denotes the 7-th conditional quantile of T given Z, i.e. Pr{T < Qr(7 | Z) |
Z} = 7. Solution to (1.1) can be obtained via the least absolute deviation approach which
solves B(7) = arg mingegs S p(Ti—2Z] B;7), where p(u; 7) = u{r —I(u < 0)} corresponds

to the check function.



Quantile regression has also been a useful alternative to the hazard-based semiparametric
models. The most prominent feature of quantile regression for censored data is its ability to
accommodate heterogeneous effects of the covariates, which can influence not only the loca-
tion but also the shape of the survival time distribution. It is known that the heterogeneity
in covariate effects cannot be easily incorporated in either the celebrated Cox proportional
hazards model (Cox, 1972, 1975) or the accelerated failure time (AFT) model (Tsiatis, 1990;
Ying, 1993; Jin et al., 2003). Furthermore, the conditional quantile of the survival time is
easier to interpret than the hazard function and is often of direct interest.

To tackle the extra complication due to censoring, Powell (1984, 1986) modified the least
absolute deviation procedure to handle censored observations; Ying et al. (1995) considered
a semiparametric procedure for median regression under the independent censoring assump-
tion. In view of the rather restrictive independent censoring assumption in real applications,
Portnoy (2003) further relaxed this requirement and proposed a recursively reweighted infer-
ence procedure based on the principle of the Kaplan-Meier (KM) estimate’s self-consistency,
which was later also investigated in Wang and Wang (2009) in which a locally weighted cen-
sored quantile regression approach based on the local Kaplan-Meier estimator was proposed.
Upon the conditional independence assumption, Peng and Huang (2008) exploited the mar-
tingale representation of the Nelson-Aalen estimator for the cumulative hazard function and
proposed a recursive series of estimating equations for a sequence of quantiles under the
global linear assumption, i.e. (1.1) holds for all 7 € (0,7,] C (0, 1), where 7, € (0, 1) denotes
a fixed constant that can ensure identifiability of the model under conditional independent
censoring. Huang (2010) provided a numerically stable and computationally efficient algo-
rithm for the aforementioned framework. More recently, De Backer et al. (2017) considered
an extended version of the check function which can handle the effect of censoring at various
level with an appropriate correction term. Different censored quantile regression models have
also been developed to tackle variations in the model and sampling schemes, such as the cure

rate quantile regression model (Wu and Yin, 2013), variable selection issues for censored data



(Wang et al., 2013; Peng et al., 2014; Zheng et al., 2017), and proper treatments for biased
censored observations (Wang and Wang, 2014).

Quantile regression models for survival data often assume (1.1) by applying logarithmic
transformation on survival time over all quantile values. Such mathematically convenient
log-transformation, however, may not be adequate in practice and consequently may lead
to estimation bias. In view of this limitation, quantile regression via power transformation
has been recently studied. In particular, Mu and He (2007) was the first to introduce a
Box-Cox transformation (Box and Cox, 1964) at a specific quantile level for complete data.

In particular, for the failure time 7', its Box-Cox transformation is defined as

—TWV_I if v#£0

hy(T) = (1.2)

log(T) ify=0

The extension of Mu and He (2007) to censored data are non-trivial. Yin et al. (2008)
first studied power-transformed linear quantile regression with independent censored data.
However, the independence censoring assumption required can be restrictive for many real
data applications. Leng and Tong (2014) relaxed this assumption to the conditionally in-
dependent censoring assumption given covariates. Nevertheless, the estimation procedure
involves estimating the unknown conditional distribution function through a non-parametric
kernel-based local Kaplan-Meier estimator, which can potentially be unstable when either
the covariate dimension or the censoring rate is high.

The main contribution of the paper is two-fold: Firstly, our proposal provides flexible
and simultaneous estimation for quantiles under transformations by introducing a trans-
formation parameter process for individual quantile levels. Despite the fact that Box-Cox
transformation in quantile regression has demonstrated its effectiveness in Yin et al. (2008)
and Leng and Tong (2014), their proposals may suffer the aforementioned limitations. In

contrast, our proposal can offer a solution that can handle conditional independent censoring



without using kernel estimation. Secondly, our method relaxes the global linear assumption
as required in Peng and Huang (2008); this also adds extra flexibility to the censored quantile
regression models when the transformation function is specified only at certain locations, if
not the entire piece of information is missing. In addition to the large-sample properties of
the proposed estimator developed, our numerical results also make evidence that the new
estimator outperforms the existing contender under various settings.

The remainder of the paper is organized as follows: Section 2 establishes the correspond-
ing set of estimating equations for our model parameters. The large-sample properties of the
proposed estimators are discussed in section 3. Simulation results are presented in Section 4
followed by a data analysis of the HMO dataset on HIV positive subjects, which is illustrated
in Section 5. Concluding remarks are given in Section 6. All the technical proofs are deferred

to the Appendix.

2 Methodology

Consider the following censored transformation linear quantile regression model

Q) (T1Z) = Z7 By (7) + Qu(7|Z) = Z By(r), 7€ (0,1), (2.1)

where Z is the covariate vector (without the intercept), B,(7) is the unknown regression
coefficient vector and e is the error term. The distribution of € is unspecified and may
depend on Z. We denote Z = (1,Z7)T and B,(1) = {Qc(7]Z), B,(7)T}T by including the
quantile of the error into the regression intercept. Meanwhile, A (7)) is the failure time
under a monotonic transformation with an unknown transformation parameter ~o(7) for
a given 7 € (0,1). For instance, we may consider the Box-Cox transform in (1.2) as an

example. Since h(;)(+) is monotone for any given (7), using the equivariance property of



quantile regression, we have

Qhw(T)(T)(ﬂZ) = h,y(T) (QT(T|Z)), T € (0, 1). (2.2)

It is easy to see that (2.1) is equivalent to the following model on the quantile function of 7',

Qr(7|Z) = h ),y (Z7Bo(7)), 7€ (0,1). (2.3)

Let C be the censoring random variable which is conditionally independent of T' given
Z. For subjects i = 1,---,n, we have observed data {(71},6;,Z;),i = 1,...,n}, where
T, = T, AC; and 6; = I(T; < C;). Our goal is to estimate {vo(7),3,(7)} for 7 € (0,1).
Instead of estimating {~o(7), B,(7)} for all 7 € (0, 1), we confine our attention to 7 € (0, 7],
where 7y € (0, 1) in order to avoid the identifiability issues due to conditional independent
censoring.

