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Many high-dimensional hypothesis tests aim to globally examine
marginal or low-dimensional features of a high-dimensional joint dis-
tribution, such as testing of mean vectors, covariance matrices and re-
gression coefficients. This paper constructs a family of U-statistics as
unbiased estimators of the £,-norms of those features. We show that
under the null hypothesis, the U-statistics of different finite orders
are asymptotically independent and normally distributed. Moreover,
they are also asymptotically independent with the maximum-type
test statistic, whose limiting distribution is an extreme value distribu-
tion. Based on the asymptotic independence property, we propose an
adaptive testing procedure which combines p-values computed from
the U-statistics of different orders. We further establish power analy-
sis results and show that the proposed adaptive procedure maintains
high power against various alternatives.

1. Introduction.

Motivation. Analysis of high-dimensional data, whose dimension p could
be much larger than the sample size n, has emerged as an important and
active research area [e.g., 19, 62, 23, 21]. In many large-scale inference prob-
lems, one is often interested in globally testing some overall patterns of
low-dimensional features of the high-dimensional random observations. One
example is genome-wide association studies (GWAS), whose primary goal is
to identify single nucleotide polymorphisms (SNPs) associated with certain
complex diseases of interest. A popular approach in GWAS is to perform
univariate tests which examine each SNP one by one. This however may
lead to low statistical power due to the weak effect size of each SNP [46]
and the small statistical significance threshold (~ 107®) chosen to control
the multiple-comparison type I error [39]. Researchers therefore have pro-
posed to globally test a genetic marker set with many SNPs [63, 39] in order
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to achieve higher statistical power and to better understand the underlying
genetic mechanisms.

In this paper, we focus on a family of global testing problems in the high-
dimensional setting, including testing of mean vectors, covariance matrices
and regression coeflicients in generalized linear models. These problems can
be formulated as Hy : £ = 0, where 0 is an all zero vector, £ = {¢; : | € L}
is a parameter vector with £ being the index set, and e;’s being the corre-
sponding parameters of interest, e.g., elements in mean vectors, covariance
matrices or coefficients in generalized linear models. For the global testing
problem Hy : £ = 0 versus Hy : £ # 0, two different types of methods
are often used in the literature. One is sum-of-squares-type statistics. They
are usually powerful against “dense” alternatives, where £ has a high pro-
portion of nonzero elements with a large [|E]2 = Y, €f or its weighted
variants. See examples in mean testing [e.g., 4, 25, 59, 12, 11, 26, 61] and
covariance testing [e.g., 3, 41, 13, 44]. The other is maximum-type statistics.
They are usually powerful against “sparse” alternatives, where £ has few
nonzero elements with a large ||€|« [e.g., 35, 45, 27, 7, 8, 9, 57]. More
recently, [20, 69] also proposed to combine these two kinds of test statis-
tics. However, for denser or only moderately dense alternatives, neither of
these two types of statistics may be powerful, as will be further illustrated
in this paper both theoretically and numerically. Importantly, in real ap-
plications, the underlying truth is usually unknown, which could be either
sparse, dense, or in-between. As global testing could be highly underpowered
if an inappropriate testing method is used [e.g., 15], it is desired in practice
to have a testing procedure with high statistical power against a variety of
alternatives.

A Family of Asymptotically Independent U-Statistics. To address these is-
sues, we propose a U-statistics framework and introduce its applications to
adaptive high-dimensional testing. The U-statistics framework constructs
unbiased and asymptotically independent estimators of ||E[|G := >, - ef for
different (positive) integers a, where a = 2 corresponds to a sum-of-squares-
type statistic, and an even integer a — oo yields a maximum-type statistic.
The adaptive testing then combines the information from different ||€||%’s,
and our power analysis shows that it is powerful against a wide range of al-
ternatives, from highly sparse, moderately sparse to dense, to highly dense.

To illustrate our idea, suppose z1, . . ., Z, are n independent and identically
distributed (i.i.d.) copies of a random vector z. We consider the setting where
each parameter e; has an unbiased kernel function estimator K;(z;,, ..., Z;,, ),
and +; is the smallest integer such that for any 1 < i1 # ... # iy, < n,
E[Ki(2;,,...,2:,)| = e;. This includes many testing problems on moments
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of low orders, such as entries in mean vectors, covariance matrices and score
vectors of generalized linear models, which shall be discussed in details. The
family of U-statistics can be constructed generally as follows. For integers
a>1l,and 1 <idy # ... F iy # ... F Ua_1)xy+1- - 7 laxy < N, since the
z’s are 1.i.d., we have E[K)(z;,,...,2;, ) 'Kl(zi(afl)x'lerl’ e Bigyn, )| = €]
Therefore, we can construct an unbiased estimator of the parameters of
augmented powers e with different a. Then ||€]|% has an unbiased estimator

(11) U(a) :Z(P(?Xw)_l Z HKl(zi(k—l)xw-&-l’""Zikxw)’

lel 1<i1#.. Fiaxqy, <n k=1

where P! = n!/(n —k)! denotes the number of k-permutations of n. We call
a the order of the U-statistic U(a). If a > b, we say U(a) is of higher order
than U(b) and vice versa.

This construction procedure can be applied to many testing problems.
We give three common examples below for illustration and more detailed
case-studies will be discussed in Sections 2 and 4.

ExaMPLE 1. Consider one-sample mean testing of Hy : p = 0, where
E = p is the mean vector of a p-dimensional random wvector x. Suppose
X1,...,Xp are n i.4.d. copies of x. For each it = 1,...,n, j =1,...,p, 7;;
is a simple unbiased estimator of u;, then we can take the kernel function
K;(x;) = x;5. Following (1.1), we know the U-statistic

Ua)=EHY . > Tz

=1 1<i1 .. #ia<n k=1

is an unbiased estimator of |E||§ = [|pllg = >5_; p§. Please see Section 4.1
for the two-sample mean testing example and related theoretical properties.

EXAMPLE 2. Suppose x1,...,X, are n i.i.d. copies of a random vector
x with mean vector p = 0 and covariance matric X = {0j, j, }pxp- For
covariance testing Ho : 0j, j, = 0 for any 1 < ji # j2 < p, we have £ =
{o1: 1€ L} with £ ={(j1,72) : 1 < j1 # j2 < p}. Since z; j,x; j, is a simple
unbiased estimator of o, j,, then for each pair | = (ji1,J2) € L, we can take
the kernel function K;(x;) = x; j, % j,. Following (1.1), the U-statistic

Ula) = (P(?)_l Z Z H(ximjlwik,h)

1<j1#j2<p 1<i1#. Al <n k=1

is an unbiased estimator of ||E|[G = 321<j, £j,<, 05, j,- Please see Section 2
for the general case with unknown p.
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ExXAMPLE 3. Consider a response variable y and its covariates x € RP
following a generalized linear model: E(y|x) = ¢~ Y(x73), where g is the
canonical link function and B3 € RP are the regression coefficients. Suppose
that (x;,yi), 1 =1,...,n, are i.i.d. copies of (x,y). For testing Hy : B = (3,
the score vectors (Si; = (yi — pos)xij:j =1,...,p)7 are often used in the
literature, where po; = g1 (x] By). Note that E(S; ;) = 0 under Hy. Thus to
test Hy, we can take € = {E(S;;) : j=1,...,p} and use the U-statistic

Ua)=EH"Y > TS

J=11<iy#..#iq<n k=1

which is an unbiased estimator of ||E]|% = §:1{E(Si7j)}“. Please see Sec-
tion 4.3.

Related Literature. For high-dimensional testing, some other adaptive test-
ing procedures have recently been proposed in [51, 66, 64]. These works com-
bine the p-values of a family of sum-of-powered statistics that are powerful
against different ||£]|%’s. However in these existing works, to evaluate the p-
value of the adaptive test statistic, the joint asymptotic distribution of the
statistics is difficult to obtain or calculate. Accordingly computationally ex-
pensive resampling methods are often used in practice [51, 39, 68]. For some
special cases such as testing means and the coeflicients of generalized linear
models, [66] and [64] derived the limiting distributions of the test statistics
under the framework of a family of von Mises V-statistics. However, the
constructed V-statistics are usually correlated and biased estimators of the
target ||€]|%. Tt follows that in [66] and [64], numerical approximations are
still needed to calculate the tail probabilities of the adaptive test statistics;
see Remark 4.1 and Section 4.3. In addition, these existing adaptive test-
ing works mainly focus on the first-order moments, and their results do not
directly apply to testing second-order moments, such as covariance matrices.

To overcome these issues, this paper considers the proposed family of
unbiased U-statistics. There are some other recent works providing impor-
tant results on high-dimensional U-statistics [e.g., 14, 42, 71]. For instance,
[71] considered testing the regression coefficients in linear models using the
fourth-order U-statistic; [42] studied the limiting distributions of rank-based
U-statistics; and [14] studied bootstrap approximation of the second-order
U-statistics. However, these results do not directly apply to the high-order
U-statistics considered in this paper.

Our Contributions. We establish the theoretical properties of the U-statistics
in various high dimensional testing problems, including testing mean vectors,
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regression coefficients of generalized linear models, and covariance matrices.
Our contributions are summarized as follows.

Under the null hypothesis, we show that the normalized U-statistics of
different finite orders are jointly normally distributed. The result applies
generally for any asymptotic regime with n — oo and p — oo. In addi-
tion, we prove that all the finite-order U-statistics are asymptotically in-
dependent with each other under the null hypothesis. Moreover, we prove
that U-statistics of finite orders are also asymptotically independent of the
maximum-type test statistic with a limiting extreme value distribution.

