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Abstract

We propose a class of power-transformed linear quantile regression models for time-

to-event observations subject to censoring. By introducing a process of power trans-

formation with different transformation parameters at individual quantile levels, our

framework relaxes the assumption of logarithmic transformation on survival times and

provides dynamic estimation of various quantile levels. With such formulation, our pro-

posal no longer requires the potentially restrictive global linearity assumption imposed

on a class of existing inference procedures for censored quantile regression. Uniform

consistency and weak convergence of the proposed estimator as a process of quan-

tile levels are established via the martingale-based argument. Numerical studies are

presented to illustrate the outperformance of the proposed estimator over existing con-

tenders under various settings.
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1 Introduction

Quantile regression (QR) has become a popular technique to model the entire conditional

distribution of the response variable since Koenker and Bassett (1978). Whilst the ordi-

nary least squares regression models the conditional mean response given the regressors,

the quantile regression relates the conditional quantile function of the response of interest

with the explanatory variables, which in turns offers a more comprehensive description that

relates the quantity of interest with the collected covariates. Given its wide applicability

and modeling flexibility, the model has attracted enormous interest in various fields in the

literature. Examples include economics (Koenker and Hallock, 2001; Engle and Maganelli,

2004), growth chart (Wei et al., 2006; Wei and He, 2006) and modeling of time-to-event data

(Portnoy, 2003; Peng and Huang, 2008; Wang and Wang, 2009; Wu and Yin, 2013, amongst

others); see also Koenker (2005) and, more recently, Koenker et al. (2017) for extensive

literature reviews on the corresponding development.

When the data are completely observed, we denote {(Ti,Zi), i = 1, . . . , n} a random

sample from the target population, where Ti is a scalar response while Zi is a p × 1 vector

of explanatory variables. The linear quantile regression model stipulates that, for a fixed

τ ∈ (0, 1),

QTi(τ | Zi) = Z>i β0(τ), (1.1)

where QT (τ | Z) denotes the τ -th conditional quantile of T given Z, i.e. Pr{T ≤ QT (τ | Z) |

Z} = τ . Solution to (1.1) can be obtained via the least absolute deviation approach which

solves β̂(τ) = arg minβ∈Rp
∑n

i=1 ρ(Ti−Z>i β; τ), where ρ(u; τ) = u{τ−I(u < 0)} corresponds

to the check function.
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Quantile regression has also been a useful alternative to the hazard-based semiparametric

models. The most prominent feature of quantile regression for censored data is its ability to

accommodate heterogeneous effects of the covariates, which can influence not only the loca-

tion but also the shape of the survival time distribution. It is known that the heterogeneity

in covariate effects cannot be easily incorporated in either the celebrated Cox proportional

hazards model (Cox, 1972, 1975) or the accelerated failure time (AFT) model (Tsiatis, 1990;

Ying, 1993; Jin et al., 2003). Furthermore, the conditional quantile of the survival time is

easier to interpret than the hazard function and is often of direct interest.

To tackle the extra complication due to censoring, Powell (1984, 1986) modified the least

absolute deviation procedure to handle censored observations; Ying et al. (1995) considered

a semiparametric procedure for median regression under the independent censoring assump-

tion. In view of the rather restrictive independent censoring assumption in real applications,

Portnoy (2003) further relaxed this requirement and proposed a recursively reweighted infer-

ence procedure based on the principle of the Kaplan-Meier (KM) estimate’s self-consistency,

which was later also investigated in Wang and Wang (2009) in which a locally weighted cen-

sored quantile regression approach based on the local Kaplan-Meier estimator was proposed.

Upon the conditional independence assumption, Peng and Huang (2008) exploited the mar-

tingale representation of the Nelson-Aalen estimator for the cumulative hazard function and

proposed a recursive series of estimating equations for a sequence of quantiles under the

global linear assumption, i.e. (1.1) holds for all τ ∈ (0, τu] ⊂ (0, 1), where τu ∈ (0, 1) denotes

a fixed constant that can ensure identifiability of the model under conditional independent

censoring. Huang (2010) provided a numerically stable and computationally efficient algo-

rithm for the aforementioned framework. More recently, De Backer et al. (2017) considered

an extended version of the check function which can handle the effect of censoring at various

level with an appropriate correction term. Different censored quantile regression models have

also been developed to tackle variations in the model and sampling schemes, such as the cure

rate quantile regression model (Wu and Yin, 2013), variable selection issues for censored data
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(Wang et al., 2013; Peng et al., 2014; Zheng et al., 2017), and proper treatments for biased

censored observations (Wang and Wang, 2014).

Quantile regression models for survival data often assume (1.1) by applying logarithmic

transformation on survival time over all quantile values. Such mathematically convenient

log-transformation, however, may not be adequate in practice and consequently may lead

to estimation bias. In view of this limitation, quantile regression via power transformation

has been recently studied. In particular, Mu and He (2007) was the first to introduce a

Box-Cox transformation (Box and Cox, 1964) at a specific quantile level for complete data.

In particular, for the failure time T , its Box-Cox transformation is defined as

hγ(T ) =


T γ−1
γ

if γ 6= 0

log(T ) if γ = 0

. (1.2)

The extension of Mu and He (2007) to censored data are non-trivial. Yin et al. (2008)

first studied power-transformed linear quantile regression with independent censored data.

However, the independence censoring assumption required can be restrictive for many real

data applications. Leng and Tong (2014) relaxed this assumption to the conditionally in-

dependent censoring assumption given covariates. Nevertheless, the estimation procedure

involves estimating the unknown conditional distribution function through a non-parametric

kernel-based local Kaplan-Meier estimator, which can potentially be unstable when either

the covariate dimension or the censoring rate is high.

The main contribution of the paper is two-fold: Firstly, our proposal provides flexible

and simultaneous estimation for quantiles under transformations by introducing a trans-

formation parameter process for individual quantile levels. Despite the fact that Box-Cox

transformation in quantile regression has demonstrated its effectiveness in Yin et al. (2008)

and Leng and Tong (2014), their proposals may suffer the aforementioned limitations. In

contrast, our proposal can offer a solution that can handle conditional independent censoring
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without using kernel estimation. Secondly, our method relaxes the global linear assumption

as required in Peng and Huang (2008); this also adds extra flexibility to the censored quantile

regression models when the transformation function is specified only at certain locations, if

not the entire piece of information is missing. In addition to the large-sample properties of

the proposed estimator developed, our numerical results also make evidence that the new

estimator outperforms the existing contender under various settings.

The remainder of the paper is organized as follows: Section 2 establishes the correspond-

ing set of estimating equations for our model parameters. The large-sample properties of the

proposed estimators are discussed in section 3. Simulation results are presented in Section 4

followed by a data analysis of the HMO dataset on HIV positive subjects, which is illustrated

in Section 5. Concluding remarks are given in Section 6. All the technical proofs are deferred

to the Appendix.

2 Methodology

Consider the following censored transformation linear quantile regression model

Qhγ0(τ)(T )(τ |Z) = Z̃>β̃0(τ) +Qε(τ |Z̃) := Z>β0(τ), τ ∈ (0, 1), (2.1)

where Z̃ is the covariate vector (without the intercept), β̃0(τ) is the unknown regression

coefficient vector and ε is the error term. The distribution of ε is unspecified and may

depend on Z̃. We denote Z = (1, Z̃>)> and β0(τ) = {Qε(τ |Z), β̃0(τ)>}> by including the

quantile of the error into the regression intercept. Meanwhile, hγ0(τ)(T ) is the failure time

under a monotonic transformation with an unknown transformation parameter γ0(τ) for

a given τ ∈ (0, 1). For instance, we may consider the Box-Cox transform in (1.2) as an

example. Since hγ(τ)(·) is monotone for any given γ(τ), using the equivariance property of
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quantile regression, we have

Qhγ(τ)(T )(τ |Z) = hγ(τ)
(
QT (τ |Z)

)
, τ ∈ (0, 1). (2.2)

It is easy to see that (2.1) is equivalent to the following model on the quantile function of T ,

QT (τ |Z) = h−1γ0(τ)

(
Z>β0(τ)

)
, τ ∈ (0, 1). (2.3)

Let C be the censoring random variable which is conditionally independent of T given

Z. For subjects i = 1, · · · , n, we have observed data {(T̃i, δi,Zi), i = 1, . . . , n}, where

T̃i = Ti ∧ Ci and δi = I(Ti ≤ Ci). Our goal is to estimate {γ0(τ),β0(τ)} for τ ∈ (0, 1).

