IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

2509

Delay-Sensitive Energy-Harvesting Wireless
Sensors: Optimal Scheduling, Structural
Properties, and Approximation Analysis

Nikhilesh Sharma~', Nicholas Mastronarde

Abstract— We consider an energy harvesting sensor transmit-
ting latency-sensitive data over a fading channel. We aim to
find the optimal transmission scheduling policy that minimizes
the packet queuing delay given the available harvested energy.
We formulate the problem as a Markov decision process (MDP)
over a state-space spanned by the transmitter’s buffer, battery,
and channel states, and analyze the structural properties of the
resulting optimal value function, which quantifies the long-run
performance of the optimal scheduling policy. We show that the
optimal value function (i) is non-decreasing and has increasing
differences in the queue backlog; (ii) is non-increasing and
has increasing differences in the battery state; and (iii) is
submodular in the buffer and battery states. Taking advantage
of these structural properties, we derive an approximate value
iteration algorithm that provides a controllable tradeoff between
approximation accuracy, computational complexity, and memory,
and we prove that it converges to a near-optimal value function
and policy. Our numerical results confirm these properties and
demonstrate that the resulting scheduling policies outperform a
greedy policy in terms of queuing delay, buffer overflows, energy
efficiency, and sensor outages.

Index Terms— Markov decision processes, energy harvesting,
latency-sensitive wireless sensing, approximate dynamic pro-
gramming, structural properties.

I. INTRODUCTION

NERGY-CONSTRAINED wireless sensors often operate

in challenging environments featuring dynamic channel
conditions and latency-sensitive data sources. Increasingly,
such sensors also include energy harvesting capabilities,
allowing them to operate autonomously using energy in the
environment (e.g., ambient light or RF energy [2]). Emerging
applications of this nature include real-time remote visual
sensing, the Internet of Things (IoT), body sensor networks,

Manuscript received July 5, 2019; revised October 8, 2019:; accepted
November 15, 2019. Date of publication November 28, 2019; date of current
version April 16, 2020. The work of N. Sharma and N. Mastronarde was
supported in part by the National Science Foundation (NSF) under Award
ECCS-1711335. The work of J. Chakareski was supported in part by the NSF
under Award CCF-1528030, Award ECCS-1711592, Award CNS-1836909,
and Award CNS-1821875, and by research gifts and an Adobe Data Science
Award from Adobe Systems. This article was presented in part at the
2018 IEEE International Conference on Communications [1]. The associate
editor coordinating the review of this article and approving it for publication
was G. losifidis. (Corresponding author: Nikhilesh Sharma.)

N. Sharma and N. Mastronarde are with the Department of Electrical
Engineering, University at Buffalo, Buffalo, NY 14260 USA (e-mail:
nsharma9 @buffalo.edu; nmastron@buffalo.edu).

J. Chakareski is with the Ying Wu College of Computing, New Jersey
Institute of Technology, Newark, NJ 07103 USA (e-mail: jakov@jakov.org).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.110%/TCOMM.2019.2956510

, Senior Member, IEEE, and Jacob Chakareski, Senior Member, IEEE

and mobile virtual and augmented reality [3]-[7]. Critical to
their success is the ability to deliver the captured data in a
timely manner.

A key step towards successful deployment of such systems
is to understand their fundamental performance limits under
different operating conditions, the characteristics of the
optimal decision policies that will achieve these limits,
and how to efficiently compute the policies. We set out
in this paper to make progress towards these foundational
objectives. In particular, we consider an energy-harvesting
sensor (EHS) transmitting delay-sensitive data over a fading
channel. We aim to understand the structure of the optimal
value function, which quantifies the long-run performance
of the optimal scheduling policy that minimizes the packet
queuing delay given the available harvested energy. We then
leverage this knowledge to formulate an approximate value
iteration algorithm that provides a controllable tradeoff
between approximation accuracy, computational complexity,
and memory. Our contributions are as follows:

« We formulate the delay-sensitive energy harvesting
scheduling (DSEHS) problem as a Markov Decision
Process (MDP) that takes into account the stochastic
traffic load, harvested energy, and channel conditions
experienced by the EHS.

« We show that the optimal value function (i) is
non-decreasing and has increasing differences in the
queue backlog; (ii) is non-increasing and has increasing
differences in the battery state; and (iii) is submodular in
the buffer and battery states.

+ We show that, owing to its structure, the optimal value
function can be approximated with a bounded error as
a piece-wise planar function, which upper bounds the
optimal value.

» We derive a low-complexity value iteration algorithm that
operates on the approximated value function and prove
that it converges to a near optimal solution.

e Our numerical results confirm the value function’s struc-
tural properties, demonstrate the efficacy of our proposed
value iteration algorithm, and show that the resulting
scheduling policies outperform a so-called greedy pol-
icy in terms of queuing delay, buffer overflows, energy
efficiency, and sensor outages.

The rest of the paper is organized as follows. We review

related work in Section II. We introduce our system model in
Section IIT and formulate the DSEHS problem in Section IV.

0090-6778 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.htm! for more information.

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2011-063X
https://orcid.org/0000-0002-8474-7237

2510

Next, we analyze the structural properties of the DSEHS prob-
lem in Section V, formulate our approximate value iteration
algorithm in Section VI, and present our numerical results in
Section VII. Finally, we conclude the paper in Section VIII,
while rigorous proofs of the lemmas and propositions intro-
duced throughout the paper are provided in the Appendix.

II. RELATED WORK

Although EHSs can operate autonomously without the
need to change their batteries, the stochastic nature of har-
vested energy sources poses new challenges in sensor power
management, transmission power allocation, and transmission
scheduling. This has driven a growing body of literature to
address these challenges.

One important body of work focuses on computing opti-
mal transmission policies for EHSs [8]-[10]. Gurakan and
Ulukus [8] consider a multi-access channel with two EHSs
and derive the optimal offline transmission power and rate
allocations that maximize the sum rate, given known energy
and traffic arrival processes. Lu ef al [9] formulate a
throughput-optimal channel selection policy for EHSs oper-
ating as secondary users in a cognitive radio network. Gunduz
et al. [10] identify MDPs [11] as a useful tool for optimizing
EHSs in unpredictable environments with only causal informa-
tion about the past and present. Though these studies identify
numerous techniques for calculating optimal policies, they do
not provide general insights into their structures.

Another body of work focuses on characterizing the struc-
ture of optimal transmission policies for EHSs [4], [12]-[16].
Numerous studies have shown that optimal power
allocation policies for EHSs have various water-filling
structures [12]-[14]. Other types of structural results are
derived in [15], [16]. Michelusi ef al. [17] formulate the
problem of maximizing the average importance of transmitted
data as an MDP, and show that the EHS should only transmit
data having importance above a threshold that is a decreasing
function of the energy level. Aprem ef al. [16] formulate
outage-optimal power control policies for EHSs, showing
that the optimal policy for the underlying MDP is a threshold
function in the battery state for the special case of binary
transmission power levels.

In our recent work [1], we formulated the DSEHS problem
as an MDP and analyzed its structural properties. Unlike [4],
[12]-[16], which focus on the policy’s structure, [1] focuses on
the value function’s structure. The present paper extends [1] to
include (i) a more general system model that allows multiple
packets to be transmitted in each time slot (in [1], we only
considered binary scheduling actions); (ii) full derivations
of the value function’s structural properties; (iii) a novel
low-complexity value iteration algorithm that converges to a
near-optimal (piece-wise planar) approximation of the value
function; and (iv) more extensive simulation results.

