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A B S T R A C T

We introduce a new motif for constructing robust digital logic circuits using input/output chemical reaction
networks. These chemical circuits robustly handle adversarial manipulation to their input signals, initial con-
centrations, rate constants, and measurements. In particular, we show that all Boolean circuits and several
sequential circuits enjoy this robustness. Our results complement existing literature in the following three ways:
(1) our logic gates read their inputs catalytically which make fanout gates unnecessary; (2) formal requirements
and rigorous proofs of satisfaction are provided for each circuit; and (3) robustness of every circuit is closed
under modular composition.

1. Introduction

The development of affordable, fast, and reliable electronic logic
circuits has broadly impacted society by accelerating many scientific
and technological advancements. Similarly, the development of robust
biochemical logic circuits could broadly impact society by introducing
new methods for drug therapy, bio-diagnostics, and synthetic biology.
Unfortunately, the techniques for implementing electronic logic gates
cannot be used in biochemical applications due to the differences in
dynamics of electrical and chemical systems (Cardelli et al., 2018).
Thus, investigations into general methods for implementing biochem-
ical circuits have progressed independently, and the development of
robust, fast, and reliable biochemical computing is still in its infancy.

Research into biochemical circuits dates back at least to 1991
(Hjelmfelt et al., 1991), and since then many theoretical motifs for
implementing logic circuits have been proposed (Magnasco, 1997;
Hinze et al., 2009; Jiang et al., 2013; Ge et al., 2017; Ellis, 2017; Beiki
et al., 2018; Arkin and Ross, 1994; Qian and Winfree, 2011; Garg et al.,
2018). Chemical reaction networks (CRNs) are currently the mathe-
matical model of choice for biochemical computing and have been
studied for over 50 years (Aris, 1965). This is primarily due to recent
results showing they are computationally powerful (Cook et al., 2009;
Soloveichik et al., 2008; Fages et al., 2017) and can be implemented
using DNA molecules (Soloveichik et al., 2010; Cardelli, 2013; Chen
et al., 2013; Srinivas et al., 2017; Badelt et al., 2017) using toehold-

mediated strand displacement (Yurke et al., 2000; Zhang and Winfree,
2009; Zhang and Seelig, 2011; Lakin et al., 2012b). Furthermore, high-
quality DNA is relatively cheap to synthesize (Hughes and Ellington,
2017), all of which makes the chemical reaction network a promising
development tool for biochemical applications.

The aim of this paper is to help further the reliability of biochemical
circuits. In existing literature, reliability has been primarily in-
vestigated in two ways: simulation and experimentation. References
(Magnasco, 1997; Jiang et al., 2013; Ge et al., 2017; Beiki et al., 2018)
use simulation to analyze their circuits in various contexts, and refer-
ences (Arkin and Ross, 1994; Qian and Winfree, 2011; Garg et al.,
2018) include in vitro experiments to verify their designs. Although
simulations and experiments demonstrate correctness under certain
environmental assumptions and initial conditions, they cannot guar-
antee the absence of failure. Formally stating molecular circuit re-
quirements and rigorously proving their satisfaction in all circum-
stances satisfying certain conditions gives additional confidence in the
design as well as insight into when failure is likely to occur. Model
checking is a common approach to formally verify the requirements of
chemical reaction networks under stochastic semantics (Lakin et al.,
2012a; Ellis, 2014). Unfortunately this approach does not scale to large
populations of molecules since the computational resources required to
verify the system grows exponentially in the number of molecules.

We introduce a new biochemical circuit motif in the input/output
chemical reaction network (I/O CRN) model originally introduced by
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Klinge, Lathrop, and Lutz (Klinge et al., 2016). An I/O CRN is an ab-
straction of the traditional CRN model (Feinberg, 1979; Gunawardena,
2003) making it possible for input signals to be provided externally
over time. These inputs can only be used catalytically which makes
them read-only. We assume deterministic mass action kinetics, and
therefore an I/O CRN is modeled with a system of polynomial ordinary
differential equations (ODEs). Thus, the I/O CRN has strong ties to the
general purpose analog computer (GPAC) model (Shannon, 1941; Graça
et al., 2008), however, the system of ODEs induced by mass action
kinetics is more constrained than a GPAC due to the structural prop-
erties of reactions. I/O CRNs also offer a natural notion of robustness
with respect to adversarial manipulation of the input signal, initial
condition, rate constants, and measurement devices. We use this notion
to prove that our circuit designs operate correctly even in hostile en-
vironments.

Our circuit design uses dual-rail encoding of bits in which two
species with opposite operational meaning are used to encode each
value. Each bit is designed so that the sum of these two species is
constant, ensuring that if one has high (value of 1) concentration, the
other is low (value of 0). Dual-rail representation is commonly used in
biochemical systems since 0s and 1s are encoded by the presence of
molecules rather than their absence. (Detecting the absence of a species
is challenging since reactions are active only if their reactants are pre-
sent. See Doty (2014), Ellis et al. (2014) for more details on the com-
plexity of absence detection and for a proposed method for overcoming
it.) To ensure that only one of the dual-species is high at a time, we also
include signal restoration reactions for each encoded value. These re-
actions are key to proving that robustness is preserved under compo-
sition and causes the dual-species with majority concentration to con-
sume the minority species. (For a thorough analysis of the behavior of
these reactions, see Klinge (2016b). Modular composition of CRNs has
been investigated in a stochastic setting by Lakin et al. (2016), Shin
et al. (2017) to preserve simulation trace requirements. In contrast, our
results concern analog systems that evolve deterministically rather than
stochastically. Moreover, we prove that composition of chemical cir-
cuits not only preserves correctness but also preserves robustness.

The main contributions of this work are: (1) we provide natural and
rigorous requirements for what it means for I/O CRNs to simulate
Boolean circuits; (2) we give an I/O CRN construction of a NAND gate
and formally prove it satisfies its requirement even in the presence of
worst-case adversarial manipulation to its input, initial state, rate
constants, and measurements; (3) we prove that circuits can be mod-
ularly composed to robustly implement any Boolean circuit; and (4) we
prove that two commonly used sequential circuits for storing memory
can be robustly implemented, namely the SR latch and the D latch.
Section 2 reviews the I/O CRN model and the notion of robustly sa-
tisfying requirements; Section 3 provides an I/O CRN construction of a
NAND gate with a formal proof of its robustness; Section 4 contains our
main theorem that all Boolean circuits can be robustly implemented by
I/O CRNs; Section 5 provides our I/O CRN constructions for the se-
quential memory components along with proofs of their robustness; and
Section 6 closes with a discussion of the strengths and weaknesses of
this method of implementing circuits.

