
Calc. Var. (2019) 58:182
https://doi.org/10.1007/s00526-019-1635-8 Calculus of Variations

General least gradient problems with obstacle

Morteza Fotouhi1 · Amir Moradifam2

Received: 29 April 2019 / Accepted: 31 August 2019 / Published online: 3 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We study existence, structure, uniqueness and regularity of solutions of the obstacle problem

inf
u∈BV f (�)

∫
�

φ(x, Du),

where BV f (�) = {u ∈ BV (Rn) : u ≥ ψ in � and u|∂� = f |∂�}, f ∈ W 1,1
0 (Rn), ψ is the

obstacle, and φ(x, ξ) is a convex, continuous and homogeneous function of degree one with
respect to the ξ variable. We show that every minimizer of this problem is also a minimizer
of the least gradient problem

inf
u∈A f (�)

∫
Rn

φ(x, Du),

where A f (�) = {u ∈ BV (�) : u ≥ ψ, and u = f in �c}. Moreover, there exists a vector
field T with ∇ · T ≤ 0 in � which determines the structure of all minimizers of these two
problems, and T is divergence free on {x ∈ � : u(x) > ψ(x)} for any minimizer u. We also
present uniqueness and regularity results that are based on maximum principles for minimal
surfaces. Since minimizers of the least gradient problems with obstacle do not hit small
enough obstacles, the results presented in this paper extend several results in the literature
about least gradient problems without obstacle.
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1 Introduction

Least gradient problems are closely related to the study of minimal surfaces and appeared in
the pioneering work of Bombieri et al. [4] (see also [11] for stability results on functions of
least gradient). They also arise as the limiting case of p-harmonic functions as p → 1 [8],
and due to their important applications in conductivity imaging, such problems have received
an extensive attention in the past decade (see [6,7,10,12–18,24]). In [21], the authors studied
exietence, uniqueness, and regularity of functions of least gradient, and the results were
later extended to least gradient problems with obstacle in [23]. Least gradient problems
with constraint have been carefully studied in [9,22]. In this paper we investigate existence,
structure, uniqueness, and regularity of minimizers of general least gradient problems with
obstacle (see the problem (3) below).

Let � be a bounded open set in Rn with Lipschitz boundary and φ : � × R
n −→ R be a

continuous function satisfying the following conditions:

(C1) There exists α > 0 such that α|ξ | ≤ φ(x, ξ) ≤ α−1|ξ | for all x ∈ � and ξ ∈ R
n .

(C2) ξ �→ φ(x, ξ) is a norm for every x .

For our results concerning the regularity of solutions we will also assume the following three
additional assumptions

(C3) φ ∈ W 2,∞
loc away from {ξ = 0}, and there exists C > 0 such that

φξi ξ j (x, ξ)pi p j ≥ C |p′|2,
for all ξ ∈ Sn−1 and p ∈ R

n , where p′ := p − (p · ξ)ξ .
(C4) φ and Dξ φ areW 2,∞ away from {ξ = 0}, and there are positive constants ρ and λ such

that

φ(x, ξ) + |Dξ φ(x, ξ)| + |D2
ξ φ(x, ξ)| + |D3

ξ φ(x, ξ)| + ρ|Dx Dξ φ(x, ξ)|
+ ρ|Dx D

2
ξ φ(x, ξ)| + ρ2|D2

x Dξ φ(x, ξ)| ≤ λ, for all x ∈ �, ξ ∈ Sn−1.

(C5) For the result of regularity we need to assume that the integrand φ(x, ξ) = φ(ξ) is
independent of x .

It is elementary to verify that if φ : � × R
n −→ R satisfies (C1)–(C4), then for every

p, q ∈ R
n and λ ∈ R we have

φξ (x, λp) = φξ (x, p), and p · φξ (x, p) = φ(x, p). (1)

For u ∈ BVloc(Rn), let φ(x, Du) denote the measure defined by∫
A

φ(x, Du) =
∫
A

φ(x, νu(x))|Du| for any bounded Borel set A,

where |Du| is the total variation measure associated to the vector-valued measure Du, and
νu is the Radon–Nikodym derivative νu(x) = d Du

d |Du| . Basic facts about BV functions imply
that if U is an open set, then∫

U
φ(x, Du) = sup

{∫
U
u∇ · Ydx : Y ∈ C∞

c (U ;Rn), supφ0(x, Y (x)) ≤ 1

}
, (2)

where φ0(x, ·) denotes the norm on Rn dual to φ(x, ·), defined by
φ0(x, ξ) := sup{ξ · p : φ(x, p) ≤ 1},
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(see [2,7]). For u ∈ BV (�),
∫
�

φ(x, Du) is called the φ-total variation of u in �. Also,
if A, E are subsets of Rn , with A Borel and E having finite perimeter, then we shall write
Pφ(E; A) to denote the φ-perimeter of E in A, defined by

Pφ(E; A) :=
∫
A

φ(x, DχE ),

where χE is the characteristic function of E . We will also write Pφ(E) to denote Pφ(E;Rn).
We shall need the following lemma.

Lemma 1.1 (Lemma 2.2 in [7]) Let A ⊂ R
n be a Borel set and E1, E2 ⊂ R

n be of locally
finite perimeter with respect φ. Then

Pφ(E1 ∪ E2; A) + Pφ(E1 ∩ E2; A) ≤ Pφ(E1; A) + Pφ(E2; A).

Definition 1.2 We say that a function u ∈ BV (Rn) is a φ-total variation minimizing in a set
� ⊂ R

n if∫
Rn

φ(x, Du) ≤
∫
Rn

φ(x, Dv) for all v ∈ BV (Rn) such that u = v a.e. in �c.

Similarly, we say that E ⊂ R
n of finite perimeter is φ-area minimizing in � if

Pφ(E) ≤ Pφ(F) for all F ⊂ R
n such that F ∩ �c = E ∩ �c a.e..

Moreover, E ⊂ R
n is called φ-super (sub) area minimizing in �, if

Pφ(E) ≤ Pφ(E ∪ F) (respectively Pφ(E) ≤ Pφ(E ∩ F))

for all F ⊂ R
n such that F ∩ �c = E ∩ �c almost everywhere, i.e. (F ∩ �c)�(E ∩ �c)

has zero Lebesgue measure.