Instead of estimating {γ0(τ),β0(τ)} for all τ ∈ (0, 1), we confine our attention to τ ∈ (0, τU ],

where τU ∈ (0, 1) in order to avoid the identifiability issues due to conditional independent

censoring.

We adopt a martingale based estimation framework considered in Peng and Huang (2008).

Our proposed method does not require the global linear assumption because of the additional

transformation process considered. We define FT (t | Z) = P (T ≤ t | Z), ΛT (t | Z) =

− log{1 − FT (t | Z)}, N(t) = I(T̃ ≤ t, δ = 1), Y (t) = I(T̃ ≥ t) and H(x) = − log(1 − x).

Note that ΛT (t|Z) is the cumulative hazard function of T conditional on Z, so based on the

conditional independent censoring assumption (see, for example, Page 20 of Fleming and

Harrington, 2005), we obtain E{N(t)−ΛT (t∧ T̃ |Z)|Z} = 0. Substitution of t with QT (τ |Z)

gives

E[N{QT (τ |Z)} − ΛT{QT (τ |Z) ∧ T̃ |Z}|Z] = 0. (2.4)

Due to the fact that FT{QT (τ |Z)|Z} = τ , we have

ΛT{QT (τ |Z) ∧ T̃ |Z} = H(FT{QT (τ |Z)|Z}) ∧H(FT{T̃ |Z})

=

∫ τ

0

I[u ≤ FT{T̃ |Z}]dH(u) =

∫ τ

0

Y {QT (u|Z)}dH(u).
(2.5)
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The estimating equation due to (2.3), (2.4) and (2.5),

S(γ0,β0, τ) = E

(
Z

[
N
{
h−1γ0(τ)

(
Z>β0(τ)

)}
−
∫ τ

0

Y
{
h−1γ0(u)

(
Z>β0(u)

)}
dH(u)

])
= 0

(2.6)

can thus be established. Our estimator {{γ̂(τ), β̂(τ)}, τ ∈ (0, τU ]} is a right-continuous step

function with jumps on a grid SL(n) = {0 = τ0 < τ1 < · · · < τL(n) = τU < 1} and denote

‖SL(n)‖ = sup1≤j≤L(n) |τj−τj−1|. First note that the definition of conditional quantile implies

0 = QTi(0|Zi) = h−1γ0(0)
(Z>i β0(0)), so we can set h−1γ̂(0)(Z

>
i β̂(0)) = 0. Subsequently for each τj,

and for any γ(τj), we obtain β̂(γ, τj) by solving the following monotone estimating equation,

which is the empirical counterpart of (2.6), for β(τj) as shown below:

Ŝ(γ,β, τ) = n−1
n∑
i=1

Zi

[
Ni

{
h−1γ(τj)

(
Z>i β(τj)

)}
−

j∑
k=1

Yi

{
h−1γ̂(τk−1)

(
Z>i β̂(τk−1)

)}
{H(τk)−H(τk−1)}

]
= 0. (2.7)

An exact root for (2.7) may not exist since it is not continuous. Therefore, we define β̂(γ, τj)

to be the generalized solutions in the sense of Fygenson and Ritov (1994). Recall β is a

generalized solution of Ŝ(γ,β, τ) = 0 if slight perturbations of any of its components change

the sign of Ŝ. Observe that (2.7) is monotone, we can transform the above problem to finding

a minimizer for a convex objective function of β(τj), which implies

β̂(γ, τj) = arg min
β(τj)

L̂(γ,β, τ)

= arg min
β(τj)

n−1
n∑
i=1

[
hγ(τj)(T̃i)− Z>i β(τj)

] [
−Ni

{
h−1γ(τj)

(
Z>i β(τj)

)}
+

j∑
k=1

Yi

{
h−1γ̂(τk−1)

(
Z>i β̂(τk−1)

)}
{H(τk)−H(τk−1)}

]
.

(2.8)

Remark 1. Equation (2.8) is an L1-type problem of the conditional quantile of T given

Z. To illustrate the connection of the equation to the check function in quantile regression,
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recall that the check function is given by ρ(u; τ) = u{τ − I(u < 0)}. If we view the resid-

ual hγ(τj)(T̃i) − Z>i β̂(γ, τj) as u and
∑j

k=1 Yi

{
h−1γ̂(τk−1)

(
Z>i β̂(τk−1)

)}
{H(τk)−H(τk−1)} as

a function of τj, say gi(τj) = g(τj, T̃i, δi,Zi), then we can write the objective function as∑n
i=1 ρ(hγ(τj)(T̃i)− Z>i β̂(γ, τj); gi(τj)), which is a comparable form to the solution of the or-

dinary linear quantile regression model given by (1.1). Note that we have subject specific

gi(τj) instead of a fixed constant τj in the check function, because the subject specific cumu-

lative hazard function estimate has to be adjusted for complications due to censoring. As a

result, the estimation approach based on (2.8) can be considered as an optimization problem

with a generalized “check” function which depends on the values of the observations. Also,

note that the mean of

j∑
k=1

Yi

{
h−1γ0(τk−1)

(
Z>i β0(τk−1)

)}
{H(τk)−H(τk−1)} , i = 1, · · · , n

approximates E
∫ τj
0
Y {QT (u)}dH(u) =

∫ τj
0
P{T ≥ QT (u)}dH(u) =

∫ τj
0

(1 − u)d{− log(1 −

u)} = τj in the absence of censoring. By altering the proposed “check” function, this estima-

tion approach is a generalization of the check function from complete data to censored data

by treating the censoring with a martingale-based approach.

To estimate the scalar γ(τj), the standard grid search algorithm can be adopted. Conse-

quently, for a reasonable set of γ(τj), we obtain β̂(γ, τj) by (2.8). Motivated by the two-stage

estimator adopted by Chamberlain (1994) and Buckinsky (1995), we obtain γ̂(τj) via

γ̂(τj) = arg min
γ(τj)

R̂(γ, β̂(γ), τ)

= arg min
γ(τj)

n−1
n∑
i=1

[
T̃i − h−1γ(τj)

(
Z>i β̂(γ, τj)

)] [
−Ni

{
h−1γ(τj)

(
Z>i β̂(γ, τj)

)}
+

j∑
k=1

Yi

{
h−1γ̂(τk−1)

(
Z>i β̂(τk−1)

)}
{H(τk)−H(τk−1)}

]
.

(2.9)

After obtaining γ̂(τj), we take β̂(τj) to be β̂(γ̂, τj). Note that the minimization of (2.9) is
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justified since we observe, for any Z-measurable function W, we have from (2.3), (2.4) and

(2.5) that

E

(
W

[
N
{
h−1γ(τ)

(
Z>β(τ)

)}
−
∫ τ

0

Y
{
h−1γ(u)

(
Z>β(u)

)}
dH(u)

])
= 0. (2.10)

If W is taken to be the gradient of h−1γ(τj)
(
Z>β(τj)

)
with respect to γ(τj), which can be

shown to be Z-measurable, then the gradient of (2.9) with respect to γ(τj) corresponds

to the empirical counterpart of (2.10). Though any choice of the weight W that is Z-

measurable can be used to set up a legitimate estimating equation, our particular choice of

W here is not arbitrary. The current weight corresponds to a minimization problem (2.9),

which allows easier numerical implementation; meanwhile, it captures the rate of change

of the conditional quantile with respect to a change of the transformation parameter γ(τj).

This particular choice of weight may account for the smaller standard errors of the estimates

obtained by the proposed method compared with existing approaches; see Section 4 for

details.