Aside from our prior work, the most closely related work
to the present paper is [18], in which the authors formulate
a delay-optimal energy management problem (similar to the
DSEHS) as an MDP. However, they determine that computing
the delay-optimal policy using value iteration is too computa-
tionally intensive. In this paper, as noted above, we propose

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

Battery
en }’NE

Ny j
In L Transmission

Scheduler n n
a

Packet Buffer A f

pn L

Receiver

Channel State ™

Fig. 1. System block diagram.

a low-complexity approximate value iteration algorithm to
compute near-optimal policies by exploiting new structural
properties of the optimal value function, which were not
presented in [18].

III. WIRELESS SENSOR MODEL

We consider a time-slotted single-input single-output energy
harvesting sensor that transmits latency-sensitive data over
a fading channel. The system model is depicted in Fig. 1.
The system comprises two buffers: a packet buffer with size
Ny > 0 and an energy buffer (battery) with size N, > 0.
We assume that time is divided into slots with length AT (s)
and that the system’s state in the n-th time slot is denoted by
s & (", e k") € S, where b" € S, = {0,1,...,Np}
is the packet buffer state (i.e., the number of backlogged
data packets), e” € S, = {0,1,...,N.} is the battery state
(i.e., the number of available energy packets), and k™ € S
is the channel fading state. At the start of the nth time slot,
the transmission scheduler observes the system’s state, s™, and
takes the scheduling action o™ € A = {0,1,..., N, }, where
N, < oo denotes the maximum number of packets that can
be transmitted. Please note that, at times when the context is
clear, we will omit the superscript n of the involved variables,
to make the notation less cumbersome.

Channel model: We assume a block-fading channel, such
that the channel is constant during each time slot but may
change from slot-to-slot. Similar to prior work [12], [18]-[21],
we assume that the channel state A" € Sy is known to the
transmitter at the start of each time slot, that Sy, denotes a
finite set of N channel states, and that the evolution of the
channel state can be modeled as a Markov chain with transition
probability function P(R’|h).

Physical layer model: We assume that the physical layer
transmits at a data rate 3" /T (bits/s), where 3" is the number
of bits per symbol determined by the modulation scheme and
T (s) is the symbol duration. Therefore, in order to transmit
a™ packets of size L (bits) in AT (s), the modulation scheme
must be selected such that

8" = [a"LT,/AT] (bits/symbol), (1)
where [-] denotes the ceiling operator.

Similar to [19], [20], [22], we set a target bit error proba-
bility (BEP), BE Plarget, for all transmissions. We assume that,

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS

given the channel state and target BEP, the transmission power
is a non-decreasing function of the scheduling action a", i.e.,

Prx = Prx(h", a"; BE Paget) (W). 2

This assumption holds for typical modulation schemes,
e.g., M-ary PSK and M-ary QAM [23, Table 6.1]. Also
similar to [19], [20], [22], our formulation does not include
coding; however, it can be integrated by modifying (1) and (2).

Energy harvesting model: We assume that battery energy
is stored in the form of energy packets as in, e.g., [16], [19].
Let e}y € £ = {0,1,..., M.} denote the number of energy
packets that are available for harvesting in the nth time slot
and let P*¥ (eg) denote the energy packet arrival distribution.
Note that P®H (eg) allows us to account for the fact that it
may take multiple slots to harvest one energy packet worth of
energy. Energy packets that arrive in time slot n can be used
in future time slots. Thus, the battery state at the start of time
slot n + 1 can be found through the following recursion:

n+1

e = min(e" — efx + eF, Ne),

3

where efy = erx(h",a"; BEPage) denotes the number of
energy packets consumed in time slot n given the channel
state k™, scheduling action o™, and target BEP. For simplicity,
we assume that the transmission energy epx is an integer
multiple of energy packets, such that.

e'[')((hn: a’n; BERM’gel)
= [Prx(h",a"; BE Paye)AT| (energy packets).

erx
“
Note that the transmission action a™ in time slot n can-
not use more energy than is available in the battery,
ie., erx(h™,a"; BEPayg.) < e". For notational simplicity,
we will omit the transmission energy’s dependence on the
target BEP in the remainder of the paper.

Given the current state s = (b, e,) and action a, the prob-
ability of observing battery state e’ in the next slot is:

(&)

where E,,, [-] denotes an expectation over the energy packet
arrival distribution and I,y is an indicator variable that is set
to 1 when {-} is true and is set to O otherwise.

Traffic model: Let [" € £ = {0,1,...,M;} denote the
number of data packets generated by the sensor in the nth time
slot and let P!(I) denote the data packet arrival distribution.
The buffer state in slot » 4+ 1 can be found through the
following recursion:

b = min(b" — f* + 1", Np), (6)

where f" fla™; BEPapa) < a™ < b" is the number
of packets transmitted successfully in time slot n. Note that
new packet arrivals, and packets that are not successfully
received, must be (re)transmitted in a future time slot. Assum-
ing independent and identically distributed (i.i.d.) bit errors,
f™ can be modeled as a binomial random variable with
conditional probability mass function P/ (f|a; BE Pagpet) =
Bin(a,1 — ¢) = (;)(1 —q)fq¢* 1, f = 0,1,...,a, where
g = 1 — (1 — BEPaypa)® is the packet loss rate (PLR) for
a packet of size L (bits). We refer to P/ (f|a; BE Paret) as

pe (e’| [e, h’]: a) =K.y []I{e’=min(e—e1—x(h,a)+e.y,Ne)}]:

2511

the goodput distribution because it denotes the distribution
over the number of correctly received packets in a time
slot. For notational simplicity, hereafter we omit the goodput
distribution’s dependence on the target BEP.

Given the current state s = (b, e, k) and action a, the prob-
ability of observing buffer state b’ in the next time slot is:

PP(¥'|[b, k], @) = E 11 [L{p—min(o— £ +1,N5)}]- (7

where Ef;[-] denotes an expectation over the goodput and data
packet arrival distributions.

Remark on Markovian data and energy packet arrivals:
We note that the structural properties derived in Section V
apply under both i.i.d. and Markovian data and energy packet
arrivals. Thus, the approximate value iteration algorithm that
we formulate in Section VI can be applied to either case.

IV. THE DELAY-SENSITIVE ENERGY-HARVESTING
SCHEDULING (DSEHS) PROBLEM

Let w : S — A denote a policy that maps states to actions.
The objective of the DSEHS problem is to determine the
optimal policy w* that minimizes the average packet queuing
delay given the available energy. However, this does not mean
that the policy should greedily transmit packets whenever there
is enough energy to do so. Instead, it may be beneficial to
abstain from transmitting packets in bad channel states and
wait to transmit them in good channel states to conserve scarce
harvested energy. On the other hand, the policy should not
be too conservative. Instead, if the battery is (nearly) full,
expending energy by transmitting packets will make room
for more harvested energy, which otherwise would be lost
due to the finite battery size. To balance these considerations,
we formulate the DSEHS problem as an MDP [11].

We define a buffer cost to penalize large queue backlogs.
Formally, we define the buffer cost as the sum of the holding
cost! and the expected overflow cost with respect to the arrival
and goodput distributions, i.e.,

c([b,h],a) =b+Efi[nmax{b— f+1— Np,0}], (8)

where the holding cost is equal to the buffer backlog, which is
proportional to the queuing delay by Little’s theorem [25]. The
overflow cost imposes a penalty 7 for each dropped packet.

A value function, V™ (s), estimates how good (or bad) it
is for the EHS to be in a certain state while following the
policy m. We formally define V™ (s) as,

Vi(s) =E[Y () e(s™ m(sM)ls = s°]

where v € [0,1) is the discount factor; ()" denotes
the discount factor to the nth power; ¢(s™, w(s™)) denotes
the buffer cost, as in (8), associated with being in state
s™ and taking action a™ = m(s™); and the expectation
is taken over the sequence of states, which is governed
by the controlled Markov chain with transition probabilities

!The term “holding cost” comes from the operations research literature
where it is commonly used in inventory control problems [24]. It represents the
cost associated with storing inventory that remains unsold. In communication
systems, it is interpreted as the cost for keeping a packet queued that has not
yet been transmitted [20], [21].