Let f ∈ BV (Rn) and ψ ∈ W 1,1(�), and consider the obstacle least gradient problem

inf
u∈BV f

∫
�

φ(x, Du), (3)

where

BV f (�) := {u ∈ BV (�) : u |∂�= f and u(x) ≥ ψ(x) for a.e. x ∈ �}.
In general the problem (3) may not have a minimizer (see [7,10,21]). However the relaxed

problem

min
u∈A f

(∫
�

φ(x, Du) +
∫

∂�

ϕ(x, ν�)|u − f |
)

, (4)

always has a solution, where A f = {u ∈ BV (Rn) : u ≥ ψ, and u = f in �c}, and ν� is
the outer pointing unit normal vector on ∂�. Indeed let {vn}∞n=1 be a minimizing sequence
for

F(v) :=
∫
Rn

ϕ(x, Dv). (5)

Since BV (Rn) ↪→ L1
loc, F is coercive in BV (Rn) (a consequence of (C1)) and weakly lower

semicontinuous (see [7] for more details), it follows from standard arguments that {vn}∞n=1
has a subsequence converging strongly in L1

loc to a function u ∈ A f with∫
Rn

ϕ(x, Du) ≤ inf
v∈BV f (�)

∫
Rn

ϕ(x, Dv),
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and hence v is also a minimizer of (4). However, in general, the trace u|∂� on ∂� may not be
equal to f , leading to possible nonexistence for the problem (3). In addition, we shall prove
the following result.

Remark 1.3 Since u|∂� = f for every u ∈ BV f (�), the compatibility condition f ≥ ψ on
∂� must be satisfied. Every f ∈ L1(∂�) can be extended to a function in BV (Rn) (denoted
by f again) with f ≥ ψ in �, and throughout the paper we shall naturally assume that
f ≥ ψ in �̄.

Proposition 1.4 Let � be a bounded open set in R
n with Lipschitz boundary, f ∈ BV (Rn)

and ψ ∈ W 1,1(�) with f ≥ ψ in �, and φ : � × R
n −→ R be a continuous function

satisfying (C1)–(C2). Then (4) has a solution and

inf
u∈BV f

∫
�

φ(x, Du) = min
u∈A f

(∫
�

φ(x, Du) +
∫

∂�

ϕ(x, ν�)|u − f |
)

.

In particular, every minimizer of (3) is also a minimizer of (4).

Indeed in order to prove existence of solutions to (3) we need a condition on � which is
defined as follows. Remind that for a measurable subset E of Rn , we define

E (1) :=
{
x ∈ R

n : lim
r→0

Hn(B(r , x) ∩ E)

Hn(B(r))
= 1

}
. (6)

Definition 1.5 Let � ⊂ R
n be a bounded Lipschitz domain and φ : � × R

n −→ R is
continuous function that satisfies (C1)–(C2). We say that � satisfies the barrier condition if
for x0 ∈ ∂� and ε > 0 sufficiently small, if V minimizes Pφ(· ;Rn) in

{W ⊂ � : W \ B(ε, x0) = � \ B(ε, x0)},
then

∂V (1) ∩ ∂� ∩ B(ε, x0) = ∅,

where V (1) is defined as in (6).

Remark 1.6 Intuitively, if � satisfies the barrier condition, then at every point on ∂� one
can decrease the perimeter of ∂� by pushing the boundary inwards. In [7], a convenient
interpretation of the barrier condition, when ∂� is sufficiently smooth, is provided:

−
n∑

i=1

∂xi φξi (x, Dd(x)) > 0, on a dense subset of ∂�, (7)

where d(·) is the signed distance to ∂� by

d(x) :=
{
dist(x, ∂�), if x ∈ �,

−dist(x, ∂�), if not.

We will show that if � satisfies the barrier condition, then every solution of (4) is also a
solution of (3).

Theorem 1.7 Suppose that φ : � × R
n −→ R is a continuous function that satisfies (C1)–

(C2) in a bounded Lipschitz domain � ⊂ R
n, f ∈ C(∂�) with f ≥ ψ , and ψ ∈ W 1,1(�).

If � satisfies the barrier condition with respect to φ, then every solution of (4) is also a
solution of (3). In particular, (3) has a solution.
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We only require the barrier condition for our existence result, Theorem 1.7. Indeed our
regularity and uniqueness do not assume this condition which is contrast with the results in
[21].

We shall also prove that there exists a fixed vector field T that determines the structure of
level sets of the minimizers of (3) and (4).

Theorem 1.8 Let � ⊂ R
n be a bounded Lipschitz domain and φ : � × R

n −→ R is
continuous function that satisfies (C1)–(C2), and f ∈ W 1,1

0 (Rn). Then there exists a vector
field T ∈ (L∞(�))n with φ0(x, T ) ≤ 1 a.e. in �, and ∇ · T ≤ 0 such that

φ

(
x,

Dw

|Dw|
)

= T · Dw

|Dw| , |Dw| − a.e. in �, (8)

φ(x, ν�)| f − w| = [T , ( f − w)ν�], Hn−1 − a.e. in ∂� ∩ {w > ψ}, (9)

for everyminimizerw of (3)or (4).Moreover T is divergence-free in {x ∈ � : w(x) > ψ(x)}.
The above result generalizes Theorem 1.2 in [12] and simplifies to the following result in

the special case ϕ(x, ξ) = a(x)|ξ |.
Corollary 1.9 Let � ⊂ R

n be a bounded Lipschitz domain and assume that a ∈ C(�̄) is a
non-negative function, and f ∈ W 1,1

0 (Rn). Then there exists a vector field T ∈ (L∞(�))n

with |T | ≤ a a.e. in�, and∇ ·T ≤ 0 such that every minimizerw ∈ A f of the least gradient
problem

inf
v∈A f

∫
�

a|Dv|, (10)

satisfies

T · Dw

|Dw| = |T | = a, |Dw| − a.e. in �,

a| f − w| = [T , ( f − w)ν�], Hn−1 − a.e. in ∂� ∩ {w > ψ}.
Moreover T is divergence-free in {x ∈ � : w(x) > ψ(x)}.

The above corollary asserts that there exists a vector field T such that for every minimizer
w of (10) the vector field Dw

|Dw| is parallel to T , |Dw|-a.e. in �. Moreover, if T is regular
enough so that the trace of T can be represented by a function Ttr ∈ (L∞(∂�))n , then up to
a set with Hn−1-measure zero

{x ∈ ∂� ∩ {w > ψ} : w|∂� > f } ⊆ {x ∈ ∂� : Ttr · ν� = |Ttr |},
and similarly

{x ∈ ∂� ∩ {w > ψ} : w|∂� < f } ⊆ {x ∈ ∂� : Ttr · ν� = −|Ttr |}.
In other words w|∂� = f , Hn−1-a.e. in

{x ∈ ∂� ∩ {w > ψ} : |Ttr · ν�| < |Ttr |},
for everyminimizerw of (10). These results extend the second authors results about structure
of minimizers of least gradient problems [12] for least gradient problems with obstacle.