2. Preliminaries

In this section, we review the definition of the input/output che-
mical reaction network (I/O CRN) and our notion of an I/O CRN ro-
bustly satisfying a requirement. These were introduced by Klinge,
Lathrop, and Lutz in 2016 and will soon appear in a detailed extension
of Klinge et al. (2015). The I/O CRN model integrates concepts from
control theory into the traditional model of chemical reaction networks
under mass action kinetics. In particular, they include the notion of an
input signal which is a collection of externally provided time-varying
concentrations of input species. Such a notion is especially appropriate
for biochemical circuits, since their inputs are usually time-varying

signals rather than a static initial condition. For an in-depth overview,
see Klinge (2016a).

2.1. Input/output chemical reaction networks

We begin by fixing a countably infinite set S={X0, X1, X2… } of
species which are abstract molecule types usually denoted with capital
Roman letters such as X, Y, and Z. A reaction over a finite set S of
species is a triple = × ×kr p( , , ) (0, )| | | | such that r≠ p.
The elements of a reaction ρ=(r, p, k) are called the reactant vector,
product vector and rate constant, respectively, and the net effect of the
reaction is the vector Δρ= p− r. Given a reaction ρ=(r, p, k), we use
r(ρ)= r, p(ρ)= p, and k(ρ)= k for the individual components of ρ.

We frequently use the more intuitive notation of chemistry to im-
prove the readability of reactions. For example, + +A B B C2

k
de-

fines the reaction ρ=(r, p, k) over the set = A B C{ , , } where r=(1,
1, 0) and p=(0, 2, 1). The net effect of the reaction is Δρ=(−1, 1, 1),
meaning it consumes one A and produces one B and one C. For con-
venience, we treat the vectors r, p, and Δρ as functions from the set
into the natural numbers. Thus, r(A)= 1, r(B)= 1, and r(C)= 0 for the
reaction ρ above. We call a species Y a reactant of ρ=(r, p, k) if r
(Y) > 0, a product of ρ if p(Y) > 0, and a catalyst of ρ if r(Y) > 0 and
Δρ(Y)= 0. Note that a catalyst is simply a species that participates in a
reaction but is unaffected by it.

An input/output chemical reaction network (I/O CRN) is a tuple
= ( , , ) where S, , are finite sets of species that satisfy

= and is a finite set of reactions over such that
Δρ(X)= 0 for each and X . We call the elements of state
species and the elements of input species. The key distinguishing
feature of an I/O CRN is its explicitly defined input species, which
can only be used catalytically in its reactions . Thus, an I/O CRN ef-
fectively has read-only access its input species and must process any
time-varying input in real time.

We now define the semantics of an I/O CRN, borrowing terminology
and notation from control theory. Under deterministic mass action se-
mantics (also called mass action kinetics), a state of an I/O CRN

= ( , , ) is a vector x [0, )| | that assigns to each Y a
real-valued concentration x(Y). Similarly, an input state is a vector
u [0, )| |, and a global state is a vector x u( , ) [0, )| |.

For a finite set S, we define the -signal space to be the set
=C C[ ] ([0, ), [0, ) )| | where C ( , ) is the set of all con-

tinuous functions from to . Thus each element w C [ ] is a time-
varying signal of concentrations over the species in . For example, if
Y , then w t Y( )( ) is the concentration of species Y in w at time t. A
context of an I/O CRN = ( , , ) is a tuple =c u h( , , ) where
u C [ ], , and h: [0, ) [0, )| | | |. The components of
the context =c u h( , , ) are the input signal, the output species, and the
measurement function, respectively. The set of all contexts of an I/O CRN
is denoted . Intuitively, an I/O CRN can be regarded as a chemical

machine that when placed in a context =c u h( , , ), transforms its
input signal u C [ ] into an observed output signal v C [ ]. The
inclusion of the measurement function h in the definition of a context is
to specify which species of the I/O CRN are being observed as well as
encapsulate any errors introduced by the measurement equipment. In
our main theorems, we assume that the measurement function is per-
turbed and only approximates the true output concentrations. We also
make use of the zero-error measurement function h0 defined by

=x u x uh Y Y( , )( ) ( , )( )0 (1)

for each global state x u( , ) [0, )| | and for each state species
Y . Note that h0 is a projection function and corresponds to a perfect
measurement device.

We now define the mechanism for which the state of an I/O CRN
evolves over time within a certain context. According to the law of mass
action, given a global state x u( , ) [0, )| | and a reaction ,
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the rate of ρ in (x, u) is the real-value

= x uk Yrate ( ) ( ) ( , )( ) .x u
Y

Yr
,

( )( )

(2)

Thus, the rate of a reaction is proportional to each of its reactants and
the rate constant. For example, if ρ=(r, p, k) is the reaction defined by

+ +A B A C2 3
k

where = A{ } and = B C{ , }, then its rate in state
x u( , ) [0, )| | is ku(A)x(B)2.
For each species Y , the deterministic mass action function for Y is

=x uF Y( , ) ( )·rate ( ).x uY ,
(3)

Intuitively, the function FY specifies the total rate of change imposed on
Y in the global state (x, u). In the context =c u h( , , ), the con-
centrations of all species in of an I/O CRN evolve according to the
system of ordinary differential equations (ODEs) defined by

=x x ut F t t( ) ( ( ), ( )), (4)

for all t∈ [0, ∞) where F(x, u)(Y)= FY(x, u) for each Y . (Our oc-
casional use of x and u as single states as well as concentration signals is
intentional to reduce obfuscation.)

According to the standard theory of ODEs, if the input u is real
analytic, then the system (4) along with an initial state x [0, )0

| |

has a unique solution x(t) satisfying x(0)= x0. For this reason, we as-
sume that all input signals are real analytic.1 See Krantz and Parks
(2002) for a thorough introduction to real analytic functions.

Finally, we define the output signal of an I/O CRN = ( , , )
with initial state x [0, )0

| | in context =c u h( , , ) to be

= xt h t( ) ( ( )),x c,0 (5)

for all t∈ [0, ∞) where x(t) is the unique solution to (4) with initial
state x0. Intuitively, the output signal of an I/O CRN is what is
measured by an external machine when is placed in a context c and
initialized with concentrations x0. This concludes the definition of the
semantics of I/O CRNs.

Note that the traditional definition of chemical reaction networks
under mass action semantics can be defined as = ( , , ) with no
input species. Without input species, the system of ODEs specified by
from Eq. (4) simplifies to

=x t F x t( ) ( ( ))

which is an autonomous system of polynomial ODEs, and only depends
on t indirectly through species concentrations. An I/O CRN is neither
autonomous nor polynomial in this way since the input signal u(t) can
be any real analytic function and does not depend on the concentrations
of other species. This also differentiates the model from general purpose
analog computers (GPACs) which are equivalent to polynomial systems
of ODEs.