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2512

P(s'|s,a) = P°(¥/|[b, h],a) P%(€'|[e, k], a) P"(h'|h). We can
rewrite V™ (s) recursively by taking advantage of the one-step
transition probability function to represent the expected future
costs:

V™ (s) = c(s,m(s)) +7 Y, P(s'|s, m(s))V"(s")
s'esS
Formally, the DSEHS problem’s objective is to determine
the scheduling policy that solves the following optimization:
min V™ (s), ©

mell
where II denotes the set of possible policies. The optimal solu-
tion to (9) satisfies the following Bellman equation, Vs € S:

V*(s) = min < c(s,a)+ PS’S:GV*SF}a
(s) GEA(S){()7 3 PlealV (@)
= i b h E e !
ae-ﬂ-}’i,h){cq 3]1(1)—’_7 1,f.en,h
[V*(min(b — f + 1, Ns),
]IlLEl(B - BTX(h': G,) + €H, NE)': h’)]}
2 min Q*(s,a),Vs€S 10
62531)69 (s,a),Vs (10)
where

A(b,e,h):{a €10,...,Ng}:a < band erx(h,a) < e}

an

is the set of feasible actions given the buffer and battery states,
V*(s) is the optimal state-value function, and Q*(s,a) is the
optimal action-value function denoting the value of taking
action a in state s and then following the optimal policy
thereafter. The optimal policy 7*(s), which gives the optimal
action to take in each state, can be determined by taking the
action in each state that minimizes the right-hand side (r.h.s.)
of (10). Please note that we use the two representations of
the cost, ¢(s,a) and ¢([b, k], a) interchangeably as they refer
to the same quantity.

A. Post-Decision State Based Dynamic Programming

We will find it valuable throughout our analysis to work
with so-called post-decision states (PDSs [20], [22], [26])
rather than conventional states because computing the value
function using PDSs is less complex than computing it using
conventional states (see Section VI-C). A PDS, 5 = (b, €, h) €
&, denotes the state of the system after the controllable/known
effects of the action, but before the uncontrollable dynamics
occur [20]. In the DSEHS problem, §" = (b",e",h") =
([B™ — £, [e™ — erx(h™,a™)], k™), is the PDS in time slot
n. The buffer’s PDS, b= b — f™, characterizes the buffer
state after packets are transmitted, but before any new packets
arrive; the battery’s PDS, €™ = e" —erx(h", a™), characterizes
the battery state after enmergy packet(s) are consumed, but
before any new energy packets arrive; and the channel’s PDS,
h™ = h", is the same as the channel state at time n. In other
words, the PDS incorporates all of the known information
about the transition from state s™ to state s"*1 after taking
action a™. Note that, although the realization of f™ is not
known at the time the action is taken, its distribution Pf

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

is known. As will become clear in (14), this is sufficient to
include it in the buffer’s PDS. Meanwhile, the uncontrollable
dynamics in the transition from state s™ to st je., the
channel state transition from A™ to A"+ ~ PR(.|h™), the data
packet arrivals, [~ P!(-), and the energy packet arrivals,
e} ~ PeH(.), are not included in the PDS. Importantly,
the next state can be expressed in terms of the PDS as follows:

n+1 _ (bﬂ+1,8n+1,hn+1)

= (min(b" + 1", Np), min(" + e}y, Ne), k™). (12)

L]

Just as we defined a value function over the conventional
states, we can define a PDS value function over the PDSs. Let
V* denote the optimal PDS value function. V* and V* are
related by the following Bellman equations:

V*(3) = nE[max(b+ 1 — Ny, 0)]
+7E1,ep,0 [V (min(b + I, Ny),
min(é + e, No), i')] (13)

V*(s) = min {b+]Ef[l7*(b—f,e—eTx(h, a), h)]} . (14)

which are obtained by factorizing the Bellman equation in (10)
using PDSs. Given V'*, 7* can be found by taking the action in
each state that minimizes the r.h.s. of (14). Note that, since the
goodput distribution P7 is known, we can take an expectation
of the PDS value function over the buffer’'s PDS b— f in (14).

Algorithm 1 presents a value iteration algorithm for com-
puting the optimal PDS value function. If the data packet
arrival, energy harvesting, and channel dynamics are known
and stationary, then PDS value iteration can be performed
offline. If the dynamics are non-stationary, then the algorithm
can be executed online at regular intervals to update the PDS
value function as the dynamics change over time.2 However,
if the buffer and battery sizes are sufficiently large, then any
tabular approach that requires computing and storing the value
function for every single state (e.g., value iteration [27] or
PDS value iteration) will become intractable as the size of the
state space increases due to the curse of dimensionality [24].
Moreover, such tabular approaches cannot be applied if the
buffer and battery sizes are infinite.

Although PDS value iteration is too complex to be imple-
mented on an EHS in general, we leverage its iterative
structure to derive several structural properties of the opti-
mal PDS value function V*(s) using mathematical induction
in Section V. Subsequently, in Section VI, we propose a
low-complexity value iteration algorithm that operates on
a piece-wise planar approximation of the value function.
We then prove that, owing to the derived structural properties,
this algorithm converges to a near optimal solution.

V. STRUCTURAL PROPERTIES

In this section, we analyze the structural properties of the
optimal PDS value function V*. Such properties are important
because they (i) provide insights into the optimization problem
and the system being optimized; (ii) reveal ways in which

2In this situation, we also need to make empirical estimates of the data
packet arrival, energy harvesting, and channel transition distributions online.

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS

Algorithm 1 Post-Decision State Value Iteration
1: initialize Vo (b, €, h) = O for all (b,&,h) € S and m = 0.

2: repeat

33 A0

4: for (b,e,h) € S do

5: Update the value function:

Vin(b, e, h) — aénjr(la){b—l—E;[i}m(b—f,e—eTx(h, a), h)]}

(15)
6: end for _
7. for (b,e,h) € S do
8: Update the PDS value function:

Viny1(8,€, k) — nEi[max(b+ 1 — Ny, 0)]
+7E£‘.3H,h’ [Vm (l'l'l_ll'l(b + I: Nb):]IIJI'I.(E +eH, NE): h’)]
(16)
o A—max(A,|[Vn(b,&,h) — Viny1(b,€ b))
10: end for

1m: me—m+1
12: until A < @ (a small positive constant)

the solution can be represented compactly, with limited mem-
ory; and (iii) facilitate efficient computation of near optimal
policies. We begin by introducing three important definitions.
Then, in Section V-B, we analyze the properties of the
cost and transition probability functions and, in Section V-C,
we analyze key properties of the conventional value function.
These properties are all needed to prove our main results about
the PDS value function’s structure, presented in Section V-D.

A. Preliminaries

Definition 1 (Integer Convex [21]): An
function f(n) N — R on a set of integers
N e {0,1,...,N} is a function that has increasing
differences in n, Le.,

f(n1+m) — f(n1) < f(n2 +m) — f(n2)

for ny < mg, and n1,n2,n1 + m,ng + meN.
The second useful definition is that of stochastic dominance.
Definition 2 (Stochastic Dominance [21]): Let 6(x) be a
random variable parameterized by some x € R. If P(0(x1) =
a) > P(0(z2) = a), for all x1 > z2 and for all a € R, then
we say that 0(x) is first-order stochastically increasing in .
For such 0(x), it holds:

E[u(6(z1))] = E[u(6(x2))], (18)

for all non-decreasing functions u(x). The reverse inequality
holds for all non-increasing functions u(x).