Wewill also prove the following results about the uniqueness and regularity of minimizers
of the obstacle least gradient problem (3).
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Theorem 1.10 (Comparison principle) Let � ⊂ R
n be a bounded Lipschitz domain with

connected boundary, and assume φ : � × R
n −→ R satisfies (C1)–(C5). Suppose that u1

and u2 are solutions of (3) for boundary conditions f1, f2 ∈ C(∂�) respectively and the
obstacle ψ ∈ C(�̄). Then

|u1 − u2| ≤ sup
∂�

| f1 − f2| a.e. in �.

Moreover,

u2 ≥ u1 a.e. in �, if f2 ≥ f1 on ∂�. (11)

In particular, for every f ∈ C(∂�), there is at most one solution for (3).

Theorem 1.11 (Holder regularity) Suppose that φ : � ×R
n −→ R satisfies (C1)–(C5), and

let � be a bounded, open subset of Rn with C2 boundary such that the signed distance d(·)
to ∂� satisfies (7). Assume f ∈ C0,α(∂�), and ψ ∈ C0,α/2(�̄) for some 0 < α ≤ 1. If
u ∈ BV (�) is a solution of (3), then u ∈ C0,α/2(�).

Theorem 1.12 (Lipschitz regularity) Suppose that φ : � × R
n −→ R satisfies (C1)–(C5)

and let � be a bounded, open subset of Rn with C2 boundary which the signed distance

d(·) to ∂� satisfies the relation (7). Assume f ∈ C1,α(∂�), and ψ ∈ C0, 1+α
2 (�̄) for some

0 < α ≤ 1. If u ∈ BV (�) is a solution of (3), then u ∈ C0, 1+α
2 (�).

Since minimizers of the least gradient problems with obstacle do not hit small enough
obstacles, the results in this paper extend and unify several results in the literature about least
gradient problems without obstacle. Indeed if

sup
x∈�

ψ ≤ inf
x∈∂�

f ,

then u is a minimizer of (3) if and only if it is a minimizer of

inf{u∈BV (�):u|∂�= f }

∫
�

φ(x, Du).

Our results in Sect. 3 are inspired by the second author’s work in [7] and use several ideas
from this paper. However, analysis of the obstacle problem requires a careful refinement of
those ideas. We shall refer to the results in [7] without repeating the details of the arguments.

2 Structure of minimizers

In this section we study the relationship between minimizers of the least gradient problems
(3) and (4), and prove several results about existence and structure of minimizers of these
problems.

Let ν� denote the outer unit normal vector to ∂�. Then for every V ∈ (L∞(�))n with
∇ · V ∈ Ln(�) there exists a unique function [V , ν�] ∈ L∞

Hn−1(∂�) such that
∫

∂�

[V , ν�]u dHn−1 =
∫

�

u∇ · Vdx +
∫

�

V · Dudx, u ∈ C1(�̄). (12)

Moreover, for u ∈ BV (�) and V ∈ (L∞(�))n with ∇ · V ∈ Ln(�), the linear functional
u �→ (V · Du) gives rise to a Radon measure on �, and (12) is valid for every u ∈ BV (�)

(see [1,3] for a proof).

123



General least gradient problems with obstacle Page 7 of 19 182

Wefirst show that there exists a vectorfieldT that determines the structure of allminimizers
of (3) and (4). Next we define the dual of the least gradient problem (3). Let E : (L1(�))n →
R and G : W 1,1

0 (�) → R be defined as follows

E(P) :=
∫

�

φ(x, P + ∇ f )dx, G(u) =
{
0 u ∈ K
+∞ u /∈ K,

(13)

where

K := {u ∈ W 1,1
0 (�) : u ≥ ψ − f }.

Then the problem (3) can be written as

(P) inf
u∈W 1,1

0 (�)

E(Du) + G(u).

By Fenchel duality (see Chapter III in [5]) the dual problem is given by

(P∗) sup
V∈(L∞(�))n

{−E∗(V ) − G∗(∇ · V )},

where E∗ and G∗ are the Legendre–Fenchel transform of F and G. By Lemma 2.1 in [12]
we have

E∗(V ) =
{−〈Df , V 〉 if φ0(x, V (x)) ≤ 1 in �

+∞, otherwise.

One can also compute G∗ : W−1,∞(�) → R as follows.

Lemma 2.1 Suppose v = ∇ · V for some V ∈ (L∞(�))n. Then

G∗(v) =
{

< ∞, v ∈ C∗,
+∞, v /∈ C∗,

where

C∗ := {v ∈ W−1,∞(�) : 〈v, u〉 ≤ 0, for all 0 ≤ u ∈ W 1,1
0 (�)}.

Moreover there exists a real valued function C(V ) which only depends on V near ∂�, i.e.

C(V1) = C(V2) if V1 − V2 ∈ (L∞
c (�))n,

and for v ∈ C∗, we have

G∗(v) = −
∫

�

V · D(ψ − f ) + C(V ). (14)

Proof First note that

G∗(v) = sup
u∈W 1,1

0 (�)

(〈v, u〉 − G(u)
) = sup

u∈K
〈v, u〉.

Then if v /∈ C∗, there exists 0 ≤ u0 ∈ W 1,1
0 (�) such that 〈v, u0〉 > 0. Hence for any u ∈ K

and λ > 0, we have u + λu0 ∈ K and 〈v, u + λu0〉 → ∞ when λ → ∞.
For v ∈ C∗, consider the decomposition u = u+ − u− where u± = max{±u, 0}. Then

〈v, u〉 ≤ 〈v,−u−〉, and hence
G∗(v) = sup

0≥u∈K
〈v, u〉.
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Now consider the Lipschitz function ηε ∈ C0,1
0 (�)with value in [0, 1] such that ηε ≡ 1 in

�ε = {x ∈ � : dist(x, ∂�) ≥ ε} and∇ηε = − 1
ε
ν� a.e. in�\�ε , in which ν� is a Lipschitz

extension of the boundary normal vector of ∂� to its neighborhood. If ψ − f ≤ u ≤ 0 in �,
we have ηε(ψ − f ) ∈ K, and

ηε2(ψ − f ) ≥ ηε1(ψ − f ) if 0 < ε1 ≤ ε2.