We adopt a martingale based estimation framework considered in Peng and Huang (2008).
Our proposed method does not require the global linear assumption because of the additional
transformation process considered. We define Fr(t | Z) = P(T < t | Z), Ar(t | Z) =
—log{l — Fr(t | Z)}, N(t) = (T <t,6 =1), Y(t) = I(T > t) and H(z) = —log(1 — x).
Note that Ar(t|Z) is the cumulative hazard function of 7' conditional on Z, so based on the
conditional independent censoring assumption (see, for example, Page 20 of Fleming and
Harrington, 2005), we obtain E{N(t) — Ap(t AT|Z)|Z} = 0. Substitution of ¢ with Q7 (7|Z)
gives

E[N{Qr(7|2)} — Ar{Qr(r|Z) A T|Z}|Z] = 0. (2:4)
Due to the fact that Fr{Qr(7|Z)|Z} = 7, we have

Ar{Qr(7|Z) NT|Z} = H(Fr{Qr(7|Z)|Z}) A H(Fr{T|Z})

:/OT][u < Fr{T|Z}|dH (u) :/TY{QT(U|Z)}dH(u)'

0

(2.5)



The estimating equation due to (2.3), (2.4) and (2.5),

S 0,7 = £ (2 |8 {nkey (@B } = [y {mk, (2Bt ] ) =0
(2.6)
can thus be established. Our estimator {{3(7),8(7)},7 € (0, 7]} is a right-continuous step
function with jumps on a grid Sy = {0 =7 <7 < -+ < T = 7v < 1} and denote
|SLmll = SuP1<j<r(m) |75 —Tj-1]- First note that the definition of conditional quantile implies
0=0Qr0|Z;) = h;ol(o)(ZiTﬁo(O)), so we can set h;(lo)(ZiTB(O)) = (0. Subsequently for each 7;,
and for any (7;), we obtain B(v, 7;) by solving the following monotone estimating equation,

which is the empirical counterpart of (2.6), for B(7;) as shown below:

S(r.8,7) =2 [N {nl (278(m) }
i=1 j
— Z Y; {h&_(lml) (Z:B(kal)) } {H () — H(Tkl)}] =0. (2.7)
k=1

An exact root for (2.7) may not exist since it is not continuous. Therefore, we define 3 (7, 75)
to be the generalized solutions in the sense of Fygenson and Ritov (1994). Recall 8 is a
generalized solution of S(fy, B, 7) = 0 if slight perturbations of any of its components change
the sign of S. Observe that (2.7) is monotone, we can transform the above problem to finding

a minimizer for a convex objective function of B3(7;), which implies

B(/ya Tj) = arg min IA/(’% /37 T)

B(75)
= arg i ! ; (o (1) = 27 B(m) | [-Ni { L) (27 B(7)) | (2.8)

+ iyi {hg(lm,l) (Zz’TB@'kfl))} {H () — H(Tkl)}] -

k=1

Remark 1. Equation (2.8) is an Li-type problem of the conditional quantile of T given

Z. To illustrate the connection of the equation to the check function in quantile regression,



recall that the check function is given by p(u;7) = u{T — I(u < 0)}. If we view the resid-
ual b (e (1) = 2 Blr75) as w and S, Y {hil, ) (Z7B(rn)) {H(n) = H(ma)} as
a function of T;, say gi(1j) = g(Tj,T,-,éi,Zi), then we can write the objective function as
Yoy p(hW(Tj)(Ti) — ZIB(v,7;); 9i(7})), which is a comparable form to the solution of the or-
dinary linear quantile regression model given by (1.1). Note that we have subject specific
gi(7j) instead of a fized constant 7; in the check function, because the subject specific cumu-
lative hazard function estimate has to be adjusted for complications due to censoring. As a
result, the estimation approach based on (2.8) can be considered as an optimization problem
with a generalized “check” function which depends on the values of the observations. Also,

note that the mean of
ZY { Yo (Tk—1) Z Bo(Ti— 1))} {H(mx) — H(1..1)}, i=1,---,n

approzimates E [7 Y{Qr(u)}dH (u) = [7 P{T > Qr(u)}dH(u) = [;7(1 —u)d{—log(1 —
u)} = 7; in the absence of censoring. By altering the proposed “check” function, this estima-
tion approach is a generalization of the check function from complete data to censored data

by treating the censoring with a martingale-based approach.

To estimate the scalar v(7;), the standard grid search algorithm can be adopted. Conse-
quently, for a reasonable set of (7;), we obtain B (7, 7;) by (2.8). Motivated by the two-stage

estimator adopted by Chamberlain (1994) and Buckinsky (1995), we obtain 4(7;) via

A

4(1j) = argmin R(y, B(v),7)

V(75)
= ar;g(g;inn_l ,z:; [Tz - h;(lfj) <Z:B(777—j)>} [ N; {h'y(lTJ (Z:B(%Tj»} (2.9)

+ZY{ (Z?Bml))}{H(m)—H(m1>}].

After obtaining 4(r;), we take B(7;) to be B(%,7;). Note that the minimization of (2.9) is



justified since we observe, for any Z-measurable function W, we have from (2.3), (2.4) and

(2.5) that

E <W {N {h;(lﬂ (zTﬁ(T))} - /O Y {h;(lu) (Z" B(u)) } dH(u)D — 0. (2.10)

If W is taken to be the gradient of h;(lm (Z7B(7;)) with respect to 7(7;), which can be
shown to be Z-measurable, then the gradient of (2.9) with respect to ~(7;) corresponds
to the empirical counterpart of (2.10). Though any choice of the weight W that is Z-
measurable can be used to set up a legitimate estimating equation, our particular choice of
W here is not arbitrary. The current weight corresponds to a minimization problem (2.9),
which allows easier numerical implementation; meanwhile, it captures the rate of change
of the conditional quantile with respect to a change of the transformation parameter (7;).
This particular choice of weight may account for the smaller standard errors of the estimates
obtained by the proposed method compared with existing approaches; see Section 4 for
details.

Similarly to (2.8), (2.9) is also an L;-type problem using a “pseudo-check” function. An-

other merit of this pseudo-check function is its ability to handle heterogeneity. Instead of a

universal 7; across all observations, g;(1;) = S27_, Vi {h;(lmil) (Z;B(Tk_1)>} {H(m) — H(m:-1)},
the term which serves as a role of 7; in the ordinary check function, is tailored for each subject
and hence could be heterogeneous. For an illustration of the linkage between the proposed
objective function and the ordinary check function, Figure 1 presents the graph of (2.9) as
a function of h;(lm (2] B(7;)), the quantity through which (2.9) depends on the parameter
estimates at 7;. In particular, we consider a simulated sample from the transformed quantile

regression model described in Example I of our simulation studies. The objective function

value is plotted against the deviation of the quantity h;(lTj) (ZlT B(Tj)) from the true quantile

() (ZI,@O(T]‘». We show the graphs for the aggregate objective function of 500 data and

for some selected data points. The dashed lines suggest that the function behaves as if a



Figure 1: Pseudo check function against quantile value
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check function in case of failures, exhibiting a turnaround near the true quantile value. For
a censored case, the function crosses zero without a turning point. The aggregate objective
function is now the mean of 500 individual check functions and still convex (in quantile
value) in nature.

One practical concern for the estimation is the choice of the grid size in the sequential
procedure. From the proof of weak convergence, we shall choose a grid size of order o(n_l/ 2)
to ensure weak convergence. In our numerical study, we adopt an equally spaced grid with
0.05 grid size, where the performance of the estimator is satisfactory and the computation

efforts involved are reasonable.

Remark 2. Apart from (2.9), it is also natural to extend the concept used by Mu and He

(2007) to estimate y(7;), where v(7;) is the minimizer of a cumsum process of residuals. To
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this extent, based on (2.7), we could define

Vilz(m)) —n S 12 <) [N ) (2B )

i=1

where Z; < z denotes componentwise inequality. Then ¥(7;) is obtained as

V(7;) = argmin V;{~(7;)} = arg min/ V{2, /(7)) dFg(z) = argminn ™" " [V {2, 7(73)})%,
v(75) () -0 v(75) i—1

(2.12)
where Fg(z) = n~' .1 I(Z; < ) defines the empirical distribution function of {Zy, ..., Zy}.
From our numerical studies, the two stage estimator appears to perform better in the sense
that estimates with smaller standard errors are obtained. One possible reason for the reduced
variance obtained in our simulation is suggested by the choice of the weight, which is the
gradient of the conditional quantile with respect to the transformation parameter. Moreover,
as we require a sequential estimation procedure, the performance of the estimator in higher
quantiles depend on the lower ones. In view of this, it may be more beneficial to consider

a procedure that produces estimates with smaller standard errors in which case the whole

process of estimator would be more stable.