Similarly to (2.8), (2.9) is also an L1-type problem using a “pseudo-check” function. An-

other merit of this pseudo-check function is its ability to handle heterogeneity. Instead of a

universal τj across all observations, gi(τj) =
∑j

k=1 Yi

{
h−1γ̂(τk−1)

(
Z>i β̂(τk−1)

)}
{H(τk)−H(τk−1)},

the term which serves as a role of τj in the ordinary check function, is tailored for each subject

and hence could be heterogeneous. For an illustration of the linkage between the proposed

objective function and the ordinary check function, Figure 1 presents the graph of (2.9) as

a function of h−1γ(τj)
(
Z>i β(τj)

)
, the quantity through which (2.9) depends on the parameter

estimates at τj. In particular, we consider a simulated sample from the transformed quantile

regression model described in Example I of our simulation studies. The objective function

value is plotted against the deviation of the quantity h−1γ(τj)
(
Z>i β(τj)

)
from the true quantile

h−1γ0(τj)

(
Z>i β0(τj)

)
. We show the graphs for the aggregate objective function of 500 data and

for some selected data points. The dashed lines suggest that the function behaves as if a
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Figure 1: Pseudo check function against quantile value

check function in case of failures, exhibiting a turnaround near the true quantile value. For

a censored case, the function crosses zero without a turning point. The aggregate objective

function is now the mean of 500 individual check functions and still convex (in quantile

value) in nature.

One practical concern for the estimation is the choice of the grid size in the sequential

procedure. From the proof of weak convergence, we shall choose a grid size of order o(n−1/2)

to ensure weak convergence. In our numerical study, we adopt an equally spaced grid with

0.05 grid size, where the performance of the estimator is satisfactory and the computation

efforts involved are reasonable.

Remark 2. Apart from (2.9), it is also natural to extend the concept used by Mu and He

(2007) to estimate γ(τj), where γ(τj) is the minimizer of a cumsum process of residuals. To
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this extent, based on (2.7), we could define

Vn{z, γ(τj)} = n−1
n∑
i=1

I(Zi ≤ z)
[
Ni

{
h−1γ(τj)

(
Z>i β̂(τj)

)}
−

j∑
k=1

Yi

{
h−1γ̂(τk−1)

(
Z>i β̂(τk−1)

)}
{H(τk)−H(τk−1)}

]
, (2.11)

where Zi ≤ z denotes componentwise inequality. Then γ̃(τj) is obtained as

γ̃(τj) = arg min
γ(τj)

V ∗n {γ(τj)} = arg min
γ(τj)

∫ ∞
−∞

[Vn{z, γ(τj)}]2 dF̂Z(z) = arg min
γ(τj)

n−1
n∑
i=1

[Vn{zi, γ(τj)}]2,

(2.12)

where F̂Z(z) = n−1
∑n

i=1 I(Zi ≤ z) defines the empirical distribution function of {Z1, . . . ,Zn}.

From our numerical studies, the two stage estimator appears to perform better in the sense

that estimates with smaller standard errors are obtained. One possible reason for the reduced

variance obtained in our simulation is suggested by the choice of the weight, which is the

gradient of the conditional quantile with respect to the transformation parameter. Moreover,

as we require a sequential estimation procedure, the performance of the estimator in higher

quantiles depend on the lower ones. In view of this, it may be more beneficial to consider

a procedure that produces estimates with smaller standard errors in which case the whole

process of estimator would be more stable.

3 Asymptotic Results

In this section, we establish the uniform consistency and weak convergence of the proposed

estimator γ̂(τ) and β̂(τ).

Theorem 1. Under Conditions (C1)–(C7) given in the appendix, if limn→∞ ‖SL(n)‖ = 0,

then supτ∈[v,τU ] |γ̂(τ)− γ0(τ)|+
∥∥∥β̂(γ̂, τ)− β0(τ)

∥∥∥→p 0, where 0 < v < τU .

Theorem 2. Under Conditions (C1)–(C7), if limn→∞ n
1/2‖SL(n)‖ = 0, then n1/2

(
γ̂(τ)−γ0(τ)

β̂(γ̂,τ)−β0(τ)

)
converges weakly to a Gaussian process for τ ∈ [v, τU ], where 0 < v < τU .
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The regularity conditions and proofs are provided in the appendix. A key assumption

of the uniform consistency and weak convergence is the Lipschitz continuity of γ0(τ) in τ .

When γ0(τ) is not Lipschitz and there are finite discontinuity jump points of γ0(τ) as in the

simulation examples, we can obtain from the proof that the consistency result of |γ̂(τ) −

γ0(τ)| +
∥∥∥β̂(γ̂, τ)− β0(τ)

∥∥∥ →p 0 and asymptotic normality of n1/2[γ̂(τ) − γ0(τ), {β̂(γ̂, τ) −

β0(τ)}>]> still hold almost everywhere for τ except the jump points.

Note that the uniform consistency and weak convergence results only hold for τ outside

the neighborhood of 0. In particular, recall that we start the iterations in our estimation

procedure by taking h−1γ̂(0)(Z
>
i β̂(0)) = h−1γ0(0)

(Z>i β0(0)) = 0. This suggests that γ̂(0) and

β̂(0) are indeed not unique, therefore the uniform consistency and weak convergence results

cannot hold for τ in the neighbourhood of 0. However, as discussed in Peng and Huang

(2008), the numerical instability of the estimation at small τ has a small impact on the

estimation at larger τ < τU .

Noteworthy, the covariance matrix of the limiting process of n1/2[γ̂(τ)−γ0(τ), {β̂(γ̂, τ)−

β0(τ)}>]>, as shown in the proof of Theorem 2, involves the conditional density functions

of the survival time, which are unknown and our quantities of interest. In order to make

inference on the parameters, we propose to use a simple resampling approach by perturbing

the minimand as adopted in Jin et al. (2001) and Peng and Huang (2008).

Let ζ1, . . . , ζn be i.i.d. random variables from a nonnegative known distribution with

mean 1 and variance 1, such as exponential distribution with rate 1. For a data set with

sample size n, we fix the data values and generate {ζ1, . . . , ζn}, then we obtain γ∗(τj) and

β∗(τj) sequentially for each j ∈ {1, . . . , L} by solving the following two perturbed objective

functions

β∗(γ, τj) = arg min
β(τj)

n−1
n∑
i=1

ζi

[
hγ(τj)(T̃i)− Z>i β(τj)

] [
−δiI

{
hγ(τj)(T̃i) ≤ Z>i β(τj)

}
+

j∑
k=1

I
{
T̃i ≥ h−1γ∗(τk−1)

(
Z>i β

∗(τk−1)
)}
{H(τk)−H(τk−1)}

]
;
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γ∗(τj) = arg min
γ(τj)

n−1
n∑
i=1

ζi

[
T̃i − h−1γ(τj)

(
Z>i β

∗(γ, τj)
)] [
−δiI

{
hγ(τj)(T̃i) ≤ Z>i β

∗(γ, τj)
}

+

j∑
k=1

I
{
T̃i ≥ h−1γ∗(τk−1)

(
Z>i β

∗(τk−1)
)}
{H(τk)−H(τk−1)}

]
.

Again h−1γ∗(0)(Z
>
i β
∗(0)) are set to be 0, and β∗(τj) are taken to be β∗(γ∗, τj). Then γ∗(τ) and

β∗(τ) are defined to be a piecewise-constant function that jumps only at τj, j ∈ {1, . . . , L}.

The above procedure is repeated for B times such that for each r ∈ {1, . . . , B}, we generate

a set of variates {ζ1, . . . , ζn} and obtain B realizations of γ∗r (τ) and β∗r(τ). Consequently,

the confidence intervals for γ(τ) and β(τ) can be constructed using the percentiles of γ∗r (τ)

and β∗r(τ) respectively or by normal approximation. In order to justify the above resampling

method, we present the following theorem.

Theorem 3. Under Conditions (C1)–(C7), n1/2[γ∗(τ)− γ̂(τ), {β∗(γ∗, τ)− β̂(γ̂, τ)}>]> given

the observed data converges weakly to the same limiting process of n1/2[γ̂(τ)−γ0(τ), {β̂(γ̂, τ)−

β0(τ)}>]>, for τ ∈ [v, τU ], where 0 < v < τU .

The proof of Theorem 3 is given in the appendix.

It is often of general interest to question whether or not the transformation process is

indeed a zero process so Peng and Huang (2008)’s approach can be adopted directly. To this

end, we consider a class of null hypothesis in the form of H10 : γ(τ) = r0(τ) for τ ∈ [l, u] ⊂

(0, τU ], where r0(τ) is a known process of hypothesized value. Inspired by Peng and Huang

(2008)’s inference procedure, we exploit the asymptotic normality of the proposed estimator

and consider an integral test statistic, which is defined by T1 = n1/2
∫ u
l
|γ̂(u)−r0(u)|Ξ0(u)du,

where Ξ0(u) is a non-negative weight function that can be chosen to capture the deviation

from H10 and achieve a reasonable power. Note that T1 is asymptotically mean zero by

Theorem 2 and the continuous mapping theorem. In line with the above resampling scheme,

we define T ∗1 = n1/2
∫ u
l
|γ∗(u)−γ̂(u)|Ξ0(u)du. Due to Theorem 3, the conditional distribution

of T ∗1 given the observed data is equivalent to the unconditional distribution of T1. Therefore,

we may construct a size α test ofH10 that rejects when T1 > c1,1−α where c1,1−α is the (1−α)th
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empirical quantile of T ∗1 , which is obtained from the B realizations of resample.

