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Abstract
We study existence, structure, uniqueness and regularity of solutions of the obstacle problem

inf / ¢ (x, Du),
ueBVi(Q) Jq

where BV (Q) = {u € BV(R") : u > v in Qand ulyq = fla), f € Wy (R"), ¥ is the

obstacle, and ¢ (x, ) is a convex, continuous and homogeneous function of degree one with

respect to the £ variable. We show that every minimizer of this problem is also a minimizer

of the least gradient problem

ue}c{lff(g) R ¢(x, Du),

where Af(Q) = {u € BV(Q) : u >, and u = f in Q°}. Moreover, there exists a vector
field T with V- T < 0 in  which determines the structure of all minimizers of these two
problems, and T is divergence free on {x € Q : u(x) > v (x)} for any minimizer u. We also
present uniqueness and regularity results that are based on maximum principles for minimal
surfaces. Since minimizers of the least gradient problems with obstacle do not hit small
enough obstacles, the results presented in this paper extend several results in the literature
about least gradient problems without obstacle.
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1 Introduction

Least gradient problems are closely related to the study of minimal surfaces and appeared in
the pioneering work of Bombieri et al. [4] (see also [11] for stability results on functions of
least gradient). They also arise as the limiting case of p-harmonic functions as p — 1 [8],
and due to their important applications in conductivity imaging, such problems have received
an extensive attention in the past decade (see [6,7,10,12—18,24]). In [21], the authors studied
exietence, uniqueness, and regularity of functions of least gradient, and the results were
later extended to least gradient problems with obstacle in [23]. Least gradient problems
with constraint have been carefully studied in [9,22]. In this paper we investigate existence,
structure, uniqueness, and regularity of minimizers of general least gradient problems with
obstacle (see the problem (3) below).

Let @ be a bounded open set in R” with Lipschitz boundary and ¢ : 2 x R” — R bea
continuous function satisfying the following conditions:

(C1) There exists & > 0 such that «|€]| < ¢(x, ) < a™'|g|forall x € Qand & € R™.
(C2) & — ¢(x, &) is anorm for every x.

For our results concerning the regularity of solutions we will also assume the following three
additional assumptions

(C3) ¢ € Wli’coo away from {£ = 0}, and there exists C > 0 such that
ez (x. E)p' pl = Clp'|%,

forall € € " ! and p € R", where p’ := p — (p - £)E.
(C4) ¢ and D¢ ¢ are w200 away from {£ = 0}, and there are positive constants p and A such
that

d(x, &) + |Dep(x, §)| + |D§¢(x,é)| + |D§¢(x,$)l + p|DxDep(x,§)|
+ p|Dx D¢ (x. &) + p*|DiDsp(x, &) <A,  forallx € Q,& € §"".

(C5) For the result of regularity we need to assume that the integrand ¢ (x, &) = ¢ (&) is
independent of x.

It is elementary to verify that if ¢ : Q x R" — R satisfies (C1)—(C4), then for every
p,q € R" and 1 € R we have

$e(x,Ap) = Pz (x, p), and p-P:(x, p) = ¢(x, p). (1)
For u € BV, (R"), let ¢ (x, Du) denote the measure defined by

/ ¢ (x, Du) = / ¢ (x,v"(x))|Du| for any bounded Borel set A,
A A

where |Du/| is the total variation measure associated to the vector-valued measure Du, and
V" is the Radon—-Nikodym derivative v* (x) = f\% . Basic facts about BV functions imply
that if U is an open set, then

/qb(x, Du) :sup{/ uV-Ydx : Y € C®U;R"), supg’(x, Y (x)) < 1}, )
U U

where ¢0 (x, -) denotes the norm on R” dual to ¢ (x, -), defined by

¢%(x, &) ==suplé - p: p(x, p) < 1},
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(see [2,7]). For u € BV(R2), fQ ¢ (x, Du) is called the ¢-total variation of u in Q2. Also,
if A, E are subsets of R”, with A Borel and E having finite perimeter, then we shall write
Py (E; A) to denote the ¢-perimeter of E in A, defined by

Py(E; A) = /A ¢ (x, DXE),
where x g is the characteristic function of E. We will also write Py (E) to denote Py(E; R").
We shall need the following lemma.

Lemma 1.1 (Lemma 2.2 in [7]) Let A C R" be a Borel set and E1, E; C R" be of locally
finite perimeter with respect ¢. Then

Py(E1 U Ep; A) + Py(E1 N Ep; A) < Py(Eq; A) + Py(E; A).
Definition 1.2 We say that a function u € BV (R") is a ¢-total variation minimizing in a set
Q CR"if
/ ¢(x, Du) < / ¢ (x, Dv) for all v € BV (R") such that u = v a.e. in Q°.
R" R"

Similarly, we say that E C R" of finite perimeter is ¢-area minimizing in  if
P4(E) < Py(F) forall F C R" such that FNQ° = ENQ° ae..
Moreover, E C R” is called ¢-super (sub) area minimizing in €2, if
Py(E) < Py(E U F) (respectively Py(E) < Py(E N F))

for all F C R” such that F N Q¢ = E N Q¢ almost everywhere, i.e. (F N Q°)A(E N Q°)
has zero Lebesgue measure.

Let f € BV(R") and ¥ € W'1(Q), and consider the obstacle least gradient problem

inf f ¢ (x, Du), 3)
Q

u€BVy
where
BVi(Q):={u e BV(Q) :u |spo= f and u(x) > ¥ (x) fora.e. x € Q}.