3 Asymptotic Results

In this section, we establish the uniform consistency and weak convergence of the proposed

estimator 4(7) and B(r).

Theorem 1. Under Conditions (C1)~(C7) given in the appendiz, if lim, o ||Spm || = 0,
BGT) = Bylr)

then sup, ey -, 17(7) = 70(7)| + ‘ —, 0, where 0 < v < 1y

Theorem 2. Under Conditions (C1)-(C7), iflim, e n'/?||Spmy|| = 0, then n'/? (&éT))ﬂg(T()))
sT)—Pol\T

converges weakly to a Gaussian process for T € [v, 7y|, where 0 < v < 1.

11



The regularity conditions and proofs are provided in the appendix. A key assumption
of the uniform consistency and weak convergence is the Lipschitz continuity of ~o(7) in 7.
When 74(7) is not Lipschitz and there are finite discontinuity jump points of 7o(7) as in the
simulation examples, we can obtain from the proof that the consistency result of |y(7) —
Yo(T)| + HB(’?, T) — ,60<7')H —, 0 and asymptotic normality of n'/2[3(7) — vo(7), {B(%, ) —
Bo(7)} ] still hold almost everywhere for 7 except the jump points.

Note that the uniform consistency and weak convergence results only hold for 7 outside
the neighborhood of 0. In particular, recall that we start the iterations in our estimation
procedure by taking h;(lo)(ZiTB(O)) = h;ol(o)(ZiT,BO(O)) = 0. This suggests that 9(0) and
B(O) are indeed not unique, therefore the uniform consistency and weak convergence results
cannot hold for 7 in the neighbourhood of 0. However, as discussed in Peng and Huang
(2008), the numerical instability of the estimation at small 7 has a small impact on the
estimation at larger 7 < 1y.

Noteworthy, the covariance matrix of the limiting process of n*/2[5(7) —o(7), {B(3,7) —
Bo(7)}"]", as shown in the proof of Theorem 2, involves the conditional density functions
of the survival time, which are unknown and our quantities of interest. In order to make
inference on the parameters, we propose to use a simple resampling approach by perturbing
the minimand as adopted in Jin et al. (2001) and Peng and Huang (2008).

Let (i,...,(, be i.i.d. random variables from a nonnegative known distribution with
mean 1 and variance 1, such as exponential distribution with rate 1. For a data set with
sample size n, we fix the data values and generate {(1,...,(,}, then we obtain v*(7;) and
B*(7;) sequentially for each j € {1,..., L} by solving the following two perturbed objective

functions

B (v, 75) = afg(ginn_l ; G [hy(fj)( [}) — Zz—ﬁ(Tj):| [—CM {hy(fj)(fi) < ZZ'TB(TJ‘)}

YTz, ) (B8 () P () — H <Tk1)}] j

12



V() = argminn ™t 0 G [T = bl (218" (,m)) | [~ {niep () < 208777 }

¥(75) i=1

+3 1 {ﬂ >hl (Z:,B*(Tk—l))} {H () — H(Tk—l)}] :

Again h;}(o)(ZiTB* (0)) are set to be 0, and 3*(7;) are taken to be 8*(v*, 7;). Then v*(7) and
B*(7) are defined to be a piecewise-constant function that jumps only at 7;, j € {1,..., L}.
The above procedure is repeated for B times such that for each r € {1,..., B}, we generate
a set of variates {(1,...,(,} and obtain B realizations of +(7) and B (7). Consequently,
the confidence intervals for v(7) and 3(7) can be constructed using the percentiles of v*(7)
and (37 (7) respectively or by normal approximation. In order to justify the above resampling

method, we present the following theorem.

Theorem 3. Under Conditions (C1)-(C7), n'/2[y*(1)—=4(7),{B*(v*,7) = B3, 7)} |7 given
the observed data converges weakly to the same limiting process of n'/2[3(1)—~o(7), {B (¥, 7)—

Bo(T)}T]T, for T € [v, 1y], where 0 < v < 7.

The proof of Theorem 3 is given in the appendix.

It is often of general interest to question whether or not the transformation process is
indeed a zero process so Peng and Huang (2008)’s approach can be adopted directly. To this
end, we consider a class of null hypothesis in the form of Hyg : v(7) = ro(7) for 7 € [l,u] C
(0, 7v], where ro(7) is a known process of hypothesized value. Inspired by Peng and Huang
(2008)’s inference procedure, we exploit the asymptotic normality of the proposed estimator
and consider an integral test statistic, which is defined by 71 = n'/? [[* |3(u) — ro(u)|Zo(u)du,
where Zy(u) is a non-negative weight function that can be chosen to capture the deviation
from Hjy and achieve a reasonable power. Note that 77 is asymptotically mean zero by
Theorem 2 and the continuous mapping theorem. In line with the above resampling scheme,
we define 7;* = n'/2 [ |v*(u)—4(u)|Zo(u)du. Due to Theorem 3, the conditional distribution
of 7;* given the observed data is equivalent to the unconditional distribution of 7;. Therefore,

we may construct a size « test of Hyp that rejects when 77 > ¢1 1, where ¢; 1_, is the (1—a)th

13



empirical quantile of 7;*, which is obtained from the B realizations of resample.
Meanwhile, one may also be interested in assessing whether a varying quantile effect
exists in term of a non-constant transformation process. Mathematically, it can be expressed
as the test of Hyy : (1) = r, where r is an unspecified constant. Note that a natural
estimator of the average transformation parameter over a range of quantiles could be 94,y =
[ v(7)dr, where [I,u] C (0,7y]. When Hyg is true, 4404 can be interpreted as an estimate
of the unknown constant r. Accordingly, we consider an integral test statistic for Hyy that
exploits the departure of the transformation parameter estimate from the average, T =
In'/2 [*{4(u) = Yaug}E1(v)du|. The null distribution of 75 can be approximated by the
conditional distribution of T5* = [n'/2 [*[{v*(u) — A(u)} — {Viy — JavgJE1(w)dul. As a
result, by obtaining B realizations of 75" via the above resampling method, a size « test of
Hyy can be constructed by rejecting Hay when 75 > co1-, where ¢a1- is the (1 — a)th

empirical quantile of 7"

4 Simulations

This section examines the finite-sample performance of the proposed methods through Monte
Carlo simulations. We evaluate the proposed method using six examples. First, we consider
two Box-Cox transformation quantile regression models in Examples I and II and compare
the proposed method with several existing transformation quantile regression estimation
methods, including Leng and Tong (2014) and Yin et al. (2008). Second, we compare in
Example III and IV the performance of the proposed method with a couple of quantile
regression estimation methods that are fitted under the true transformation, including Peng
and Huang (2008) and Wang and Wang (2009). Third, we demonstrate the robustness of the
proposed method in Example V and VI under the scenarios of a misspecified transformed
quantile model except the interested quantile level and of a moderately high number of
covariates. For each method, we report the empirical bias, the sample standard deviations,

and the empirical mean squared errors based on 500 simulated data sets of sample size