Under the alternative hypothesis, we further analyze the asymptotic power
for U-statistics of different orders. We show that when £ has denser nonzero
entries, U(a)’s of lower orders tend to be more powerful; and when £ has
sparser nonzero entries, U(a)’s of higher orders tend to be more powerful.
More interestingly, we show that in the boundary case of “moderate” spar-
sity levels, U (a) with a finite a > 2 gives the highest power among the family
of U-statistics, clearly indicating the inadequacy of both the sum-of-squares-
and the maximum-type statistics.

An important application of the independence property among U(a)’s
is to construct adaptive testing procedures by combining the information
of different U(a)’s, whose univariate distributions or p-values can be easily
combined to form a joint distribution to calculate the p-value of an adaptive
test statistic. Compared with other existing works [e.g., 66, 64], numerical
approximations of tail probabilities are no longer needed. As shown in the
power analysis, an adaptive integration of information across different tests
leads to a powerful testing procedure.

The rest of the paper is organized as follows. In Sections 2 and 3, we illus-
trate the framework by a covariance testing problem. Particularly, in Section
2.1, we study the U-statistics under null hypothesis; in Section 2.2, we an-
alyze the power of the U-statistics; in Section 2.3, we develop an adaptive
testing procedure. In Sections 3.1 and 3.2, we report simulations and a real
dataset analysis. In Section 4, we study other high-dimensional testing prob-
lems, including testing means, regression coefficients and two-sample covari-
ances. In Section 5, we discuss several extensions of the proposed framework.
We give proofs and other stimulations in Supplementary Material.

2. Motivating Example: One-Sample Covariance Testing. The
constructed family of U-statistics and adaptive testing procedure can be
applied to various high-dimensional testing problems. In this section, we
illustrate the framework with a motivating example of one-sample covariance
testing. Analogous results for other high-dimensional testing problems in
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Section 4 can be obtained following similar analyses. We showcase the study

of one-sample covariance testing problem since this is more challenging than

mean testing due to the two-way dependency structure and the one-sample

problem can be used as the building block for more general cases.
Specifically, we focus on testing

(2.1) Hy:055,=0 V1<ji#j2<p,

where ¥ = {0j,5, : 1 < ji1,j2 < p} is the covariance matrix of a p-
dimensional real-valued random vector x = (z1,...,2,)T with E(x) = p =
(fe1, ..., 1p)T. The observed data include n ii.d. copies of x, denoted by
X1,...,Xp With x; = (2;1,...,i,p)T. In factor analysis, testing Hy in (2.1)
can be used to examine whether ¥ has any significant factor or not [2].

Global testing of covariance structure plays an important role in many
statistical analysis and applications; see a review in [6]. Conventional tests
include the likelihood ratio test, John’s test, and Nagao’s test, etc. [2, 49].
These methods, however, often fail in the high-dimensional setting when
both n,p — oco. To address this issue, new procedures have been recently
proposed [e.g., 3, 36, 37, 58, 56, 52, 41, 13, 35, 45, 7, 44, 57, 40]. However
these methods might suffer from loss of power when the sparsity level of the
alternative covariance matrix varies. In the following subsections, we intro-
duce the general U-statistics framework, study their asymptotic properties,
and develop a powerful adaptive testing procedure.

We introduce some notation. For two series of numbers uy j, v, that
depend on n,p: U,y = 0(vpy) denotes limsup,, , oo [Unp/Vnp| = 0; Upp =
O(vnp) denotes limsup,, ,, o [tnp/Vnp| < 00; Unp = O(vnyp) denotes 0 <
liminfy, 00 [Unp/Vnp| < HMsUp, o0 [tnp/Vnp| < 005 Upy = vy, denotes
limy, 00 Un p/VUnp = 1. Moreover, Ly oand 2 represent the convergence in

probability and distribution respectively. For p-dimensional random vector
x with mean p and Vjq,...,j5; € {1,...,p}, we write the central moment as

(2.2) W, = El(@, — ) - (@5, — 15.)]-

2.1. Asymptotically Independent U-Statistics. For testing (2.1), the set
of parameters that we are interested in is &€ = {0, j, : 1 < j1 # j2 < p}.
Following the previous analysis of (1.1), since o, j, has a simple unbiased
estimator x;, j, i, jo — Tiy j1 Tis,jo With 1 < 41 # 49 < n, then for integers
a > 1, an unbiased U-statistic of |E|[g = >_1<j, 2j,<, 07, 5, 1

a
-1
U(a) = (Py,) Z Z H(‘riQk—l7j1$i2k—l7j2 - xiQk—lJlxiQsz)'

1<G1#72<p 1<i1 #.. . Fiza <n k=1
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This is equivalent to

(2.3) Ua) = Y Za:(—l)CC)Pi >

1<j1#j2<p ¢=0 ate 1<iy# . Aigre<n

a—c a a-+c
[HEwgnzis) TT s [T i
k=1 s=a—c+1 t=a+1

REMARK 2.1. The U-statistics can be constructed by another method
equivalently. Given 1 < j1 # j2 < p, define @j, j, = 0j, j, + [bj, fj,- Then

a
a —
(24) Z O-?lva = Z Z <C) @?1,;2 X (_lujllu.j2)0>

1<j17#j2<p 1<j1#j2<p c¢=0

which is a polynomial function of the moments u; and @j, j,. Since u; and
©Yj1.j2 have unbiased estimators x; ; and x; j, x; j, respectively, then for 1 <

. . - +
11 7é ce 7é late < M, E( Z:i Lig,j1Tik,j2 ngachrl Lig,j1 H?:(;rl xitdé)
@5 15 15, Given this and (2.4), the U-statistics (2.3) can be obtained.

REMARK 2.2.  The summed term with ¢ =0 in (2.3) is

(2.5) Z;{(a) = (Pa?)il Z Z H(xik,jlxik,jz)a

1<ir#F#ia<n 1<j1 £j2<p k=1

which has the same form as the simplified U-statistic for mean zero obser-
vations in Example 2, and is shown to be the leading term of (2.3) in proof.

We next introduce some nice properties of the U-statistics (2.3). The first
one is the following location invariant property.

PROPOSITION 2.1. U(a) constructed as in (2.3) is location invariant;
that is, for any vector A € RP, the U-statistic constructed based on the
transformed data {x; + A :i=1,...,n} is stillU(a).

The following proposition verifies that the constructed U-statistics are
unbiased estimators of [|E]|g = 321« 2,<p 05, iy

PROPOSITION 2.2. For any integer a, EU(a)] = D21 45,<, 05, j,- Un-
der Hy in (2.1), EU(a)] = 0.

We next study the limiting properties of the constructed U-statistics un-
der Hy given the following assumptions on the random vector x = (z1,...,z,)T.
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CONDITION 2.1 (Moment assumption). lim, .o maxi<j<p E(z;—p;)® <
0o and lim, . mini<j<, B(z; — p;)? > 0.

CONDITION 2.2 (Dependence assumption). For a sequence of random
variables z = {z; : j > 1} and integers a < b, let Z° be the o-algebra
generated by {z; : j € {a,...,b}}. For each s > 1, define the a-mizing
coefficient ay(s) = sup;s1{|P(ANB) — P(A)P(B)| : A € Z{,B € Z%,}.
We assume that under Hy, x is a-mizing with ax(s) < Md®, where § € (0,1)
and M > 0 are some constants.

CONDITION 2.2* (Alternative dependence assumption to Condition 2.2).
Following the notation in (2.2), we assume that under Hy, for any j1, jo, js €
{1,..p}, Iy gy gs = 05 for any ji,j2,J3,Ja € {10}, Ty jagu =
K1(0j1,j205s.ja + Oj1.330daja + j1,ja0ja.jz) fOr some constant k1 < oo; and
fort=6,8, and any j1,--- 5 € {1,...,p}, I, .. j, = 0 when at least one
of these indexes appears odd times in {ji, -+ ,ji}.

Condition 2.1 assumes that the eighth marginal moments of x are uni-
formly bounded from above and the second moments are uniformly bounded
from below, which are true for most light-tailed distributions. Condition 2.2
assumes weak dependence among different x;’s under Hy, since the uncorre-
latedness of x;’s under Hy may not imply the independence of them, espe-
cially when z;’s are non-Gaussian. Under Hy, Condition 2.2 automatically
holds when x is Gaussian or m-dependent. The mixing-type weak depen-
dence is similarly considered in previous works such as [5, 11, 66] and also
commonly assumed in time series and spatial statistics [24, 54]. Moreover,
the variables in our motivating genome-wide association studies have a local
dependence structure, with their associations often decreasing to zero as the
corresponding physical distances on a chromosome increase. We note that
it suffices to have Condition 2.2 hold up to a permutation of the variables.

Alternatively, we can substitute Condition 2.2 with Condition 2.2*. Con-
dition 2.2* specifies some higher order moments of x and is satisfied when x
follows an elliptical distribution with finite eighth moments and covariance
3 [see 2, 22, 49, 50]. Conditions 2.2* and 2.2 become equivalent when x fol-
lows a multivariate Gaussian distribution. The fourth moment condition is
also assumed in other high-dimensional research [8]. In this work, the eighth
moment condition is needed to establish the asymptotic joint distribution
of different U-statistics.

The following theorem specifies the asymptotic variances of the finite
order U-statistics and their joint limiting distribution. Since the U-statistics
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are degenerate under Hy, an analysis different from the asymptotic theory
on non-degenerate U-statistics [e.g., 31] is needed in the proof.

THEOREM 2.1.  Under Hy in (2.1) and Conditions 2.1 and 2.2 (or 2.2%),
for U(a)’s defined in (2.3) and any distinct finite (and positive) integers
{ai,...,am}, as n,p — oo,

Ua@)  Ua)]T p

(2.6) U(al),...,o(am)] Dy N(0, In).

where

(27) @) =vald@]~ T Y ("

& 1<g1#£52<p; 1<j3#ja<p

with 11, j, js.js defined in (2.2). Note that o*(a) = ©(p*n=?).