In general the problem (3) may not have a minimizer (see [7,10,21]). However the relaxed
problem

min (/ ¢ (x, Du) +/ o (x, ve)|lu — f|>’ “
ueAy Q IR

always has a solution, where Ay = {u € BV(R") : u > ¢, and u = f in Q°}, and vg is
the outer pointing unit normal vector on d€2. Indeed let {v,};2 ; be a minimizing sequence
for

F(v) := /R o(x, Dv). ©)

Since BV (R") «— 511 e I 1s coercive in BV (R") (a consequence of (C1)) and weakly lower
semicontinuous (see [7] for more details), it follows from standard arguments that {v,}° |
has a subsequence converging strongly in £} to a function u € Ay with

loc
/(ﬂ(x,Du)s inf /(p(x,Dv),
Rn veBV(Q) Jrn
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and hence v is also a minimizer of (4). However, in general, the trace u |3 on 92 may not be
equal to f, leading to possible nonexistence for the problem (3). In addition, we shall prove
the following result.

Remark 1.3 Since ulyq = f for every u € BVy(Q2), the compatibility condition f > 1/ on
02 must be satisfied. Every f € £1(9€2) can be extended to a function in BV (R") (denoted
by f again) with f > ¢ in , and throughout the paper we shall naturally assume that

f>¢yinQ.

Proposition 1.4 Ler Q2 be a bounded open set in R™ with Lipschitz boundary, f € BV (R")
and ¢ € Wh(Q) with f>=vinQ and ¢ : Q x R" — R be a continuous function
satisfying (C1)—(C2). Then (4) has a solution and

ué%fvf/gﬁ’(x’ Du) = min (/qu(x, Du)+/agz go(x,m)w—ﬂ).

In particular, every minimizer of (3) is also a minimizer of (4).

Indeed in order to prove existence of solutions to (3) we need a condition on 2 which is
defined as follows. Remind that for a measurable subset E of R”, we define

(B NE
ED .— {xeR":limMZI}

r—=0  H"(B(r)) ©

Definition 1.5 Let 2 C R” be a bounded Lipschitz domain and ¢ : @ x R" — R is
continuous function that satisfies (C1)—(C2). We say that Q2 satisfies the barrier condition if
for xo € 92 and € > O sufficiently small, if V minimizes Py (- ; R") in

(W CQ: W\ B(e x)) =2\ B(e, x)}
then
AV NaQN B(e, xo) =0,
where V() is defined as in (6).

Remark 1.6 Intuitively, if Q satisfies the barrier condition, then at every point on 92 one
can decrease the perimeter of 92 by pushing the boundary inwards. In [7], a convenient
interpretation of the barrier condition, when 9<2 is sufficiently smooth, is provided:

n
- Z Ox; ¢g; (x, Dd(x)) > 0, on adense subset of 9€2, 7

i=1
where d(-) is the signed distance to 92 by

| dist(x, 02), ifx € Q,
dx) = { —dist(x,9Q), if not.

We will show that if 2 satisfies the barrier condition, then every solution of (4) is also a
solution of (3).

Theorem 1.7 Suppose that ¢ : Q x R" — R is a continuous function that satisfies (C1)—
(C2) in a bounded Lipschitz domain Q@ C R", f € C(0Q) with f > ¥, and y € WHI(Q).
If Q satisfies the barrier condition with respect to ¢, then every solution of (4) is also a
solution of (3). In particular, (3) has a solution.
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We only require the barrier condition for our existence result, Theorem 1.7. Indeed our
regularity and uniqueness do not assume this condition which is contrast with the results in
[21].

We shall also prove that there exists a fixed vector field 7' that determines the structure of
level sets of the minimizers of (3) and (4).

Theorem 1.8 Let Q@ C R”" be a bounded Lipschitz domain and ¢ : 2 x R" — R is
continuous function that satisfies (C1)—(C2), and f € Wol’l(]R”). Then there exists a vector
field T € (L))" with ¢°(x, T) < 1 a.e. in , and V - T < 0 such that

ﬂ)_T Dw L de in ®
¢><x, Dwl) = . Duw|’ |Dw| — a.e. in 2,
d(x,vo)lf —w| = [T, (f —w)vgl, H' ' —ae indQN{w > ¥}, )

for every minimizer w of (3) or (4). Moreover T is divergence-freein{x € Q2 : w(x) > ¥ (x)}.

The above result generalizes Theorem 1.2 in [12] and simplifies to the following result in
the special case ¢(x, ) = a(x)|&].

Corollary 1.9 Let Q C R" be a bounded Lipschitz domain and assume that a € C(Q) is a
non-negative function, and [ € W(} ’1(R”). Then there exists a vector field T € (L% (2))"
with|T| < aa.e.inQ, and V-T < 0 such that every minimizer w € Ay of the least gradient
problem

inf / alDvl, (10)
veAr JQ
satisfies
Dw .
-—— = |T|=a, |Dw|—a.einf,
[Dw|

alf —w| =[T,(f —wvgl, H'" ' —ae indQN{w >y}
Moreover T is divergence-free in {x € Q : w(x) > ¥(x)}.