We conclude by noting that I/O CRNs offer a natural means of
modular design and composition. Given two I/O CRNs

= ( , , )1 1 1 1 and = ( , , )2 2 2 2 , we define the join of 1 and 2
to be the I/O CRN = ( , , )1 2 where

= ( )\ ( )1 2 1 2 , = 1 2, and = 1 2. If 1 and 2
have disjoint sets of state species, we say that 1 2 is modular. Our
Boolean circuit architecture as well as our SR latch and D latch designs
utilize this natural modularity.

2.2. Time-dependent I/O CRNs

The rate constant of a reaction depends on a variety of factors, in-
cluding the temperature and the salinity of the chemical solution as
well as the geometry of its reactants. Since rate constants are usually
measured experimentally, these rate constants are not arbitrarily pre-
cise. Similarly, the temperature of the solution encounters random
fluctuations, and therefore the rate constants fluctuate over the course
of the computation. Thus, if we hope to use an I/O CRN in practice, it
must be robust with respect to fluctuations in its rate constants. Thus,
we need a variation of the I/O CRN model that replaces the rate con-
stants of reactions with strictly positive functions of time.

We define a time-dependent reaction over the set to be a tuple
= kr p( , , ˆ) where r p, | | and k̂: [0, ) (0, ) is a real

analytic function. A time-dependent input/output chemical reaction net-
work (I/O tdCRN) is a tuple = ( , ˆ , ) where S, are finite
sets of species such that = and ˆ is a finite set of time-de-
pendent reactions that only use species in as catalysts.

The deterministic mass action semantics of an I/O tdCRN are the
same as that of an I/O CRN except that the rate function of (2) changes
to

= x uk t t Yrate ( ) ˆ ( )( ) ( , )( )( ) ,x ut t
Y

Yr
( ), ( )

( )( )

(6)

for all time t∈ [0, ∞) in order to incorporate the time-dependent re-
actions. Eqs. (3)–(5) also change using this new rate equation and be-
come

=x uF t t Y( ( ), ( )) ( )·rate ( )x uY t t( ), ( )
(7)

=x x ut F t t( ) ( ( ), ( )) (8)

= xt h t( ) ( ( )),x c,0 (9)

respectively.
For an I/O CRN = ( , , ) and constant δ > 0, we say that an

I/O tdCRN =ˆ ( , ˆ , ) is δ-close to if each ˆ ˆ is the time-
dependent equivalent of and satisfies k k t| ( ) ˆ ( ˆ)( )| for all
t∈ [0, ∞). Using this definition, we can require that not only the I/O
CRN N behaves as it is designed, but also all I/O tdCRNs that are δ-close
to it behave appropriately. This is what we mean by an I/O CRN being
robust with respect to its rate constants.

2.3. Robustness

In this paper, we explicitly define the requirements of our I/O CRNs
and formally prove their correctness. To this end, we define a require-
ment of an I/O CRN = ( , , ) to be an ordered-pair Φ=(α, ϕ)
consisting of the two Boolean predicates true false: { , } and

×C C true false: [ ] [ ] { , }, called the context assumption and the
I/O requirement, respectively. We say that an I/O CRN = ( , , )
satisfies the requirement Φ=(α, ϕ), and we write , if there exists
an initial state x [0, )0

| | such that for all c

c u( ) ( , ).x c,0 (10)

Intuitively, the I/O requirement ϕ enforces that there is some desirable
relationship between the input signal u and the output signal x c,0 of
. The context assumption α is included in case there are certain

contexts that are invalid and irrelevant to the requirement.
Since I/O CRNs are an analog model of computation, it will be

necessary to define a notion of approximately satisfying a requirement.
Thus we want to know how close the output signal x c,0 is to satisfying
ϕ. For a distance measure, we use the supremum norm = wf tsup | ( )|

t [0, )

for all w C [ ] where =w wt t Y| ( )| ( )( )Y
2 is the Euclidean

distance function in | |. Now for w w C, ˆ [ ] and ϵ > 0, we say
that ŵ is ϵ-close to w if w ŵ .

1 All continuous signals produced by natural phenomena are real analytic,
including all solutions to systems of polynomial differential equations.
Therefore, placing this restriction on our input signals is not only necessary, it is
a natural choice.
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An I/O CRN = ( , , ) ϵ-satisfies a requirement Φ=(α, ϕ), and
we write , if there exists an initial state x [0, )0

| | such that

u v v u vh C( , , ) [ ] [ ( , )].x c,0 (11)

Thus, if the output signal of is ϵ-close to some signal
v C [ ] that satisfies ϕ.

We now define what it means for an I/O CRN to robustly satisfy a
requirement Φ. Intuitively, we allow an adversary to manipulate the
input signal, the measurement function, the initial state, and the rate
constants of and require that it continue to satisfy its requirement Φ
during this manipulation. The adversary will only be able to manipulate
these parameters in a bounded fashion, which means we need two more
definitions. Given a context =c u h( , , ) and real numbers δ1, δ2 > 0,
we say that =c u hˆ ( ˆ , , ˆ) is (δ1, δ2)-close to c if u û 1 and
h ĥ 2. Given states x x, ˆ [0, )| | and δ > 0, we say that x̂ is
δ-close to x if x x| ˆ| .

Finally, we formally state what it means to robustly satisfy a re-
quirement. Given = ( , , ), Φ=(α, ϕ), ϵ > 0, and δ=(δ1, δ2,
δ3, δ4) such that δ1, δ2, δ3, δ4 > 0, we say that δ-robustly ϵ-satisfies
Φ, and we write , if there exists an initial state x [0, )0

| |

such that for all contexts =c u h( , , ) satisfying α(c), for each context
=c u hˆ ( ˆ , , ˆ) (δ1, δ2)-close to c, for each state x̂ [0, )0

| | δ3-close to
x0, and for each I/O tdCRN ˆ δ4-close to , there exists a con-
centration signal v C [ ] that is ϵ-close to the output signal ˆ x cˆ , ˆ0 that
satisfies u v( , ). Thus if , then is robust to an adversarial
modifications to its input signal u by δ1, its measurement function h by
δ2, its initial state x by δ3, and its rate constants by δ4.

We conclude this section with a note on modularly joining I/O
CRNs. If 1 and 2 are two I/O CRNs satisfying 1 11

1 and 2 22
2 ,

respectively, and = 1 2 is a modular join of 1 and 2, then the
individual subcomponents of still satisfy the requirements Φ1 and
Φ2. However, if 1 and 2 share state species, it is possible for them to
interfere with each other, and they may no longer satisfy Φ1 and Φ2

after the join. We utilize this modular composition extensively
throughout the paper.