14



Table 1: Simulation under a transformed quantile regression model

T=.25 T=.5 T=.75
5 B0 3 4@ B 4 3O R 3B 5 3O O 3@ 3O

n = 200 & 40% censoring
Proposed Bias -.090 .011 -.044 -.041 -.042 .068 .077 .095 .072 .076 -.009 .033 -.000 -.001 -.003
SD 368 127 253 220 .215  .341 .258 446 .370 .390 .165 .127 .245 .215 .213
MSE .144 016 .066 .050 .048 .121 .073 .208 .142 .158 .027 .017 .060 .046 .045
SE 368 172 298 .256  .257  .325 .245 .393 .339 .341 .238 173 .302 .279 .279
CP 924 940 .930 928 930 942 962 936 .926 934 954 966 .940 .950 .960

CS Bias -.059 .022 -.021 -.017 -.016 .082 .093 .115 .094 .100 -.002 .043 .016 .015 .013
SD 350 133 259 223 .224 370 .284  .492 421 426 .201 .160 .287 .258 .259
MSE .126 .018 .068 .050 .050 .143 .089 .255 .186 .192 .040 .027 .083 .067 .067

PH Bias - -.244 -538 -.533 -.532 - -.200 -.447 -.451 -.447 - =233 -477 -476 -.476
SD - 052 .094 072 .072 - .069 .105 .058 .064 - .043 .064 .043 .042
MSE - 062 299 .289 .289 - 045 211  .207 .204 - .056 .231 .228 .228

LT Bias -.039 -.004 .022 .027 .026 .075 .174 .198 .190 .195 -.062 -.041 -.031 -.030 _-.030
SD 351 123 278 240 236 .350 .298 633 .564 .591 .198 .144 .271 .248 .248
MSE .124 .015 .078 .058 .056 .128 .119 .440 .354 .387 .043 .022 .074 .063 .062

YZL Bias -.178 .178 .869 .859 .867 .058 .083 .372 .360 .372 -.006 .005 .132 .131 .129
SD 323 314 628 570 .566  .347 .352 815 .v52 .773 .180 .169 .290 .252 .258
MSE .136 .130 1.150 1.063 1.073 .124 .131 .802 .694 .736 .032 .029 .102 .080 .083

re-YZL Bias -.053 1.076 .853 .934 .878 .093 .602 .225 .339 .336 .041 .271 .076 .100 .108
SD 373 730 1.261 932 913 .407 .945 1.202 1.061 1.287 .205 .375 .637 .479  .478
MSE 142 1.691 2.317 1.741 1.605 .174 1.256 1.495 1.241 1.769 .044 .214 411 .239 .240

n = 200 & 20% censoring
Proposed Bias -.074 -.002 -.036 -.037 -.039 .050 .049 .062 .052 .052 -.000 .025 .013 .009 .009
SD 287 .101  .204 .180 .175 .260 .200 .312 .281 .284 .142 114 .201 .186 .185
MSE .088 .010 .043 .034 .032 .070 .042 .101 .082 .083 .020 .014 .041 .035 .034
SE 327 140 248 215 217 272 195 .311 272 274 182 137 237 .215 215
CP 948 952 942 944 948 964 980 .966 964 958 .948 944 926 .948 .936

CS Bias -.051 .006 -.017 -.018 -.019 .061 .060 .073 .064 .066 -.002 .030 .018 .013 .017
SD 289 105 .218 .194 .191 285 .212 .339 .301 .308 .183 .144 .247 232 .234
MSE .086 .011 .048 .038 .037 .085 .048 .120 .094 .099 .034 .021 .061 .054 .055

PH Bias - -.261 -.519 -.515 -.516 - =216 -.432 -.435 -434 - -.248 -.461 -.462 -.461
SD - .044 .083 .063 .064 - .066 .102 .052 .055 - .036 .057 .039 .038
MSE - .070 276 .269 .271 - .051 197 192 191 - 063 216 .215 .214

LT Bias -.052 .009 -.007 -.008 -.009 .040 .163 .101 .091 .095 -.089 -.036 _-.072 -.082 _-.077
SD 285 105 225 196 .190 .258 .259 490 442 463 182 .128 .234 .214 .218
MSE .084 .011 .051 .038 .036 .068 .094 .250 .204 .223 .041 .018 .060 .053 .054

YZL Bias -.184 .540 .613 .596 .589 .047 .267 .209 .189 .18 -.012 .138 .063 .052 .056
SD 266  .315 474 445 432 274 373 .641 .570 511 173 176  .268 .232 .235
MSE .105 .391 .600 .553 .533 .077 .211 455 .361 .296 .030 .050 .076 .057 .059

re-YZL Bias -.0656 1.219 .665 .814 .786 .060 .566 .112 .179 .171 .008 .302 .012 .045 .024
SD 309 777 1100  .811  .852 309 .621 1.286 .783 .866 .194 .335 .527 .403 .406
MSE .100 2.090 1.652 1.320 1.344 .099 .706 1.667 .646 .780 .038 .203 .278 .164 .165

*Approaches CS, PH, LT, YZL and re-YZL denote the proposed method with cumsum minimand for «(-), Peng and Huang (2008)’s, Leng and

Tong (2014)’s, Yin et al. (2008)’s and the revised Yin et al. (2008)’s (described in Remark 3) proposals, respectively. Refer to Remark 4 for details

of the underlined figures.
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Table 2: Simulation under a transformed quantile regression model with heteroscedastic errors

T=.25 T=.5 T=.75
5 B0 3 4@ B 4 3O R 3B 5 3O O 3@ 3O

n = 200 & 40% censoring
Proposed Bias -.099 .019 -.024 -.038 -.036 .054 .075 .133 .065 .069 -.005 .050 .034 .013 .010
SD 433 168 287  .264 .268 .407 .299 570 420 432 221 .178 387 .289 .284
MSE .197 .029 .083 .071 .073 .169 .095 .342 .181 .191 .049 .034 .151 .084 .081
SE 429 212 343 .302 .307 .387 .293 .523 413 413 .339 .258 .562 417 414
CP 926 942 922 926 .920 .910 .946 .938 928 918 .982 982 .966 .962 .970

CS Bias -.074 .026 -.009 -.018 -.015 .062 .085 .156 .079 .084 .021 .067 .089 .048 .050
SD 421 176 304 281 .293 436 .320 .663 .465 .481 .240 .202 435 317 315
MSE .182 .032 .092 .080 .08 .194 .110 463 .223 .238 .058 .045 .197 .103 .102

PH Bias - -.250 -.439 -515 -.514 - -.206 -.430 -.448 -.444 - -.225 -.567 -.483 -.485
SD - .059 .111 .083 .086 - 078 127 .072 .079 - .054 .090 .060 .058
MSE - 066 .205 272 .272 - .048 201 .206 .203 - .054 .329 .237 238

LT Bias -.054 -.003 .007 .043 .046 .058 .170 .311 .224 .231 -.048 -.028 -.041 .026 .031
SD 427 162 .301 292 297 406 .371 .839 .689 .715 .250 .199 417 .338 .348
MSE .18 .026 .090 .087 .090 .168 .166 .800 .525 .564 .065 .041 .175 .115 .122