Since v ∈ C∗, 〈v, ηε(ψ − f )〉 is monotone in ε and the limit

lim
ε→0

〈v, ηε(ψ − f )〉 (15)

exists. Thus we have

G∗(v) ≥ lim
ε→0

〈v, ηε(ψ − f )〉

= lim
ε→0

(∫
�\�ε

1

ε
(ψ − f )V · ν� − ηεV · D(ψ − f ) dx −

∫
�ε

V · D(ψ − f ) dx

)

= lim
ε→0

(∫
�\�ε

1

ε
(ψ − f )V · ν�

)
−

∫
�

V · D(ψ − f ) dx

= C(V ) −
∫

�

V · D(ψ − f ) dx,

where

C(V ) := lim
ε→0

(∫
�\�ε

1

ε
(ψ − f )V · ν�

)
.

Note that, in view of (15), the above limit exists and only depends on V near ∂�.
On the other hand, for everyψ − f ≤ u ≤ 0, we have 0 ≤ ηε(u−(ψ − f )) ∈ W 1,1

0 (�), so
0 ≥ 〈v, ηε(u−(ψ− f ))〉. Thus 〈v, ηεu〉 ≤ 〈v, ηε(ψ− f )〉. Since limε→0 ‖ηεu−u‖W 1,1

0 (�)
=

0, we have limε→0〈v, ηεu〉 = 〈v, u〉. Hence

〈v, u〉 ≤ C(V ) −
∫

�

V · D(ψ − f ) dx,

G∗(v) ≤ C(V ) −
∫

�

V · D(ψ − f ) dx .

The proof is now complete. ��

Proof of Theorem 1.8 The dual problem (P∗) has a solution. This follows from Theorem
III.4.1 in [5]. Indeed it easily follows from (2) that I (v) = ∫

�
ϕ(x, Dv) is convex, and

J : L1(�) → R with J (p) = ∫
�

ϕ(x, p)dx is continuous at p = 0 (a consequence of (C2).
Therefore the condition (4.8) in the statement of Theorem III.4.1 in [5] is satisfied, duality
gap is zero, and the dual problem (P∗) has a solution. Let T be a solution of the dual problem
(P∗), then it must satisfy ∇ · T ∈ C∗ (i.e. ∇ · T ≤ 0 in the sense of distributions) as well as
φ0(x, T (x)) ≤ 1. The later relation yields that

p · T (x) ≤ φ(x, p), for all vectors p. (16)

Moreover, we have

sup(P∗) = 〈T , Df 〉 + 〈T , D(ψ − f )〉 − C(T ) = 〈T , Dψ〉 − C(T ).

123



General least gradient problems with obstacle Page 9 of 19 182

Let w ∈ A f be a minimizer of (4), and ε > 0. Then by (16), we have

∫
�

φ(x, Dw) =
∫

�

φ(x,
Dw

|Dw| )|Dw| ≥
∫

�

T · Dw

|Dw| |Dw| (17)

=
∫

�

T · Dw

= sup(P∗) +
∫

�

T · D(w − ψ) + C(T )

= sup(P∗) − 〈T , D(ψ − f )〉 + C(T ) +
∫

�

T · D(w − f ) (18)

= sup(P∗) + G∗(∇ · T ) +
∫

�

T · D(w − f )

= sup(P∗) + G∗(∇ · T ) +
∫

�

T · D(ηε(w − f ))

+
∫

�

T · D [(1 − ηε)(w − f )]

≥ sup(P∗) + G∗(∇ · T ) + inf
ψ− f ≤u∈BV0(�)

∫
�

T · Du (19)

+
∫

�

T · D [(1 − ηε)(w − f )]

= sup(P∗) + sup
u∈K

〈∇ · T , u〉 + inf
u∈K

∫
�

T · Du +
∫

�

T · D [(1 − ηε)(w − f )]

= sup(P∗) + sup
u∈K

〈∇ · T , u〉 − sup
u∈K

〈∇ · T , u〉 +
∫

�

T · D [(1 − ηε)(w − f )]

= sup(P∗) +
∫

�

T · D [(1 − ηε)(w − f )]

= sup(P∗) +
∫

�

T · [
(w − f )D(1 − ηε) + (1 − ηε)D(w − f )

]

≥ sup(P∗) −
∫

�\�ε

φ(x,
ν�

ε
(w − f )) +

∫
�

(1 − ηε)T · D(w − f )

= sup(P∗) −
∫

�\�ε

φ(x,
ν�

ε
)|w − f | − ‖T ‖(L∞(�))n

∫
�\�ε

∣∣D(w − f )
∣∣,
(20)

where we have used (16) to obtain the inequality (20). Letting ε → 0, we have
∫
�\�ε

∣∣D(w−
f )

∣∣ → 0 and get

∫
�

φ(x, Dw) +
∫

∂�

φ(x, ν�)|w − f | ≥ sup(P∗) = inf(P).

On the other hand since BV f (�) ⊂ A f , the above inequality also holds in the opposite
direction. Thus

inf
w∈A f

(∫
�

φ(x, Dw) +
∫

∂�

φ(x, ν�)|w − f |
)

= inf
w∈BV f (�)

∫
�

φ(x, Dw). (21)
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Note also that if w ∈ A f is a minimizer of (4), then all the above inequalities are equalities.
In particular (8) and (9) hold because of (17) and (20), and we can deduce by (19) that

inf
ψ− f ≤u∈BV0(�)

∫
�

T · Du = lim
ε→0

∫
�

T · D(ηε(w − f )). (22)

Now let ω � � and suppose w > ψ on ω. Then for ϕ ∈ C∞
c (ω) and |t | small, we have

w + tϕ > ψ in ω. Hence for ε small enough

w + tϕ − f = ηε(w + tϕ − f ) in ω,

and ψ − f ≤ ηε(w + tϕ − f ) ∈ BV0(�). Thus it follows from (22) that

lim
ε→0

∫
�

T · D(ηε(w − f )) ≤
∫

�

T · D(ηε(w + tϕ − f )),

and hence

0 ≤ lim
ε→0

∫
�

T · D(tηεϕ) = lim
ε→0

∫
ω

T · D(tηεϕ)

= lim
ε→0

∫
ω

T · D(tϕ)

=
∫

ω

T · D(tϕ).