Lastly, we define the concept of a submodular function.
Note that this definition has some similarities to, but is distinct
from, the definition of a submodular set function [28].

Definition 3 (Submodular Function [11, §4.7.2]): A sub-
modular function f(z,y) : X x Y — R on sets of integers
X e{0,1,....X}and Y € {0,1,...,Y} is a function that

infeger convex

a7

2513

has decreasing differences in (z,y), ie., for ¥ > =~ and
+ —
Yy 2y

fety") = fa,y7) < f=z7,y") - flz7,y7). (19

B. Properties of the Cost and Transition
Probability Functions

We now present key properties of the cost and transition
probability functions that we will need for our main results.
Recall that the cost function defined in (8) does not directly de-
pend on the battery state e, but that the action a is constrained
to be in the set A(b,e, h) defined in (11). Therefore, when
a ¢ A(b,e, h) it is not possible to incur the cost c([b, k], a).
To capture this explicitly, we define an auxiliary cost function

d([b, e, h], a) = c([b,h],a), if b>a and e > erx(h,a)
G ¢([b, h],0), otherwise,
(20)

where c([b, h], a) is defined in (8). The auxiliary cost allows us
to derive key properties of the cost with respect to the buffer
and battery states, which are essential for our main results.

Lemma 1: The auxiliary cost d([b, e, h], a) satisfies the fol-
lowing properties:

1) The auxiliary cost is non-decreasing in b.

2) The auxiliary cost is non-increasing in e.

Proof: The proof is given in Appendix VIII-A. O

Since the auxiliary cost function satisfies Lemma 1, the cost
function ¢([b, h], a), with a € A(b, e, h), also satisfies it.

Lemma 2: The next battery state €' is first-order
stochastically increasing in the current battery stafe e,
Le., Ze’zé Pe(e’He + l,h],a) Z Ee’zé Pe(e'|[e,h],a),
0<e<N.,.

Proof: The proof is given in Appendix VIII-B. O

Lemma 3: The next buffer state b’ is first-order stochas-
tically increasing in the current buffer state b, ie.,),
P'(t'|b+1,h],a) > 3,5 PP(Y'|[b,hl,a), 0<b<Np

Proof: The proof is similar to that of Lemma 2. We omit
it due to space limitations. O

Lemma 2 (resp. Lemma 3) implies that the next battery
(resp. buffer) state has a higher probability of exceeding a
threshold if the current battery (resp. buffer) state is larger.

C. Properties of the Conventional State Value Function

We now present key properties of the conventional state
value function.
Lemma 4: The optimal value function V*(b,e,h)
non-decreasing in the buffer state b.
Proof: The proof is given in Appendix VIII-C.

is

O
Lemma 5: The optimal value function V*(b,e,h) is
non-increasing in the battery state e.
Proof: The proof is similar to that of Lemma 4. We omit
it due to space limitations. O
The following lemma is needed for the inductive steps in
our main results (Propositions 3, 4, and 5).
Lemma 6: The following properties are propagated from
the PDS value function V (b,e, h) to the conventional value

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2514

function V (b,
in (14):
1) If V(b,e, h) has increasing differences in b, V(b,e, h)
has increasing differences in b.
2) If V(b,e, h) has increasing differences in e, V (b,e, h)
has increasing differences in e. _
3) If V(b,e, h) is submodular in (b,€), then V(b,e, h) is
submodular in (b, €).
Proof: The proof is given in Appendix VIII-D. O

e, h) through the Bellman equation defined

D. Properties of the Post-Decision State Value Function

We now prove that the optimal PDS wvalue function
is non-decreasing and has increasing differences in the
post-decision buffer state b, is non-increasing and has increas-
ing differences in the post-decision battery state e, and has
decreasing differences (i.e., is submodular) in (b,e).

Proposition 1: The optimal PDS value function V*(b,e, h)
is non-decreasing in b.

Proof: The proof is given in Appendix VIII-E. O

Proposition 2: The optimal PDS value function V*(b, €,)
is non-increasing in e.

Proof: The proof is similar to that of Proposition 1.

We omit it due to space limitations. O

Proposition 3: For all PDS buffer states b < Ny — M,
where M; is the maximum number of data packet arrivals in
one time slot, V*(b, €, h) has increasing differences in b, i.e.,

V*(b,e,h)— V*(b— 1, h) < V*(b+ 1,8 h) — V*(b,e,h).
(21

If the packet buffer size is infinite (i.e., Ny = oc), then (21)
holds for all b € Sy,

Proof: The proof is given in Appendix VIII-F. O

Proposition 4: V*(b, €, h) has increasing differences in ¢,
iLe.,

V*(b,e,h) —V*

(b,e—1,h) < V*(b,e+1,h) —

Proof: The proof is given in Appendix VIII-G. O
Proposition 5: V*(b, e, h) is submodular in (b,€), ie.,
V*(b+1,e+1,h)—V*(be+1,h) <V*(b+1,¢,h)
—V*(b,e k). (23)
Proof: The proof is given in Appendix VIII-H. O
Together, Propositions 1 and 3 imply that the marginal
cost of holding an additional data packet increases with
the queue backlog. We have empirically verified that Propo-
sition 3 holds in practice for finite buffer sizes N, as
well. In Appendix VIII-F, we discuss in detail why we are
unable to prove that Proposition 3 holds for all b € &
in the case that N, < oo. Together, Propositions 2 and 4
imply that the marginal benefit of an additional energy
packet decreases with the available battery energy. Finally,
Proposition 5 implies that data packets and energy packets
are complementary. That is, having more energy packets
decreases the margyal eost of holding additional data packets
(ie., V*(b+ 1, h) — V*(b,e,h) decreases in €). In other

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

words, the marginal cost incurred by an additional data packet
is smaller when more energy is available. Additionally, holding
more data packets increases the marginal benefit of having
additional energy packets (i.e., V*(b,e,h) — V*(b,e + 1,h)

increases in b) In other words, the marginal benefit of having
an additional energy packet is greater when the buffer is more
full.

VI. APPROXIMATE PDS VALUE ITERATION

In this section, we propose to approximate the PDS value
function as a piece-wise planar function. We then prove that,
owing to the PDS value function’s structural properties (see
Section V-D), the resulting approximation error is bounded.
Subsequently, we derive a low-complexity value iteration algo-
rithm that operates on the approximated PDS value function
and prove that it converges to an e-optimal solution. Finally,
we compare the computational and memory complexities of
several value iteration algorithms.

A. Piece-Wise Planar Approximation

For each channel state h € Sp, we construct a
two-dimensional grid of post-decision buffer and battery states,
T(h) C S x S, on which we build a PDS value function
approximation, V. To allow for a spatially adaptive approx-
imation on the buffer-battery plane, we use a quadiree data
structure, such that its leaf node vertices (b,e) € 7 (h) define
the grid. Each leaf of the quadtree is then divided into two
triangles, which lie on intersecting planes. Together, the planes
of all leaf nodes comprise the proposed piece-wise planar
approximation as illustrated in Fig. 2.

Quadtree Construction: Let 7 denote a quadtree defined on
the set of buffer-battery state pairs Sp x S, within a bounding
box (BB) defined as follows

BB(T) - {(b—u e—): (b-i-: e—): (b_,6+), (b-i-: e+)}1

where 0 < b_ <by < Nyand 0 < e_ < ey < N.. Note
that, as in Fig. 2, we do not require 7 to span the entire
buffer-battery plane because N, and N, may be very large (or
infinite) and it is often unnecessary to accurately approximate
the values at the extremes of the state space.

If a subtree 7., € 7 is a leaf node, then it can be further
subdivided into four subtrees (children) spanning its northwest
(NW), northeast (NE), southwest (SW), and southeast (SE)
quadrants (see Fig. 2). We write (b,e) € 7T if (b,e) is an
element of 7’s bounding box or one of its children’s bounding
boxes, recursively down to all of its leaf nodes.