YZL Bias -.185 .151 1.260 .994 1.008 .027 .036 .590 .404 428 -.013 -.016 .234 .173 .176
SD 390 373 1.010 .803 .843 399 371 1174 .841 878 .217 211 466 .335 .350
MSE 187 .162 2.607 1.633 1.727 .160 .139 1.726 .871 .954 .047 .045 272 .142 .153

re-YZL Bias -.062 1.201 1.601 1.111 1.071 .062 .625 .616 .463 .342 .033 .336 .211 .155 .123
SD 448 1.099 2.130 1.637 1.479 .453 1.130 2.236 1.830 1.206 .261 .557 .948 .678 .615
MSE .204 2.650 7.100 3.914 3.335 .209 1.668 5.381 3.562 1.571 .069 .423 .943 484 .393

n = 200 & 20% censoring
Proposed Bias -.104 -.001 -.029 -.042 -.043 .048 .049 .092 .055 .055 -.004 .033 .037 .013 .014
SD 392 146 252 233 244 315 241 .386 .328 .342 .196 .156 .326 .258  .257
MSE .165 .021 .064 .056 .062 .102 .060 .157 .110 .120 .038 .025 .108 .067 .066
SE 389 176 .287  .260 .264 .326 .235 .409 .336 .338 .262 .197 419 .317 .317
CP 922 934 912 916 912 946 966 .960 .950 .952 .958 970 .946 .942 948

CS Bias -.079 .005 -.018 -.028 -.027 .054 .059 .104 .065 .068 -.009 .030 .036 .008 .011
SD 369 147 250 233 237  .342  .264 436 .361 .383 .209 .164 .347 .263 .265
MSE .142 .022 .063 .055 .057 .120 .073 .201 .135 .152 .044 .028 .121 .069 .070

PH Bias - -.265 -.426 -.500 -.499 - =219 -418 -.431 -.431 - =242 -.548 -.469 -.469
SD - .051 .098 .074 .077 - 071 117 .065 .066 - .043 .078 .051 .051
MSE - 073 191  .255 .255 - .063 .188 .190 .190 - .060 .306 .223 .222

LT Bias -.084 .007 -.006 -.014 -.011 .043 .180 .245 .127 .131 -.074 -.017 -.057 -.048 -.043
SD 375 149 260 239 248 .320 .341 631 .539 566 .232 .169 .355 .282  .283
MSE .148 .022 .068 .057 .062 .104 .149 459 .307 .338 .059 .029 .129 .082 .082

YZL Bias -.184 .548 1.183 .707 .706 .029 .255 .491 .225 .232 -.018 .129 243 .077 .078
SD 364 400 951 .646 .666 .321 490 .849 .678 .672 .212 .212 453 .301 .301
MSE .166 .460 2.305 .917 .941 .104 .305 .961 .510 .506 .045 .061 .264 .096 .097

re-YZL Bias -.097 1.272 1.502 .831 .795 .049 .681 442 279 178 .004 .362 .182 .054 .040
SD 401 997 1.811 1.211 1.138 .358 1.020 1.518 1.329 1.113 .222 .491 .968 .559 .583
MSE .170 2.611 5.534 2.157 1.927 .130 1.505 2.498 1.843 1.270 .049 .372 971 315 .342

*Approaches CS, PH, LT, YZL and re-YZL denote the proposed method with cumsum minimand for «(-), Peng and Huang (2008)’s, Leng and

Tong (2014)’s, Yin et al. (2008)’s and the revised Yin et al. (2008)’s (described in Remark 3) proposals, respectively. Refer to Remark 4 for details

of the underlined figures.
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n = 200 or n = 500 each. Due to space concern, we present here only the numerical results
for n = 200; corresponding results for n = 500 are included in Section D of the supplementary

materials for comparison and reference.

Example I In the first example, event times are generated from the following Box-Cox

transformation quantile regression model

Qr(7|Z) = hi ) (Z7Bo(1)) = by (bo + Zyby + Zoby + Zsbs + Q6(7|Z)>.

where € follows N(0,0.25%). Under model (2.3), the corresponding regression quantile given
Z = (1,721,75,75)" is Bo(T) = (Qc(T) + bo,b1, b, b3)". The covariates Z;, Zo and Zs
are Unif(0,1), N(0,0.5%) and N(0,0.5%) respectively. We set by = by = by = by = 1,
so that the first entry of B,(7) will be 7-dependent, while the remainings are constant.
The transformation coefficient ~o(7) is 1 for 7 < 0.4 and 0.5 for 7 > 0.4 in which case
h;ol(T) () = (y(r)x + 1)1/ (™) The censoring distribution is generated by Unif(0,c) with
c =exp(co+ Z1 + Zy + Z3), where ¢y is taken to be 1.6 and 2.3 to yield the target censoring
rates of 40% and 20%, respectively. Under this setting, we consider 500 simulated data
sets of sample size n = 200 or n = 500. The resampling size is taken to be 200, while the
perturbation variable ( is generated from exponential(1). We adopt an equally spaced grid
with 0.05 grid size for the implementation of the proposed methods presented in section 2.
The optimal 4(7) is located through grid search in the interval [—2,2]. In particular, we first
locate a preliminary estimate by using only the uncensored observations in our procedure (or
equivalently, by Chamberlain (1994)’s method). The final estimate of 4(7) is then obtained
by searching locally around this initial value using the proposed method with all observations
in sake of higher numerical stability. However, one has to be aware that the search range
should be wide enough so that the optimal 4(7) does not fall on the boundaries. In our
simulation studies, we use a range of £0.2 for the local search such that the run time is

reasonable while maintaining the empirical proportions of 4(7) occurring on the boundaries
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negligible.

In Table 1, we compare the numerical results at 7 = 0.25,0.50 and 0.75 for five different
approaches, namely the proposed method, the alternative method using a cumsum minimand
for 4(7) suggested by (2.11) and (2.12), Peng and Huang (2008)’s, Leng and Tong (2014)’s,
Yin et al. (2008)’s and a modification of Yin et al. (2008)’s (see Remark 3) proposals.
We report the empirical bias (Bias), the sample standard deviations (SD) and the mean
squared errors (MSE) for comparison. For the proposed method, we also give the average
of the estimated standard errors (SE) based on the resampling method, and the coverage
probabilities (CP) of the 95% confidence intervals constructed by the empirical distribution
of the estimates. We observe that the proposed method gives smaller biases and standard
deviations than the cumsum alternative and Leng and Tong (2014) in almost all cases.
Indeed, the proposed method dominates its counterparts if we consider the mean squared
errors. On the other hand, since the global linear assumption required by Peng and Huang
(2008) and the unconditional independence assumption required by Yin et al. (2008) are
clearly violated, their methods do not provide reasonable estimates in the current setup. It
is also shown that the resampling-based standard errors are close to the empirical standard
deviations, and the coverage probabilities are close to 95%, which justify the use of the

proposed resampling method.

Remark 3. One may consider modifying Yin et al. (2008) so that the inverse probability
weight scheme can be extended for the conditional independent censoring case. To achieve
this goal, one has to provide a reliable estimate for the conditional survival function of the
censoring time given covariates, i.e. (A_?( | Z), which is often approximated by an appropriate
kernel estimator. To examine its effectiveness, we run a set of simulation using the local
Kaplan-Meier estimator to estimate é( | Z), with the bandwidth taken to be n=1/3+001  qgs
described in Leng and Tong (2014). The revised method, which is regarded as “re-YZL” ap-
proach, however, does not provide satisfactory numerical results compared with our proposal.

This could be possibly due to the fact that the structure of Yin et al. (2008)’s estimating equa-
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tions can sometimes be numerically unstable when the inverse probability weights are close
to zero. Nevertheless, given the neat structure of Yin et al. (2008)’s estimating equations, it
1s potentially an interesting problem for further research on how to extend the scope so that

conditional independence censoring can also be covered under their framework.

Remark 4. We found that the estimation approach suggested by Leng and Tong (2014)
may not converge properly for high quantile levels. The reported simulation results of their
proposal in the case of (T = .75) adopt a slight modification by considering the absolute value
of their minimization function. We suspect this phenomenon can possibly be explained by
the unsatisfactory performance of the locally weighted kernel estimator for the conditional

cumulative hazard function for high quantile levels.