Theorem 2.1 shows that after normalization, the finite-order U-statistics
have a joint normal limiting distribution with an identity covariance matrix,
which implies that they are asymptotically independent as n,p — oco. The
nice independence property makes it easy to combine these U-statistics and
apply our proposed adaptive testing later. Moreover, the conclusion holds
on general asymptotic regime for n,p — oo, without any constraint on the
relationship between n and p. We will also see in Section 4 that similar
results hold generally for some other testing problems.

REMARK 2.3. Theorem 2.1 discusses the U-statistics of finite orders,
i.e., the a values do not grow with n,p. When {x1,...,x,} are independent,
Theorem 2.1 can be extended when a = O(1) min{log® n,log®p} for some
€ > 0. On the other hand, we will show in Section 2.2 that it is usually
enough to include U(a)’s of finite a. Therefore, we do not pursue the general
case when a grows with n,p in this work.

In the following, we further discuss the maximum-type test statistic U (c0),
which corresponds to the ¢-norm of the parameter vector £ = {e; : | € L},
that is, [|€]|cc = maxjer |e;|. In the existing literature, there is already some
corresponding established work [35, 7] on the test statistic:

(2.8) My o= | maX 10132/ Gir.i Oassal:

where (65, jy)pxp = Dorq (X — X)(x; — X)T/n and X = > | x;/n. We will
take U(oo) = M below. The limiting distribution of U (c0) was first studied
in [35] and extended by [7, 45, 57]. Next we restate the result in [7], which
gives the limiting distribution of (2.8) under the following condition.
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CONDITION 2.3. Consider the random vector x = (x1,...,x,)T with
mean vector pp = (i1, . .., ttp)T and covariance matriz 3 = diag(oy 1, . . . "vap)'
(2j—11)/ /55 are i.i.d. for j =1,...,p. Furthermore, Eeto(m1=ml/Vori)* <
oo for some 0 < ¢ <2 and tg > 0.

THEOREM 2.2 (Cai and Jiang [7, Theorem 2|). Assume Condition 2.3
and logp = o(n?), where B = /(4 +<). Then P(n x U(c0)? + @, < u) —
G(u) = 6_(1/‘/§)57u/2, where w, = —4logp + loglogp and G(u) is an ex-
treme value distribution of type I.

Theorems 2.1 and 2.2 give the limiting distributions of ¢ (a) of finite orders
and U (oo) respectively; it is of interest to examine their joint distribution.
The following theorem shows that although U/(c0) has limiting distribution
different from U (a), a < oo, they are still asymptotically independent.

THEOREM 2.3. Assume that Condition 2.1 is satisfied, Condition 2.3
holds for ¢ = 2, and logp = o(n*/7). For finite integers {ay, ..., amn}, under
Hy, U(ar),...,U(am) and U(co) are mutually asymptotically independent.
In specific, for any z1,...,z2m,y € R, as n,p — oo,

‘P(Td/{(oo)2 + @y 2> Y, Z;{((le)) <z,...,
— P(nth(o0)® +mp > y) % ﬁp(z;{(ar)) < z)’ 0.

r=1 (ar

Theorem 2.1 suggests that all the finite-order U-statistics are asymptot-
ically independent with each other. Given this, Theorem 2.3 further shows
that the maximum-type test statistic U(00) is also asymptotically mutually
independent with those finite-order U-statistics. The conclusion shares sim-
ilarity with some classical results on the asymptotic independence between
the sum-of-squares-type and maximum-type statistics. Specifically, for ran-
dom variables wy, ..., wy, [32, 29] proved the asymptotic independence be-
tween y ", w? and max;—1 n |w;| for weakly dependent observations. The
similar independence properties were extensively studied in literature [e.g.
47, 30, 53, 33, 66, 43]. However, there are several differences between ex-
isting literature and the results in this paper. First, we discuss a family of
U-statistics U (a)’s, which takes different a values, and U/(2) here correspond-
ing to the sum-of-squares-type statistic is only a special case of general U (a).
Furthermore, we have shown not only the asymptotic independence between
U(a) and U(o0), but also the asymptotic independence among U (a)’s of fi-
nite a values. Second, the constructed U (a)’s are unbiased estimators, which
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are different from the sum-of-squares statistics usually examined in the lit-
erature. Moreover, the x’s are allowed to be dependent and the theoretical
development in the covariance testing involves a two-way dependence struc-
ture, which requires different proof techniques from the existing studies.

REMARK 2.4. An alternative way to construct U(oco) is to standard-
ize Gj, j, by its variance var(Gj, j,). Specifically, following Cai et al. [8],
we take var(6j,,5,) = n~' 0 {(@ig — T5)) (@i, — Tjy) — 61,4} Define
My} = maxi<j, j,<p [ 32|/ {F03(6, 3,) Y/ and we take U(oo) = M. The-
oretically, we prove that Theorem 2.3 still holds with U(co) = M;[ mn Sup-
plementary Material Section 77. Numerically, we provide the simulations in
Supplementary Material Section 72, which shows that M in (2.8) generally
has higher power than M;g

To apply hypothesis testing using the asymptotic results in Theorems
2.1 and 2.3, we need to estimate var{l/(a)}. In particular, we propose the
following moment estimator of (2.7):

(2.9) Vy(a) = (;Z!)Q > S @i — 250 @i g — T5)°

1<j1#j2<p 1<ir#..#ia<n t=1

The next result establishes the statistical consistency of V,(a).
CONDITION 2.4.  For integer a, lim,_ o maxi<j<p E(z; — uj)sa < 00.

THEOREM 2.4. Under Hy in (2.1), assume Conditions 2.1, 2.2 and 2.4
hold. Then V,(a)/var{U(a)} 5.

Theorem 2.4 implies that the asymptotic results in Theorems 2.1 and 2.3
still hold by replacing var{U(a)} with its estimator V,(a). Specifically, under

Hy, [U(a1)/+/Vu(ar),...,.U(am)//Vu(am)]T EEN N(0, I,,) under Conditions
2.1, 2.2 and 2.4. Moreover, Theorem 2.3 implies that {U(a)/y/Vy(a)}’s are
asymptotically independent with U(c0).

2.2. Power Analysis. In this section, we analyze the asymptotic power
of the U-statistics. The power of U(2) has been studied in the literature. In
particular, [10] studied the hypothesis testing of a high-dimensional covari-
ance matrix with Hg : 3 = I,. The authors characterized the boundary that
distinguishes the testable region from the non-testable region in terms of the
Frobenius norm ||X — I,||r, and showed that the test statistic proposed by
[13, 10], which corresponds to ¢(2) in this paper, is rate optimal over their
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considered regime. However in practice, U(2) may be not powerful if the
alternative covariance matrix is sparse with a small ||X — I,||p. When the
alternative covariance has different sparsity levels, it is of interest to fur-
ther examine which U(a) achieves the best power performance among the
constructed family of U-statistics.

To study the test power, we establish the limiting distributions of U (a)’s
under the alternative hypothesis Hy : ¥ = 34, where the alternative co-
variance matrix 34 = (05, j, )pxp i specified in the following Condition 2.5.
Define J4 = {(j1,72) : 0j1.5o # 0,1 < j1 # jo < p}, which indicates the
nonzero off-diagonal entries in ¥ 4. The cardinality of J4, denoted by |J 4],
then represents the sparsity level of X 4.

CONDITION 2.5.  Assume |Ja| = o(p?) and for (j1,j2) € Ja, |0j, | =
©(p), where p =3, inesa |Tingl/1al-

Here p represents the average signal strength of X 4. In our following power
comparison of two U-statistics U (a) and U(b), we say U(a) is “better” than
U(b), if, under the same test power, U(a) can detect a smaller average sig-
nal strength p (please see the specific definition in Criterion 1 on Page 13).
Condition 2.5 specifies a general family of “local” alternatives, which include
banded covariance matrices, block covariance matrices, and sparse covari-
ance matrices whose nonzero entries are randomly located.

THEOREM 2.5.  Suppose Conditions 2.1, 2.5, and 7?7 (an analogous con-
dition to Condition 2.2° under H 4 ) in the Supplementary Material hold. For
U(a) in (2.3) and finite integers {ay, ..., am}, if p= O(|Ja| /2 p'/9n=1/2)
fort=1,...,m, then as n,p — oo,

) D) Ulan) ~FUlen]) 2 ),
olay

o(am)

where fora € {ay,...,am}, EU(a)] = 32, 5yea, 0F 4, and 02(a) = var[U(a)] ~
2a1RINT Y S <) 2ia<p To1 1 O ias Which s of order O(p*n=7).

Theorem 2.5 shows that for a single U-statistic U(a) of finite order a,

(2.10) p(\% > Zl—a> —1-— <I><zl_a - m»

where z1_, is the upper a quantile of AV (0,1) and ®(-) is the cumulative
distribution function of N'(0,1). By Theorem 2.5, the asymptotic power of
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U(a) of the one-sided test depends on

EU(a) 2 (1 g2)eTn Tir o

(2.11) ~ - .
var[(a)]  {2alkinc Z1§j1¢j2§p(0j1,j10jz,jz)a}l/Q

By Theorem 2.5, (2.11) = @(|JA|p“p_1n“/2) It follows that When EZ/[( )]
is of the same order of y/var[l{(a)], i.e., E var[U(a)], the
constraint of p in Theorem 2.5 is satisfied.