Therefore

〈∇ · T , ϕ〉 = 0, ∀ϕ ∈ C∞
0 (ω),

and consequently T ∈ (L∞(�))n is divergence-free on {w > ψ}. ��
Proof of Proposition 1.4 The proof follows from (21) in the proof of Theorem 1.8, and the
argument right before the statement of Proposition 1.4. ��

3 Existence

In this section we study the existence of the obstacle least gradient problem (3), and prove
Theorem 1.7. Consider an arbitrary function u ∈ A f and let

Et :={x ∈ R
n : u(x) > t},

Lt :={x ∈ R
n : f (x) > t},

Ot :={x ∈ R
n : ψ(x) > t}.

The following theorem shows that the level sets of the solutions of (4) solve a φ-area mini-
mizing problem with obstacle.

Theorem 3.1 Let � be a bounded Lipschitz domain and u be a solution of (4), then Et is a
solution of the following variational problem,

min{Pφ(E;�) : E ∩ �c = L ∩ �c and E ⊃ O ∩ �}, (23)

in which O = Ot and L = Lt .

Remark 3.2 It is not difficult to see that ∂Et \ Ōt is locally φ-minimizing in � as well as
∂Et ∩ Ōt is locally φ-super minimizing in �.
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In order to prove Theorem 3.1, we need the following lemma. It will also help us to study
the relation between the minimizers of (3) and (4). Therein v+ and v− stand for the outer
and inner trace of v ∈ BV (Rn) on ∂�.

Lemma 3.3 Assume uk is a solution of (4) for the obstacle ψk such that ψk ↗ ψ and

uk −→ u in L1(�) and u±
k −→ u± in L1(∂�).

Then u is a solution of (4) for the obstacle ψ .

Proof The proof is similar to the proof of Lemma 2.7 in [7] and we present it here for the
sake of completeness. Given g ∈ L1(∂�;Hn−1), define

Iφ(v;�, g) :=
∫

∂�

φ(x, ν�)|g − v−| dHn−1 +
∫

�

φ(x, Dv),

where ν� denotes the outer unit normal to �. Since (5) is lower semicontinuous,∫
�

φ(x, Du) ≤ lim inf
k

∫
�

φ(x, Duk),

and the L1 convergence of the trace, implies that

Iφ(u;�, u+) ≤ lim inf
k

Iφ(uk;�, u+
k ). (24)

Now for any v ∈ BV (Rn) such that v ≥ ψ , then v ≥ ψk and we have

Iφ(uk;�, u+
k ) ≤ Iφ(v;�, u+

k )

≤ Iφ(v;�, u+) +
∫

∂�

φ(x, ν�)|u+ − u+
k | dHn−1

≤ Iφ(v;�, u+) + α−1
∫

∂�

|u+ − u+
k | dHn−1.

It follows from this and (24) that Iφ(u;�, u+) ≤ Iφ(v;�, u+). ��
Proof of Theorem 3.1 For t ∈ R, let u1 := max(u, t), u2 := u − u1, ψ1 := max(ψ, t).
Consider v ∈ BV (Rn) such that v = u1 a.e. in �c and ψ1 ≤ v, then ψ ≤ ψ1 + u2 ≤ v + u2
and v + u2 = u a.e. in �c, where we have used the assumption ψ ≤ u. Since u is a solution
of (4), we can write∫

�

φ(x, Du1) +
∫

�

φ(x, Du2) =
∫

�

φ(x, Du)

≤
∫

�

φ(x, D(v + u2))

≤
∫

�

φ(x, Dv) +
∫

�

φ(x, Du2).

The last inequality, the triangle inequality, is an immediate consequence of (2). Hence u1
is also a solution of (4) for the obstacle ψ1 and the boundary condition f1 := max( f , t).
Repeating the same argument, one verifies that

χε,t := min(1,
1

ε
u1) =

⎧⎪⎨
⎪⎩
0 if u ≤ t,

ε−1(u − t) if t ≤ u ≤ t + ε,

1 if t + ε ≤ u,
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is also a solution of (4) for the obstacle ψε,t := min(1, 1
ε
ψ1), and boundary condition

fε,t := min(1, 1
ε
f1).

It is straightforward to check that

χε,t → χt := χEt in L1
loc(R

n), χ±
ε,t → χ± in L1(∂�;Hn−1).

Notice thatψε,t ↗ χOt . Thus Lemma 3.3 implies that χEt is a solution of (4) for the obstacle
χOt and the boundary condition χLt . ��

Next we use the barrier condition to prove the following lemma. The proof is similar to
the proof of Lemma 3.4 in [7] and we omit it.

Lemma 3.4 Let�be aboundedLipschitz domain satisfying the barrier conditionwith respect
to φ, and assume that E is a solution of (23). Then

{x ∈ ∂� ∩ ∂E (1) : B(ε, x) ∩ ∂E (1) ⊂ �̄ for some ε > 0} ⊂ Ō.

Proof of Theorem 1.7 The proof follows from Proposition 1.4, Lemma 3.4, Theorem 3.1, and
an argument similar to that of Theorem 1.1 in [7]. ��

4 Maximum and comparison principles

This section is devoted maximum and comparison principles which will be our main tools in
proving uniqueness and regularity results. At the first, we review somewell-known definition
and results about the regularity theory for minimal surfaces.

Definition 4.1 Let E ⊂ R
n . A point x ∈ ∂E is called a regular point if there exists ρ > 0

such that ∂E ∩ B(x, ρ) is a C2 hypersurface. We denote the set of all regular points of ∂E
by reg(∂E). We say that x is a singular point if x ∈ sing(∂E) = ∂E \ reg(∂E).

The following estimate on the size of singular sets of φ-area minimizing sets has been
proved in [19] (see also Remarks 2.7 and 2.8 in [7]).

Theorem 4.2 Let� ⊂ R
n, and assume φ : �×R

n −→ R satisfies (C1)–(C4). If E is φ-area
minimizing in �, then

{Hn−3(sing(∂E (1)) ∩ �) < ∞, if n ≥ 4,
sing(∂E (1)) ∩ � = ∅, if n ≤ 3.

Weshall also need the following propositionwhich states that every connected components
of regular points of a φ-area minimizing set E in � must reach the boundary ∂�.

Proposition 4.3 Let � be a bounded Lipschitz domain with connected boundary and assume
that E ⊂ R

n is a solution of (23) for some sets (L, O). If R is a nonempty connected
component of reg(∂E (1)) ∩ �, then R̄ ∩ ∂� �= ∅ or R̄ ∩ Ō �= ∅.
Proof The proof follows directly from Lemma 4.2 in [7]. In fact, if R̄ ∩ Ō = ∅, it will be a
φ-area minimizer and we can apply that lemma. ��

In order to prove the strict maximum principle, we first prove a couple of intermediate
results.