Meanwhile, one may also be interested in assessing whether a varying quantile effect

exists in term of a non-constant transformation process. Mathematically, it can be expressed

as the test of H20 : γ(τ) = r, where r is an unspecified constant. Note that a natural

estimator of the average transformation parameter over a range of quantiles could be γ̂avg =∫ u
l
γ(τ)dτ , where [l, u] ⊂ (0, τU ]. When H20 is true, γ̂avg can be interpreted as an estimate

of the unknown constant r. Accordingly, we consider an integral test statistic for H20 that

exploits the departure of the transformation parameter estimate from the average, T2 =

|n1/2
∫ u
l
{γ̂(u) − γ̂avg}Ξ1(u)du|. The null distribution of T2 can be approximated by the

conditional distribution of T ∗2 = |n1/2
∫ u
l

[{γ∗(u) − γ̂(u)} − {γ∗avg − γ̂avg}]Ξ1(u)du|. As a

result, by obtaining B realizations of T ∗2 via the above resampling method, a size α test of

H20 can be constructed by rejecting H20 when T ∗2 > c2,1−α where c2,1−α is the (1 − α)th

empirical quantile of T ∗2 .

4 Simulations

This section examines the finite-sample performance of the proposed methods through Monte

Carlo simulations. We evaluate the proposed method using six examples. First, we consider

two Box-Cox transformation quantile regression models in Examples I and II and compare

the proposed method with several existing transformation quantile regression estimation

methods, including Leng and Tong (2014) and Yin et al. (2008). Second, we compare in

Example III and IV the performance of the proposed method with a couple of quantile

regression estimation methods that are fitted under the true transformation, including Peng

and Huang (2008) and Wang and Wang (2009). Third, we demonstrate the robustness of the

proposed method in Example V and VI under the scenarios of a misspecified transformed

quantile model except the interested quantile level and of a moderately high number of

covariates. For each method, we report the empirical bias, the sample standard deviations,

and the empirical mean squared errors based on 500 simulated data sets of sample size

14



Table 1: Simulation under a transformed quantile regression model

τ = .25 τ = .5 τ = .75

γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3)

n = 200 & 40% censoring

Proposed Bias -.090 .011 -.044 -.041 -.042 .068 .077 .095 .072 .076 -.009 .033 -.000 -.001 -.003

SD .368 .127 .253 .220 .215 .341 .258 .446 .370 .390 .165 .127 .245 .215 .213

MSE .144 .016 .066 .050 .048 .121 .073 .208 .142 .158 .027 .017 .060 .046 .045

SE .368 .172 .298 .256 .257 .325 .245 .393 .339 .341 .238 .173 .302 .279 .279

CP .924 .940 .930 .928 .930 .942 .962 .936 .926 .934 .954 .966 .940 .950 .960

CS Bias -.059 .022 -.021 -.017 -.016 .082 .093 .115 .094 .100 -.002 .043 .016 .015 .013

SD .350 .133 .259 .223 .224 .370 .284 .492 .421 .426 .201 .160 .287 .258 .259

MSE .126 .018 .068 .050 .050 .143 .089 .255 .186 .192 .040 .027 .083 .067 .067

PH Bias - -.244 -.538 -.533 -.532 - -.200 -.447 -.451 -.447 - -.233 -.477 -.476 -.476

SD - .052 .094 .072 .072 - .069 .105 .058 .064 - .043 .064 .043 .042

MSE - .062 .299 .289 .289 - .045 .211 .207 .204 - .056 .231 .228 .228

LT Bias -.039 -.004 .022 .027 .026 .075 .174 .198 .190 .195 -.062 -.041 -.031 -.030 -.030

SD .351 .123 .278 .240 .236 .350 .298 .633 .564 .591 .198 .144 .271 .248 .248

MSE .124 .015 .078 .058 .056 .128 .119 .440 .354 .387 .043 .022 .074 .063 .062

YZL Bias -.178 .178 .869 .859 .867 .058 .083 .372 .360 .372 -.006 .005 .132 .131 .129

SD .323 .314 .628 .570 .566 .347 .352 .815 .752 .773 .180 .169 .290 .252 .258

MSE .136 .130 1.150 1.063 1.073 .124 .131 .802 .694 .736 .032 .029 .102 .080 .083

re-YZL Bias -.053 1.076 .853 .934 .878 .093 .602 .225 .339 .336 .041 .271 .076 .100 .108

SD .373 .730 1.261 .932 .913 .407 .945 1.202 1.061 1.287 .205 .375 .637 .479 .478

MSE .142 1.691 2.317 1.741 1.605 .174 1.256 1.495 1.241 1.769 .044 .214 .411 .239 .240

n = 200 & 20% censoring

Proposed Bias -.074 -.002 -.036 -.037 -.039 .050 .049 .062 .052 .052 -.000 .025 .013 .009 .009

SD .287 .101 .204 .180 .175 .260 .200 .312 .281 .284 .142 .114 .201 .186 .185

MSE .088 .010 .043 .034 .032 .070 .042 .101 .082 .083 .020 .014 .041 .035 .034

SE .327 .140 .248 .215 .217 .272 .195 .311 .272 .274 .182 .137 .237 .215 .215

CP .948 .952 .942 .944 .948 .964 .980 .966 .964 .958 .948 .944 .926 .948 .936

CS Bias -.051 .006 -.017 -.018 -.019 .061 .060 .073 .064 .066 -.002 .030 .018 .013 .017

SD .289 .105 .218 .194 .191 .285 .212 .339 .301 .308 .183 .144 .247 .232 .234

MSE .086 .011 .048 .038 .037 .085 .048 .120 .094 .099 .034 .021 .061 .054 .055

PH Bias - -.261 -.519 -.515 -.516 - -.216 -.432 -.435 -.434 - -.248 -.461 -.462 -.461

SD - .044 .083 .063 .064 - .066 .102 .052 .055 - .036 .057 .039 .038

MSE - .070 .276 .269 .271 - .051 .197 .192 .191 - .063 .216 .215 .214

LT Bias -.052 .009 -.007 -.008 -.009 .040 .163 .101 .091 .095 -.089 -.036 -.072 -.082 -.077

SD .285 .105 .225 .196 .190 .258 .259 .490 .442 .463 .182 .128 .234 .214 .218

MSE .084 .011 .051 .038 .036 .068 .094 .250 .204 .223 .041 .018 .060 .053 .054

YZL Bias -.184 .540 .613 .596 .589 .047 .267 .209 .189 .185 -.012 .138 .063 .052 .056

SD .266 .315 .474 .445 .432 .274 .373 .641 .570 .511 .173 .176 .268 .232 .235

MSE .105 .391 .600 .553 .533 .077 .211 .455 .361 .296 .030 .050 .076 .057 .059

re-YZL Bias -.065 1.219 .665 .814 .786 .060 .566 .112 .179 .171 .008 .302 .012 .045 .024

SD .309 .777 1.100 .811 .852 .309 .621 1.286 .783 .866 .194 .335 .527 .403 .406

MSE .100 2.090 1.652 1.320 1.344 .099 .706 1.667 .646 .780 .038 .203 .278 .164 .165
∗Approaches CS, PH, LT, YZL and re-YZL denote the proposed method with cumsum minimand for γ(·), Peng and Huang (2008)’s, Leng and

Tong (2014)’s, Yin et al. (2008)’s and the revised Yin et al. (2008)’s (described in Remark 3) proposals, respectively. Refer to Remark 4 for details

of the underlined figures.
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Table 2: Simulation under a transformed quantile regression model with heteroscedastic errors

τ = .25 τ = .5 τ = .75

γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3)

n = 200 & 40% censoring

Proposed Bias -.099 .019 -.024 -.038 -.036 .054 .075 .133 .065 .069 -.005 .050 .034 .013 .010