In the following power analysis, we will first compare U (a)’s of finite a and
then compare them with U(c0). As we focus on studying the relationship
between the sparsity level and power, we consider an ideal case where o, ;, =
p >0 for (ji,j2) € Ja and 0;; = 1> >0 for j =1,...,p. Then

(212) (211) ~ “]A’pa/(\/mumlpnfa/2)_

We next show how the order of the “best” U-statistics changes when the
sparsity level |J4| varies. To be specific of the meaning of “best”, we com-
pare the p values needed by different U statistics to achieve the same asymp-
totic power. Particularly, we fix E[U/(a)]/\/var[(a)], i.e., (2.12) to be some
constant M /+/2 for different a’s and the asymptotlc power of each U(a) is
(2.10) =1 — ®(21_o — M/+/2). Then by (2.12), the p value such that U(a)
attains the power above is

1

(2.13) pa = Vi1 (al) 22 (Mp)|Jal)an2.

By the definition in (2.13), we compare the power of two U-statistics U(a)
and U(b) with a # b following the Criterion 1 below.

CRITERION 1.  We say U(a) is “better” than U(D) if pa < pp-

Given values of n,p, |J4| and M, (2.13) is a function of a. Therefore, to find
the “best” U(a), it suffices to find the order, denoted by ag, that gives the
smallest p, value in (2.13). We then have the following proposition discussing
the optimality among the U-statistics of finite orders in (2.3).

PROPOSITION 2.3.  Given n,p,|Ja| and any constant M € (0, +o0), we
consider p, in (2.13) as a function of integer a, then

(i) when |Ja| > Mp, the minimum of p, is achieved at ag = 1;
(ii) when |Ja| < Mp, the minimum of p, is achieved at some agy, which
increases as Mp/|Ja| increases.
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By Proposition 2.3, the order a¢ that attains the smallest value of p,
depends on the value of Mp/|J4| and does not have a closed form solu-
tion. We use numerical plots to demonstrate the relationship between ag
and the sparsity level. Particularly, let |J4| = p**=#) where g € (0,1)
denotes the sparsity level. To have a better visualization, we use g(a) =
log(panl/in_l/QV*Q) = (1/2a)loga! + a~'log(Mp*’~1) instead of p,. We
plot g(a) curves in Figure 1 for each 8 € {0.1,...,0.9} with M = 4 and
p € {100, 10000}. Other values of M and p are also taken, which give similar
patterns to Figure 1 and are not presented.

g(a) vs a; p=100 g(a) vs a; p= 10000

T O %)
o 14 ” <*~“'fhduvli"‘l-ikﬂ>\ o ‘_r‘;w5_;,‘.,‘;44“““1-4-“»‘»
0,
-2
_1,
-4
-2
_6_
0 5 10 15 20 25 30 0 5 10 15 20 25 30
a values a values
sparsity 3 0.1 0.2 03 -~ 04 ¢ 05 ¢ 06 0.7 0.8 0.9

Fig 1: g(a) versus a with different sparsity level 5 for p = 100, 10000

Figure 1 shows that the ap such that g(a) attains the smallest value
increases when the sparsity level § increases. In particular, when the sparsity
level 8 < 0.3, that is, when |J4| is “very” large and then X 4 is “very” dense,
g(a) has the smallest value at ag = 1. This is consistent with the conclusion
in Proposition 2.3 (i). When the sparsity level 8 is between 0.4 and 0.5,
we note that ap = 2 achieves the minimum of g(a). This shows that when
|J4| is “moderately” large and ¥4 is “moderately” dense, U(2) is more
powerful than ¢/(1). When the sparsity level § > 0.5, we find that ag > 2.
This implies that when |J4| becomes smaller and ¥4 becomes sparser, U-
statistics of higher orders are more powerful. Additionally, we note that ag
increases slowly as [ increases, which verifies Proposition 2.3 (ii). Moreover,
the curves converge as a increases and the differences of g(a) for large a
values (a > 6) are small. This implies that when selecting the range of
considered orders of U-statistics, it suffices to select an upper bound with
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a = 6 or 8, which gives better or similar p, values to those larger a’s.

In summary, when |Jy4| is large, i.e., ¥4 is dense, a small a tends to
obtain a smaller lower bound in terms of p. But when |J4| decreases, i.e.,
3.4 becomes sparse, a U-statistic of large finite order (or the maximum-type
U-statistic as shown next) tends to obtain a smaller lower bound in p. This
observation is consistent with the existing literature [13, 7, 10, 6].

Next, we proceed to examine the power of the maximum-type test statistic
U(c0), and compare it with the U-statistics U(a) of finite a defined in (2.3).
By [7], the rejection region for U (oco) with significance level « is

U(c0)| >t := n~12\/4log p — loglogp — log(87) — 2loglog(1 — o)~ 1.
Note t, ~ 24/logp/n and under alternative, the power for U(oco) is
(2.14) P(U()] = 1),

As discussed, we consider the alternatives satisfying Conditions 2.2* and 2.5,
Ojrgs = p > 0 for (j1,72) € Ja, and 0 = v? for j = 1,...,p. For simplicity,
we assume E(x) = p and v? are given, and focus on the simplified

-2, -1\
(215)  Uloo) =, max ’V nTtY @iy — i) (@ige — 1)
We show in the following proposition when the power of U(cc) asymptoti-
cally converges to 1 or is strictly smaller than 1 under alternative.

PRrROPOSITION 2.4.  Under the considered alternative 3 4 above, suppose
max;—1,..p Eetolzi—nil® « o for some 0 < ¢ < 2 and ty > 0, and logp =
o(n?) with B =c/(4+ ). Then for (2.15), when n,p — oo,

(i) there exists a constant c; > 2 such that if p > c11/logp/n, (2.14) — 1;
(ii) there exists another constant 0 < ca < 2 such that when p < ca+/logp/n,

2(1—cq /2)2

1_ 1
Condition 2.2° holds for k1 < 1 and |Ja| = o(1)p #1+m  (logp)2 21i+tm)
for some m > 0, we have (2.14) <log(l — a)~!.

Recall that Proposition 2.3 shows that there exists a finite integer ayg,
such that pg, is the minimum of (2.13), and p,, is a lower bound of p
value for the finite-order U-statistics to achieve the given asymptotic power.
With Propositions 2.3 and 2.4, we next compare the finite-order U-statistics
defined in (2.3) with the maximum-type test statistic U(co).

PROPOSITION 2.5.  Under the conditions of Theorem 2.5 and Proposition
2.4, for any finite integer a, there exist constants c1 and co such that when
p is sufficiently large,
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(i) For any M, when |Ja| < cl_a(a!)%/ﬁ%(logp)_%Mp, U(o0) has higher
asymptotic power than U(a).

(11) When M is big enough and |Ja| > c5%(al)
higher asymptotic power than U(co).

2 (log p)~% Mp, U(a) has

NI

From Proposition 2.3, we know when Mp/|J4| = O(1), there exists
a finite ap such that U(ap) is the “best” among all the finite-order U-
statistics; in this case, Proposition 2.5 (ii) further indicates that U(ao)
has higher asymptotic power than U(co). Specifically, if Mp/|Ja| < 1,
ap = 1, then U(1) is the “best” and its lowest detectable order of p is
O(p|J 4|~ 'n~/2). More interestingly, when 34 is moderately dense or mod-
erately sparse with Mp/|J4| > 1 and bounded, some U-statistic of finite
order ag > 1 would become the “best”. By Figure 1, the value of ag in-

creases as X 4 becomes denser. On the other hand, when X 4 is “very” sparse
ag

with |J4| < cf“o(ag!)%/-cl7 (logp)_%oMp, U(c0) is the “best” and its lowest
detectable order of p is O(y/logp/n).

REMARK 2.5. The above power comparison results are under the con-
structed family of U-statistics. We note that additional formulation may fur-
ther enhance the test power. For instance, [11, 72] showed that an adaptive
thresholding in certain £,-type test statistics can achieve high power under
the alternatives with sparse and faint signals. It is of interest to incorporate
the adaptive thresholding into the constructed family of U-statistics, which
1s left for future study.

REMARK 2.6. The analysis above focuses on the ideal case where the
nonzero off-diagonal entries of X 4 are the same for illustration. When these
entries of 34 are different, similar analysis still applies by Theorem 2.5
for general covariance matrices. In specific, the asymptotic power of U(a)
depends on the mean variance ratio (2.11) and p, = \/in~/?(a!)!/?* x
(M Z?Zl 05l 21<jy ja<p J?l’jz)l/a. We can then obtain conclusions simi-
lar to Propositions 2.53-2.5. One interesting case is when 34 contains both
positive and negative entries; the same analysis applies for even-order U-
statistics, since 0§, ; ’s are all non-negative for even a. On the other hand,
the odd-order U-statistics would have low power, since 213]‘17&]‘23; ol
could be small due to the cancellation of positive and negative o5, s We
have conducted simulations when the nonzero oj, j,’s are different in Section

3.1, and the results exhibit consistent patterns as expected.

2.3. Application to Adaptive Testing & Computation.
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Adaptive Testing. Power analysis in Section 2.2 shows that when the spar-
sity level of the alternative changes, the test statistic that achieves the high-
est power could vary. However, since the truth is often unknown in practice,
it is unclear which test statistic should be chosen. Therefore, we develop an
adaptive testing procedure by combining the information from U-statistics of
different orders, which would yield high power against various alternatives.