PDS Value Function Approximation: Let T (h) denote the
quadtree used to approximate the PDS value function in
channel state . We approximate the value of any PDS pair
(b,€) ¢ T(h) using the values of PDS pairs (b,€) € T (h).
That is, instead of directly using the PDS value function V,
we use an approximate PDS value function V, such that

~_~ [V@®ER),
V(b,eh) = {approx(ﬁ,T(K),[F,é‘,

(24)

if (b,€) € T(h)
ﬂ?;]), otherwise,

(25)

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS

(0, N,) (Np, N,
(b_,e;) (E. ey) (by,ey)
P N -
e \‘. I’
- (b, :e) "\
III ’I’ dz'\.
) $(51.0)

(b—ﬂ e—) (Eﬂ B_) (b+, e—)

(0,0) (Np, 0)

Fig. 2. Piece-wise planar approximation of the PDS value function. The
dashed border represents the buffer-battery plane. The solid internal square
represents the quadtree’s bounding box. Each leaf node is divided into two
triangles lying on intersecting planes. The PDS pair (b, €) is associated with
the shaded NW triangle of the quadtree’s NE leaf node because di1 < da.

where approx(V, 7 (h), [b, €, k]) approximates the value of
PDS pair (b,) ¢ T (k) using the piece-wise planar approxi-
mation defined by the quadtree 7 (k). If the PDS pair (b, €) is
inside the quadtree’s bounding box (as defined in (24) and
illustrated in Fig. 2), then the approximation function first
associates (b,e) with the leaf node that contains it using a
recursive search from the root. Subsequently, it associates
(b, €) with the triangle that contains it. This triangle forms the
approximating plane for our piecewise-planar approximation,
as illustrated in Fig. 2. Specifically, let d; and dy denote
the distances between (b, €) and the leaf node’s NW and SE
vertices, respectively. If di < do, then we associate (b, €)
with the NW triangle; otherwise, we associate it with the SE
triangle. Finally, we solve the equation of the approximating
plane to obtain the approximate value, V (b, €, k). On the other
hand, PDS pairs that are outside the bounding box are not
within any leaf node and must be associated with their nearest
leaf node. Subsequently, they are associated with the leaf
node’s NW or SE triangle, and their values are approximated
by the plane defined by this approximating triangle, similar to
the PDS pairs inside the bounding box. Lastly, note that we
write approx(V, 7 (h), [b, e, h]) to denote the approximate
value of conventional state pair (b,e) ¢ 7 (h).

At this point, we find it appropriate to introduce an operator
Ag that operates on the PDS valqe function, V, to give a
piece-wise planar approximation, V, using the quadtree 7.
Eq. (25) can then be represented succinctly in terms of this
operator as V =ArV (when approximating the conventional
value function V', we can write J = A7V, where J denotes
the approximate value function). The following proposition
shows that the resulting approximation error is bounded.

Proposition 6: Let V' denote a PDS value function and
let V. = ATV denote its piece-wise planar approxima-
tion (211) Let (b, €) lie inside the triangle with vertices X; =
(bi,€i, V(bi,ei, b)), for i = 1,2,3 in the quadiree T. The
error A7V —V is bounded as follows:
V(b,Eh) <4,

(A7V)(b,€ k) — (26)

2515

Algorithm 2 Approximate Value Iteration
1: initialize 7°(h) = BB(7), Yh € Sp; Approx. value

J(b,e,h) = 0, ¥(b,e) € To(h) h € Sp; Approx. PDS
value V (b, €, h) =0, ¥(b,€) € T°(h), h € Sp; and m = 0.
2: repeat
33 A0 _
4: for (b,e) € T™(h) do
5: Update the approximate value function:

Jm(b, e, h) <—g:|jn {b—l—Ef[Vm(b f.e—erx(h,a), h)]}
27

6: end for _
7. for (b,e) € T™(h) do
8: Update the approximate PDS value function:

Vit 1(b, & k) « nE;[max(b+ L — Ny, 0)]+

VB ey e [T (min(b + I, Np), min(€ + egr, Ne), h')]
(28)

9: A — max(A, |V (b h)
10: end for _

11: for each leaf £ € 7™(h) and each triangle ¢ € £ do
12: Calculate approximation error dg; as in (26)

13: end for

14: Omax — maxy; 8 and lpax — arg maxy,; dg;

15: if 61-“3_)(= Jtarget then

16: Subdivide leaf £ia € T™(R) to get T™+1(h)
17: end if

188 me—m+1

19: until A < @ (a small positive constant)

Vint1(5,&,R)])

where § = maX;e{1,2,3} V(ba,ez, h) min;e (1,23} V(ba, €i, h)
depends on the PDS s = (b, €, h) and is equal for all PDSs that
lie inside the same approximating triangle. Hereafter, we refer
to § as the single-step approximation error.

Proof: The result follows from Propositions 3 and 4.
In particular, since V has increasing differences in b and e,
the plane defined by the approximating triangle provides
an upper bound on the true value function. Additionally,
since V and V are non-decreasing in b and _non-increasing
in e, they are bounded below by DHDze{l 2,3} V(b,, e, h) and
above by max;¢{1,2,3} V(b,, e, h) for all (b, e) that lie in the
approximating triangle. Eq. (26) immediately follows. O

B. Approximate PDS Value Iteration (AVI) Algorithm

The proposed approximate value iteration (AVI) algorithm
is presented in Algorithm 2. Let Tm(h) denote the quadtree
used to approximate the PDS value function in channel state
h during iteration m of the AVI algorithm. At the start
of the AVI algorithm (m = 0), we can initialize 7°(h)
with BB(TO(h)) defined as in (24) or using any arbitrary
quadtree. Thus, 7°(h) serves as the initial set of grid points
for estimating the values of all (b,e) € Sy x S, using the
proposed piece-wise planar approximation. After initialization,

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2516

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

TABLE I
COMPUTATIONAL AND MEMORY COMPLEXITY OF SEVERAL VALUE ITERATION ALGORITHMS

| Algorithm | Iteration Complexity | Memory Complexity |
Value Iteration O(|S]*|A]) O(|S]7] Al + |8])
Factored Value Iteration O(|S||L]].A]) O(ls] + [X])
PDS Value lteration O(|S|].AJ]* + |S||2]) OS] + |E])
Approximate PDS Value Iteration | O(k|T[]A]* + k|T||I12]) | O(T|+ |X])

the AVI algorithm proceeds similarly to PDS value iteration
(Algorithm 1) but with two key differences. First, instead of
acting on the full value functions V;,,(b, e, k) and V,,, (b, e, h),
¥(b,e, h) € S, it acts on the corresponding approximate value
functions Ji, (b, e, h) and Vi, (b, e, h), respectively, defined on
(b,e) € T™(h),¥h € Sy.3 Second, we can (optionally)
refine the quadtree after each iteration to meet a target error
tolerance. This can be achieved by refining every leaf node of
the quadtree 7™ for which d > 6;arge:, Where 0 is defined
in Proposition 6, to the coarsest level such that § < d:arges.
We define the operator Ai}“w to denote this operation.

The following proposition shows that the AVI algorithm
converges to an e-optimal PDS value function rather than the
optimal PDS value function. The proof is in Appendix VIII-I.