123



General least gradient problems with obstacle Page 13 of 19 182

Lemma 4.4 Assume that φ satisfies conditions (C1)–(C2). Let E be a φ-sub (or φ-super)
area minimizing in �. There exists a φ-area minimizing G such that G ∩ �c = E ∩ �c as
well as G ⊇ E (or G ⊆ E).

Proof First note that there is a φ-area minimizing set G in � such that G ∩ �c = E ∩ �c.
Since E is φ-sub area minimizing,

Pφ(E) ≤ Pφ(E ∩ G).

Thus it follows from Lemma 1.1 that

Pφ(E ∪ G) ≤ Pφ(G).

Hence G̃ = E ∪G is also φ-area minimizing and E ⊆ G̃. One can similarly show that every
φ-super area minimizing set contains a φ-area minimizing set G with the stated properties.

��
We will deduce the uniqueness of the solution and the comparison principle (Theo-

rem 1.10) from the following theorem.

Theorem 4.5 Assume that φ satisfies conditions (C1)–(C5). Suppose that E1 and E2 are
solutions of (23) respectively for pairs of sets (L1, O1) and (L2, O2). Also, we have

L1 � L2 and O1 � O2.

Suppose � satisfies the barrier condition, or

∂E (1)
1 \ E (1)

2 ⊂ � and ∂E (1)
2 ∩ E

(1)
1 ⊂ �, (25)

then E (1)
1 � E (1)

2 .

Proof In view of Theorem 4.2, int(E (1)
i ) differs from Ei in a set of measure zero and we

replace Ei by int(E
(1)
i ). We prove the result in a series of steps.

Step 1 We will show that G = E1 ∩ E2 and F = E1 ∪ E2 are solutions of (23) for the
pairs of sets (L1, O1) and (L2, O2), respectively. Since E1 and E2 are solutions of (23),

Pφ(E1) ≤ Pφ(G), and Pφ(E2) ≤ Pφ(F).

By Lemma 1.1, we have

Pφ(G) + Pφ(F) ≤ Pφ(E1) + Pφ(E2),

and hence Pφ(G) = Pφ(E1) and Pφ(F) = Pφ(E2). Thus G and F are also solutions of the
problem (23).

Step 2 If x0 ∈ ∂E1 ∩ ∂F , then there is a neighborhood of x0 in which E1 is a φ-area
minimizing and F isφ-super areaminimizing. This immediately follows from the observation
that x0 /∈ Ō1 ∪ ∂�. Otherwise, x0 ∈ Ō1 � O2 or x0 ∈ ∂�. In the first case, x0 ∈ O2 is an
interior point of F which is not possible. In the second case, x0 ∈ ∂� ∩ ∂E1 ∩ ∂F violates
the barrier condition.

Step 3 In this step we show that if ∂E1 ∩ ∂F �= ∅, then Hn−2(∂Eν ∩ ∂F) > 0, where
Eν = E1 + ν for some small vector ν ∈ R

n . In order to see this, define

�δ = {x ∈ � : dist(x, ∂�) > δ},
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and choose δ > 0 such that

dist(∂E1 ∩ �c
δ, ∂F ∩ �c

δ) > δ, dist(Ō1, O
c
2) > δ.

Let x0 ∈ ∂E1∩∂F and choose y ∈ B(x0, δ)∩Fc. Set ν := y−x0 and Eν = E1+ν. By (C5),
φ(x, ξ) = φ(ξ) and hence Eν is also a solution of (23) for the pair of sets (L1 + ν, O1 + ν)

in �δ . Then it follows from an argument similar to the one used in the proof of Theorem 4.6
in [7] that

Hn−2(∂Eν ∩ ∂F) > 0. (26)

As in step 1, replace F by F ∪ Eν .
Step 4 In view of Theorem 4.2 and (26), there exists a regular point x1 of ∂Eν such that

x1 ∈ ∂Eν ∩ ∂Fand x1 is a Lebesgue point of ∂Eν ∩ ∂F with respect to the measureHn−2. In
this step, we will show that there is a neighborhood of x1 in ∂Eν that is a subset of ∂Eν ∩∂F .
Consider a ball B = Br (x1) such that Eν∩B is aC2 hypersurface, and towards a contradiction
assume that Eν ∩ ∂B �= F ∩ ∂B. According to Lemma 4.4, there is a φ-area minimizing G,
such that G ⊆ F and G ∩ Bc = F ∩ Bc. Notice thatHn−2(∂Eν ∩ ∂G ∩ B) > 0, since either
∂G intersects ∂Eν transversally or contains ∂Eν ∩ ∂F .

Now repeat Step 1 to find two φ-area minimizing Eν ∪G and Eν ∩G, which intersects in a
set with positiveHn−2-measure. Then by Theorem 4.2 there is a point x∗ such that Eν ∪G and
Eν ∩ G are regular at that. By Lemma 4.4 in [7] we conclude that ∂(Eν ∪ G) = ∂(Eν ∩ G)

in a neighborhood of x∗. This yields that Eν = G in an open subset of ∂Eν ∩ B. The
boundary of this set has positive Hn−2-measure, and we can repeat the above argument to
prove that Eν ∩ B = G∩ B (see the proof of Theorem 4.6 in [7] for more details). Therefore,
Eν ∩∂B = G∩∂B = F∩∂B. This is a contradiction, and hence ∂Eν is a subset of ∂Eν ∩∂F
in a neighborhood of x1.

Step 5: In this step we show that E1 � (E1 ∪ E2)
(1). Towards a contradiction suppose this

is not the case. Then by steps 3 and 4, we know that each connected component of ∂Eν ∩ ∂F
is an open subset of ∂Eν for some ν ∈ R

n . It follows from Proposition 4.3 that ∂Eν ∩ ∂F
intersects the boundary ∂� or the obstacle O1 + ν, which contradicts the assumptions of the
theorem, and hence E1 � (E1 ∪ E2)

(1).
Step 6: Finally we prove that E1 � E2. First we will show that E1 ⊂ E2, toward a

contradiction assume that E1 \ E2 has non-empty interior. Since E1 � F = (E1 ∪ E2)
(1),

then we have ∂F ⊆ ∂E2. On the other hand, from topological point of view

∂E2 ⊆ ∂F ∪ ∂(E1 \ E2). (27)