SD .433 .168 .287 .264 .268 .407 .299 .570 .420 .432 .221 .178 .387 .289 .284

MSE .197 .029 .083 .071 .073 .169 .095 .342 .181 .191 .049 .034 .151 .084 .081

SE .429 .212 .343 .302 .307 .387 .293 .523 .413 .413 .339 .258 .562 .417 .414

CP .926 .942 .922 .926 .920 .910 .946 .938 .928 .918 .982 .982 .966 .962 .970

CS Bias -.074 .026 -.009 -.018 -.015 .062 .085 .156 .079 .084 .021 .067 .089 .048 .050

SD .421 .176 .304 .281 .293 .436 .320 .663 .465 .481 .240 .202 .435 .317 .315

MSE .182 .032 .092 .080 .086 .194 .110 .463 .223 .238 .058 .045 .197 .103 .102

PH Bias - -.250 -.439 -.515 -.514 - -.206 -.430 -.448 -.444 - -.225 -.567 -.483 -.485

SD - .059 .111 .083 .086 - .078 .127 .072 .079 - .054 .090 .060 .058

MSE - .066 .205 .272 .272 - .048 .201 .206 .203 - .054 .329 .237 .238

LT Bias -.054 -.003 .007 .043 .046 .058 .170 .311 .224 .231 -.048 -.028 -.041 .026 .031

SD .427 .162 .301 .292 .297 .406 .371 .839 .689 .715 .250 .199 .417 .338 .348

MSE .185 .026 .090 .087 .090 .168 .166 .800 .525 .564 .065 .041 .175 .115 .122

YZL Bias -.185 .151 1.260 .994 1.008 .027 .036 .590 .404 .428 -.013 -.016 .234 .173 .176

SD .390 .373 1.010 .803 .843 .399 .371 1.174 .841 .878 .217 .211 .466 .335 .350

MSE .187 .162 2.607 1.633 1.727 .160 .139 1.726 .871 .954 .047 .045 .272 .142 .153

re-YZL Bias -.062 1.201 1.601 1.111 1.071 .062 .625 .616 .463 .342 .033 .336 .211 .155 .123

SD .448 1.099 2.130 1.637 1.479 .453 1.130 2.236 1.830 1.206 .261 .557 .948 .678 .615

MSE .204 2.650 7.100 3.914 3.335 .209 1.668 5.381 3.562 1.571 .069 .423 .943 .484 .393

n = 200 & 20% censoring

Proposed Bias -.104 -.001 -.029 -.042 -.043 .048 .049 .092 .055 .055 -.004 .033 .037 .013 .014

SD .392 .146 .252 .233 .244 .315 .241 .386 .328 .342 .196 .156 .326 .258 .257

MSE .165 .021 .064 .056 .062 .102 .060 .157 .110 .120 .038 .025 .108 .067 .066

SE .389 .176 .287 .260 .264 .326 .235 .409 .336 .338 .262 .197 .419 .317 .317

CP .922 .934 .912 .916 .912 .946 .966 .960 .950 .952 .958 .970 .946 .942 .948

CS Bias -.079 .005 -.018 -.028 -.027 .054 .059 .104 .065 .068 -.009 .030 .036 .008 .011

SD .369 .147 .250 .233 .237 .342 .264 .436 .361 .383 .209 .164 .347 .263 .265

MSE .142 .022 .063 .055 .057 .120 .073 .201 .135 .152 .044 .028 .121 .069 .070

PH Bias - -.265 -.426 -.500 -.499 - -.219 -.418 -.431 -.431 - -.242 -.548 -.469 -.469

SD - .051 .098 .074 .077 - .071 .117 .065 .066 - .043 .078 .051 .051

MSE - .073 .191 .255 .255 - .053 .188 .190 .190 - .060 .306 .223 .222

LT Bias -.084 .007 -.006 -.014 -.011 .043 .180 .245 .127 .131 -.074 -.017 -.057 -.048 -.043

SD .375 .149 .260 .239 .248 .320 .341 .631 .539 .566 .232 .169 .355 .282 .283

MSE .148 .022 .068 .057 .062 .104 .149 .459 .307 .338 .059 .029 .129 .082 .082

YZL Bias -.184 .548 1.183 .707 .706 .029 .255 .491 .225 .232 -.018 .129 .243 .077 .078

SD .364 .400 .951 .646 .666 .321 .490 .849 .678 .672 .212 .212 .453 .301 .301

MSE .166 .460 2.305 .917 .941 .104 .305 .961 .510 .506 .045 .061 .264 .096 .097

re-YZL Bias -.097 1.272 1.502 .831 .795 .049 .681 .442 .279 .178 .004 .362 .182 .054 .040

SD .401 .997 1.811 1.211 1.138 .358 1.020 1.518 1.329 1.113 .222 .491 .968 .559 .583

MSE .170 2.611 5.534 2.157 1.927 .130 1.505 2.498 1.843 1.270 .049 .372 .971 .315 .342
∗Approaches CS, PH, LT, YZL and re-YZL denote the proposed method with cumsum minimand for γ(·), Peng and Huang (2008)’s, Leng and

Tong (2014)’s, Yin et al. (2008)’s and the revised Yin et al. (2008)’s (described in Remark 3) proposals, respectively. Refer to Remark 4 for details

of the underlined figures.
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n = 200 or n = 500 each. Due to space concern, we present here only the numerical results

for n = 200; corresponding results for n = 500 are included in Section D of the supplementary

materials for comparison and reference.

Example I In the first example, event times are generated from the following Box-Cox

transformation quantile regression model

QT (τ |Z) = h−1γ0(τ)

(
Z>β0(τ)

)
= h−1γ0(τ)

(
b0 + Z1b1 + Z2b2 + Z3b3 +Qε(τ |Z)

)
.

where ε follows N(0, 0.252). Under model (2.3), the corresponding regression quantile given

Z = (1, Z1, Z2, Z3)
> is β0(τ) = (Qε(τ) + b0, b1, b2, b3)

>. The covariates Z1, Z2 and Z3

are Unif(0, 1), N(0, 0.52) and N(0, 0.52) respectively. We set b0 = b1 = b2 = b3 = 1,

so that the first entry of β0(τ) will be τ -dependent, while the remainings are constant.

The transformation coefficient γ0(τ) is 1 for τ ≤ 0.4 and 0.5 for τ > 0.4 in which case

h−1γ0(τ)
(x) = (γ0(τ)x+ 1)1/γ0(τ). The censoring distribution is generated by Unif(0, c) with

c = exp(c0 +Z1 +Z2 +Z3), where c0 is taken to be 1.6 and 2.3 to yield the target censoring

rates of 40% and 20%, respectively. Under this setting, we consider 500 simulated data

sets of sample size n = 200 or n = 500. The resampling size is taken to be 200, while the

perturbation variable ζ is generated from exponential(1). We adopt an equally spaced grid

with 0.05 grid size for the implementation of the proposed methods presented in section 2.

The optimal γ̂(τ) is located through grid search in the interval [−2, 2]. In particular, we first

locate a preliminary estimate by using only the uncensored observations in our procedure (or

equivalently, by Chamberlain (1994)’s method). The final estimate of γ̂(τ) is then obtained

by searching locally around this initial value using the proposed method with all observations

in sake of higher numerical stability. However, one has to be aware that the search range

should be wide enough so that the optimal γ̂(τ) does not fall on the boundaries. In our

simulation studies, we use a range of ±0.2 for the local search such that the run time is

reasonable while maintaining the empirical proportions of γ̂(τ) occurring on the boundaries
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negligible.

In Table 1, we compare the numerical results at τ = 0.25, 0.50 and 0.75 for five different

approaches, namely the proposed method, the alternative method using a cumsum minimand

for γ̂(τ) suggested by (2.11) and (2.12), Peng and Huang (2008)’s, Leng and Tong (2014)’s,

Yin et al. (2008)’s and a modification of Yin et al. (2008)’s (see Remark 3) proposals.

We report the empirical bias (Bias), the sample standard deviations (SD) and the mean

squared errors (MSE) for comparison. For the proposed method, we also give the average

of the estimated standard errors (SE) based on the resampling method, and the coverage

probabilities (CP) of the 95% confidence intervals constructed by the empirical distribution

of the estimates. We observe that the proposed method gives smaller biases and standard

deviations than the cumsum alternative and Leng and Tong (2014) in almost all cases.