Proposition 7: Given a target single-step approximation
error diarget, the AVI algorithm converges to within a bound e
of the optimal PDS value function V™, ie., limpm o0 |[V™ —
V*|| < € where V™ denotes the approximate PDS value

function after m iterations, || - || denotes the L., norm, and
€= Ybtarget
1—y °

Remark on Quadtree Refinement: 1t is interesting to consider
whether it is possible that the quadtree will be refined too
much in the intermediate steps of the AVI algorithm, while
the required granularity to meet the target approximation
error after convergence is in fact coarser. We argue that
this will not happen because: 1) value iteration converges
monotonically toward the optimal value function [11, Propo-
sition 6.3.2]; 2) the integer convexity of the value function
combined with the monotonicity of value iteration imply that
the value function’s slope increases with each iteration; and
3) the approximation error bound defined in Proposition 6 is
increasing with the value function’s slope. Since we refine the
value function only when the error bound exceeds a target error
threshold, d;qrges. it follows that we will not refine the value
function too much in the intermediate steps of value iteration.

C. Computational and Memory Complexity Analysis

In Table I, we compare the computational and memory com-
plexities of conventional value iteration [29], factored value
iteration (by factorizing the expectation over the next state as
in the second line of (10)), PDS value iteration (Algorithm 1),
and approximate PDS value iteration (Section VI-B). In the
following discussion, let |S| and |.4| denote the number
of states and actions, respectively; let |Sp|, |Se|, and |Sp|
denote the number of data buffer states, battery states, and

3This has three important consequences: 1) the for-loops in Algorithm 2
loop over all (b,e) € T™(h),Vh € S rather than all (b,e,h) € S; 2)
the approximate value functions must be stored in memory rather than the
full value functions; and 3) the values of states (b,e) & 7™(h) must be
calculated based on the piece-wise planar approximation in (25).

channel states, respectively; let |[£| and |£| denote the size
of the supports of the data packet and energy packet arrival
distributions P! and P®¥, respectively; and note that the
goodput distribution P has a support of size |.A|.

Value iteration’s per-iteration complexity is O(|S|?|.A|) as
it needs to iterate over all current and next state combinations,
and compute a maximum over the actions, in each iteration.
Additionally, it requires storing the transition probability func-
tion P(s’|s,a) and the value function V (s). Thus, its memory
requirements are O(|S|?|A| + |S]).

For factored value iteration, we only need to compute the
expectation over the support II; = £ x A x £ x Sy, instead
of the full state space S as in conventional value iteration.
Thus, factored value iteration’s per-iteration complexity is
O(|S x II; x A]). The algorithm requires storing the value
function, the goodput distribution P7(f|a), the data arrival
distribution P'(l), the energy arrival distribution P (ef),
and the channel transition probabilities P"(h’|h). Thus, its
memory requirements are O(|S| + |X|), where we define
|X| = |A|2 + |L| + |€] + |Sw|? for succinctness.

PDS value iteration’s per-iteration complexity can be broken
into two parts. First, the value function update step in (15) has
complexity O(|S||.A|?) as it calculates an expectation over
the goodput distribution and computes a maximum over the
actions in every state. Second, the PDS value function update
step in (28) calculates expectations over data arrivals, energy
arrivals, and next channel states for every PDS. Consequently,
it has complexity O(|S||IIz|), where II; = £ x £ x Sp. It is
reasonable to assume that |£| < |Sp| and |€| < |S.| because
the buffer and battery capacities should be much larger than
the data and energy packet arrivals in any time slot; therefore,
IIz] = |£ x € x Sp| < |S| = [Sp x Se x Sp|, so PDS
value iteration’s total per-iteration complexity, O(|S||.A2 +
|S||IIz]), is less than that of value iteration. Finally, the PDS
value iteration’s memory complexity is the same as that of the
factored value iteration, as it needs to store the same value
functions and distributions.

The proposed approximate PDS value iteration algorithm
features similar complexity to PDS value iteration, save for
two key differences. First, the evaluated states span the
quadtree 7 instead of the full state space of S. Second,
approximating the value of a state (b, €) ¢ 7 that is associated
with a leaf (subtree) at maximum quadtree depth k has
complexity O(k). Thus, a sparser approximation will be more
computationally and memory efficient.

VII. NUMERICAL RESULTS

We now present our numerical results. In Section VII-A,
we illustrate the optimal PDS value function’s structural
properties. In Section VII-B, we compare the performance of

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS

2517

TABLE II
SIMULATION PARAMETERS

[Parameter [Value | Parameter [Value
Modulations BPSK, 4-PSK, 8-PSK Packet Size, L 127 bytes
Packet Buffer Size, N 25 (data packets) Discount Factor, ~ 0.98
Energy Buffer Size, N, 15 (energy packets) Simulation Duration (slots) | 50,000

Transmission Action, a € A | {0,...,3} (data packets)

Packet Arrival PMF, P?

Bern(z) or Pois(x) with variable =

Time Slot Duration, AT 5 ms Energy Arrival PMF, P¢H | Bern(z) with z = 0.35,0.7
Bandwidth, W 250 KAz Overflow Penalty, 7 50
Noise Spectral Density, No -174 dBm Energy Packet Size 9.143 nJ

Channel States, h € S,

{-18.82,-13.79,-11.23,-9.37, -7.80,-6.30,-4.68,-2.08} (dB)

our approximate solution against the optimal scheduling pol-
icy and a greedy policy, which transmits as many back-
logged packets as possible given the available energy (i.e.,
a™ = min{b", max{a : e" > erx(h™, a)}}), as considered
in [18]. The parameters used in our MATLAB-based simulator
are given in Table II. We consider M-PSK modulation. In
channel state h, the energy required to transmit a packets with
target bit-error probability, BE Py, is given by (4), and the
transmission power Prx is approximated by [23, Table 6.1]:

Prx(h, a; BE Parget)

fo{lj“ (@~ (BE Parge)]?, if =1,
2h BT, sin® (w /M) @ (QBEP‘arget)] , if B> 1,
(29)

where Q~1(-) is the inverse of the Q-function, N is the noise
spectral density, and /3 is the number of bits per symbol. The
energy packet size was selected to be the amount of energy
required to transmit a single packet in the best channel state.

A. Structural Properties

In this section, for illustration, we assume that the data and
energy packet arrivals in each time slot are Bernoulli random
variables with parameters 0.2 and 0.7, respectively. We con-
sider two channel states h = —4.68 dB and h = —11.23 dB.
Figs. 4a, 4g, and Figs. 4b, 4h, respectively, illustrate the
optimal PDS value functions and policies. It is clear that the
optimal PDS value functions (i) are non-decreasing and have
increasing differences in the queue backlog (Propositions 1
and 3) and (ii) are non-increasing and have increasing dif-
ferences in the battery state (Propositions 2 and 4). We can
observe the difference in the shape of the optimal value func-
tions for different channel conditions. In particular, the optimal
value function has a smaller magnitude in the better channel
state (-4.68 dB) because the long-term expected cost from that
state is lower.

Figs. 4c and 4d show the greedy value function and policy,
respectively. We observe that the optimal policy is more
conservative than the greedy policy as it does not transmit
packets in low battery states. That is because the optimal
policy weighs the impact of its present scheduling action on
its future performance given the data arrival, energy arrival,
and channel dynamics.

Figs. 4e, 4i, and Figs. 4f and 4j show the approximate PDS
value functions and policies, respectively, generated using a
dynamically refined quadtree (resulting in 20 planes with finer

refinement at higher buffer states*). The approximate PDS
value functions preserve the optimal PDS value function’s
structure. Moreover, the policies derived from the approximate
PDS value function (i.e., the AVI policy) have a similar
structure to the optimal policy and are more aggressive than
the optimal policy, but less aggressive than the greedy policy.

Finally, Fig. 3 shows that V(b + 1,e,h) — V (b,e, h) is
non-increasing in the battery state e, i.e., the optimal PDS
value function is submodular in (b, €) (Proposition 5).