If there exists some point x0 ∈ ∂(E1 \ E2) \ ∂E2, then we must have

x0 ∈ int(Ec
2) ∩ ∂E1 ⊂ int(Ec

2) ∩ F ⊆ E1,

which contradicts x0 ∈ ∂E1 (E1 is open). It yields that ∂(E1 \ E2) ⊂ ∂E2. Therefore,
∂E2 = ∂F∪∂(E1\E2) by (27), whichmeans that the perimeter of F is less than the perimeter
of E2 unless Hn−1(∂(E1 \ E2)) = 0. This contradicts the assumption int(E1 \ E2) �= ∅.
Hence E1 ∪ E2, and consequently E1 � F = E2 by the conclusion in Step 5. ��

Remark 4.6 When n = 2 or 3, the statement in Theorem 4.5 holds without condition (C5).
Because all φ-area minimizing sets are regular even φ depends on variable x (Theorem 4.2).
Hence we does not need steps 3, and in step 4 we can choose ν = 0. A similar argument
implies E1 � E2.
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Proof of Theorem 1.10 The proof is inspired by Theorem 1.4 from [7]. Suppose that (11) is
not true. Since

{x ∈ � : u1(x) > u2(x)} =
⋃

(λ1,λ2)∈Q×Q

{x ∈ � : u1(x) > λ1 > λ2 ≥ u2(x)},

there must be some rational numbers λ1 > λ2 such that

Hn({x ∈ � : u1(x) > λ1 > λ2 ≥ u2(x)}) > 0.

Now define

Ei := {x ∈ R
n : ui (x) > λi },

then we have Hn(E1 \ E2) > 0. On the other hand, we can easily verify that the conditions
of Theorem 4.5 are satisfies, and hence E (1)

1 � E (1)
2 . ��

The idea in the proof of Theorem 4.5 allow us to prove a strict maximum principle for
φ-sub and super area minimizing sets. This result generalizes the result in [20,24].

Theorem 4.7 (Strict maximum principle) Assume that φ satisfies the conditions (C1)–(C5).
Let E ⊂ R

n be φ-sub area minimizing and F ⊂ R
n be φ-super area minimizing relative to

an open set �, and

E \ � � F \ �.

Suppose � satisfies the barrier condition, then

E (1) � F (1).

Proof By Lemma 4.4, there exists φ-area minimizing sets Ẽ and F̃ such that Ẽ ⊇ E and
F̃ ⊆ F . Since � satisfies the barrier condition,

∂ Ẽ (1) \ F̃ (1) ⊂ � and ∂ F̃ (1) ∩ Ẽ
(1) ⊂ �.

By Theorem 4.6 in [7] we have Ẽ (1) ⊂ F̃ (1). Moreover Ẽ (1) � F̃ (1) if n ≤ 3. In order to
prove the theorem for n ≥ 4, note that since E ∩ �c � F ∩ �c, there is a δ > 0 such that

dist(∂E ∩ �c
δ, ∂F ∩ �c

δ) > δ.

Let x0 ∈ ∂ Ẽ (1) ∩ ∂ F̃ (1) and choose y ∈ B(x0, δ) ∩ F̃c. Set ν := y − x0 and Eν = Ẽ + ν.
Since we have assumed (C5), φ(x, ξ) = φ(ξ), and hence Eν is also a φ-area minimizer in
�δ . Observe that

∂E (1)
ν \ F̃ (1) ⊂ �δ and ∂ F̃ (1) ∩ E

(1)
ν ⊂ �δ.

It again follows from Theorem 4.6 in [7] that E (1)
ν ⊂ F̃ (1) which is a contradiction. Thus

∂ Ẽ (1) ∩ ∂ F̃ (1) = ∅, and the proof is complete. ��
We shall need the following proposition to prove regularity results for solutions of (3).

Proposition 4.8 Under the assumption of Theorem 4.5, if d = dist(∂E1 ∩ �̄, ∂E2 ∩ �̄) and
this distance is taken in points |x − y| = d, such that x ∈ ∂E1 ∩ �̄ and y ∈ ∂E2 ∩ �̄, then
either x ∈ Ō1 ∪ ∂� or y ∈ ∂�.
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Proof Consider the points x and y such that violate the statement. Let ν = y − x , the
translation Ẽ1 = ν + E1 remains a solution of (23) for the pair of sets (ν + L1, ν + O1) =:
(L̃1, Õ1) in �̃ := ν + �. According to our assumption L̃1 � L2 and Õ1 ∩ ∂E2 = ∅.
Choose ε > 0 such that Õ1 + Bε � E2, and define Õ2 := O2 ∪ (Õ1 + Bε) which satisfies
Õ2 � Õ1. Then E2 is also a solution for (L2, Õ2). On the other hand, y ∈ ∂ Ẽ1 ∩ ∂E2 and
this contradicts Theorem 4.5, for Ẽ1 and E2 in the domain � ∩ �̃. ��

5 Regularity of solutions

First of all we shall notice that the continuity of the solution of (3) is a straightforward result
of the geometric comparison principle, Theorem 4.5. The proof is similar to Theorem 1.3 in
[7], then we just give the statement without proof in the following proposition.

Proposition 5.1 (Continuity) Let � ⊂ R
n be a bounded Lipschitz domain with connected

boundary, and assume φ : � × R
n −→ R satisfies (C1)–(C5). If u is a solution of (3) for

the boundary condition f ∈ C(∂�) and ψ ∈ C(�̄), then u is continuous.

In order to study the Holder regularity, we need the following property for the norm
φ(x, ξ).

Lemma 5.2 If φ : � × R
n −→ R satisfies (C1)–(C4), then for every p and q we have

p · φξ (x, q) ≤ φ(x, p).

Proof By the norm property (1), we can assume φ(x, p) = φ(x, q) = 1. Let f (t) :=
φ(x, tp + (1 − t)q), we have f (0) = 1 and for 0 < t < 1

f (t) ≤ tφ(x, p) + (1 − t)φ(x, q) = 1.

Alos, for t < 0 we have

f (t) ≥ φ(x, (1 − t)q) − φ(x, tp) = (1 − t) − |t | = 1.

Thus f ′(0) ≤ 0 which yields

φξ (x, q) · (p − q) ≤ 0.

Using the norm property (1), q · φξ (x, q) = φ(x, q) = 1 to deduce the lemma. ��

Nowwe are going to construct barriers and prove a comparison principle for such barriers.
The results and the proofs in this section are inspired by [23].