Example IT In the second set of simulation, we consider a Box-Cox transformation quantile

regression model with heteroscedastic errors. The event times are generated from

QT(T|Z) = h’;ol(T) (ZTIBO(T)) = h’;ol(‘r) (bo + Zlbl + Zgbg + Zgb3 + (1 + Zl>Q€(T|Z))

where e follows N (0,0.25%). The corresponding regression quantile given Z = (1, Zy, Zo, Z3) "
under model (2.1) is By(7) = (Qc(T) + by, Qc(T) + b1, bz, b3) . The covariates Z;, Zy and Z3
are again generated from Unif(0,1), N(0,0.5%) and N(0,0.5?) respectively. Again we set
bp = by = by = b3 = 1, but the first two entries of B,(7) are now both 7-dependent,
while the last two are still constant. The transformation coefficient vo(7) is 1 for 7 < 0.4
and 0.5 for 7 > 0.4. The censoring distribution is generated in the same fashion as the
homogeneous case. Again we generate 500 simulated data sets of sample size 200 or 500,
with resampling size 200. Table 2 reports results in the same format as in Table 1. We
can see that the proposed method performs well in this heteroscedastic error case as in the
first example. The standard error estimates are close to the standard deviations, and the

coverage probabilities are satisfactory.
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Table 3: Simulation under a log-transformed quantile regression model

r=.25 T=. T=.75

5 pO  gMm g 3B 4 pO M) 3@ 3G 5 pO  gM g 3B
n = 200 & 40% censoring
Proposed Bias -.015 .014 -.011 -.014 -.008 -.001 .023 .007 .008 .010 .002 .037 .024 .022 .017
SD .099 078 .171 .139 .144 .095 .085 .171 .152 .156 .122 131 .230 .209 .206
MSE .010 .006 .029 .020 .021 .009 .008 .029 .023 .024 .015 .019 .053 .044 .043

PH Bias - .019 -.001 -.001 .003 - .017 -.000 .002 .003 - .018 .009 .002 .002
SD - .059 .100 .050 .057 - .055 .093 .048 .057 - .067 .111 .058 .066
MSE - .004 .010 .002 .003 - .003 .009 .002 .003 - .005 .012 .003 .004

n = 200 & 20% censoring
Proposed Bias -.011 .006 -.007 -.011 -.008 .002 .016 .011 .009 .008 .009 .029 .033 .026 .023
SD .083 .066 .147 .121 .126 .079 .073 .151 .127 .132 .093 .097 .195 .168 .169
MSE .007 .004 .022 .015 .016 .006 .006 .023 .016 .017 .009 .010 .039 .029 .029

PH Bias - .011 .001 -.001 .000 - .010 .002 .000 .000 - .012 .010 .002 -.000
SD - .051 .087 .045 .051 - .049 .08 .042 .048 - .056 .098 .050 .056
MSE - .003 .008 .002 .003 - .003 .007 .002 .002 - .003 .010 .002 .003

*Approach PH denotes Peng and Huang (2008)’s proposal.

Table 4: Empirical rejection rate at level a = .1 for testing if the transformation process is zero or constant

n = 200 & 40% censoring n = 200 & 20% censoring n = 500 & 40% censoring n = 500 & 20% censoring

I II 11T I 11 II1 I II II1 I 11 II1
T1 .952 .844 .060 .990 .902 .070 1.000 .996 .074 1.000 1.000 .108
T2 .448 .324 .034 .568 .406 .056 .904 .780 .042 .942 .854 .062

*Transformation process in Examples I and II is 1 for 7 < 0.4 and 0.5 for 7 > 0.4, while it is a zero process in Example III.

Example IIT The third example aims to show that our proposed estimator can also yield
reasonable estimates when the global linear assumption holds. Event times are generated
from the following log transformation quantile regression model, i.e. a Box-Cox transformed

model with transformation coefficient vy(7) = 0 for all 7,

QT(T’Z> = exXp (ZTB()(T)) = exXp (bo -+ Zlbl + Zgbg + Zgbg -+ Q€<T’Z>> .

where by = by = by = b3 = 1 and ¢ follows N(0,0.25%). The covariates Z;, Zo and Z3 are
Unif(0,1), Unif(—1,1) and N(0,0.5%) respectively. The censoring distribution is generated
by Unif(0,c) with ¢ = exp(co + Z1 + Z2 + Z3), where ¢ is taken to be 2 and 2.7 respectively
to yield a censoring rate of 40% or 20%. 500 simulated data sets of sample size 200 or 500
are generated. Table 3 shows that, despite the fact that our procedure needs to estimate
additional transformation parameters, the proposed estimator performs comparably with

respect to Peng and Huang (2008) method in terms of empirical bias and standard deviations.
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Table 5: Simulation under a transformed quantile regression model with known transformation

T=.25 =25 =75
550 B0 4@ BB 4 3O L) 4R BB 5 3O O 4R BE)

n = 200 & 40% censoring

Proposed Bias - .028 -.006 -.006 -.006 - .015 -.013 -.019 -.016 - .028 -.008 -.006 -.009
SD - .074 129 .073 .075 - .074 130 .092 .097 - .064 .109 .071 .064

MSE - .006 .017 .005 .006 - .006 .017 .009 .010 - .005 .012 .005 .004

Ww Bias - -.000 -.002 .005 .003 - -.042 -.004 -.021 -.011 - -.023 .005 .009 .010
SD - 062 .104 .062 .063 - .09 163 .111 .114 - .060 .103 .061 .058

MSE - .004 .011 .004 .004 - .011 .027 .013 .013 - .004 .011 .004 .003

n = 200 & 20% censoring

Proposed Bias - .014 -.001 -.003 -.003 - .007 -.004 -.008 -.008 - .018 -.001 -.003 -.002
SD - 056 .099 .057 .057 - 065 .109 .074 .079 - .053 .093 .058 .054

MSE - .003 .010 .003 .003 - .004 .012 .006 .006 - .003 .009 .003 .003

WwW Bias - .001 .002 .000 .001 - -.021 -.006 -.011 -.009 - -.010 .003 .002 .004
SD - .055 .096 .055 .054 - .076 .133 .089 .090 - .051 .091 .056 .054

MSE - .003 .009 .003 .003 - .006 .018 .008 .008 - .003 .008 .003 .003

* Approach WW denotes Wang and Wang (2009)’s proposal.

Regarding the testing procedure described in Section 3 on whether the transformation
process is zero or constant, we compute the test statistic for each Monte Carlo data set, and
then obtain the empirical rejection rate (ERR) by averaging over all Monte Carlo trials. In
line with Peng and Huang (2008), we choose a weight function Zg(u) = 1 for test statistic 7y
with a null value ro(u) = 0, and a weight function Z;(u) = I{u > (I +u)/2} for test statistic
T2, where [ = 0.05 and v = 0.8. Table 4 displays the ERR of 7; and 75 at level a = 0.1
for Example I and II (where the transformation process is non-zero and non-constant) and
for Example III (where the transformation process is a zero process). We observe that the
empirical type I errors of both 7; and 75 are kept below the significance level 0.1. Similar to
the results presented in Mu and He (2007), although the tests tend to be conservative when
the sample size is small or the censoring is high, we observe a tendency of Type I errors
getting closer to their nominal values of 0.1 as the sample size grows or as the censoring
rate reduces. Meanwhile, the empirical powers in case of a misspecified null are also fairly
reasonable. This can justify the use of 77 and 75 in testing respectively for a zero and a

constant transformation process is proper.