3. A robust NAND gate

In this section, we prove that a two-input NAND gate can be ro-
bustly implemented by an I/O CRN. First, we formally specify the re-
quirement, then we give our I/O CRN implementation, and finally we
prove the construction robustly satisfies the requirement.

Since the inputs and output of the NAND gate are implicit para-
meters to the requirement, we start by specifying them. Given X1,
X2 ∈ S, we define the set of input species to be = SX X X X{ , , , }1 2 1 2 .
The species X1 and X2 represent the two inputs of the NAND gate, and
X1 and X2 are their duals. A dual of a species represents its Boolean
complement; thus, if the concentration of X1 is b∈ {0, 1}, the con-
centration of X1 is 1− b. We also use this dual-rail convention for the
output, and let = SY Y{ , } be the set of output species given Y∈ S.

Given a positive real number τ, called the propagation delay, we
define the NAND gate requirement ΦNAND(τ)= (α, ϕ) where α is de-
fined by

= =u h Y Y h h( , , ) [ { , } and ],0 (12)

where h0 from Eq. (1) is the zero-error measurement function. Re-
quiring that h= h0 simply requires it to faithfully measure the output
species concentrations. Errors will eventually be introduced into h
when we show that ΦNAND(τ) is robustly satisfied.

Before we specify the I/O requirement of ΦNAND(τ), we first define
some useful notation. Let I(τ) be the set of all closed intervals at least
length τ, defined by

= =I I t t t t( ) { [ , ] [0, ) }.1 2 2 1 (13)

Since the I/O requirement ϕ is a predicate that takes parameters
u C [ ] and v C [ ], we use u and v as implicit parameters in the

following definitions. Given an interval I∈ I(τ), a species W ,
and a bit a∈ {0, 1}, we define

= = =
= =

u u
v v

W a t I t W a t W W
t I t W a t W W

( )[ ( )( ) 1 ( )( ¯ )], if
( )[ ( )( ) 1 ( )( ¯ )], if

.I

Note that =W a I simply says that the species W and its dual encode
the values a and 1− a for all t∈ I. To help with our definition of ϕ, we
also define the predicates

= =
= =

I X X
I X X
( ) 1 1 ,

( ) 0 0 ,
I

I

11 1 2

0 1 2

for all I∈ I(τ). The predicate ϕ11(I) says that X1 and X2 both encode the
value 1 in I and ϕ0(I) says that at least one of X1 and X2 must encode 0
in I. Similarly, for a∈ {0, 1} we define the Boolean predicate

= +I Y a( ) ,a t t[ , ]1 2

for all I=[t1, t2]∈ I(τ), which says that Y encodes a for all but the first τ
time of the interval I.

We now have sufficient terminology to define the I/O requirement ϕ
to be

u v II I I I I( , ) ( ( ))[( ( ) ( )) ( ( ) ( ))]11 0 0 1 (14)

for all u C [ ] and v C [ ]. Intuitively, ϕ says that if X1 and X2 are
both 1, then Y must converge to 0 in at most τ time and must remain
there as long as both inputs stay 1. Similarly, if either input is 0, then
the output must converge to 1 in at most τ time and remain there while
the 0 persists. This is visualized in Fig. 1.

We now specify our I/O CRN that robustly simulates a NAND gate.
Construction 1:
Given three species X1, X2, Y∈ S, a vector of strictly positive real

numbers δ=(δ1, δ2, δ3, δ4), and τ > 0, define the I/O CRN
=X X YNAND ( , , ) ( , , ), 1 2 , where = X X X X{ , , , }1 2 1 2 , , con-

sists of the reactions

Fig. 1. Visualization of the NAND gate requirement.
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+Y Y Y2 3
k3 (15)

+Y Y Y2 3 ,
k3

(16)

+ + + +X X Y X X Y
k

1 2 1 2 (17)

+ +X Y X Y
k

1 1 (18)

+ +X Y X Y
k

2 2 (19)

and where = +k 100 4
13 .

In the above construction, reaction (17) biases the output toward Y
when the inputs X1 and X2 are both present, reactions (18) and (19) bias
the output toward Y in the presence of X1 or X2 (i.e., in the absence of X1
or X2), and reactions (15) and (16) give extra bias to the output species
with majority concentration. The latter two reactions are essential for
the I/O CRN to produce an output signal that is as clean as its input and
was studied extensively in (Klinge, 2016b). The construction also pre-
serves the total concentration of Y and Y so that their sum is always
constant.

We now state the main theorem of this section.
Theorem 2
If δ=(δ1, δ2, δ3, δ4)∈ (0, ∞)4 and τ > 0 are constants satisfying

+ < <2 3 1
1

25 and + <2 3
1

100 , then NAND ,

X X Y( , , ) ( )1 2 NAND1 .
The remainder of this section is devoted to proving this theorem.

Since the proof requires examining an arbitrary perturbation of a
variety of parameters, we begin the proof by fixing these perturbations.

Assume the hypothesis with = = X X Y( , , ) NAND ( , , ), 1 2 .
We fix initial state x [0, )0 defined by x0(Y)= 1 and =x Y( ) 00 .
(Note that any choice satisfying + =x xY Y( ) ( ) 10 0 suffices for our ar-
gument.) Let =c u h( , , ) be a context that satisfies the context as-
sumption α(c). Let =c u hˆ ( ˆ , , ˆ) be (δ1, δ2)-close to c, let x̂0 be δ3-close
to x0, and let ˆ be δ4-close to . It now suffices to show that the
output function ˆ c xˆ, ˆ0 is δ1-close to a signal v C [ ] satisfying u v( , )
of ΦNAND. Let x Cˆ [ ] as the unique solution generated by ˆ in
context ĉ on the initial state x̂0. For convenience, we write y(t) and y t( )
to denote x t Yˆ ( )( ) and x t Yˆ ( )( ), respectively.

Using the reactions from Construction 1 along with the definition of
the deterministic mass action system for an I/O tdCRN from Eqs.
(6)–(8), we observe that the ODEs for y(t) and y t( ) are

= + +k y y k yy k x x y k x y k x ydy
dt

3 ˆ 3 ˆ ˆ ˆ ˆ ,1
2

2
2

3 1 2 4 1 5 2 (20)

=dy
dt

dy
dt

, (21)

where k̂1, k̂2, k̂3, k̂4, and k̂5 are all time-varying δ4-perturbations of the
rate constant k and x1(t), x2(t), x t( )1 , and x t( )2 are the four components
of the δ1-perturbed input signal u tˆ ( ).