In particular, we propose to combine the U-statistics through their p-
values, which is widely used in literature [48, 51, 70]. One popular method
is the minimum combination, whose idea is to take the minimum p-value
to approximate the maximum power [51, 70, 66]. Specifically, let T be a
candidate set of the orders of U-statistics, which contains both finite values
and oo. We compute p-values p,’s of the U-statistics U(a)’s satisfying a € T'.
The minimum combination takes the statistic Thapumin = min{p, : a € I'}
and has the asymptotic p-value puqpumin = 1 — (1 — Tademin)|F|, where
IT'| denotes the size of the candidate set I'. We reject Hy if padpumin <
Under Hy, p,’s are asymptotically independent and uniformly distributed
by the theoretical results in Section 2.1. The type I error is asymptotically
controlled as P(pademin < a) = P(minaera < pZ) — «, where p;, =
1 — (1 — ). Since P(mingerpa < pt) > P(pa < p.), the power of the
adaptive test goes to 1 if there exists a € I" such that the power of U(a)
goes to 1. We note that the power of the adaptive test is not necessarily
higher than that of all the U-statistics. This is because the power of U(a)
is P(p, < @), and is different from P(p, < p) since p < o when |I'| > 1.
Based on our extensive simulations, we find that the adaptive test is usually
close to or even higher than the maximum power of the U-statistics.

REMARK 2.7.  Fisher’s method [48] is another popular method for com-

bining independent p-values. It has the test statistic Thqpur = —2 Z'k;F:|1 log pg,
which converges to X% r under Hy. By our simulations, the minimum combi-
nation and Fisher’s method are generally comparable, while Fisher’s method
has higher power under several cases. Moreover, we can also use other meth-
ods to combine the p-values, such as higher criticism [16, 17]. We leave the
study of how to efficiently combine the p-values for future research.

We select the candidate set I' by the power analysis in Section 2.2. We
would recommend including {1,2,...,6,00}, which can be powerful against
a wide spectrum of alternatives. In particular, by Propositions 2.3 and 2.5,
we include a = 1,2 that are powerful against dense signals; a = oo that
is powerful against sparse signals; and also a = {3,...,6} for the moder-
ately dense and moderately sparse signals. By Figure 1, it generally suffices
to choose finite a up to 6-8, which often give similar/better performance
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to/than larger a values. The simulations in Section 3.1 confirm the good
performance of this choice of I'; and the proposed adaptive test appears
to well approximate the “best” performance even when I' may not always
contain the unknown “optimal” U-statistics.

We would like to mention that the adaptive procedure can be generalized
to other testing problems, as long as similar theoretical properties are given,
such as the examples in Section 4.

Computation. Next we discuss the computation in the adaptive testing. A
direct calculation following the form of U(a) in (2.3) and V(a ) in (2.9) would
be computationally expensive for large a with a cost of O(p?n?®). To address
this issue, we introduce a method that can reduce the cost.

We first consider a simplified setting when E(x; ;) = 0 to illustrate the
idea. As discussed in Remark 2.2, we examine U (a) defined in (2.5). Let
L = {{1,72) : 1 < j1 # jo < p} denote the set of index tuples, and
for each index tuple | = (j1,j2) € L, define s;; = ;i j,. Note that
Ula) = (P >iecUi(a), where Uy(a) = Z1§i1¢~~¢ia§n [T5=1 5iy.0- Cal-
culating U;(a) directly is of order O(n®). We then focus on reducing the
computational cost of Uj(a). For | € £ and finite integers t1, ..., tx, define

k

pa0) e TS U ]

r=1  i=1 1<iy ... Fip<nr=1

We can see that Uj(a) = Ulla with 1, being an a-dimensional vector of all

(a)

ones, and U, = Vl(a) for any finite integer a. To reduce the computational

cost of Uj(a), the main idea is to obtain Ull" from Vl(tl""’t’“), whose compu-
tational cost is O(n). In particular, ;(a) can be attained iteratively from

Vl(tl’""tk) based on the following equation
(217) Ul(k:71r_k) — ‘/‘i(k') % Ul]-r—k’ _ (T _ k) % Ul(k"f‘l,lr_k_l),

which follows from the definitions. Algorithm 1 below summarizes the steps.
We illustrate the idea of the algorithm by some examples. By definition,
Ul(l) = Vl(l), which can be computed with cost O(n). Next consider in (2.17),

if r=2and k=1, then U™V = VW x M — 2 1) x P = vV 1) —
1/2(2), which yields U}'2 with cost O(n). For U, we first take r = 3 and
k =2 1in (2.17), then with cost O(n), we have U(Q’l) VZ(Q) U(l) Ul(g) =
Vl(Q) X Vl(l) —Vl(?’), as Vl(k) = Ul( ) by the definition. Given Ul12 and Ul(2 1),

obtain Ul(l’lz) = Vl(l) X U112 —2x Ul(2 10 Thus Ul 3 is also computed with cost
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Data: s;; (1<:<n,leL”L).
Result: U(a).
for [ € £ do
Compute and store Vl(k) = Ul(k) =37 s¥, (k=1, - ,a) during the
algorithm;

Ulll _ ‘/l(l) , Ul12 _ Ul11 ‘/l(l) _ Ul(2);
while 3 <r <a do

zﬂl — Ul(r)

for k< r—1to1ldo

T =V® xU'"* - (r—k) x T

end

Ull,,. _7
end

end
Ua) = (P) ' X Ul
Algorithm 1: Iterative Computation Implementation

O(n). Iteratively, for any finite integer a, we can obtain Ull‘l from Vl(tl""’t’“)

whose computational cost is O(n). More closed form formulae representing
Ull“ by Vl(tl"“’tk) are given in Section 77 of Supplementary Material.

Algorithm 1 reduces the computational cost of U(a) from O(p*n®) to
O(p*n). Tts idea is general and can be extended to compute other dif-
ferent U-statistics by changing the input s;;. In particular, the variance
estimator V(a) can be computed with cost O(p?n) by specifying s;; =
(i) —T5,) (@i jo — Tj,)?, for each I € L = {(j1,j2) : 1 < j1 # j2 < p}. Then
V(a) = 2a(PM) 2 Y, do1<ir . #ia<n Lg=1 Sir, and the Algorithm 1 can
be applied. Moreover, when E(z; ;) is unknown, ¢(a) can still be computed
with cost O(p?n) using the iterative method similar to Algorithm 1. The
details are provided in Section 7?7 of Supplementary Material.

3. Simulations and Real Data Analysis.

3.1. Simulations. We conduct simulation studies to evaluate the per-
formance of the proposed adaptive testing procedures, and investigate the
relationship between the power and sparsity levels. For one-sample covari-
ance testing discussed in Section 2, we generate n i.i.d. p-dimensional x; for
i=1,...,n, and consider the following five simulation settings.

Setting 1: x; has p i.i.d. entries of N'(0, 1) and Gamma(2, 0.5) respectively.
Under each case, we take n = 100 and p € {50, 100, 200, 400, 600, 800, 1000}
to verify the theoretical results under Hy and the validity of the adaptive
test across different n and p combinations.
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For the following settings 2-5, we generate x; from multivariate Gaussian
distributions with mean zero and different covariance matrices X 4’s.

Setting 2: X4 = (1 — p)Ip + ply i, 1;7,%, where 1,1, is a p-dimensional
vector with the first ko elements one and the rest zero. We take (n,p) €
{(100, 300), (100, 600), (100, 1000) }, and study the power with respect to dif-
ferent signal sizes p and sparsity levels kg.

Setting 3: The diagonal elements of 34 are all one and |J4| number
of off-diagonal elements are p with random positions. We take (n,p) €
{(100,600), (100,1000)} and let the signal size p and sparsity level |.J4| vary
to examine how the power changes accordingly.

Setting 4: The diagonal elements of 34 are all one and |J4| number
of off-diagonal elements are uniformly generated from (0,2p) with random
positions. We take (n,p) = (100, 1000) and similarly let the signal size p and
sparsity level |J4| vary to examine how the power changes accordingly.

Setting 5: We consider the multivariate models in [13]. Specifically, for
each ¢ =1,...,n, x; = Zz; + u, where = is a matrix of dimension p x m,
and z;’s are i.i.d. Gaussian or Gamma random vectors. Under null hypoth-
esis, m = p, & = I, p = 21,; under alternative hypothesis, m =p+1, E =
(VI —=pI,,\/2p1,), p = 2(/T = p++1/2p)1,. We also take the n and p combi-
nation in [13] with (n, p) € {(40, 159), (40, 331), (80, 159), (80, 331), (80, 642)}.

We compare several methods in the literature, including both maximum-
type and sum-of-squares-type tests. In particular, the maximum-type test
statistic in Jiang [35] is taken as U(oco) in this framework. Since the con-
vergence in [35] is known to be slow, we use permutation to approximate
the distribution in the simulations. In addition, we consider some sum-of-
squares-type methods. Specifically, we examine the identity and sphericity
tests in Chen et al. [13], which are denoted as “Equal” and “Spher”, respec-
tively. We also compare the methods in Ledoit and Wolf [41] and Schott
[56], which are referred to as “LW” and “Schott”, respectively.