Lemma 5.3 Let � ⊂ R
n be a bounded Lipschitz domain. Suppose u ∈ C0(�̄) ∩ BV (�) is

a solution of (3) and v ∈ C2(�) ∩ C0(�̄) satisfies

(i) |∇v| > 0 in �,
(ii) u ≥ v on ∂�,
(iii) Lv > 0 in �,

where Lv = ∑n
i=1 ∂xi φξi (x, Dv(x)). Then u ≥ v in �. Similarly, if inequalities (i i) and

(i i i) are reserved, then u ≤ v in �.
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Proof Let E = {x ∈ � : v(x) > u(x) + ε} for some ε > 0, and w = max(u, v − ε). Notice
that w ∈ BV (�) ∩C0(�̄), w = u on ∂� and w ≥ ψ . Now let η ∈ C∞

0 (�) satisfy η = 1 on
E and 0 ≤ η ≤ 1 in �. Set

g = ηφξ (x, Dv),

so that g ∈ [C1
0 (�)]n . Note that u = w in � \ E , then by Theorem 2.1 in [2], we can write

∫
E
(u − w)∇ · g dx =

∫
�

(u − w)∇ · g dx = −
∫

�

g · D(u − w) dx

= −
∫
E
g · D(u − w) = −

∫
E
g · Du +

∫
E
g · Dv

= −
∫
E

φξ (x, Dv) · Du

|Du| |Du| +
∫
E
Dv · φξ (x, Dv) dx

≥ −
∫
E

φ(x,
Du

|Du| )|Du| +
∫
E

φ(x, Dv),

where in the last line we use the norm properties in Lemma 5.2 and relation (1). Since
u − w < 0 and ∇ · g > 0 in E (condition (iii)), we have∫

E
φ(x, Du) = −

∫
E

φ(x,
Du

|Du| )|Du| >

∫
E

φ(x, Dw),

which violates the fact that u is a minimal solution of (3). ��
Here, we first prove the regularity of the solutions near the boundary.

Lemma 5.4 Suppose � is a bounded, open subset of Rn with C2 boundary which the signed
distance d(·) to ∂� satisfies the relation (7). Assume f ∈ C0,α(∂�), and ψ ∈ C0,α/2 for
some 0 < α ≤ 1. If u ∈ C0(�) ∩ BV (�) is a solution of (3), then there exists positive
constants δ and C depending only on ‖ f ‖C0,α(∂�), ‖ψ‖C0,α/2 and ‖u‖C0(�̄) such that

|u(x) − u(x0)| ≤ C |x − x0|α/2,

whenever x0 ∈ ∂� and x ∈ �̄ with |x − x0| < δ.

Proof For each x0 ∈ ∂� we will construct functions w+, w− ∈ C2(U ) ∩ C0(Ū ) where
U = B(x0, δ) ∩ � for some δ > 0 is to be determined later, such that

(i) w+(x0) = w−(x0) = f (x0),
(ii) |w+(x) − f (x0)| ≤ C |x − x0|α/2 and |w−(x) − f (x0)| ≤ C |x − x0|α/2 for every

x ∈ U .
(iii) |∇w+| > 0 and |∇w−| > 0 in U .
(iv) w− ≤ u ≤ w+ on ∂U .
(v) Lw+ < 0 < Lw− in U .

By applying Lemma 5.3 to w+ and w−, we obtain the inequality w− ≤ u ≤ w+ in U . This
accomplishes the proof by the property (ii).

In order to construct the function w+, notice that d ∈ C2({x : 0 ≤ d(x) < δ0}) for some
δ0 > 0, because ∂� ∈ C2. We choose δ < δ0 and let

v(x) = |x − x0|2 + λd(x),

w+(x) = Kvα/2(x) + f (x0),
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where K and λ are to be determined. Obviously (i) and (ii) are valid. To establish (iii), observe
that

|∇w+| = K
α

2
v

α
2 −1|∇v|,

|∇v| = |2(x − x0) + λ∇d| ≥ λ|∇d| − 2|x − x0|
≥ λ − 2|x − x0| > 0,

provided λ > 2δ. We also have used the fact that |∇d| = 1 in the last relation.
For (iv) on ∂B(x0, δ) ∩ �, we have w+(x) ≥ K δα ≥ ‖u‖C0(�̄) if K is chosen large

enough. On ∂� ∩ B(x0, δ) we have

u(x) = f (x) ≤ f (x0) + ‖ f ‖C0,α |x − x0|α ≤ w+(x),

provided K ≥ ‖ f ‖C0,α(∂�).

To establish (v), we note that φξ (x, tp) = φξ (x, p) and Dw+ = K α
2 v

α
2 −1Dv, then

Lw+ = divx (φξ (x, Dv)) = divx (φξ (x, 2(x − x0) + λDd(x)))

= divx (φξ (x,
2

λ
(x − x0) + Dd(x))).

Since d is C2 near the boundary ∂� and satisfies the relation (7), then for a large value of λ,
we will have uniformly Lw+ < 0 in the δ-neighborhood of the boundary.

A similar construction provides function w−(x) = −Kvα/2(x) + f (x0) for a suitable
positive constant K . ��
Proof of Theorem 1.11 For s < t , consider the supersets Es , Et of u and assume that
dist(∂Es, ∂Et ) = |x − y| where x ∈ Et and y ∈ Es . It is sufficient to show that
|u(x) − u(y)| = |t − s| ≤ C |x − y|α/2 whenever |x − y| < δ, where δ is given by
Lemma 5.4. Observe that Ot ⊂ Et � Es . By Proposition 4.8, we just have two following
cases:

(i) If either x or y belongs to ∂�, then our result follows from Lemma 5.4.
(ii) x ∈ ∂Et ∩ Ōt , then u(x) = ψ(x) and u(y) ≥ ψ(y), so

0 < t − s = u(x) − u(y) ≤ ψ(x) − ψ(y) ≤ [ψ]0,α/2|x − y|α/2.

��
Proof of Theorem 1.12 The proof is similar to that of Lemma 5.4. Indeed it is enough to con-
struct functions w+ and w− satisfying conditions (i)–(v) while the condition (ii) is replaced
by

|w±(x) − f (x0)| ≤ C |x − x0| 1+α
2 .

For this, put

w+(x) := Kv
1+α
2 (x) + ∇ f (x0) · (x − x0) + f (x0), (28)

and notice that on ∂� ∩ B(x0, δ), by the C1,α regularity of f there is a positive constant C1

such that the following inequality is established

u(x) = f (x) ≤ f (x0) + ∇ f (x0) · (x − x0) + C1|x − x0| 1+α
2 .

Therefore, the relation (iv), u ≤ w+, will be obtained provided K ≥ C1. The rest of the
proof is exactly the same. ��
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