Eq. (21) immediately implies that the total concentration of Y and Y
is constant, i.e., that = +p y t y t( ) ( ) for all t∈ [0, ∞) where
= +x xp Y Yˆ ( ) ˆ ( )0 0 . It is also useful to note that |p−1| < δ3 since x̂0 is

a δ3-perturbation of x0 which satisfies + =x xY Y( ) ( ) 10 0 .
The I/O requirement u v( , ) is the conjunction of two statements,

and we prove each statement holds individually in Lemmas 5 and 6.
Before proving these lemmas, we show that the solution x tˆ ( ) is bounded
by the solution of much simpler systems of ODEs, and the analyses of
these simpler ODEs are given in Lemmas 3 and 4. For convenience, we
define the constant =d k

4 .
Lemma 3
If x(t) is the solution to the initial value problem defined by x(0)= 0 and

= +k a b p xdx
dt

( ( ) cx), (22)

where = + +a d d((3 ) 9 )p
18

3/23
, b=(1− d)(1− δ1)2, and

c=2δ1(1+ d), then >( )x 2
3
5 .

Proof
The single variable ODE (22) can be solved by separation of vari-

ables and integrating which yields

=
+

+x t a
b c

e( ) b p (1 ).k b c t( )

Using the facts that <1
1

25 , <d 1
100 , <3

1
100 , |p−1| < δ3 and >k 13 ,

it is easy to verify via substitution that >( )x 2
3
5 . □

Lemma 4
If x(t) is the solution to the initial value problem defined by =x (0) 3

5 and

= p x p xdx
dt

ax ( ) bx( ) cx,2 2
(23)

where a=3k(1− d), b=3k(1+ d), and c=2kδ1(1+ d), then x
(t) > p− γ for all t 2 where γ= δ1− δ2− δ3.

Proof
The ODE (23) has been studied extensively and is sometimes re-

ferred to as a signal restoration algorithm. According to two theorems
proved in Klinge (2016b), if the inequalities

<
+

c p a
a b4( )

and
2 2

(24)

>x E(0) ,1 (25)

hold where = ++( )E p Ab
a b1 such that = +( )A c(1 1 *)p a

a b2 and

= +c* c a b
p a

4 ( )
2 2 , then x(t) exponentially quickly converges to the value

E2= p− A. Using the facts that <d 1
100 , <1

1
25 , <3

1
100 and =x (0) 3

5 ,
it is easy to verify that both of the above inequalities hold.

Corollary 4.5 of Klinge (2016b) shows that under these conditions x
(t) will converge to the quantity p− γ and remain above it indefinitely
in at most time

= +T a b
c

u
abp (1 *)

log ,2

where =
+( )u

p E E

E E p

( )( )

( )

1 2
3
5

3
5 1 2

. Using the bounds of d, δ1, and δ3 and the fact

that >k 13 , it is easy to verify that T 2 . Thus, x(t) > p− γ for t 2 .
□

Lemma 5
If I∈ I(τ) such that ϕ11(I) holds, then ψ0(I) holds.
Proof
Assume the hypothesis for I=[t1, t2]∈ I(τ). To show that ψ0(I)

holds, we need to show that < < +y t1 ( ) 12 2 and y(t) < δ2 holds
for all t∈ [t1+ τ, t2]. Since + =y t y t p( ) ( ) , it suffices to show that

>y t p( ) where γ= δ1− δ2− δ3 for all t∈ [t1+ τ, t2]. We will
show this by bounding the ODE of Ȳ from Eq. (21).

Since the perturbed rate constants are within δ4 of k, we know that

+ + + +dy k y y k y y k k x x y k k x y k x y
dt

3( ) 3( ) ( ) ˆ ( ) ˆ ( ) .4 2 4 2 4 3 1 2 4 4 1 4 2

Thus if we let =d k
4 , we can rewrite this equation as

+ + + +dy k d y y d y y d x x y d x x y
dt

[3(1 ) 3(1 ) (1 ) (1 )( ) ].2 2
1 2 1 2 (26)

It is also not difficult to show that the expression
+d y y d y y3(1 ) 3(1 )2 2 is minimized by letting

= + +y d d( 3 3 )p
6

2 . By substituting this into the expression, we
obtain

+ + + + +

+ +

d y y d y y p d d d d d

p d d

3(1 ) 3(1 )
18

(3 3 ( ( 3 ) 9))

18
((3 ) 9 ).

2 2
3

2 2

3
3/2

After substituting this into (26) we obtain the bound
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+ + + + +dy k p d d d x x y d x x y
dt

[
18

((3 ) 9 ) (1 ) (1 )( ) ].
3

3/2
1 2 1 2

Since ϕ11(I) holds, we know that within the interval I that x1, x2, x1,
and x2 are encoding 1, 1, 0, and 0, respectively. However, these are only
δ1-approximating these because of the input perturbation. Thus, for all
t∈ I we have

+dy k a b p y cy
dt

[ ( ) ],

where = + +a d d((3 ) 9 )p
18

3/23
, b=(1− d)(1− δ1)2, and

c=2δ1(1+ d). By Lemma 3, we know +y t( )1 2
3
5 .

To bound the behavior of Y after time +t1 2 , we take another look
at (26) and see that

+ +dy k d y y d y y d y

ay p y by p y cy
dt

[3(1 ) 3(1 ) 2 (1 ) ]

( ¯) ( ) ,

2 2
1

2 2

where a=3k(1− d), b=3k(1+ d), and c=2kδ1(1+ d). By Lemma
4, we see that >y t p( ) for all t∈ [t1+ τ, t2] which also means that
y(t) < γ during that interval since + =y t y t p( ) ( ) .

Finally, since p > 1− δ3, γ= δ1− δ2− δ3, and the measurement
function can only introduce δ2 amount of error, >t Yˆ ( )( ) 1x cˆ , ˆ 10

and <t Yˆ ( )( )x cˆ , ˆ 10 . Therefore ˆ x cˆ , ˆ0 is δ1-close to encoding an output
of Y=0 and =Y 1 in the interval [t1+ τ, t2]. □

Lemma 6
If I∈ I(τ) such that ϕ0(I) holds, then ψ1(I) holds.
Proof
During an interval I=[t1, t2] satisfying ϕ0(I), it is easy to show by a

similar argument to Lemma 5 that the inequalities

+ + + +k p d d d p y d ydy
dt

[
18

((3 ) 9 ) (1 )(1 )( ) 2(1 ) ]
3

3/2
1 1

and

+ +k d y p y d y p y d ydy
dt

[3(1 ) ( ) 3(1 ) ( ) 2 (1 ) ]2 2
1

hold for all t∈ I. Thus by Lemmas 3 and 4, we see that y(t) > p− γ and
<y t( ) for all t∈ [t1+ τ, t2], and thus ϕ1(I) holds. □

4. Robust Boolean circuits

In this section, we state and prove our main theorem, namely, that
every Boolean circuit can be implemented with an I/O CRN. For each
Boolean circuit, we define its requirement, give an I/O CRN construc-
tion for it, and prove the construction robustly satisfies its corre-
sponding requirement.