To illustrate, Figure 2 summarizes the numerical results for the setting 3
when n = 100 and p = 1000. All the results are based on 1000 simulations at
the 5% nominal significance level. In Figure 2, we present the power of single
U-statistics with orders in {1,...,6,00}. “adpUmin” and “adpUf” represent
the results of the adaptive testing procedure using the minimum combina-
tion and Fisher’s method in Section 2.2 respectively. The simulation results
show that the type I error rates of the U-statistics and adaptive test are well
controlled under Hy. In addition, Figure 2 exhibits several patterns that are
consistent with the power analysis in Section 2.2. First, it shows that among
the U-statistics, when |J4| is very small, U(co) performs best; and when
|J4| increases, the performances of some U-statistics of finite orders catch
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up. For instance, when |J4| = 100, U (6) and U (c0) are similar and are better
than the other U-statistics; when |J4| = 400, U(4) and U (5) are similar and
better than the other U-statistics. When X4 is relatively dense, U(2) and
U(1) become more powerful. Particularly, when |J4| = 1600, ¢(2) is pow-
erful; when |J4| becomes larger, such as when |J4| = 3200, U(1) is overall
the most powerful. Second, Figure 2 shows that “LW”, “Schott”, “Equal”,
“Spher” and U(2) perform similarly under various cases. In particular, these
methods are not powerful when the alternative is sparse but becomes more
powerful when the alternative gets denser. This is because they are all sum-
of-squares-type statistics that target at dense alternatives. Third and im-
portantly, the two adaptive tests “adpUmin” and “adpUf” maintain high
power across different settings. Specifically, they perform better than most
single U-statistics: their powers are usually close to or even higher than the
best single U-statistic. Moreover, “adpUmin” and “adpUf’ generally have
higher power than the compared existing methods. We also note that “ad-
pUf” overall performs better than “adpUmin” in this simulation setting.
In summary, Figure 2 demonstrates the relationship between the sparsity
levels of alternatives and the power of the tests, confirming the theoretical
conclusions in Section 2.2. Notably, the proposed adaptive testing procedure
is powerful against a wide range of alternatives, and thus advantageous in
practice when the true alternative is unknown.

Due to the space limitation, we provide other extensive numerical studies
in Supplementary Material Section ??. The conclusions are similar to those
of Figure 2, and consistent with the theoretical results in Section 2.2. In
particular, the results show that the empirical sizes of the tests are close
to the nominal level, suggesting the good finite-sample performance of the
asymptotic approximations. Moreover, under highly dense alternatives with
only non-negative entries in the covariance matrix, (1) is the most powerful
one among the U (a)’s and the other tests in [41, 56, 13], in agreement with
the results in Propositions 2.3 and 2.5. Furthermore, the proposed adaptive
testing procedures often have higher power than most single U-statistics.

3.2. Real Data Analysis. Alzheimer’s disease (AD) is the most prevalent
neurodegenerative disease [55] and is ranked as the sixth leading cause of
death in the US [67]. Every 65 seconds, someone in the US develops AD [1].
To advance our understanding of AD, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) was started in 2004, collecting extensive genetic data for
both healthy individuals and AD patients. To gain insight into the genetic
mechanisms of AD, one can test a single SNP a time. However, due to a rela-
tively small sample size of the ADNI data, scanning across all SNPs failed to
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Fig 2: Power comparison.

identify any genome-wide significant SNP (with p-value < 5 x 1078)[39]. To
date, the largest meta-analysis of more than 600,000 individuals identified 29
significant risk loci [34] and can only explain a small proportion of AD vari-
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ance. On the other hand, a group of functionally related genes as annotated
in a biological pathway are often involved in the same disease susceptibility
and progression [28]. Thus, pathway-based analyses, which jointly analyze
a group of SNPs in a biological pathway, have become increasingly popular.
We retrieve a total of 214 pathways from the KEGG database [38] for the
subsequent analysis.

Although pathway-based analyses with KEGG pathways are common in
real studies, formally testing the correlations of the genes in a KEGG path-
way has been largely untouched. Here, we apply our method and other com-
peting methods in [13] to test if all the genes in a pathway have correlated
gene expression levels. Perhaps as expected, all methods reject the null hy-
pothesis for all pathways with highly significant p-values, since the KEGG
pathways are constructed to include only the genes with similar function into
the same pathway [38], while similar function often implies co-expression
(and vice versa). To compare the performance of the different tests, for each
pathway we randomly select 50 subjects and restrict our analysis to path-
ways of at least 50 genes, leading to 103 pathways for the following analysis.
Then we perturb the data by shuffling the gene expression levels of randomly
selected 100(1 — )% genes in a pathway before applying each test. Figure
3 shows the performance of the tests with two significance cutoffs, where
“U(2)” represents the single U(2) statistic, “adpU” represents our proposed
adaptive testing procedure using the minimum combination with candidate
U-statistics of orders in {1,...,6,00}, and “Equal” and “Spher” represent
the identity and sphericity tests in [13] respectively. Because all pathways
are highly significant with all samples, we can treat all pathways as the
true positives. Due to the adaptiveness of our proposed testing procedure,
“adpU” identifies more significant pathways than the competing methods
across all the levels of data perturbation (mimicking the varying sparsity
levels of the alternatives).

4. Other High-Dimensional Examples. In this section, we apply
the proposed U-statistics framework to other high-dimensional testing prob-
lems. Similar theoretical results to Section 2 are developed, with detailed
proofs and related simulation studies provided in Supplementary Material.

4.1. Mean Testing. Testing mean vectors is widely used in many statisti-
cal analysis and applications [2, 49]. Under high-dimensional scenarios, e.g.,
in genome-wide studies, dimension of the data is often much larger than the
sample size, so traditional multivariate tests such as Hotelling’s T?-test ei-
ther cannot be directly applied or have low power [18]. To address this issue,
several new procedures for testing high-dimensional mean vectors have been
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Fig 3: Power comparison of different methods with ADNI data.

proposed [4, 16, 25, 59, 12, 27, 9, 11, 26, 17, 61, 66]. However, many of the
statistics only target at either sparse or dense alternatives, and suffer from
loss of power for other types of alternatives. We next apply the U-statistics
framework to one-sample and two-sample mean testing problems.

One-sample mean testing. We first discuss the one-sample mean vector
testing. Assume that xi,...,x, are n i.i.d. copies of a p-dimensional real-
valued random vector x = (z1,...,2p)T with mean vector g = (p1, ..., p)7,
covariance matrix ¥ = {0y, j, : 1 < j1,72 < p}. We want to conduct the
global test on Hy : p = py where pg = (f1,0, .-, f1p,0)7 is given.

Similar to previous discussion, the parameter set that we are interested
inis &= {1 — 1,0, p — po}. For each j =1,...,p, E(x;;) = p , so
K;(x;) = x4,j—pj,0 is a kernel function, which is a simple unbiased estimator
of the target. Following our construction, the U-statistic for finite a is

(4.1) Ua) = % S T @is = 1io)s

G=1" % 1<iy#£#ig<n k=1

which targets at [|€]|5 = >=7_ (1 — 15,0)®, and the U-statistic corresponding
to [|€]|oo is U(00) = maxi<j<p O';} (Zj — po;)? with 2; = S0 a;/n.
Given the statistics, we have the theoretical results similar to Theorems
2.1-2.3. The following Theorems 4.1-4.2 are established under similar con-
ditions to that of Theorems 2.1-2.3. Due to the limited space, we provide
the conditions and corresponding discussions in Supplementary Material.

THEOREM 4.1. Under Ho: p = pg, assume Condition 77 in Supple-
mentary Material. Then for any finite integers {ai,...,an}, as n,p — oo,
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U(ar)/o(ar), ..., U(am)/o(am)]T 2, N(0,1,,), where o%(a) = var[U(a)] =
b Z§:1 alo?; /Py with the order of ©(alpn™?).

THEOREM 4.2.  Under Hy: p = g, assume Condition 77 in Supplemen-
tary Material. ThenYu € R, P(nl(c0)—T, < u) — exp{—m""/2exp(—u/2)},
asn,p — oo, where 7, = 2log p—loglogp. In addition, for any finite integer
a, {U(a)/o(a)} and {nld(c0) — 7} are asymptotically independent.

By Theorems 4.1 and 4.2, we obtain the asymptotic independence among
the U-statistics and the corresponding limiting distributions of the U-statistics
under Hy. Under the alternative hypothesis, since the power analysis of the
one-sample mean testing is similar to that of the two-sample case, we delay
the power analysis after presenting the asymptotic independence property
of the proposed U-statistics in the two-sample mean testing problem.

Two-sample mean testing. Next we discuss the two-sample mean testing
problem. Suppose we have two groups of p-dimensional observations {x;};"*;
and {yi}?il, which are i.i.d. copies of two independent random vectors
x = (x1,...,2p)T and y = (y1,...,yp)T respectively. Suppose E(x) = p =
(i, spp)T, E(y) =v = (v1,...,1)7, cov(x) = X, and cov(y) = X,. We
write n = ng, + n, and assume n, = O(n,). For easy illustration, we first
consider ¥, =3, =3 = {0, j, : 1 < j1,7j2 < p}. We will then discuss the
case when ¥, # 3, where similar analysis applies.

The two-sample mean testing examines Hy : o = v versus Hy : p # v,
then & = (1 —vi,... pp —1p)T. For 1 < j <p, 1 <k <ng 1 <s<ny,
K;(Xk,ys) = Tkj — ¥s,j is a simple unbiased estimator of p; — v;, and thus

we construct U(a) = ?ZI(PC?Z‘P(:W) Zl<k1§ FbaZne Il @y — Yse)s
<s sqa<ny

which is also equivalent to

42 zz( oD S | ) |

a—C 1<ky£Ake<ng t=1
1<s17# - #Sa—c<ny

We can check that (4.2) satisfies E{U(a)} = ? 1y —vi)®, so U(a) is an
unbiased estimator of ||£]|¢ = Zf 1 (1t —v4)®. On the other hand, for ||€||o,
following the maximum-type test statistic in Cai et al. [9], we have

“lym 2
(43) Z/{(OO) - 11251‘2(270-‘7,‘7 ( Ty y]) )

where Z; = Y"1 @ /1, Jj = >.:Y, Yij/ny. We then obtain results similar
to Theorems 2.1, 2.3 and 2.5. As the conditions are similar to those in
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Section 2, we only keep the key conclusions, and the details of conditions
and discussions are given in Supplementary Material Section ?7.

THEOREM 4.3. Under Condition 7?7 in Supplementary Material, 3, =
3y and Hy : p = v, for any finite integers (a1,...,am), as n,p — o0,

U(ar)/o(ar), ..., U(am)/o(am)]T 2, N(0, I,,), where 02(a) ~ a! Z?l’jzzl(nz+
ny)*of, i,/ (nany)® is of the order ©(alpn™?).