The above corollary asserts that there exists a vector field 7 such that for every minimizer

w of (10) the vector field % is parallel to T, | Dw|-a.e. in Q2. Moreover, if T is regular

enough so that the trace of T can be represented by a function 73, € (L*°(3€2))", then up to
a set with H"~!-measure zero

{(xedQn{w>v}:whe > f1S{x€d: Ty -vo =Ty},
and similarly
{xedQnfw>y}rwhe < f} S{xredQ: T;r - vo = —[Tr[}
In other words w|yq = f, H" '-a.e.in
(r €dQN{w > ¥} : [Ty, - val < T 1},

for every minimizer w of (10). These results extend the second authors results about structure
of minimizers of least gradient problems [12] for least gradient problems with obstacle.

We will also prove the following results about the uniqueness and regularity of minimizers
of the obstacle least gradient problem (3).
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Theorem 1.10 (Comparison principle) Ler Q2 C R" be a bounded Lipschitz domain with
connected boundary, and assume ¢ : Q2 x R" — R satisfies (C1)—(CS5). Suppose that u,
and uy are solutions of (3) for boundary conditions f1, fo € C(3R2) respectively and the
obstacle € C (Q). Then

luy —uz| <supl|fi — f2|  ae inQ.
02

Moreover,
uy > uy ae. in 2, if for > f1 on 0Q2. (11)
In particular, for every f € C(0R), there is at most one solution for (3).

Theorem 1.11 (Holder regularity) Suppose that ¢ : Q@ x R* — R satisfies (C1)—(CS5), and
let 2 be a bounded, open subset of R" with C* boundary such that the signed distance d(-)
1o 9 satisfies (7). Assume f € C**(Q), and v € COY*(Q) for some 0 < o < 1. If
u € BV () is a solution of (3), then u € COe/2(Q).

Theorem 1.12 (Lipschitz regularity) Suppose that ¢ : 2 x R* — R satisfies (C1)—(C5)
and let Q be a bounded, open subset of R" with C? boundary which the signed distance
d(-) to 0S2 satisfies the relation (7). Assume f € Ch(39), and v e CO’HTH(S_Z) for some

1+

0 <o <1.Ifu e BV(Q) is a solution of (3), thenu € cO 7" ().

Since minimizers of the least gradient problems with obstacle do not hit small enough
obstacles, the results in this paper extend and unify several results in the literature about least
gradient problems without obstacle. Indeed if

su < inf f,
xeg V= x€dQ !

then u is a minimizer of (3) if and only if it is a minimizer of

inf (x, Du).
{ueBV(Q):ulpo=1} /Q ¢

Our results in Sect. 3 are inspired by the second author’s work in [7] and use several ideas
from this paper. However, analysis of the obstacle problem requires a careful refinement of
those ideas. We shall refer to the results in [7] without repeating the details of the arguments.

2 Structure of minimizers

In this section we study the relationship between minimizers of the least gradient problems
(3) and (4), and prove several results about existence and structure of minimizers of these
problems.
Let v denote the outer unit normal vector to d€2. Then for every V € (£%°(£2))" with
V -V e L*(Q) there exists a unique function [V, vq] € £§,H (0€2) such that
/ [V, voludH"! :/ uV - Vdx +/ V. Dudx, ueCYQ). (12)
ko) Q Q

Moreover, foru € BV () and V € (L*(RQ))" with V - V € L"(R), the linear functional
u +— (V - Du) gives rise to a Radon measure on €2, and (12) is valid for every u € BV (R2)
(see [1,3] for a proof).
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We first show that there exists a vector field 7' that determines the structure of all minimizers
of (3) and (4). Next we define the dual of the least gradient problem (3). Let E : «h@)" —
Rand G : Wg’l(Q) — R be defined as follows

0 uek

too u ¢k, (13)

E(P) ::/ ¢(x, P+Vfidx, Gu) :{
Q

where
Ki={uew, (@:u>y—f)
Then the problem (3) can be written as

(P) inf  E(Du) + G(u).
uew Q)

By Fenchel duality (see Chapter III in [5]) the dual problem is given by

(P*) sup  {—E*(V)—G*(V-V)},
Ve(L= @)

where E* and G* are the Legendre-Fenchel transform of F and G. By Lemma 2.1 in [12]
we have

—(Df, V) if¢(x,V(x)) <1inQ
+00, otherwise.

E*(V) = {
One can also compute G* : W~1>°(Q) — R as follows.

Lemma 2.1 Suppose v =V -V for some V € (LX(Q2))". Then

{12 1EE
where

C*i={ve W(Q) : (v,u) <0, forall0 < u e Wy (Q)).
Moreover there exists a real valued function C (V') which only depends on 'V near 02, i.e.

C(V)=C(Vp) if Vi — V2 e (LZ(Q)",

and for v € C*, we have
G*(v)=—/QV~D(1/f—f)+C(V). (14)

Proof First note that

G*(w)= sup ((v.u) — G(u)) = sup(v, u).
uewy () uek

Then if v ¢ C*, there exists 0 < ug € Wé’l(Q) such that (v, ug) > 0. Hence for any u €
and A > 0, we have u + Aug € K and (v, u + Aug) — oo when A — oo.