Example IV  The proposed method can be easily modified if the transformation parameter

is known in advance, in which the regression coefficients can be estimated directly based on
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Table 6: Simulation when the transformed quantile regression model is only true for 7 = 0.5

r=.25 T=. T=.75

5 pO  gMm g 3B 4 pO M) 3@ 3G 5 pO  gM g 3B
n = 200 & 40% censoring
Proposed Bias .007 .063 -.138 .005 .009 -.012 .025 .013 -.007 -.002 -.024 .007 .178 -.006 -.008
SD 242 121 223 .202 .211 .221 126 .235 .211 .209 .268 .172 .346 .271 .264
MSE .059 .019 .069 .041 .045 .049 .016 .055 .044 .043 .073 .029 .152 .073 .070
LT Bias .062 .055 -.077 .109 .113 .044 .110 .187 .109 .110 -.014 -.023 .197 .062 .059

SD 259 126 .260 .255 .263 .239 .150 .329 .276 .273 .276 .178 .376 .300 .297
MSE .071 .019 .073 .077 .082 .059 .035 .143 .088 .087 .076 .032 .180 .094 .091

n = 200 & 20% censoring
Proposed Bias -.021 .036 -.157 -.012 -.010 -.015 .010 .007 -.008 -.005 -.031 -.013 .166 -.013 -.014
SD 199 099 185  .164 162 .182 106 .193 .167 .171 .231 .148 285 .233 .230
MSE .040 .011 .059 .027 .026 .033 .011 .037 .028 .029 .054 .022 .109 .054 .053

LT Bias .009 .052 -.118 .028 .029 -.005 .104 .127 .021 .021 -.067 -.035 .137 -.031 -.030
SD 217 105 .205 .18 .184 .204 .131 .250 .210 .209 .250 .153 .301 .241 .241
MSE .047 .014 .056 .035 .035 .041 .028 .078 .044 .044 .067 .025 .109 .059 .059

*Approach LT denotes Leng and Tong (2014)’s proposal. Also see Remark 4 for their results in the case of 7 = .75.

the given transformation. The fourth set of simulation illustrates the numerical performance
of the modified procedure for situations in which only the transformation parameter at
the interested quantile level is known in advance. Specifically, we compare the estimation
results of the proposed method and Wang and Wang (2009) under the transformed quantile
regression model specified in the first example. Results summarized in Table 5 show that
although the proposed method has to make additional estimation on the transformation
process prior to the interested quantile levels, the empirical bias and standard deviations are

still competitive against the benchmark made by Wang and Wang (2009)’s method.

Example V  Although the proposed method relaxes the global linear quantile assumption
by Peng and Huang (2008), it nevertheless assumes that a transformed linear quantile model
holds up to the interested quantile level 7. Therefore, we investigate the performance of our
proposal under the scenario that the quantile model only holds for the specific 7. Accordingly,

we consider a transformed quantile regression model similar to that in Example II except

Y0

Qr(T|Z) = h_l(f) (ZTﬁo(T» = h;ol(f) (bo + Z1by + Zoby + Zsbs + (1 + Z%)Qe(ﬂz))-
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Again by = by = by = b3 = 1, € follows N(0,0.25%), and the covariates Z;, Zo and Z3 are
Unif(0,1), N(0,0.5%) and N(0,0.5%) respectively. The transformation coefficient vo(7) is 1
for 7 < 0.4 and 0.5 for 7 > 0.4. Now, note that since we have not considered Z? in the
covariate vector, the transformed linear quantile model does not hold here unless 7 = 0.5,
where we have Q.(7) = 0 so that the last term in the last display involving Z? vanishes. We
generate censoring times from Uni f(0, c) with ¢ = exp(co + Z2 + Zy + Z3), where ¢y is taken
to be 1.6 and 2.3 to yield the target censoring rates of 40% and 20%, respectively. With
500 simulated data sets of sample size 200 or 500 each, numerical results obtained by our
proposal are tabulated in Table 6 together with those by Leng and Tong (2014)’s method.
Unsurprisingly, the proposed method produces some bias for 7 = 0.25 and 7 = 0.75 where
the transformed quantile model is misspecified, specifically for the regression coefficients
associated with Z;, but the results are quite satisfactory for 7 = 0.5, i.e. the only quantile
level for which the transformed quantile model is true. In some sense, despite the recursive
nature of our proposal, this demonstrates its robustness when previous quantiles are not
correctly estimated. On the other hand, although Leng and Tong (2014) only assumes the
transformed quantile model at the specific quantile, this flexibility does not save them from

a worse numerical performance through using a kernel-based estimator.

Example VI This example demonstrates the performance of the proposed estimator in
a scenario of moderately high number of covariates. The simulation setup is similar to the
first example, where the true transformation process vo(7) equals 1 for 7 < 0.4 and 0.5 for
7 > 0.4. But the covariate process Z = (1,2, Zs,-+ , Zy)" is now 10-dimensional where
Zy,++- , Zy are each independent N(0,0.5%), while the corresponding regression coefficient
is Bo(17) = (Q(7) + 1,1,--- ,1)T and e follows N(0,0.25%). The censoring distribution is
again generated by Unif(0,c) where ¢ = exp(co + Z1 + - - - + Zy) with ¢q equals 1.6 or 2.3
to attain a censoring rate of 40% and 20% respectively. We simulate 500 Monte Carlo data

sets of sample size 200 or 500 each, and the estimation results are tabulated in Table 7.
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Because of space limitation, we summarize here only the minimum, mean, and maximum
values of the empirical bias, standard deviations, and mean squared errors for the B(T)
vector. Readers may refer to the supplementary materials for a complete version of Table
7 which present all the individual entries as in the previous tables. As shown, performance
of the proposed estimator in terms of empirical bias and standard deviations is still fairly
reasonable comparing to an existing alternative when the number of covariates increases.
One practical concern on the proposed methodology is the computation efforts required.
Indeed, it is easy to see that the runtime required for the estimation of the regression coef-
ficients given a fixed transformation parameter will be similar to that of Peng and Huang
(2008), where the transformation parameter is fixed at zero for all quantile levels. There-
fore, the aggregate computation effort of our proposed algorithm would be of an order of
the number of grid nodes in the grid search procedure for the transformation parameter.
Noteworthy, the grid search algorithm can be done by the parallel computing technique,
which could linearly reduce the runtime due to the grid search step. Meanwhile, as we ob-
serve that the step size of 7 in the stepwise procedure does not significantly influence the
numerical performance of the proposed estimator, we adopt a wider grid size of 0.05 instead
of 0.01 or 0.02 as chosen in Peng and Huang (2008) in order to reduce the computation
efforts. Despite the grid search procedure we adopted on top of Peng and Huang (2008)’s
type recursive algorithm, our methodology requires runtime of approximately 20 seconds to
produce all parameter estimates from 7 = 0 to 7 = 0.8 for a sample size of 500 without

resampling on a standard computer with i7-8550U CPU and 16GB RAM.