Given positive integers n, m > 0, we define an n-input m-output
Boolean circuit Cn,m to be a directed acyclic graph where each node is a
two-input one-output NAND gate. The circuit Cn,m has n incoming edges
called inputs and m outgoing edges called outputs. The depth of a circuit
Cn,m is the longest path from an input to an output. Each circuit Cn,m can
be regarded as a function Cn,m : {0, 1}n→{0, 1}m defined in the obvious
way by computing the values of the outputs by propagating the input
values through each of the NAND gates of the circuit. Since NAND gates
are universal for Boolean circuits, this definition includes all possible
functions for this class. Furthermore, our dual-rail scheme gives access
to the negation of each signal without any additional gates. This sub-
stantially reduces the size of many circuits.

For a circuit Cn,m, we define the set of input species to be

= < SX X i n{ , 0 } ,i i

and define the requirement Φ(Cn,m, τ)= (ϕ, α) where α is defined by

= < =u h Y Y i m h h( , , ) [ { , 0 } and ].i i 0 (27)

To state the I/O requirement ϕ, we need a bit more terminology. For a

string w {0, 1}n and input u C [ ], we use the notation =u t w( ) to
denote that =u t X w i( )( ) [ ]i and =u t X w i( )( ) 1 [ ]i for each 0≤ i < n.
We also define the predicates

=
+ =
u

vt t
(I) ( t I)[ (t) w],
(I) ( t [ , ])[ (t) w],

w

w 1 2

for all I=[t1, t2]∈ I(τ). The I/O requirement ϕ can then be defined by

u v II w I I( , ) ( ( ))( {0, 1} )[ ( ) ( )].n
w C w( )n m, (28)

Thus, Φ(Cn,m, τ) simply requires that an I/O CRN generates the output
C w( )n m, within τ time whenever the inputs encode w {0, 1}n. We now
give the I/O CRN construction for an arbitrary Boolean circuit.

Construction 7
Given a Boolean circuit Cn,m with G gates and depth d along with

constants δ=(δ1, δ2, δ3, δ4), and τ > 0, define the CRN C( , , )n m,
by joining G copies of the I/O CRN NAND d, / from Construction 1
according to the circuit Cn,m.

As an example, consider a two-input one-output exclusive or (XOR)
circuit. Since negations are free in our motif, the XOR circuit can be
constructed using three NAND gates, depicted in Fig. 2.

According to Construction 7, the I/O CRN defined by this circuit is

= =C( , , ) ,n m, 1 2 3

where = X X ZNAND ( , , )1 , /2 1 2 1 , = X X ZNAND ( , , )2 , /2 1 2 2 , and
= Z Z YNAND ( , , )3 , /2 1 2 . For convenience, we assume that the dual of

X is X so that negations are handled intuitively. The unlabeled inter-
mediate wires correspond to the state species Z1 and Z2 of and are
neither inputs nor outputs of the XOR circuit. The I/O CRN is
modular since 1, 2, and 3 do not share any state species. In fact,
every I/O CRN produced by Construction 7 is a modular join of NAND
gates since Boolean circuits are acyclic. We now state the main theorem
of the paper.

Theorem 8
If Cn,m is a Boolean circuit, the constants δ=(δ1, δ2, δ3, δ4)∈ (0, ∞)4

and τ > 0 satisfy + < < + <,2 3 1
1

25 2 3
1

100 , and
= C( , , )n m, is constructed according to Construction 7, then

C( , )n m,1 .
Proof
This theorem immediately follows from the fact that consists of a

modular family of NAND gates and by Theorem 2 each individual

Fig. 2. XOR circuit with random noise.
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NAND gate is robust. Intuitively, each of these NAND gates uses their
input signals catalytically which makes them truly independent,
making fanout gates unnecessary. Thus, we know that each NAND gate
produces an output signal that is δ1-close to its appropriate binary value
within

d
time. Since d is the depth of the circuit, the total propagation

delay for the circuit is at most τ. □
To demonstrate the robustness of these circuits, Fig. 2 also visualizes

the output of the XOR circuit on a noisy input signal.

5. Robust memory components

Memory is essential to compute most algorithms, so limiting ourselves
only to Boolean circuits is too restricting. The basic memory components
of modern circuits are latches and flip flops, but these circuits are se-
quential and depend on cyclic feedback to store data. As a result, the
techniques from the previous section do not apply, since joining our NAND
gates together in a cyclic environment may cause them to send and receive
signals that are not binary. This can cause failure since the behavior of our
NAND gate is undefined on non-binary inputs.

In this section, we show that I/O CRNs are capable of robustly simu-
lating two common memory components. In Section 5.1, we show that an
SR latch can be robustly simulated by two NAND gates, and in Section 5.2,
we introduce a new I/O CRN design that robustly simulates a D latch. A D
latch is traditionally implemented using two SR latches; however, our I/O
CRN construction uses fewer reactions than a single NAND gate.

5.1. SR latch

The set-reset latch (SR latch) is a simple and commonly used
memory element in digital circuits. Composed of two NAND gates, the
latch operates with two inputs, usually named S and R , and has three
stable states. First, if S is 0 and R is 1, then the output Qwill be 1, i.e., Q
is set. Similarly, if R is 0 and S is 1, then the output Q is 0, i.e., Q is reset.
If both S and R are 1, the output Q maintains its previous value, i.e., Q
is held. A schematic diagram of the SR latch is shown in Fig. 3.

To show that this SR latch is robust, we begin by specifying its re-
quirement. We first define the set of input species, set of output species,
and some useful predicates. Given SS R, , we define the set of input
species to be = SS S R R{ , , , } , and given SQ Q,1 2 , we let the set
of output species be = SV Q Q Q Q{ , , , }1 1 2 2 . Given τ > 0, we also
define the predicates

= =+I S R( ) 0 1t t Iset [ , ]1 1 (29)

= =+I R S( ) 0 1t t Ireset [ , ]1 1 (30)

= =+ +I Q a Q a( ) ,a t t t t1 [ , ] 2 [ , ]1 2 1 2 (31)

for all intervals I=[t1, t2]∈ I(τ). Note that ϕset and ϕreset only require that
=S 0 and =R 0 for the first τ time of I, but they require =R 1 and =S 1

for the entire interval I, respectively. This allows inputs to transition be-
tween the set/reset state to the hold state while satisfying ϕset/ϕreset.