THEOREM 4.4. Under Condition 77 in Supplementary Material, 3, =
YyandHy: p=v,Vu € R, P(angyU(oo)—Tp < u) — exp{—m" Y2 exp(—u/2)},

as n,p — 0o, where 7, = 2logp — loglogp. Moreover, {U(a)/o(a)} of finite
integer a and {nyn,U(00)/(ny + ny) — 7} are asymptotically independent.

Theorems 4.3 and 4.4 provide the asymptotic properties of finite-order U-
statistics and U (oo) under Hy. To analyze the power of U(a)’s, we derive the
asymptotic results of U(a)’s under the alternative hypotheses. We focus on
the two-sample mean testing problem, while one-sample mean testing can be
obtained similarly. Specifically, we consider the alternative £4 = {p; —v; =
p>0forj=1,... ko;pu; —vj =0for j =ko+1,---,p}. We then obtain
similar conclusions to Theorem 2.5.

THEOREM 4.5. Assume Condition 7?7 in Supplementary Material and
ko = o(p). For any finite integers {a1,...,am}, if p in €4 satisfies p =
O(kal/atpl/(%t)n_l/g) fort=1,...,m, then U(a1) —E{U(a1)}]/o(a1),...,
U(am) — E{U(am)}]/o(am)]T 2, N(0,I,,), as n,p — oo. Here ElU(a)] =
|E4]12 = kop® and o%(a) = var{U(a)} ~ V,, with V, = a! Z?l,j2=k0+1(nx +
ny)*of, i,/ (nany)® of the order ©(alpn™).

Next we compare the power of different U-statistics under alternatives
with different sparsity levels. Theorem 4.5 shows that under the local alterna-
tives, the asymptotic power of U (a) mainly depends on E{U(a)}/+/var{Ud(a)}.
Therefore by Theorem 4.5, given constant M > 0, for each U(a), if p =
Ml/ak:al/a al/(Za), then E{U(a)}//var{ld(a)} ~ M; that is, different U (a)’s
have the same power asymptotically. For easy illustration, we consider o, ;, =
1 when j; = jo € {ko+1,...,p}, and 0, j, = 0 when j; # jo» € {ko +
1,...,p}, then Ml/“k()_l/aval/(2a) ~ p, with
(4.4) pa 1= a2 (M y/p/ko)+{(ns +ny)/(namy)} 2.

Therefore, similarly to the analysis in Section 2.2, to find the “best” U(a),

it suffices to find the order, denoted by ag, that gives the minimum p, in
(4.4). We have the following result similar to Proposition 2.3.
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PROPOSITION 4.1.  Given any constant M € (0,400) and n,p, ko, we
consider p, in (4.4) as a function of positive integers a, then

(i) when ko > M,/p, the minimum of p, is achieved at ag = 1;
(ii) when ko < M./p, the minimum of pq is achieved at some ag, which
increases as M./p/|Jp| increases.

Proposition 4.1 shows that when the sparsity level kg is large, i.e., & is
dense, a small a tends to obtain a smaller lower bound in p, and vice versa.
As (4.4) and (2.13) are similar, we have similar patterns to that in Figure
1 when examining the corresponding numerical plots of p,. In addition, [9]
shows that when p = po := C14/log p/n for a large Cy, the power of U (c0)
converges to 1, and y/log p/n is minimax rate optimal for sparse alternatives;
see also [17]. Thus, if peo < pag, 1-€., ko < MCT™/pag!/1og®/? p, U(cc) is
the “best” and its lowest detectable order of p is ©(y/logp/n). On the other
hand, Proposition 4.1 shows that when €4 is dense with ko > /Mp, U(1) is
the “best” and its lowest detectable order of p is ©(,/pky 12=1/2). Moreover,
for some large M and C5, when £4 is “moderately dense” or “moderately
sparse” with Cyv/pao!/log®/? p < ko < /Mp, U(ag) is the “best” and its
lowest detectable order of p is ©{(y/p/ ko)%nfl/ 21, which is of a smaller
order than the optimal detection boundary of the sparse case ©(y/logp/n).

More generally, when 3, # 3, similar results to Theorems 4.3 and 4.5
can be obtained. In particular, we have the following corollary.

COROLLARY 4.1. When X, # X, under Condition 77 in Supplemen-
tary Material, Theorem 4.3 holds witﬁ o%(a) ~ a!p2§17j2:1(0m7j1,j2/nx +
Oy, /My)* and Theorem 4.5 holds with Vo = al 375 o 4 11 (001 js/Ma +

Oy,j1,42 /ny)a'

Corollary 4.1 shows that the asymptotic power of finite-order U-statistics
depends on E{U(a)}/+/var{U(a)}. By the construction of finite-order U-
statistics and the proof, we obtain that E{U(a)} = kop® and var{l(a)} =
©(alpn~®). We then know that for finite-order U-statistics, similar results
to Proposition 4.1 still hold by examining E{U(a)}/+/var{U(a)}.

The above power analysis shows that the optimal U-statistic varies when
the alternative hypothesis changes. To achieve high power across various
alternatives, we can develop an adaptive test similar to that in Section 2.3.
Specifically, we calculate the p-values of the U-statistics (4.1) and (4.2) fol-
lowing the theoretical results above and the algorithm in Section 2.3. By
combining the p-values as discussed in Section 2.3, the asymptotic power of
the adaptive test goes to 1 if there exists one U(a) whose power goes to 1.
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REMARK 4.1.  Xu et al. [66] has also discussed the adaptive testing of
two-sample mean that is powerful against various £,-norm-like sums of p—v.
But [66] is under the framework of a family of von Mises V-statistics where
V(a) = 34_1(Z; — g;)*. We note that V(a) is equivalent to

[

a a a—c
a—c c,. a—c\—1
XORS 3 Wil o) ST RS DI | 0 )
7j=1c¢=0 1<k, ke<ng t=1 m=1
1§517"'75a7¢:§ny

which allows the indexes k’s and s’s to be the same and thus is different
from the U-statistics in (4.2). [66] shows that the constructed V-statistics
are biased estimators of ||p — v||%, and V(a) and V(b) are asymptotically
independent if a+ b is odd, but are asymptotically correlated if a+ b is even.
The constructed U-statistics in this work extend the properties of those V-
statistics such that U(a) in (4.2) is an unbiased estimator of |u — v||%,
and all U(a)’s are asymptotically independent with each other. Given these
nice statistical properties, it becomes easier to obtain the joint asymptotic
distribution of the U-statistics, and then apply the adaptive test.

4.2. Two-Sample Covariance Testing. The U-statistics framework can
be applied similarly to testing the equality of two covariance matrices. Sup-
pose {x;}1%, and {y;}.%, are i.i.d. copies of two independent random vectors
x = (x1,...,2p)T and y = (y1,...,Yp)T respectively. Denote E(x) = p =
(i, o), E(y) = v = (v1,...,15p)T; cov(x) = By = {025,511 <
J1,J2 < p} and cov(y) = Xy = {0y ;4 : 1 < j1,j2 < p}. Consider Hy :
3, =3y =3 = (0j,jo)pxp- Given 1 < j1,jo < p, 1 < ki # ko < ng, and
1 <51 # 82 < Ty, Kj17j2(xk17xk27y517y82) - (xkl,jlxkl,jz - xkl,jlxkz,jz) -
(Ys1,j1 Ys1,jo — Ys1,j1Ysarjo) 18 @ simple unbiased estimator of o4 j, j, — Ty j; jo-
Therefore, for a finite positive integer a, we have the U-statistic

(4.5) Uay = ﬁ 3 )

1<j1,jo<p” 20 7 20 1<k 1#k1 2. 1<s1,17£81,2F...
Fka17ka,2<ne  #5q,178a,2<ny

a
H Kj\ 4 (th,l » Xky o Yse1o y.St,Q)‘
t=1
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As in Remark 2.1, another formulation of U (a) equivalent to (4.5) is

a C a—c
(46) U@ =3 > > (" S S >
=0 b;=0b2=0 1<j1,72<p 1<i1#...#  1Swi#..#
i207b1§nz w2(a7c)7b2§ny
by C 2¢c—by
Chanyacbiby X H(xikvjlxikajé) H Lis,j1 H Lit,ja
k=1 s=b1+1 t=c+1
bo a—c 2(a—c)—ba
X H(ywm,jlywm,h) H Ywi,j1 H Ywq,j2-
m=1 I=ba+1 g=a—c+1
N TL -1
where an,ny,c,bl,bg = (P2C—b1P2(ch)fb2) a!/{bll(c — bl)!bgl(a — C — bg)!},

and (4.6) shall be used in the theoretical developments.

We next present the asymptotic results of the constructed U-statistics un-
der the null hypothesis. Here we assume the regularity Condition 7?7 or 77,
whose details and discussions are provided in Section 77 of Supplementary
Material due to the space limitation. We mention that Condition 77 is a
mixing-type dependence assumption similar to Condition 2.2, and Condi-
tion 77 is a moment-type dependence assumption similar to Condition 2.2%.
Particularly, Condition ?? extends the moment assumption for second-order
U-statistics in Li and Chen [44] to U-statistics of general orders; please see
the detailed discussions in Section 77.