Indeed, the proposed method dominates its counterparts if we consider the mean squared

errors. On the other hand, since the global linear assumption required by Peng and Huang

(2008) and the unconditional independence assumption required by Yin et al. (2008) are

clearly violated, their methods do not provide reasonable estimates in the current setup. It

is also shown that the resampling-based standard errors are close to the empirical standard

deviations, and the coverage probabilities are close to 95%, which justify the use of the

proposed resampling method.

Remark 3. One may consider modifying Yin et al. (2008) so that the inverse probability

weight scheme can be extended for the conditional independent censoring case. To achieve

this goal, one has to provide a reliable estimate for the conditional survival function of the

censoring time given covariates, i.e. ̂̄G(· | Z), which is often approximated by an appropriate

kernel estimator. To examine its effectiveness, we run a set of simulation using the local

Kaplan-Meier estimator to estimate ̂̄G(· | Z), with the bandwidth taken to be n−1/3+0.01, as

described in Leng and Tong (2014). The revised method, which is regarded as “re-YZL” ap-

proach, however, does not provide satisfactory numerical results compared with our proposal.

This could be possibly due to the fact that the structure of Yin et al. (2008)’s estimating equa-
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tions can sometimes be numerically unstable when the inverse probability weights are close

to zero. Nevertheless, given the neat structure of Yin et al. (2008)’s estimating equations, it

is potentially an interesting problem for further research on how to extend the scope so that

conditional independence censoring can also be covered under their framework.

Remark 4. We found that the estimation approach suggested by Leng and Tong (2014)

may not converge properly for high quantile levels. The reported simulation results of their

proposal in the case of (τ = .75) adopt a slight modification by considering the absolute value

of their minimization function. We suspect this phenomenon can possibly be explained by

the unsatisfactory performance of the locally weighted kernel estimator for the conditional

cumulative hazard function for high quantile levels.

Example II In the second set of simulation, we consider a Box-Cox transformation quantile

regression model with heteroscedastic errors. The event times are generated from

QT (τ |Z) = h−1γ0(τ)

(
Z>β0(τ)

)
= h−1γ0(τ)

(
b0 + Z1b1 + Z2b2 + Z3b3 + (1 + Z1)Qε(τ |Z)

)
.

where ε follows N(0, 0.252). The corresponding regression quantile given Z = (1, Z1, Z2, Z3)
>

under model (2.1) is β0(τ) = (Qε(τ) + b0, Qε(τ) + b1, b2, b3)
>. The covariates Z1, Z2 and Z3

are again generated from Unif(0, 1), N(0, 0.52) and N(0, 0.52) respectively. Again we set

b0 = b1 = b2 = b3 = 1, but the first two entries of β0(τ) are now both τ -dependent,

while the last two are still constant. The transformation coefficient γ0(τ) is 1 for τ ≤ 0.4

and 0.5 for τ > 0.4. The censoring distribution is generated in the same fashion as the

homogeneous case. Again we generate 500 simulated data sets of sample size 200 or 500,

with resampling size 200. Table 2 reports results in the same format as in Table 1. We

can see that the proposed method performs well in this heteroscedastic error case as in the

first example. The standard error estimates are close to the standard deviations, and the

coverage probabilities are satisfactory.
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Table 3: Simulation under a log-transformed quantile regression model

τ = .25 τ = .5 τ = .75

γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3)

n = 200 & 40% censoring

Proposed Bias -.015 .014 -.011 -.014 -.008 -.001 .023 .007 .008 .010 .002 .037 .024 .022 .017

SD .099 .078 .171 .139 .144 .095 .085 .171 .152 .156 .122 .131 .230 .209 .206

MSE .010 .006 .029 .020 .021 .009 .008 .029 .023 .024 .015 .019 .053 .044 .043

PH Bias - .019 -.001 -.001 .003 - .017 -.000 .002 .003 - .018 .009 .002 .002

SD - .059 .100 .050 .057 - .055 .093 .048 .057 - .067 .111 .058 .066

MSE - .004 .010 .002 .003 - .003 .009 .002 .003 - .005 .012 .003 .004

n = 200 & 20% censoring

Proposed Bias -.011 .006 -.007 -.011 -.008 .002 .016 .011 .009 .008 .009 .029 .033 .026 .023

SD .083 .066 .147 .121 .126 .079 .073 .151 .127 .132 .093 .097 .195 .168 .169

MSE .007 .004 .022 .015 .016 .006 .006 .023 .016 .017 .009 .010 .039 .029 .029

PH Bias - .011 .001 -.001 .000 - .010 .002 .000 .000 - .012 .010 .002 -.000

SD - .051 .087 .045 .051 - .049 .086 .042 .048 - .056 .098 .050 .056

MSE - .003 .008 .002 .003 - .003 .007 .002 .002 - .003 .010 .002 .003
∗Approach PH denotes Peng and Huang (2008)’s proposal.

Table 4: Empirical rejection rate at level α = .1 for testing if the transformation process is zero or constant

n = 200 & 40% censoring n = 200 & 20% censoring n = 500 & 40% censoring n = 500 & 20% censoring

I II III I II III I II III I II III

T1 .952 .844 .060 .990 .902 .070 1.000 .996 .074 1.000 1.000 .108

T2 .448 .324 .034 .568 .406 .056 .904 .780 .042 .942 .854 .062
∗Transformation process in Examples I and II is 1 for τ ≤ 0.4 and 0.5 for τ > 0.4, while it is a zero process in Example III.

Example III The third example aims to show that our proposed estimator can also yield

reasonable estimates when the global linear assumption holds. Event times are generated

from the following log transformation quantile regression model, i.e. a Box-Cox transformed

model with transformation coefficient γ0(τ) = 0 for all τ ,

QT (τ |Z) = exp
(
Z>β0(τ)

)
= exp

(
b0 + Z1b1 + Z2b2 + Z3b3 +Qε(τ |Z)

)
.

where b0 = b1 = b2 = b3 = 1 and ε follows N(0, 0.252). The covariates Z1, Z2 and Z3 are

Unif(0, 1), Unif(−1, 1) and N(0, 0.52) respectively. The censoring distribution is generated

by Unif(0, c) with c = exp(c0 +Z1 +Z2 +Z3), where c0 is taken to be 2 and 2.7 respectively

to yield a censoring rate of 40% or 20%. 500 simulated data sets of sample size 200 or 500

are generated. Table 3 shows that, despite the fact that our procedure needs to estimate

additional transformation parameters, the proposed estimator performs comparably with

respect to Peng and Huang (2008) method in terms of empirical bias and standard deviations.
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Table 5: Simulation under a transformed quantile regression model with known transformation

τ = .25 τ = .5 τ = .75

γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3)

n = 200 & 40% censoring

Proposed Bias - .028 -.006 -.006 -.006 - .015 -.013 -.019 -.016 - .028 -.008 -.006 -.009

SD - .074 .129 .073 .075 - .074 .130 .092 .097 - .064 .109 .071 .064

MSE - .006 .017 .005 .006 - .006 .017 .009 .010 - .005 .012 .005 .004

WW Bias - -.000 -.002 .005 .003 - -.042 -.004 -.021 -.011 - -.023 .005 .009 .010

SD - .062 .104 .062 .063 - .095 .163 .111 .114 - .060 .103 .061 .058

MSE - .004 .011 .004 .004 - .011 .027 .013 .013 - .004 .011 .004 .003

n = 200 & 20% censoring

Proposed Bias - .014 -.001 -.003 -.003 - .007 -.004 -.008 -.008 - .018 -.001 -.003 -.002

SD - .056 .099 .057 .057 - .065 .109 .074 .079 - .053 .093 .058 .054

MSE - .003 .010 .003 .003 - .004 .012 .006 .006 - .003 .009 .003 .003

WW Bias - .001 .002 .000 .001 - -.021 -.006 -.011 -.009 - -.010 .003 .002 .004

SD - .055 .096 .055 .054 - .076 .133 .089 .090 - .051 .091 .056 .054

MSE - .003 .009 .003 .003 - .006 .018 .008 .008 - .003 .008 .003 .003
∗ Approach WW denotes Wang and Wang (2009)’s proposal.