Given a τ > 0, we then define the SR latch requirement to be
ΦSR(τ)= (α, ϕ) where the context assumption α is defined by

= =u h Q Q Q Q h h( , , ) [ { , , , } and ],1 1 2 2 0 (32)

and the I/O requirement ϕ is defined by

u v II I I I I( , ) ( ( ))[( ( ) ( )) ( ( ) ( ))].set 1 reset 0 (33)

Intuitively, the requirement ΦSR requires that whenever =S 0 and
=R 1 for at least τ time, then Q=1 within that time and remains there

until R 1. It also requires that if =S 1 and =R 0 for at least τ time,
then Q=0 until S is no longer 1. A visualization of the input/output
relationship is included in the timing diagram of Fig. 4.

We now state the construction of the SR latch.
Construction 9
Given four species S R Q Q, , ,1 2, a vector of strictly positive real

numbers δ=(δ1, δ2, δ3, δ4), and τ > 0, define the CRN

=S R Q QSR ( , , , ) ,, 1 2 1 2

where = S Q QNAND ( , , )1 , /2 2 1 and = R Q QNAND ( , , )2 , /2 1 2 .
We now prove that our construction robustly satisfies ΦSR. Our

proof shows that the requirements of the two subcomponents suffice to
prove the high-level requirement of the SR latch.

Theorem 10
If δ=(δ1, δ2, δ3, δ4)∈ (0, ∞)4 and τ > 0 are constants satisfying

+ < <2 3 1
1

25 and + <2 3
1

100 , then S R Q QSR ( ¯, ¯, , ¯ ) ( ), 1 2 SR1 .
Proof
Assume the hypothesis, let = S R Q QSR ( , , , ), 1 2 , and let
= S Q QNAND ( , , )1 , /2 2 1 and = R Q QNAND ( , , )2 , /2 1 2 be the I/O

CRNs used to construct from Construction 9. By Theorem 2, we know
that

2
and1 NAND1 (34)

22 NAND1 (35)

hold. We complete the proof by showing that these imply that
( )SR1 . Note that ΦSR can be easily split up into two parts. We first

show that ϕset(I)→ψ1(I) holds, and then show that ϕreset(I)→ ψ0(I) holds.
Let I=[t1, t2]∈ I(τ) be an interval such that ϕset(I) holds. Since

=S̄ 0 holds for all t∈ [t1, t1+ τ], (34) tells us that〚Q1= 1〛for all
+ +t t t[ , ]1 2 1 . Since =R 1 and 〚Q1= 1〛 for all
+ +t t t[ , ]1 2 1 , (35) tells us that =Q 02 starting at time t1+ τ. As a

result, the output of〚Q1= 1〛 and =Q 02 is stable since the output
of 1 will be held constant at 1 while one of its inputs is 0 and 2 will
continue to output 0 while both its inputs are 1 which will be true until
time t2. Thus ϕ1(I) holds for all t∈ [t1+ τ, t2].

It remains to be shown that for all I∈ I(τ), ϕreset(I)→ ψ0(I) holds. Let
I=[t1, t2]∈ I(τ) be an interval such that ϕreset(I) holds. Since =R 0
holds for all t∈ [t1, t1+ τ], (35) tells us that =Q 12 for all

+ +t t t[ , ]1 2 1 . Since =S 1 and =Q̄ 12 for all + +t t t[ , ]1 2 1 ,
(34) tells us that 〚Q1= 0〛 starting at time t1+ τ. As a result, the
output of 〚Q1= 0]] and =Q 12 is stable since the output of 2 will
be held constant at 1 while one of its inputs is 0 and 1 will continue to
output 0 while both its inputs are 1 which will be true until time t2.
Thus ϕ0(I) holds for all t∈ [t1+ τ, t2]. □

Simulations show that the SR latch works even better than the theorem
predicts. Fig. 4 shows its output with minor random noise and Fig. 5 de-
monstrates how it handles significant random and sinusoidal noise.

5.2. D latch

Another commonly used memory element is the D latch. Instead of
using the traditional D latch design using four NAND gates, we provide
a simpler construction using only four reactions. The design is modeled
closely after our NAND gate and uses the signal restoration algorithm of
Klinge (2016b) to maintain the signals. Before we give the construction,
we first formally specify the requirement for a D latch.

Fig. 3. SR latch implemented with two NAND gates, and SR block diagram with
labeled species inputs and outputs.
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Given species D, E, Q∈ S and τ > 0, define the set of input species
be = SD D E E{ , , , } , let = SV Q Q{ , } be the set of output spe-
cies, and for a∈ {0, 1} let ϕa and ψa be the predicates

= = = =+ +I D a E D a E( ) 1 0a t t t t[ , ] [ , ]1 1 1 2 (36)

= +I Q a( )a t t[ , ]1 2 (37)

for all I=[t1, t2]∈ I(τ). Then let ΦDL(τ)= (α, ϕ) be the requirement
where the context assumption α is defined by

= =u h Q Q h h( , , ) [ { , } and ],0 (38)

and the I/O requirement ϕ is defined by

u v II I I I I( , ) ( ( ))[( ( ) ( )) ( ( ) ( ))].0 0 1 1 (39)

Intuitively, the requirement ΦDL says that whenever a set event occurs,
i.e., when D= a and E=1 for at least time τ, then within τ time Q
converges to a and remains there as long as either D= a or E=0. This
is visualized in the timing diagram of Fig. 6.

We now give the I/O CRN construction that satisfies the above re-
quirement.

Construction 11
Given three species D, E, Q, a vector of strictly positive real numbers

δ=(δ1, δ2, δ3, δ4), and τ > 0, define the CRN

=D E QDL ( , , ) ( , , ),,

where = D D E E{ , , , }, = Q Q{ , }, and consists of the four reactions

+ + + +D E Q D E Q
k

(40)

+ + + +D E Q D E Q
k

(41)

+Q Q Q2 3
k3

(42)

+Q Q Q2 3
k3

(43)

where = +k 100 4
13 .

Below is the final theorem of this paper showing that the above
construction robustly satisfies its requirement.

Theorem 12
If δ=(δ1, δ2, δ3, δ4)∈ (0, ∞)4 and τ > 0 are constants satisfying

+ < <2 3 1
1

25 and + <2 3
1

100 , then S R Q QDL ( , , , ) ( ), 1 2 DL1 .