THEOREM 4.6. Under Hy and Condition 7?7 or ?? in Supplementary Ma-
terial, for finite integers {a1,...,am}, [U(a1r)/o(a1),...,U(am)/o(am)]T 2,
N(0, I.,), where for a € {a1,...,am},

o?(a) = var{U(a)}

1 1 a
- Z a.{n (05, s s — OingaOisga) + " (Hj1,j2,j3,j4 031’]20]3’]4)}
L. €T Y
1<51,52,93:J4<p

. 4 4
thh H;‘jl,jg,jg,jz; - E{Ht=1<x17]t_lu]t>} a'nd H?]_,jg,jg,j‘l - E{thl(yl)]t_yjt>}

Theorem 4.6 provides the asymptotic independence and joint normality
of the finite-order U-statistics, which are similar to Theorems 2.1, 4.1 and
4.3. To further study the power of these finite-order U-statistics, we next
consider the alternative hypotheses where X, # 3. Let Jp be the largest
subset of {1,...,p} such that o, ;, j, = 0y ji.j» = 0j 4, for any ji,ja € Jo.
We then obtain the following theorem under the regularity conditions given
in Section 7?7 of Supplementary Material.
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THEOREM 4.7. Under Conditions 7?7 and 77 in the Supplementary Mate-
rial, for finite integers {a1,...,am}, U(a1)—E{U(a1)}]/o(a1), ..., [U(am)—
E{U (am)}]/o(am)]T 25 N(0, I,), where

o%(a) =var{il(a)} ~ alCra Y. 0% 00 i,

J1,32,33,Ja€Jo

and Cr g = {(ke — 1) /1 + (ky — 1) /0y }* + 2(ka /Mg + Ky /1y)* with Kk, and
ky giwen in Condition 77.

Given the asymptotic results under the alternatives, we next analyze the
power of the finite-order U-statistics. By Theorem 4.7, the asymptotic power
of U(a) depends on E{U(a)}//var{U(a)}. Let Jp = {(j1,J2) : Ouwjrjo #
Oyjigas 1 < J1,J2 < p}, then E{U(a)} = Z(jl,jQ)eJD(Uw,jth — Oyj1g2)"-
Similarly to Section 2.2, to study the relationship between the sparsity level
of ¥, -3, and the power of U-statistics, we consider the case where the non-
zero differences between X, and 3, are the same. Specifically, let o j, j, —
Oyjrj. = p for (ji,j2) € Jp, and then E{U(a)} = |Jp|p®. Following the
analysis in Section 2.2, we compare the p values needed by different U (a)’s
to achieve E{U(a)}/+/var{U(a)} ~ M for a given constant M. In particular,
for given integer a, suppose E{U(a)}/\/var{ld(a)} ~ M is achieved when
p = pq. For any a # b, we compare U(a) and U(b) following Criterion 1.

We use the following example as an illustration, where 3, and X, sat-
isfy the conditions of Theorem 4.7. Specifically, we assume that 3, =
(0241, )pxp has the diagonal elements o, j ; = v%; and the off-diagonal ele-
ments 0y j, j, = hij,—j,| € (0,02) with hyj, ;| = O(v?) when |j1 — jo| < s,
while o, j, j, = 0 when |j; — ja| > s. This covers the moving average covari-
ance structure of order s, and X, is a banded matrix with bandwidth s. In
addition, we assume the bandwidth s = o(p) and p — |Jo| = o(p). By the
definition of Jy, the assumption p — |Jo| = o(p) implies that a large square
sub-matrix of ¥, and X, are the same. For simplicity, we let n, = n, with
n = ng +ny, and a similar analysis can be applied when n, # n,. By Theo-
rem 4.7, var{id (a)} ~ (n/2)"%al{2k§ + kG H{pr?* +2 35| hi(p—1t)}?, where
K1 = Kg+ky and kg = Kz + Ky — 2. Therefore we know for given finite integer

a, E{U(a)}/+/var{U(a)} ~ M holds when p = p, defined as

TR e (S G0

We next compare the p,’s and obtain the following proposition.
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PROPOSITION 4.2.  There exists Dy that only depends on the given k., ky, V2, s,
and hy,t = 1,...,s, and satisfies Dy = O(1/s?) such that

(i) When |Jp| > Mp/~+/Dg, the minimum of p, is achieved at ag = 1.
(ii)) When |Jp| < Mp/+/Dy, the minimum of p, is achieved at some ay,
which increases as Mp/|Jp| increases.

Proposition 4.2 is similar to Propositions 2.3 and 4.1. Following the anal-
ysis in Section 2.2, Proposition 4.2 shows that when the difference ¥, — 3,
is “very” dense with |Jp| > Mp/+/Dyg, U(1) is the most powerful U-statistic;
when 3, — 3, becomes sparser as Mp/|Jp| decreases, a higher order U-
statistic is more powerful; when the ¥, -3, is “moderately” dense or sparse,
a U-statistic of finite order ag > 1 would be the most powerful one.

The power analysis above shows that the power of the U-statistics varies
when the alternative changes. To maintain high power across different al-
ternatives, we can develop an adaptive testing procedure similar to that in
Section 2.3. Given the asymptotic independence in Theorem 4.6, an adap-
tive testing procedure using the constructed U(a)’s is valid with the type I
error asymptotically controlled. Also, the adaptive test achieves high power
by combining the U-statistics as discussed in Section 2.3.

We provide simulation studies on two-sample covariance testing in Sup-
plementary Material Section ?7. By the simulations, we first find that the
type I errors of the U statistics and the adaptive test are well controlled
under Hg. This verifies the theoretical results in Theorem 4.7. Second, sim-
ilarly to the one-sample covariance testing, we find that generally when the
difference ¥, — 3, is sparser, a U-statistic of higher order is more powerful,
and vice versa. Moreover, under moderately sparse/dense alternatives, U(ao)
with ag > 1 could achieve the highest power. The results are consistent with
Proposition 4.2. Third, we compare the proposed adaptive test with existing
methods in literature including [56, 60, 44, 8], and find that the proposed
adaptive testing procedure maintains high power across various alternatives.

REMARK 4.2.  Similarly to Section 2, we can let U(oco) be the mazimum-
type test statistic in [8], and expect that the result similar to Theorem 2.3
holds under certain reqularity conditions. However, as the dependence struc-
ture of two-sample covariance matrices is more complicated than the one-
sample case, it is more challenging to establish the asymptotic joint distribu-
tion of U(o0) and finite-order U-statistics. We leave this interesting problem
for future study, while find in simulations that the performance of U(o0) is
similar to high-order U-statistics U(a)’s.
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4.3. Generalized Linear Model. In this section, we consider the Example
3 of generalized linear models (on Page 4) to show that the proposed frame-
work can be extended to other testing problems. Similarly to the results in
Section 4.1, we show that the constructed U-statistics are asymptotically
independent and normally distributed, and also establish the power analysis
results of the U-statistics. We provide the details in Section ?? of Supplemen-
tary Material. Recently, Wu et al. [64] also discussed the adaptive testing of
generalized linear model. But similarly to [66], [64] is under the framework
of a family of von Mises V-statistics, and thus is different from the current
paper as discussed in Remark 4.1. Moreover, the current work provides the
theoretical power analysis while [64] did not.

5. Discussion. This paper introduces a general U-statistics framework
for applications to high-dimensional adaptive testing. Particularly, we focus
on the examples including testing of means, covariances and regression co-
efficients in generalized linear models. Under the null hypothesis, we prove
that the U-statistics of finite orders have asymptotic joint normality, and
establish the asymptotic mutual independence among the finite-order U-
statistics and U(oco). Moreover, under alternative hypotheses, we analyze
the power of different U-statistics and demonstrate how the most power-
ful U-statistic changes with the sparsity level of the alternative parameters.
Based on the theoretical results, we propose an adaptive testing procedure,
which is powerful against different alternatives. The superior performance of
this adaptive testing is confirmed in the simulations and real data analysis.

There are several possible extensions of the U-statistics framework in this
paper. First, by our current proof, the convergence rate in Theorem 2.3 is
bounded by O(logfl/ 2 p), which is an upper bound and not sharp. From
our extensive simulations, we find that the type I error rate of the adaptive
testing is well-controlled with a relatively small p, e.g., p = 50. We might ob-
tain a shaper bound of the convergence rate, but more refined concentration
property of the high-dimensional and high-order U-statistics is needed. Sec-
ond, the proposed framework requires that the elements in the parameter set
£ have unbiased estimates. When we can not obtain unbiased estimates eas-
ily, e.g., for the precision matrix, the proposed construction may not follow
directly. Nevertheless we may use “nearly” unbiased estimators to construct
“U-statistics” for hypothesis testing, such as the “nearly” unbiased estima-
tor of the precision matrix proposed in [65]; the main challenge is then to
control the accumulative bias over the parameters under high-dimensions.
Third, this paper discusses the examples where the elements in £ are compa-
rable. When the parameters in £ are not comparable, such as £ containing
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both means and covariances parameters, the construction of U-statistics still
follows but the theoretical derivation may require a careful case-by-case ex-
amination. Fourth, the construction of the U-statistics treats the parameters
in £ with equal weight. More generally, we could assign different weights to
different parameter estimators. For instance, standardizing the data is one
example of assigning different weights. As inappropriate weight assignments
could lead to power loss, when the truth is unknown, how to effectively as-
sign weights to maximize the test power is an interesting research question.
We shall discuss these extensions in the future as a significant amount of
additional work is still needed.

In addition to the examples in this paper, the proposed U-statistics frame-
work can be applied to other high-dimensional hypothesis testing problems.
For example, it can be applied to testing the block-diagonality of a covari-
ance matrix, whose theoretical analysis would be similar to the considered
one sample and two sample covariance testing problems. It can also be used
to test high-dimensional regression coeflicients in complex regression mod-
els other than the generalized linear models, following a similar construction
based on the score functions. A key step is then to characterize the impact of
nuisance parameters that are estimated under the null hypothesis, and chal-
lenges arise especially when the nuisance parameters are high-dimensional.
Such interesting extensions will be further explored in our follow-up studies.
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