B. Performance Evaluation

We now compare the performance of the AVI, optimal, and
greedy policies in two scenarios considering both Bernoulli
and Poisson distributed packet arrivals:

+ Abundant energy: The energy packet arrival distribu-
tion P¢H(ep) = Bern(0.7) and the data packet arrival
distribution P'(l) = Bern(z) or Poisson(z), where = €
{0.1,0.113,...,0.6}. Since data packets often take mul-
tiple energy packets to transmit, the EHS ranges from
lightly loaded to overloaded.

» Scarce energy: The energy and data packet arrival rates
are halved compared to the abundant energy case, while
maintaining the same data-to-energy packet ratios.

Fig. 5 illustrates how the system states and scheduling
actions evolve over 400 time slots under the optimal pol-
icy when P!(l) = Bern(0.2) and P°¥(ep) = Bern(0.7).
We observe that the optimal policy tends to schedule transmis-
sions if the buffer or battery occupancy is high, if the channel
state is good, or if some judicious combination of these three
conditions holds. It is particularly interesting to see how, under
the optimal policy, the channel dynamics in Figure 5c influence
the buffer and battery state evolution in Figures 5a and 5b,
respectively. As the channel state worsens, the buffer state
tends to increase because transmissions become too costly and
it becomes difficult to serve the buffer as quickly as new data
packets arrive. Due to the high transmission costs, the battery
state also tends to decrease as the channel state worsens and
we see a large drop in the battery state whenever more than one
packet is scheduled for transmission. Despite this, the optimal
policy manages to keep the buffer from overflowing and to
maintain some energy reserves most of the time.

“The approximate value function is refined more at high buffer states
because the cost directly depends on the buffer state b, and only indirectly
depends on the battery state e (because e restricts the set of feasible actions).
However, it is still possible to see finer refinement at lower battery states by,
for example, using a lower approximation error threshold.

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2518

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

TABLE III
ALGORITHM COMPLEXITY AND APPROXIMATION ERROR COMPARISON

[_Algorithm | Tteration Complexity (FLOPs) | Memory Complexity (floats) | Approx. Error |
Conventional Value Iteration | 44302336 44305664 0
Factored Value Iteration 1703936 3412 0
PDS Value Iteration 159744 3412 0
AVI-3 93312 732 15.3
AVI-1 3456 153 271.5

oo
f=1
1

o
o

V(b+1,eh) — V(b,eh)
F-9
[=]

no o—
] ——b=0
20 —e—h=10| -
' b=20
—%—b=25
0 : ;
0 5 10 15

Battery State

Fig. 3. Submodularity in (b,e) (h =
PeH = Bern(0.7)).

—6.30 dB, P! = Bem(0.2),

In Fig. 6, we show how the average queuing delay,” battery
occupancy, buffer overflows, and battery outages® vary with
respect to the packet arrival rate in both the abundant and
scarce energy scenarios, under the assumption of Bernoulli
arrivals. Each measurement is taken by averaging across
twelve 50,000 time slot simulations of the corresponding
policy. The approximate policies labeled AVI-{ are calculated
using the proposed approximate PDS value iteration algorithm
with £ quadtree divisions (cf. Section VI-B). Fig. 6a shows
the average queuing delay (left axis) and average battery
occupancy (right axis) in the abundant energy scenario, and
Fig. 6b shows the corresponding average overflows (left axis)
and outages (right axis). We observe that AVI-£’s performance
gradually improves in terms of all four performance metrics as
the quadtree undergoes more subdivisions (i.e., as £ increases),
and that its performance lies between that of the greedy and
optimal policies. This can be attributed to the fact that a
coarser piecewise-planar approximation results in a larger error
between the approximate and optimal PDS value functions, yet
acting on such an approximation is better than acting greedily.

Figs. 6a and 6b show that AVI-1 and AVI-3, respectively,
achieve on average 10.61% and 25.79% lower average delays
than the greedy policy across all packet arrival rates; 52.81%
and 86.07% higher average battery occupancies; 14.94% and
33.14% fewer overflows; and 53.76% and 74.56% fewer
outages. Taken together, these results demonstrate that the
proposed solution not only serves more sensor data than the
greedy policy (because less sensor data is lost when there are
fewer overflows), but also serves it with lower delay while

SThe average queuing delay is calculated by dividing the average buffer
backlog by the average number of packets admitted into the buffer in each
time slot (i.e., packet arrivals minus buffer overflows). It is measured in units
of time slots.

6A battery outage occurs when there is not enough energy to transmit a
single packet in the current channel state.

using less energy. We believe that simultaneous improvement
of these metrics is an intrinsic feature of the problem, and
while we are optimizing for delay metrics (queuing delay
and overflows), improvement in terms of battery metrics is
necessary to serve the incoming traffic effectively.

Figs. 6¢ and 6d show results for the scarce energy scenario
with Bernoulli data packet arrivals. These results closely mir-
ror the abundant energy scenario’s trends in Figs. 6a and 6b,
but exhibit a few key differences. First, the queuing delay is
higher in the scarce energy scenario compared to the abundant
energy scenario, while the overflows are lower. These are
direct consequences of the data and energy packet arrival
rates being halved in the scarce energy scenario while the
data-to-energy packet ratio is kept fixed. Second, although the
average battery occupancy is similar in both cases, we observe
more outages. This is a direct consequence of scarce available
energy. Due to lower average energy arrivals, the sensor has
to wait longer to harvest equivalent energy to the abundant
energy case, thereby causing more outages.

In Fig. 7, we show how the considered metrics perform
with respect to the packet arrival rate in both the abundant
and scarce energy scenarios, under the assumption of Poisson
arrivals. These results closely mirror the trends for Bernoulli
packet arrivals in Fig. 6, but exhibit slightly lower average
queuing delays, fewer overflows, and fewer outages across
all policies at the highest arrival rates. Since the Poisson
distribution allows for more than 1 packet arrival in a time
slot, these trends can be attributed to the policy being more
aggressive to compensate for the extra arrivals. Due to space
limitations, we are not able to show the optimal policies here.

Finally, in Table III, we present an estimate of the iteration
and memory complexities of value iteration, factored value
iteration, PDS value iteration, AVI-3, and AVI-1 in units of
floating point operations (FLOPs) and floating point numbers,
respectively. These estimates are determined by plugging in
the appropriate simulation model parameters in Table II into
the iteration and memory complexity expressions in Table 1.
We consider only Bernoulli data and energy arrivals from
Table II for this computation. AVI-3 requires approximately
40% lower iteration complexity and 75% lower memory
complexity than PDS value iteration, which itself is orders
of magnitude more efficient than conventional value iteration.
AVI-1 reduces both iteration and memory complexity by over
an order of magnitude compared to PDS value iteration.