Proof. Assume the hypothesis and let = = D E Q( , , ) DL ( , , ), .
We fix initial state x [0, )0 defined by x0(Q)= 1 and =x Q( ) 00 .
Let =c u h( , , ) be a context that satisfies the context assumption α(c).
Let =c u hˆ ( ˆ , , ˆ) be (δ1, δ2)-close to c, let x̂0 be δ3-close to x0, and let ˆ
be δ4-close to . We fix x Cˆ [ ] as the unique solution generated by
ˆ in context ĉ on the initial state x̂0, and for convenience, we write q(t)
and q t( ) to denote x t Qˆ ( )( ) and x t Qˆ ( )( ), respectively. Now let

= +x xp Q Qˆ ( ) ˆ ( )0 0 . Since = dqdq
dt dt , we know that + =q t q t p( ) ( ) for

all t∈ [0, ∞).

Let I=[t1, t2] be an interval that satisfies ϕ1(I). It is easy to show by
bounding arguments similar to Theorem 2 that the inequality

+ + + +k p d d d p q d qdq
dt 18

((3 ) 9 ) (1 )(1 ) ( ) 2(1 ) ¯
3

3/2 1 2 1

holds for all t∈ [t1, t1+ τ] where =d k
4 . Similarly, we can easily show

Fig. 4. Ideal SR latch timing diagram along with an I/O CRN simulation of our SR latch with random noise.

Fig. 5. Simulations of the SR latch design with significant random and sinusoidal noise.
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that

+ +k d q p q d q p q d qdq
dt

[3(1 ) ( ) 3(1 ) ( ) 2 (1 ) ]2 2
1

holds for all t∈ I. Thus by Lemmas 3 and 4, we see that q(t) > p− γ
and <q t( ) for all t∈ [t1+ τ, t2] where γ= δ1− δ2− δ3. Thus x̂ is δ1-
close to satisfying ψ1(I).

By symmetry, if I is an interval that satisfies ϕ0(I), then x̂ is δ1-close
to satisfying ψ1(I). Therefore ( )DL1 . □

A simulation of the D latch operating on an input is visualized in
Fig. 6. Again, random noise is added to demonstrate the robustness of
the construction.

6. Discussion

We have shown that any Boolean circuit can be implemented by a
robust input/output chemical reaction network. By “robust” we mean that
it tolerates bounded adversarial manipulation to the input signals, initial
concentrations, reaction rate constants, and output measurements. Thus,
not only do we account for random noise, but also the worst case scenario
due to an adversary. A key feature of our construction is that it preserves
robustness under composition. Furthermore, each circuit uses its input
signals catalytically, making fanout gates unnecessary. Thus, adding gates
to a Boolean circuit is easy and does not affect its robustness, however, it
does increase the propagation delay if the new gates increase the depth of
the circuit. Preservation of robustness in this way allows designers to
construct more complex circuits without needing to prove additional ro-
bustness theorems.

We have also shown that two sequential memory circuits can be
implemented with robust I/O CRNs. First, we showed that an SR latch
can be constructed by composing two NAND gates together. The proof
of correctness relies solely on the proven requirements of the NAND
gate subcomponents without any additional bounding arguments. We

also constructed a robust D latch which uses half the number of species
and one-third the number of reactions of the SR latch construction. This
was a surprising reduction in complexity since traditional D latch de-
signs use two SR latches (four NAND gates).

Our results are also related to the general purpose analog computer
(GPAC). Recently, the GPAC has been proven to be capable of simulating a
Turing machine in the presence of bounded perturbations in the initial
condition and in the ODEs of all variables (Graça et al., 2008). Our results
differ from theirs in the following ways. First, our definition of robustness
includes perturbations to the rate constants which can cause unbounded
deviation to the ODEs induced by the CRN. For example, the CRN con-
sisting of the reaction X

k
is modeled with the ODE = tkx( )dx

dt . Any
perturbation to the rate constant k can have an arbitrarily large effect on
dx
dt
, since it also depends on the concentration x(t). Second, our I/O CRNs

receive their input over time via an input signal rather than having all input
provided in the initial condition. Furthermore, our input signals are also
manipulated by an adversary which can also lead to unbounded error in
the ODEs of the species. Third, our definitions include the notion of a
measurement function from control theory which is used to observe the
concentrations of the output species. Finally, we also assume the mea-
surement function is manipulated by an adversary.

There are several drawbacks to our circuit design which we hope will
be resolved in future research. First, our NAND gate construction requires
three termolecular reactions which are implemented in practice as a se-
quence of bimolecular reactions. This change to the NAND gate affects its
dynamics, and we do not know if it will continue to satisfy its requirement
in this case. Previous investigations show that some termolecular algo-
rithms can be reduced to bimolecular ones and maintain robstuness
properties. For example, some of our termolecular reactions implement the
signal restoration algorithm which has been shown to be exactly related to
an equivalent bimolecular system (Klinge, 2016b), but it remains an open
question whether our circuits provably satisfy their requirements in a

Fig. 6. CRN D latch timing diagram with random noise.
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bimolecular setting. Several techniques for proving equivalence of sto-
chastic CRNs have been investigated (Lakin et al., 2016; Shin et al., 2017);
it may be possible to apply similar approaches to provably guarantee
correctness of bimolecular circuits. Second, our circuits depend on reac-
tions that are not reversible. This means that in practice, our circuits will
consume fuel molecules that provide energy to the system. Further re-
search into reversible I/O CRNs could lead to a construction that does not
require fuel, but instead uses the energy introduced by the input signal.
Third, our circuit design does not inherently support hysteresis, and
therefore circuits instantaneously react to changes in their input. As a
result, our construction fails on many common sequential circuits. For
example, a ring oscillator circuit constructed by connecting the output of a
NAND gate to its own inputs ought to rapidly oscillate between 0 and 1.
However, the lack of hysteresis prevents the inputs to the NAND gate from
being held at a 0 or 1 value long enough for the output to update ac-
cordingly. As a result, the circuit coverages to an equilibrium state rather
than rapidly oscillate. This is easy to verify by examining the resulting
ODE generated from Construction 1 and examining the stability of its
equilibria.

Although some sequential circuits obviously fail, others can be
constructed without issue. For example, a negative edge-triggered D flip
flop can be constructed using two D latches connected in a master-slave
configuration. In Fig. 7, we show a MATLAB Simbiology simulation of
an I/O CRN design of this circuit composed of two D latches from
Construction 11. The simulations suggest that it works appropriately,
and we suspect that techniques similar to those in Section 5 can be used
to show it is robust. However, such proofs depend on properly stating
the requirements of an edge-triggered flip flop, which is a natural next
step to our research.
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