For v € C*, consider the decomposition u = u; — u_ where u1 = max{zu, 0}. Then
(v, u) < (v, —u_), and hence

G*(v) = sup (v, u).
0>uell

@ Springer



182 Page8of 19 M. Fotouhi, A. Moradifam

Now consider the Lipschitz function . € Cg’l(Q) with value in [0, 1] such that . = 1 in
Qe = {x € Q : dist(x, Q) > €} and Vi = —éVQ a.e.in Q\ ¢, in which vq is a Lipschitz
extension of the boundary normal vector of d<2 to its neighborhood. If  — f <u < 0in €,
we have n. (Y — f) € K, and

N — )= ne (¥ — f) if 0 <€ <e.
Since v € C*, (v, ne(y¥ — f)) is monotone in € and the limit
lim (v, ne (¥ — f)) (15)
e—>0
exists. Thus we have

G*(v) > lim (v, ne (¥ — f))

— lim (/Q 1<w—f)v-vg—nev~z><w—f>dx—[ V-Dw—f)dx)

\Qe €

:hm</ 1(Iﬂ—f)V'VQ>—‘/V'D(w_f)dx
e—0 Q\Qef Q
=C(V)—/V-D(w—f)dx,

Q

where

C(V):= lim (/ l(1/f—f)V~vQ).
e—0 Q\Q €

Note that, in view of (15), the above limit exists and only depends on V near 9€2.

On the other hand, for every ¥ — f < u < 0, wehave 0 < ne(u— (¥ — £)) € Wy (), 50
0> (v, ne(u—(¥—[))). Thus (v, neu) < (v, ne(Y— f)). Sincelime 0 e —ully11q) =
0, we have lim¢_¢(v, neu) = (v, u). Hence

(v.u) < cm—/ V. D@ — f)dx,
Q

G*(v) = C(V) —/ VD — f)dx.
Q
The proof is now complete. O

Proof of Theorem 1.8 The dual problem (P*) has a solution. This follows from Theorem
[I1.4.1 in [5]. Indeed it easily follows from (2) that I(v) = fQ ¢(x, Dv) is convex, and
J: £Y(©) — R with J(p) = fg ¢(x, p)dx is continuous at p = 0 (a consequence of (C2).
Therefore the condition (4.8) in the statement of Theorem II1.4.1 in [5] is satisfied, duality
gap is zero, and the dual problem (P*) has a solution. Let T be a solution of the dual problem
(P*), then it must satisfy V - T € C* (i.e. V - T < 0 in the sense of distributions) as well as
#%(x, T(x)) < 1. The later relation yields that

p-T(x) <¢(x,p), forallvectors p. (16)
Moreover, we have

sup(P*) = (T, Df) + (T, DY — f)) — C(T) = (T, DY) — C(T).
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Let w € Ay be a minimizer of (4), and € > 0. Then by (16), we have

Dw Dw
/¢(X,Dw)=/ o (x, )| Dw] Z/ T -——|Dw| (17)
Q Q [Dw| Q

[Dw|
:/ T -Dw
Q

= sup(P*) —i—/ T -Dw—1v)+ C(T)
Q

SUP(P*)—(T,D(Ilf—f)>+C(T)+/QT~D(w—f) (18)

sup(P*>+G*<V-T)+f T-Dw— f)

Q

— sup(P*) + G*(V - T) + / T - D(e(w — f))
Q

+/QT-D[(1—ne)(w—f)]

> sup(P*) 4+ G*(V-T) + inf / T -Du (19)
Y—f<ueBVo() Jq

+/QT-D[(1—77e)(w—f)]

= sup(P*) + sup(V - T, u) + inf / T -Du +/ T -D[(1—n)(w— f)]
uek uek Jo Q

=sup(P*) + sup(V - T, u) — sup(V - T, u) —I—/ T-D[(1—=n)(w— )]
uelkl uell Q

= sup(P*) + /9 T-D[(1—n)(w— f)]

= sup(P*) + /Q T-[(w—f)D(1 =ne) + (1 =no)D(w — )]

> sup(P*) — / (x

Q\ Qe

Vo
LY f))+/(1 9T - D(w — f)
€ Q

=sup(P*>—/ . 22w — £l - ||T||(L°°(Q))"/ IDw — 1),
Q\Q € o\Q

‘ (20)

where we have used (16) to obtain the inequality (20). Letting € — 0, we have f Q. |D(w -
f )’ — 0 and get

/ ¢><x,Dw>+/ 6(x v)lw — f1 = sup(P*) = inf(P).
Q IR

On the other hand since BV;(2) C Ay, the above inequality also holds in the opposite
direction. Thus

wien,cf\_,- </Q¢(x, Dw) + /mqb(x, ve)|lw — fl) = wdigr‘l/i(m/gmx, Dw). (2D
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Note also that if w € Ay is a minimizer of (4), then all the above inequalities are equalities.
In particular (8) and (9) hold because of (17) and (20), and we can deduce by (19) that

W—ff}AIéBVo(Q)j;z = (ne(w = £)) (22)

Now let @ € Q and suppose w > ¥ on w. Then for ¢ € C°(w) and |f| small, we have
w + te > ¢ in w. Hence for € small enough

wtitg— f=n(w+ig—f) in o,
and ¥ — f < ne(w +tp — f) € BVp(R2). Thus it follows from (22) that

lim/T~D(n€(w—f))§/T-D(ne(w-Hw—f)),
e—~0Jq Q

and hence
0 < lim / T - D(tnep) = lim / T - D(tnee)
e—0 Jo e—0J,
= lim / T - D(tp)
e—0J,
= / T - D(tp).
w
Therefore
(V-T,p)=0, Yo € Ci°(w),
and consequently 7' € (L*(2))" is divergence-free on {w > ¥}. ]

Proof of Proposition 1.4 The proof follows from (21) in the proof of Theorem 1.8, and the
argument right before the statement of Proposition 1.4. O

3 Existence
In this section we study the existence of the obstacle least gradient problem (3), and prove
Theorem 1.7. Consider an arbitrary function u € Ay and let

E; ={x e R" : u(x) > t},
Ly :={x e R": f(x) > t},
O; ={x eR" : Y (x) > 1}.