Regarding the testing procedure described in Section 3 on whether the transformation

process is zero or constant, we compute the test statistic for each Monte Carlo data set, and

then obtain the empirical rejection rate (ERR) by averaging over all Monte Carlo trials. In

line with Peng and Huang (2008), we choose a weight function Ξ0(u) = 1 for test statistic T1

with a null value r0(u) = 0, and a weight function Ξ1(u) = I{u ≥ (l+u)/2} for test statistic

T2, where l = 0.05 and u = 0.8. Table 4 displays the ERR of T1 and T2 at level α = 0.1

for Example I and II (where the transformation process is non-zero and non-constant) and

for Example III (where the transformation process is a zero process). We observe that the

empirical type I errors of both T1 and T2 are kept below the significance level 0.1. Similar to

the results presented in Mu and He (2007), although the tests tend to be conservative when

the sample size is small or the censoring is high, we observe a tendency of Type I errors

getting closer to their nominal values of 0.1 as the sample size grows or as the censoring

rate reduces. Meanwhile, the empirical powers in case of a misspecified null are also fairly

reasonable. This can justify the use of T1 and T2 in testing respectively for a zero and a

constant transformation process is proper.

Example IV The proposed method can be easily modified if the transformation parameter

is known in advance, in which the regression coefficients can be estimated directly based on
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Table 6: Simulation when the transformed quantile regression model is only true for τ = 0.5

τ = .25 τ = .5 τ = .75

γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3) γ̂ β̂(0) β̂(1) β̂(2) β̂(3)

n = 200 & 40% censoring

Proposed Bias .007 .063 -.138 .005 .009 -.012 .025 .013 -.007 -.002 -.024 .007 .178 -.006 -.008

SD .242 .121 .223 .202 .211 .221 .126 .235 .211 .209 .268 .172 .346 .271 .264

MSE .059 .019 .069 .041 .045 .049 .016 .055 .044 .043 .073 .029 .152 .073 .070

LT Bias .062 .055 -.077 .109 .113 .044 .110 .187 .109 .110 -.014 -.023 .197 .062 .059

SD .259 .126 .260 .255 .263 .239 .150 .329 .276 .273 .276 .178 .376 .300 .297

MSE .071 .019 .073 .077 .082 .059 .035 .143 .088 .087 .076 .032 .180 .094 .091

n = 200 & 20% censoring

Proposed Bias -.021 .036 -.157 -.012 -.010 -.015 .010 .007 -.008 -.005 -.031 -.013 .166 -.013 -.014

SD .199 .099 .185 .164 .162 .182 .106 .193 .167 .171 .231 .148 .285 .233 .230

MSE .040 .011 .059 .027 .026 .033 .011 .037 .028 .029 .054 .022 .109 .054 .053

LT Bias .009 .052 -.118 .028 .029 -.005 .104 .127 .021 .021 -.067 -.035 .137 -.031 -.030

SD .217 .105 .205 .185 .184 .204 .131 .250 .210 .209 .250 .153 .301 .241 .241

MSE .047 .014 .056 .035 .035 .041 .028 .078 .044 .044 .067 .025 .109 .059 .059
∗Approach LT denotes Leng and Tong (2014)’s proposal. Also see Remark 4 for their results in the case of τ = .75.

the given transformation. The fourth set of simulation illustrates the numerical performance

of the modified procedure for situations in which only the transformation parameter at

the interested quantile level is known in advance. Specifically, we compare the estimation

results of the proposed method and Wang and Wang (2009) under the transformed quantile

regression model specified in the first example. Results summarized in Table 5 show that

although the proposed method has to make additional estimation on the transformation

process prior to the interested quantile levels, the empirical bias and standard deviations are

still competitive against the benchmark made by Wang and Wang (2009)’s method.

Example V Although the proposed method relaxes the global linear quantile assumption

by Peng and Huang (2008), it nevertheless assumes that a transformed linear quantile model

holds up to the interested quantile level τ . Therefore, we investigate the performance of our

proposal under the scenario that the quantile model only holds for the specific τ . Accordingly,

we consider a transformed quantile regression model similar to that in Example II except

QT (τ |Z) = h−1γ0(τ)

(
Z>β0(τ)

)
= h−1γ0(τ)

(
b0 + Z1b1 + Z2b2 + Z3b3 + (1 + Z2

1)Qε(τ |Z)

)
.
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Again b0 = b1 = b2 = b3 = 1, ε follows N(0, 0.252), and the covariates Z1, Z2 and Z3 are

Unif(0, 1), N(0, 0.52) and N(0, 0.52) respectively. The transformation coefficient γ0(τ) is 1

for τ ≤ 0.4 and 0.5 for τ > 0.4. Now, note that since we have not considered Z2
1 in the

covariate vector, the transformed linear quantile model does not hold here unless τ = 0.5,

where we have Qε(τ) = 0 so that the last term in the last display involving Z2
1 vanishes. We

generate censoring times from Unif(0, c) with c = exp(c0 +Z2
1 +Z2 +Z3), where c0 is taken

to be 1.6 and 2.3 to yield the target censoring rates of 40% and 20%, respectively. With

500 simulated data sets of sample size 200 or 500 each, numerical results obtained by our

proposal are tabulated in Table 6 together with those by Leng and Tong (2014)’s method.

Unsurprisingly, the proposed method produces some bias for τ = 0.25 and τ = 0.75 where

the transformed quantile model is misspecified, specifically for the regression coefficients

associated with Z1, but the results are quite satisfactory for τ = 0.5, i.e. the only quantile

level for which the transformed quantile model is true. In some sense, despite the recursive

nature of our proposal, this demonstrates its robustness when previous quantiles are not

correctly estimated. On the other hand, although Leng and Tong (2014) only assumes the

transformed quantile model at the specific quantile, this flexibility does not save them from

a worse numerical performance through using a kernel-based estimator.

Example VI This example demonstrates the performance of the proposed estimator in

a scenario of moderately high number of covariates. The simulation setup is similar to the

first example, where the true transformation process γ0(τ) equals 1 for τ ≤ 0.4 and 0.5 for

τ > 0.4. But the covariate process Z = (1, Z1, Z2, · · · , Z9)
> is now 10-dimensional where

Z1, · · · , Z9 are each independent N(0, 0.52), while the corresponding regression coefficient

is β0(τ) = (Qε(τ) + 1, 1, · · · , 1)> and ε follows N(0, 0.252). The censoring distribution is

again generated by Unif(0, c) where c = exp(c0 + Z1 + · · · + Z9) with c0 equals 1.6 or 2.3

to attain a censoring rate of 40% and 20% respectively. We simulate 500 Monte Carlo data

sets of sample size 200 or 500 each, and the estimation results are tabulated in Table 7.
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Because of space limitation, we summarize here only the minimum, mean, and maximum

values of the empirical bias, standard deviations, and mean squared errors for the β̂(τ)

vector. Readers may refer to the supplementary materials for a complete version of Table

7 which present all the individual entries as in the previous tables. As shown, performance

of the proposed estimator in terms of empirical bias and standard deviations is still fairly

reasonable comparing to an existing alternative when the number of covariates increases.

One practical concern on the proposed methodology is the computation efforts required.

Indeed, it is easy to see that the runtime required for the estimation of the regression coef-

ficients given a fixed transformation parameter will be similar to that of Peng and Huang

(2008), where the transformation parameter is fixed at zero for all quantile levels. There-

fore, the aggregate computation effort of our proposed algorithm would be of an order of

the number of grid nodes in the grid search procedure for the transformation parameter.

Noteworthy, the grid search algorithm can be done by the parallel computing technique,

which could linearly reduce the runtime due to the grid search step. Meanwhile, as we ob-

serve that the step size of τ in the stepwise procedure does not significantly influence the

numerical performance of the proposed estimator, we adopt a wider grid size of 0.05 instead

of 0.01 or 0.02 as chosen in Peng and Huang (2008) in order to reduce the computation

efforts. Despite the grid search procedure we adopted on top of Peng and Huang (2008)’s

type recursive algorithm, our methodology requires runtime of approximately 20 seconds to

produce all parameter estimates from τ = 0 to τ = 0.8 for a sample size of 500 without

resampling on a standard computer with i7-8550U CPU and 16GB RAM.