5 Data Analysis

As an illustration, we apply the proposed method to analyze the HMO data as in Leng and
Tong (2014). Details about the study can be found in Hosmer and Lemeshow (1999). In this
study, 100 HIV positive subjects were followed until death due to AIDS or related factors,

until the study end or lost to follow-up. Their survival time and censoring status are reported.
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Table 7: Simulation with moderately high number of parameters

r=.25 T=. T=.75
{8,i=0,1,---,9} {80 i=0,1,---,9} {89 i=0,1,---,9}
ot min  mean max ol min  mean max ot min  mean max
n = 200 & 40% censoring

Proposed Bias -.136 -.094 -.078 .001 -.015 -.055 -.044 -.013 -.139 -.127 =117 -.049
SD 211 .110 120 141 .086 .093 .099 .104 281 185 192 .196
MSE .063 .020 .021 .024 .008 .009 .012 .014 .098 .036 .051 .054
LT Bias -.253 -.117 -.099 -.090 -.161 -.102 -.096 -.074 -.664 -.478 -.390 -.376
SD .270 .154 171 214 .193 134 .156 .223 .236 115 144 152

MSE 137 .033 .039 .060 .063 .028 .034 .055 497 .162 174 241

n = 200 & 20% censoring

Proposed Bias -.136 -.094 -.078 .001 -.015 -.055 -.044 -.013 -.139 -.127 =117 -.049
SD 211 .110 .120 141 .086 .093 .099 .104 281 185 192 .196

MSE .049 .014 .016 .017 .006 .006 .009 .010 .079 .030 .038 .039

LT Bias -.253 -.117 -.099 -.090 -.161 -.102 -.096 -.074 -.664 -.478 -.390 -.376
SD 270 .154 171 214 .193 134 .156 .223 .236 115 144 .152

MSE 131 .037 .041 .045 .047 .019 .024 .026 .548 197 .200 .208

*Approach LT denotes Leng and Tong (2014)’s proposal. Also see Remark 4 for their results in the case of 7 = .75.

Covariates include AGE, which records patient’s age in years; and DRUG, which equals 1
if the patient has a history of IV drug use and 0 otherwise. The Cox proportional hazard
model and results from Leng and Tong (2014) suggest that both covariates are significant.
We examine the effects of the covariates on different quantiles of the survival time by con-
sidering a series of quantiles ranging from 0.05 to 0.6 with an increment of 0.05. We set the
size of the resampling scheme to be 500, with perturbation generated from exponential(1).
We plot the estimated transformation parameter (7) and the quantile regression coeffi-
cients B(7) in Figure 2. The corresponding pointwise confidence intervals computed from
the proposed resampling method are also given. Plots of the parameter estimates and the
confidence intervals using Peng and Huang (2008)’s and Leng and Tong (2014)’s methods
are produced for comparison. We can observe that the transformation parameter estimate
is approximately zero for all quantiles. It implies that a log transformation is appropriate
and it agrees with the results obtained by Leng and Tong (2014). More formally, we use the
test statistics 77 and 7T, described in the end of Section 3 to test whether the transformation
process is zero or constant. We again consider 7; with a null value ro(u) = 0 and a weight
function Zp(u) = 1, as well as 75 with a weight function Z;(u) = I{u > (I + u)/2}, where

[ =0.05 and v = 0.6. The significance level is set to be a = 0.1. The empirical p-value of the
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test 71, i.e. the empirical proportion of the 500 resampling-based 7" being greater than the
actual Ty, is 0.216, suggesting a zero transformation process. Meanwhile, since the empirical
p-value of T3 is 0.320, it is also evident that the transformation process is constant.

Despite the need for estimating the unknown transformation parameter, our proposal
still provides comparable confidence intervals with Peng and Huang (2008)’s method, which
requires the assumption that v(7) is fixed at zero across all quantile levels (the global lin-
ear assumption). On the contrary, Leng and Tong (2014) obtains similar parameter point
estimates but with much wider confidence intervals. It is noteworthy that the figures we
obtained based on Leng and Tong (2014)’s approach are not entirely the same as the corre-
sponding figures presented in Leng and Tong (2014). In their numerical illustration, v(7) is
assumed to be zero upon which the estimation of B(7) is performed. In contrast, we esti-
mate both transformation and effect parameters without assuming a known transformation.
Recall that, in their approach, estimates of B(7) also depend on that of (7). When ~(7)
is now unknown and has to be estimated, there will be extra (non-linear) variation in the
estimates of 3(7); the phenomenon is particularly prominent in the resampling estimation,
which results in much wider confidence intervals for 3(7) compared to the case where ()
is fixed. From this point of view, Figure 2 suggests that our estimate of v(7) is more stable
in the sense that narrower confidence intervals are obtained. Our proposal is thus more
preferable over the two alternatives because of our flexibility to accommodate an unknown
transformation process while maintaining relatively stable confidence intervals.

Another observation is that the quantile regression coefficients for both covariates appear
to be insignificant, which contradicts to the conclusion of the Cox model. The reason is
because we do not assume a log transformation of the survival time, hence the unconditional
marginal effect of the covariates is not given by B(7) only, but a function of both ~(7) and

B(7). In particular, we follow Mu and He (2007) to assess the marginal effect by

0 0
7 Qr(r|Z) = 521 ) (Z7B(7) = B(r) - Qr(r|2)' 1),
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an Individual Aged 35 with Prior Drug Use



In Figure 3, we plot the estimated quantile function of the survival time and marginal effects
of the two covariates for an individual aged 35 with prior drug use. Again we use the per-
turbation bootstrap method to produce corresponding pointwise confidence intervals. We
observe that the quantile function and marginal effects are significant for most quantiles.
The confidence intervals are also fairly stable across different quantiles and are closed to
Peng and Huang (2008)’s results. Similarly, Leng and Tong (2014)’s proposal gives com-
parable point estimates but significantly wider confidence intervals, because of their more
volatile estimates of (7) and B(7). As a result, our method can be viewed as a better alter-
native through incorporating an unknown transformation process while retaining consistent

numerical results.

6 Conclusion

We have proposed a class of dynamic transformed linear quantile regression models for sur-
vival data subjected to conditionally independent censoring. Using martingale theory, we
construct unbiased estimating equations for the unknown transformation parameters and re-
gression coefficients. Our algorithm involves a stepwise two-stage procedure where estimates
of the transformation parameter and the regression coefficients at each subsequent quantiles
are computed recursively through minimizing two L;-type objective functions respectively.
By incorporating different transformation parameters across individual quantiles, the pro-
posed methodology relaxes the global linear assumption required in some existing literature
and thus enjoys greater flexibility under the conditional independent censoring setting.
With empirical process theory, we have established the uniform consistency and weak
convergence of the proposed estimator as a process of the quantile level. On the other hand,
numerical studies suggest that the proposed method performs competitively desirable com-
pared to existing proposals for sample sizes that are of practical interest. The real example
presented illustrates how the simultaneous confidence intervals for the transformation param-

eter and the regression coefficients can be constructed. As discussed in Mu and He (2007),
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it is worth noted that the regression coefficients shall not be directly comparable because of
the different transformation parameter estimated across various quantiles. For a meaningful
comparison, it would be reasonable to consider the marginal effects of the covariates, which
combine the influence of the transformation parameter and the regression coefficients.

In this work, we have focused our discussion on ordinary right-censored time-to-event
data. In practical study, however, lifetime data may be biased sampled in nature due to
study design or data collecting mechanism. Special treatments are required to tackle data
with various bias sampling scheme. Kim et al. (2013) and Kim et al. (2016) discuss the
semiparametric transformation model and the accelerated failure time model under general
bias sampling scheme respectively. From the perspective of censored quantile regression,
Xu et al. (2017) developed a martingale based estimating procedure for various types of
biased data. However, a similar global linear assumption as in Peng and Huang (2008) has
to be included, which limits the model flexibility. This direction of research merits further

investigations.
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