The following theorem shows that the level sets of the solutions of (4) solve a ¢-area mini-
mizing problem with obstacle.

Theorem 3.1 Let Q2 be a bounded Lipschitz domain and u be a solution of (4), then E; is a
solution of the following variational problem,

min{Py(E; Q) : ENQ =L NQand E D ONQJ, (23)
in which O = O; and L = L;.
Remark 3.2 1t is not difficult to see that dE; \ O is locally ¢-minimizing in € as well as

dE; N O is locally ¢-super minimizing in €.
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In order to prove Theorem 3.1, we need the following lemma. It will also help us to study
the relation between the minimizers of (3) and (4). Therein v and v~ stand for the outer
and inner trace of v € BV (R") on 9%2.

Lemma 3.3 Assume uy is a solution of (4) for the obstacle Yy such that ¥y /" and
Uy —> uin L](SZ) and u,jf — utin 51(89).

Then u is a solution of (4) for the obstacle V.

Proof The proof is similar to the proof of Lemma 2.7 in [7] and we present it here for the
sake of completeness. Given g € £13Q; H" 1), define

Iy(v; 2, g) = / ¢(x,vo)lg — v [dH""! +f ¢ (x, Dv),
Q2 Q
where vq denotes the outer unit normal to 2. Since (5) is lower semicontinuous,
/ ¢(x, Du) < liminf/ ¢ (x, Duy),
Q k Q
and the £! convergence of the trace, implies that
Iy (u; €2, ut) < limkinf Iy (uy; 2, u,j). (24)
Now for any v € BV (R") such that v > i, then v > 1/ and we have
Ty (ug; 2, u) < Ip(v; Q, u)

< Lv: Q,u+>+/ b vt — uf | dH™!
Q2
51¢(v;9,u+)+a—1/ lut —ufan "
Q2

It follows from this and (24) that Iy (u; €2, ut) < Iy(v; Q, u™t). ]

Proof of Theorem 3.1 For t € R, let u; := max(u,t), uy := u — uy, ¥ = max(y, t).
Consider v € BV (R") such that v = u a.e. in Q€ and Y1 < v,then ¥ < ¥ +upy < v+up
and v + up = u a.e. in Q°, where we have used the assumption ¥ < u. Since u is a solution
of (4), we can write

/¢(X,DM1)+/¢(X, DM2)=/¢>(X,DM)
Q Q Q

5/ ¢(x, D(v +uz))
Q

S[ ¢(X,Dv)+/ ¢ (x, Du2).
Q Q

The last inequality, the triangle inequality, is an immediate consequence of (2). Hence u
is also a solution of (4) for the obstacle 11 and the boundary condition f] := max(f,t).
Repeating the same argument, one verifies that

0 ifu<t,
Xe.r :=min(1, gul) ={elu—1) ifr<u<t+e,
1 ift +¢ <u,
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is also a solution of (4) for the obstacle ¥, := min(], %l[f]), and boundary condition

fer ==min(1, 1 f)).
It is straightforward to check that

Xer = X = xg, in LR, x& — xFin£'@QHh.

Notice that ¢ ; " xo,. Thus Lemma 3.3 implies that x g, is a solution of (4) for the obstacle
X o, and the boundary condition . O

Next we use the barrier condition to prove the following lemma. The proof is similar to
the proof of Lemma 3.4 in [7] and we omit it.

Lemma 3.4 Let 2 be a bounded Lipschitz domain satisfying the barrier condition with respect
to ¢, and assume that E is a solution of (23). Then

{x ed2n AED . B(e,x)NIED Q for some € > 0} C O.

Proof of Theorem 1.7 The proof follows from Proposition 1.4, Lemma 3.4, Theorem 3.1, and
an argument similar to that of Theorem 1.1 in [7]. ]

4 Maximum and comparison principles

This section is devoted maximum and comparison principles which will be our main tools in
proving uniqueness and regularity results. At the first, we review some well-known definition
and results about the regularity theory for minimal surfaces.

Definition 4.1 Let E C R". A point x € JE is called a regular point if there exists p > 0
such that 9E N B(x, p) is a C? hypersurface. We denote the set of all regular points of § E
by reg(d E). We say that x is a singular point if x € sing(0E) = 0E \ reg(0E).

The following estimate on the size of singular sets of ¢-area minimizing sets has been
proved in [19] (see also Remarks 2.7 and 2.8 in [7]).

Theorem 4.2 Let Q2 C R”, and assume ¢ : Q x R" — R satisfies (C1)—(C4). If E is ¢-area
minimizing in 2, then

H* 3 (singAED)N Q) < o0, ifn >4,
sing@EM) N Q =4, ifn <3.

We shall also need the following proposition which states that every connected components
of regular points of a ¢-area minimizing set £ in 2 must reach the boundary 9€2.

Proposition 4.3 Let Q2 be a bounded Lipschitz domain with connected boundary and assume
that E C R" is a solution of (23) for some sets (L, O). If R is a nonempty connected
component of reg(AEMWYN Q, then RNIQL # Bor RN O # B

Proof The proof follows directly from Lemma 4.2 in [7]. In fact, if RN O =@, it will be a
¢-area minimizer and we can apply that lemma. O

In order to prove the strict maximum principle, we first prove a couple of intermediate
results.
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Lemma 4.4 Assume that ¢ satisfies conditions (C1)—(C2). Let E be a ¢-sub (or ¢-super)
area minimizing in Q2. There exists a ¢-area minimizing G such that G N Q¢ = E N Q€ as
wellas G D E (or G C E).