5 Data Analysis

As an illustration, we apply the proposed method to analyze the HMO data as in Leng and

Tong (2014). Details about the study can be found in Hosmer and Lemeshow (1999). In this

study, 100 HIV positive subjects were followed until death due to AIDS or related factors,

until the study end or lost to follow-up. Their survival time and censoring status are reported.
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Table 7: Simulation with moderately high number of parameters

τ = .25 τ = .5 τ = .75

{β̂(i), i = 0, 1, · · · , 9} {β̂(i), i = 0, 1, · · · , 9} {β̂(i), i = 0, 1, · · · , 9}

γ̂ min mean max γ̂ min mean max γ̂ min mean max

n = 200 & 40% censoring

Proposed Bias -.136 -.094 -.078 .001 -.015 -.055 -.044 -.013 -.139 -.127 -.117 -.049

SD .211 .110 .120 .141 .086 .093 .099 .104 .281 .185 .192 .196

MSE .063 .020 .021 .024 .008 .009 .012 .014 .098 .036 .051 .054

LT Bias -.253 -.117 -.099 -.090 -.161 -.102 -.096 -.074 -.664 -.478 -.390 -.376

SD .270 .154 .171 .214 .193 .134 .156 .223 .236 .115 .144 .152

MSE .137 .033 .039 .060 .063 .028 .034 .055 .497 .162 .174 .241

n = 200 & 20% censoring

Proposed Bias -.136 -.094 -.078 .001 -.015 -.055 -.044 -.013 -.139 -.127 -.117 -.049

SD .211 .110 .120 .141 .086 .093 .099 .104 .281 .185 .192 .196

MSE .049 .014 .016 .017 .006 .006 .009 .010 .079 .030 .038 .039

LT Bias -.253 -.117 -.099 -.090 -.161 -.102 -.096 -.074 -.664 -.478 -.390 -.376

SD .270 .154 .171 .214 .193 .134 .156 .223 .236 .115 .144 .152

MSE .131 .037 .041 .045 .047 .019 .024 .026 .548 .197 .200 .208
∗Approach LT denotes Leng and Tong (2014)’s proposal. Also see Remark 4 for their results in the case of τ = .75.

Covariates include AGE, which records patient’s age in years; and DRUG, which equals 1

if the patient has a history of IV drug use and 0 otherwise. The Cox proportional hazard

model and results from Leng and Tong (2014) suggest that both covariates are significant.

We examine the effects of the covariates on different quantiles of the survival time by con-

sidering a series of quantiles ranging from 0.05 to 0.6 with an increment of 0.05. We set the

size of the resampling scheme to be 500, with perturbation generated from exponential(1).

We plot the estimated transformation parameter γ(τ) and the quantile regression coeffi-

cients β(τ) in Figure 2. The corresponding pointwise confidence intervals computed from

the proposed resampling method are also given. Plots of the parameter estimates and the

confidence intervals using Peng and Huang (2008)’s and Leng and Tong (2014)’s methods

are produced for comparison. We can observe that the transformation parameter estimate

is approximately zero for all quantiles. It implies that a log transformation is appropriate

and it agrees with the results obtained by Leng and Tong (2014). More formally, we use the

test statistics T1 and T2 described in the end of Section 3 to test whether the transformation

process is zero or constant. We again consider T1 with a null value r0(u) = 0 and a weight

function Ξ0(u) = 1, as well as T2 with a weight function Ξ1(u) = I{u ≥ (l + u)/2}, where

l = 0.05 and u = 0.6. The significance level is set to be α = 0.1. The empirical p-value of the
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test T1, i.e. the empirical proportion of the 500 resampling-based T ∗1 being greater than the

actual T1, is 0.216, suggesting a zero transformation process. Meanwhile, since the empirical

p-value of T2 is 0.320, it is also evident that the transformation process is constant.

Despite the need for estimating the unknown transformation parameter, our proposal

still provides comparable confidence intervals with Peng and Huang (2008)’s method, which

requires the assumption that γ(τ) is fixed at zero across all quantile levels (the global lin-

ear assumption). On the contrary, Leng and Tong (2014) obtains similar parameter point

estimates but with much wider confidence intervals. It is noteworthy that the figures we

obtained based on Leng and Tong (2014)’s approach are not entirely the same as the corre-

sponding figures presented in Leng and Tong (2014). In their numerical illustration, γ(τ) is

assumed to be zero upon which the estimation of β(τ) is performed. In contrast, we esti-

mate both transformation and effect parameters without assuming a known transformation.

Recall that, in their approach, estimates of β(τ) also depend on that of γ(τ). When γ(τ)

is now unknown and has to be estimated, there will be extra (non-linear) variation in the

estimates of β(τ); the phenomenon is particularly prominent in the resampling estimation,

which results in much wider confidence intervals for β(τ) compared to the case where γ(τ)

is fixed. From this point of view, Figure 2 suggests that our estimate of γ(τ) is more stable

in the sense that narrower confidence intervals are obtained. Our proposal is thus more

preferable over the two alternatives because of our flexibility to accommodate an unknown

transformation process while maintaining relatively stable confidence intervals.

Another observation is that the quantile regression coefficients for both covariates appear

to be insignificant, which contradicts to the conclusion of the Cox model. The reason is

because we do not assume a log transformation of the survival time, hence the unconditional

marginal effect of the covariates is not given by β(τ) only, but a function of both γ(τ) and

β(τ). In particular, we follow Mu and He (2007) to assess the marginal effect by

∂

∂Z
QT (τ |Z) =

∂

∂Z
h−1γ(τ)

(
Z>β(τ)

)
= β(τ) ·QT (τ |Z)1−γ(τ).
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(a) Our Proposal (b) Peng and Huang (2008) (c) Leng and Tong (2014)

Figure 2: Estimates and Pointwise Confidence Intervals for the Transformation Parameter and the Covariates
associated with Age and Prior Drug Use

(a) Our Proposal (b) Peng and Huang (2008) (c) Leng and Tong (2014)

Figure 3: Estimates and Pointwise Confidence Intervals for the Quantile Function and Marginal Effects for
an Individual Aged 35 with Prior Drug Use



In Figure 3, we plot the estimated quantile function of the survival time and marginal effects

of the two covariates for an individual aged 35 with prior drug use. Again we use the per-

turbation bootstrap method to produce corresponding pointwise confidence intervals. We

observe that the quantile function and marginal effects are significant for most quantiles.

The confidence intervals are also fairly stable across different quantiles and are closed to

Peng and Huang (2008)’s results. Similarly, Leng and Tong (2014)’s proposal gives com-

parable point estimates but significantly wider confidence intervals, because of their more

volatile estimates of γ(τ) and β(τ). As a result, our method can be viewed as a better alter-

native through incorporating an unknown transformation process while retaining consistent

numerical results.

6 Conclusion

We have proposed a class of dynamic transformed linear quantile regression models for sur-

vival data subjected to conditionally independent censoring. Using martingale theory, we

construct unbiased estimating equations for the unknown transformation parameters and re-

gression coefficients. Our algorithm involves a stepwise two-stage procedure where estimates

of the transformation parameter and the regression coefficients at each subsequent quantiles

are computed recursively through minimizing two L1-type objective functions respectively.

By incorporating different transformation parameters across individual quantiles, the pro-

posed methodology relaxes the global linear assumption required in some existing literature

and thus enjoys greater flexibility under the conditional independent censoring setting.

With empirical process theory, we have established the uniform consistency and weak

convergence of the proposed estimator as a process of the quantile level. On the other hand,

numerical studies suggest that the proposed method performs competitively desirable com-

pared to existing proposals for sample sizes that are of practical interest. The real example

presented illustrates how the simultaneous confidence intervals for the transformation param-

eter and the regression coefficients can be constructed. As discussed in Mu and He (2007),
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it is worth noted that the regression coefficients shall not be directly comparable because of

the different transformation parameter estimated across various quantiles. For a meaningful

comparison, it would be reasonable to consider the marginal effects of the covariates, which

combine the influence of the transformation parameter and the regression coefficients.

In this work, we have focused our discussion on ordinary right-censored time-to-event

data. In practical study, however, lifetime data may be biased sampled in nature due to

study design or data collecting mechanism. Special treatments are required to tackle data

with various bias sampling scheme. Kim et al. (2013) and Kim et al. (2016) discuss the

semiparametric transformation model and the accelerated failure time model under general

bias sampling scheme respectively. From the perspective of censored quantile regression,

Xu et al. (2017) developed a martingale based estimating procedure for various types of

biased data. However, a similar global linear assumption as in Peng and Huang (2008) has

to be included, which limits the model flexibility. This direction of research merits further

investigations.
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