Proof First note that there is a ¢-area minimizing set G in Q such that G N Q¢ = E N Q€.
Since E is ¢-sub area minimizing,

Py(E) < Py(ENG).
Thus it follows from Lemma 1.1 that
P¢(E uG) < P¢(G).

Hence G = E UG is also ¢-area minimizing and E C G. One can similarly show that every
¢-super area minimizing set contains a ¢-area minimizing set G with the stated properties.
O

We will deduce the uniqueness of the solution and the comparison principle (Theo-
rem 1.10) from the following theorem.

Theorem 4.5 Assume that ¢ satisfies conditions (C1)—(C5). Suppose that E| and E, are
solutions of (23) respectively for pairs of sets (L1, O1) and (L, O3). Also, we have

Ly @ Lyand O) € O;.

Suppose 2 satisfies the barrier condition, or

dEM\EL c Qand 9ES" N EY c @, (25)

then EEI) S Eél).

Proof In view of Theorem 4.2, int(El.(l)) differs from E; in a set of measure zero and we

replace E; by int(E l( 1)). We prove the result in a series of steps.
Step 1 We will show that G = E1 N E; and F = E{ U E, are solutions of (23) for the
pairs of sets (L1, Op) and (L2, Oy), respectively. Since E| and E; are solutions of (23),

Py(E1) < Py(G), and Py(Ep) < Py(F).
By Lemma 1.1, we have
Py(G) + Py(F) < Py(E1) + Py(En),

and hence Py(G) = Py(E1) and Py(F) = Py(E>). Thus G and F are also solutions of the
problem (23).

Step 2 If xo € dE1 N dF, then there is a neighborhood of xp in which E| is a ¢-area
minimizing and F is ¢-super area minimizing. This immediately follows from the observation
that xo ¢ 0; U 8Q. Otherwise, xg € O] € 05 or xg € 2. In the first case, xg € O, is an
interior point of F which is not possible. In the second case, xg € 0Q2 N IE| N d F violates
the barrier condition.

Step 3 In this step we show that if E; N 9F # @, then H"~2(9E, N dF) > 0, where
E, = E1 + v for some small vector v € R”. In order to see this, define

Qs = {x € Q: dist(x, 0Q2) > §},
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and choose § > 0 such that
distQE; N Q5,F N Q) > 8, dist(0y, 05) > 6.

Letxg € 9E1NJF and choose y € B(xg, §)NF¢.Setv := y—xpand E, = E|;+v. By (C5),
¢(x,&) = ¢ (&) and hence E,, is also a solution of (23) for the pair of sets (L1 + v, O1 +v)
in Q5. Then it follows from an argument similar to the one used in the proof of Theorem 4.6
in [7] that

H'2(E, NOF) > 0. (26)

As in step 1, replace F by F U E,.

Step 4 In view of Theorem 4.2 and (26), there exists a regular point x; of d E,, such that
x; € dE, NdFand x; is a Lebesgue point of d E\, N d F with respect to the measure H"2.In
this step, we will show that there is a neighborhood of x| in 9 E), that is a subsetof 0 E,, N F.
Consideraball B = B, (x;) such that E,NBisa C> hypersurface, and towards a contradiction
assume that £, N dB # F N dB. According to Lemma 4.4, there is a ¢-area minimizing G,
such that G € F and G N B¢ = F N B¢. Notice that H"_Z(BE,, NJG N B) > 0, since either
dG intersects d E,, transversally or contains 0 E, N 9 F.

Now repeat Step 1 to find two ¢-area minimizing E, UG and E, NG, which intersects in a
set with positive " ~2-measure. Then by Theorem 4.2 there is a point x, such that £, UG and
E, N G are regular at that. By Lemma 4.4 in [7] we conclude that 9(E, U G) = d(E, N G)
in a neighborhood of x,. This yields that £, = G in an open subset of dE, N B. The
boundary of this set has positive H"~2-measure, and we can repeat the above argument to
prove that £, N B = G N B (see the proof of Theorem 4.6 in [7] for more details). Therefore,
E,NdB = GNIB = FNJB. Thisis a contradiction, and hence d E, is a subset of 0 E, N0 F
in a neighborhood of x;.

Step 5: In this step we show that E1 € (E; U E>)M . Towards a contradiction suppose this
is not the case. Then by steps 3 and 4, we know that each connected component of E,, N3 F
is an open subset of d E, for some v € R". It follows from Proposition 4.3 that 0E, N 9 F
intersects the boundary 92 or the obstacle O 4 v, which contradicts the assumptions of the
theorem, and hence E; € (E; U Ez)(l).

Step 6: Finally we prove that £ € E,. First we will show that E; C E», toward a
contradiction assume that £ \ E» has non-empty interior. Since £y € F = (E1 U E)WD),
then we have d F C 9 E;. On the other hand, from topological point of view

0E, COFUJ(EY\ Ep). 27
If there exists some point xg € d(E1 \ E2) \ dE>, then we must have
xo € int(ES) N JE; C int(ES) N F C Ey,

which contradicts xg € dE; (E; is open). It yields that d(E; \ E>) C 9dE>. Therefore,
0E, = 0FUA(E1\ E2) by (27), which means that the perimeter of F is less than the perimeter
of E, unless H"~'(d(E1 \ E2)) = 0. This contradicts the assumption int(E| \ Ez) # 0.
Hence E1 U E», and consequently E; € F = E; by the conclusion in Step 5. O

Remark 4.6 When n = 2 or 3, the statement in Theorem 4.5 holds without condition (C5).
Because all ¢-area minimizing sets are regular even ¢ depends on variable x (Theorem 4.2).
Hence we does not need steps 3, and in step 4 we can choose v = 0. A similar argument
implies E € E».
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Proof of Theorem 1.10 The proof is inspired by Theorem 1.4 from [7]. Suppose that (11) is
not true. Since

(xeQ:iui(x) >u(x)} = U fxeQ:iui(x) > x> Ay > ur(x)},
(A1,22)€QxQ

there must be some rational numbers A; > A; such that
H'({x € Q:up(x) > A1 > Ay > usr(x)}) > 0.
Now define
E; :={x e R": u;(x) > A;},

then we have H"(E; \ E2) > 0. On the other hand, we can easily verify that the conditions
of Theorem 4.5 are satisfies, and hence E}l) c Eél). ]

The idea in the proof of Theorem 4.5 allow us to prove a strict maximum principle for
¢-sub and super area minimizing sets. This result generalizes the result in [20,24].

Theorem 4.7 (Strict maximum principle) Assume that ¢ satisfies the conditions (CI1)—(C5).
Let E C R" be ¢p-sub area minimizing and F C R" be ¢-super area minimizing relative to
an open set 2, and

E\QeF\Q.
Suppose 2 satisfies the barrier condition, then

ED e p,

Proof By Lemma 4.4, there exists ¢-area minimizing sets E and F such that E D E and
F C F. Since Q satisfies the barrier condition,

5 N Zo =0
AEW\FD cQand 9FVNE  cQ.

By Theorem 4.6 in [7] we have ED < FD_ Moreover ED € FOD if n < 3. In order to
prove the theorem for n > 4, note that since E N Q¢ € F N Q°, there is a § > 0 such that

dist(0E N Q§, 0F N Q§) > 6.

Let xo € AEM N aFD and choose y € B(xp,8) N F¢. Setv := y—xpand E, = E +v.
Since we have assumed (C5), ¢ (x, £) = ¢ (&), and hence E,, is also a ¢-area minimizer in
Q5. Observe that

JEV\FD ¢ Q5 and 9FV NEY ¢ 5.

It again follows from Theorem 4.6 in [7] that El()l) c FD which is a contradiction. Thus
AED NaFY = @, and the proof is complete. O

We shall need the following proposition to prove regularity results for solutions of (3).
Proposition 4.8 Under the assumption of Theorem 4.5, if d = dist(0E; N Q, 9E> N Q) and

this distance is taken in points |x — y| = d, such that x € 9E| N Qandy € 9E» N Q, then
eitherx € O1U0dQ ory € 0R.

@ Springer



182 Page 16 of 19 M. Fotouhi, A. Moradifam

Proof Consider the points x and y such that violate the statement. Let v = y — x, the
translation El = v + E| remains a solution of (23) for the pa1r of sets (v + Li,v+01) =
(L1, 01) inQ:=v+ Q. According to our assumptlon L1 S Lz and 01 NJE, = (?J.
Choose € > 0 such that 01 + B: € E», and define 02 =0 U (01 + B.) which satisfies
032  Oy. Then E; is also a solution for (L», 02). On the other hand, y € 9E, N JE, and
this contradicts Theorem 4.5, for E 1 and E> in the domain N Q. ]

5 Regularity of solutions

First of all we shall notice that the continuity of the solution of (3) is a straightforward result
of the geometric comparison principle, Theorem 4.5. The proof is similar to Theorem 1.3 in
[7], then we just give the statement without proof in the following proposition.

Proposition 5.1 (Continuity) Let Q C R”" be a bounded Lipschitz domain with connected
boundary, and assume ¢ : Q x R — R satisﬁes (C1)—~(CS5). If u is a solution of (3) for
the boundary condition f € C(d2) and € C(2), then u is continuous.

In order to study the Holder regularity, we need the following property for the norm

¢ (x, 8).
Lemma5.2 If¢p : Q x R" — R satisfies (C1)—(C4), then for every p and q we have
p-de(x,q) = ¢x, p).

Proof By the norm property (1), we can assume ¢ (x, p) = ¢(x,q) = 1. Let f(¢) :=
¢(x,tp+ (1 —t)q), wehave f(0) =l andfor0 <¢ < 1

f@) <tp(x,p)+ (1 —0)¢p(x,q) =1
Alos, for t < 0 we have
J@O =z¢lx, A —-0g) —¢Ux,tp) =1 —1) — 1| = 1.
Thus f'(0) < 0 which yields
Pe(x,q) - (p—q) 0.

Using the norm property (1), g - ¢:(x, qg) = ¢(x, qg) = 1 to deduce the lemma. O

Now we are going to construct barriers and prove a comparison principle for such barriers.
The results and the proofs in this section are inspired by [23].

Lemmab5.3 Let 2 C R" be a bounded Lipschitz domain. Suppose u € CYQ)NBV(Q)is
a solution of (3) and v € C*(Q) N CY(Q) satisfies

1) |Vv| >0in L,
(i) u > von i<,
(i) Lv > 0in Q,

where Lv = Z:»l:l Ox; Pg; (x, Dv(x)). Then u > v in Q. Similarly, if inequalities (ii) and
(iii) are reserved, then u < v in Q.
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Proof Let E = {x € Q tu(x) > u(x) + €} for some € > 0, and w = max(u, v — €). Notice
thatw € BV(Q)NCYQ), w =uondQand w > Y. Now let n € C§°(2) satisfy n = 1 on
Eand 0 <n < 1in Q. Set

g = n¢e(x, Dv),

sothat g € [Cé (2)]". Note that u = w in  \ E, then by Theorem 2.1 in [2], we can write

/(u—w)V-gdx /(u—w)V-gdx:—/g-D(u—w)dx
E Q Q

—/g~D(u—w):—/g~Du+/g-Dv
E

/(i)g(x Dv) - ﬁ|Du|+/ Dv - ¢ (x, Dv)dx

> — /d)(x u|+/¢(x D),

where in the last line we use the norm properties in Lemma 5.2 and relation (1). Since
u—w<0and V-g > 0in E (condition (iii)), we have

Du
f¢(xv DM):_/(X)(-X?*)'DM'>/¢(stw)7
E E [Du| E

which violates the fact that u is a minimal solution of (3). O

Here, we first prove the regularity of the solutions near the boundary.

Lemma 5.4 Suppose 2 is a bounded, open subset of R" with C? boundary which the signed
distance d(-) to 02 satisfies the relation (7). Assume [ € C%*(3Q), and /S C0-a/2 for
some 0 < a < 1. Ifu € CY9(Q) N BV(R) is a solution of (3), then there exists positive
constants § and C depending only on || f|lcoe ) 1V | o2 and ”M”CO(Q) such that

lu(x) — u(x0)| < Clx — xo|*/?,

whenever xo € 3 and x € Q with |x — xg| < 6.

Proof For each xy € 92 we will construct functions wt, w~ € C2(U) N C%U) where
U = B(xp, §) N 2 for some § > 0 is to be determined later, such that

1) wt(xg) =w™ (x0) = f(x0),
(i) lwh(x) = f(xo)| < Clx — xol%? and [w™(x) — f(x0)| < Clx — x0|*/* for every
xeU.
(iii) |[Vw™| > 0and |[Vw™| > 0in U.
@iv) w™ <u<wtondU.
V) LwT <0< Lw  inU.

By applying Lemma 5.3 to w™ and w™, we obtain the inequality w~ < u < w™ in U. This
accomplishes the proof by the property (ii).

In order to construct the function wt, notice that d € C({x : 0 < d(x) < 8¢}) for some
8o > 0, because 9Q2 € C2. We choose § < & and let

v(x) = |x — xo|* + Ad(x),
wh(x) = Kv*2(x) + £ (x0),
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where K and A are to be determined. Obviously (i) and (ii) are valid. To establish (iii), observe
that

IVw*| :K%v%_IIVvI,
Vo] = 12(x — x9) + AVd| > A|Vd| — 2|x — x0|
>A—=2|x — x| >0,

provided A > 25. We also have used the fact that |Vd| = 1 in the last relation.
For (iv) on 3B(xg, §) N , we have wt(x) > K§% > ||“||CO(Q) if K is chosen large
enough. On 92 N B(xg, 6) we have

u(x) = f(x) < fxo) + 1 fllcoalx = xol* < w¥(x),
provided K > || f |l co.e (a0)-
To establish (v), we note that ¢¢ (x, tp) = ¢¢ (x, p) and DwT = K%v%_le, then
Lw™ = divy(¢e (x, Dv)) = divy (¢: (x, 2(x — x0) + ADd(x)))

2
= divy($g (x, ~(x = x0) + Dd(x))).

Since d is C? near the boundary 02 and satisfies the relation (7), then for a large value of A,
we will have uniformly Lw™* < 0 in the §-neighborhood of the boundary.

A similar construction provides function w™(x) = —K V2 (x) + f(xp) for a suitable
positive constant K. O

Proof of Theorem 1.11 For s < t, consider the supersets Eg, E; of u and assume that
dist(0Es, 0E;) = |x — y| where x € E; and y € E,. It is sufficient to show that
lu(x) — u(y)] = |t —s| < Clx — y|*/?> whenever |x — y| < 8, where & is given by
Lemma 5.4. Observe that O; C E; € E,. By Proposition 4.8, we just have two following
cases:

(i) If either x or y belongs to d€2, then our result follows from Lemma 5.4.
(i) x € 0E; N Oy, then u(x) = Y (x) and u(y) > ¥ (y), so

0<t—s=u) —u®) <y —¥Q) <[Vt -y
O

Proof of Theorem 1.12 The proof is similar to that of Lemma 5.4. Indeed it is enough to con-
struct functions w+ and w™ satisfying conditions (i)—(v) while the condition (ii) is replaced
by
14a
[w* () = f(xo)| < Clx — x| 2.
For this, put

+ao

wh(x) 1= Kv' 25 (0) + V£ (x0) - (x — x0) + f(x0), (28)

and notice that on 32 N B(xo, 8), by the C1¢ regularity of f there is a positive constant C;
such that the following inequality is established

u(x) = f(x) < f(x0) + VF(x0) - (x — x0) + Cilx — xo] 3.

Therefore, the relation (iv), # < w™, will be obtained provided K > Cj. The rest of the
proof is exactly the same. O
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