VIII. CoNCLUSION

We formulated the DSEHS problem as an MDP and ana-
lyzed its structural properties. Our analysis does not make any

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS 2519

1000

3
5 500
0
30
Buffer State CRO Battery State Buffer State 30 1 Battery State
(a) Optimal PDS value function (h = —4.68 dB) (b) Optimal policy (h = —4.68 dB)
2000 - 3
1500 -
5 i g
3 1
500 -
0 0
30 0 e
2 e 13’8
w 10
Buffer State g Battery State Buffer State 0 1 Battery State
(c) Greedy PDS value function (h = —4.68 dB) (d) Greedy policy (h = —4.68 dB)
1000 -
E
g 500 -
0-
30
20 e 4
Buffer State Battery State Buffer State o ! Battery State
(e) Approximate PDS value function (h = —4.68 dB) (f) AVI policy (h = —4.68 dB)
1500 - -
P 1000 - P
m =
> 500 <
0 [}
30 0
Buffer State 0 Battery State Buifer State 20 ' Battery State
(g) Optima.l value function (h = —11.23 dB) (h) Optimal policy (h = —11.23 dB)
1
1500
5
31 g
= 500- 0.
16 0
0k
a0
T Baltery State Buffer State 0 1" Battery State
(i) Approximate PDS value function (h = —11.23 dB) () AVI policy (h = —11.23 dB)

Fig. 4. PDS value functions and policies (Pl = Bern(0.2), P€H = Bern(0.7), dtarget = 20).

other than that they are Markovian. We leverage the derived
structural properties to design a low-complexity value iteration
algorithm that operates on a piece-wise planar approximation

assumptions about the specific data and energy arrival distribu-
tions, save for they are i.i.d. or Markovian, and does not make
any assumptions about the channel transition probabilities,

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2520
25 T T T T T T T
m_
2
851
S5
&
S 10+
om
5k
ITHTE T | | | | L L
1915 192 1925 193 1935 1.94 1945 1.95
Time Slot (n) %10*

(a) Buffer state evolution over 400 time slots

Channel State
n (] - w [=2] -~ [=-]

191 1915 192 1925 193 1.935 194 1945 195
Time Slot (n) %10*

(c) Channel state evolution over 400 time slots

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

- s o -
-

Battery State
n £ o oo o 4+

191 1915 182 1925 193 1935 1.94 1945 1.95
Time Slot (n) x10%

(b) Battery state evolution over 400 time slots

2 T T T T T m|

L0 LR

1915 192 1925 193 1935 194 1945 195
Time Slot (n) x10*

Action

(d) Scheduling actions over 400 time slots

Fig. 5. System states and actions over 400 time slots (P! = Bern(0.2) and P®H = Bern(0.7)).

150 1 112
- -
. f 10 3
& @
8 100 | 8 3
(= o
e —A—d-AVI-1 o + - o
i : o ot ke ot
g ||vaans BT & =
Ie] — + —e-Optimal |~ © —2E~g . - E
o 50[|-e-eGreedy ‘s:g*x-,; A LTV y-v]4 @
z — A —g-AVIH ~o. A A pAAK D
.5 =
-7 -e-AVI-3 060 ¢ {2
-8 -0 o
0 : : : : 0
0.1 02 03 04 05 06

Pi(1)
(a) Avg. delay and battery state vs. packet arrival rate

300 _—
250 g T10 B
2 %% P §
[=A™, T
gzoo —d-Optimal 8 3
c —&—d-Greedy o]
3 150 [|—&—d-avi-1 N 6 =
& ——d-AVI-3 g
d100-—+-e-0pﬁmal Y 14 :g
E — © —e-Greedy &E:K_XZX'E‘VV'?-?-V o
50 ||~ 2 —e-AVIH Eloleing S A-AA A, 2
-7 —e-AVI-3 ©o-g_¢ oo
0 — : : ! " ° 0
0.05 0.1 0.15 0.2 0.25 0.3

Pi(1)
(c) Avg. delay and battery state vs. packet arrival rate

051 105
—+—Overflows-Optimal
0.4 || —&—Overflows-Greedy ’_ 0.4
“ [|—2—overfiows-Avi-1 :
—5—Overflows-AVI-3
£ .3 {|— + ~Outages-Optimal 03 &
=) — © —Outages-Greedy =
g - A —Qutages-AVI-1 A A-AD 2
& 0.2 [|- ¥ ~Outages-AVI-3 & 102 O
0.1 -7 vV V V01
4ttt
0 = g 0
0.1 0.2 0.3 0.4 0.5 0.6
Pi(1)
(b) Avg. outages and overflows vs. packet arrival rate
051 105
—+—Overflows-Optimal
0.4 —&— Overilows-Greedy Le-0-0-91,,
| —a—overflows-AVI-1 e :
——Overflows-AVI-3 o pa
" .
0.3 = + —Outages-Optimal - A-aA{03 @
E — & —Qutages-Greedy Le = A a7 %
S |- 2 -outages-AvI-1 02 A 5
& 0.2 |- ¥ ~Outages-AVI-3 o

(d) Avg. outages and overflows vs. packet arrival rate

Fig. 6. Performance comparison under Bernoulli packet arrivals with different arrival rates. (a,b) Abundant energy with P*H (egr) = Bermn(0.7). (c.d) Scarce

energy with PH (ey) = Bern(0.35).

of the value function, and we prove that the algorithm’s
resulting approximation error is bounded. We demonstrate
through comprehensive simulations that the policies computed
by the proposed algorithm outperform a so-called greedy

policy in terms of average queuing delay, battery occupancy,
buffer overflows, and battery outages, while approaching the
optimal policy’s performance as finer approximations are
used.

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS

140
120 F %
> Fuoe =
3 100 Ay g §
(=]
o gg |[——a-Optimal 8
£ —&—d-Gresdy 6 o
8 ool —eAv %y e
<} —s—dAv3 [0 =§-¢L Vg~ e i
S 4o ||~ +~eOptimal ©- L@:Xj?.ri _Z—v_él‘;“‘— +4 &
z - & —e-Greedy RS a0 b4 -
20 ‘—é—n-.wl-i 9—910_9_6 2
-7 —e-AVI-3 G 04
0 ; " " " 0
0.1 02 03 04 05 06

A

250 . U NI |)
et I
7200 8 2
8 z
2150 6 8

=3
] g
o 100 4 ﬁ
o m
g !
< L o
50 2z
L
a0 ; " " " q
0.05 0.1 0.15 02 0.25 03

(c) Avg. delay and battery state vs. packet arrival rate

Fig. 7.
with PH (ep;) = Poiss(0.35).

APPENDIX

A. Proof of Lemma 1

Let us first consider the case when a = 0. The first con-
dition follows from the fact that ¢([b, h],0) is a non-negative
weighted sum of the holding and overflow costs, which are
non-decreasing in b. The second condition is trivially satisfied
because d([b, e, h],0) = ¢([b, h],0) does not depend on e.

Now, we consider the case when a > 0. (i) Since
d([0,e,h],a) < d([1,e,h],a) and d([b,e, h],a) < d([b +
1,e,h],a) for all b >= 1, the first condition holds.
(ii) Since d([b, e, h],a) d([b,e + 1,h],a)ife + 1 <
erx(h,a), d([b,e,h],a) > d([b,e + 1,h],a)ife + 1
erx(h,a), and d([b,e, h],a) =d([b,e+ 1,h],a) ife+1 >
erx (h,a), the second condition holds. [J

B. Proof of Lemma 2

Assuming that e > erx (h, a), we have

> Pe(e|le+1,h],a)

e'>E

= Z Z [{e'=min(e+1—erx (h,a)+em,No)} P (€m)

e'>eegcf
=% esen)
{en €€ : min(e+l—erx(h,a)+en,Ne)>e}
> P (e
- Z{eHES : min(e—erx (h,a)+en,N:)>E} (H)

= Z Z H{e’:min(e—ej—x(h,a}+eH,Ng)}PEH (eH)

e'>eegcf

= " P*(e/|[e,], a),

e'>E

2521

—+—Owerflows-Optimal
—E&— Overflows-Greedy
—&—Overflows-AVI-1
—5—Overflows-AVI-3
2 p.a - +—Outages-Optimal
_g — & —Outages-Greedy
5 — A —QOutages-AVI-1
3 — ¥ —Outages-AVI-3

(=]
@
QOutages

0.4

0.3

(b) Avg. outages and overflows vs. packet arrival rate

057 105
—+— Overflows-Optimal
04l —&— Overflows-Greedy 04
’ —&— Overflows-AVI-1 a0 0]
—7— Overflows-AVI-3 a”
£oa
o
T
o
&02
0.1
0
0.05

(d) Avg outages and overflows vs. packet arrival rate

Performance comparison under Poisson arrivals with different arrival rates. (a,b) Abundant energy with P®H (eg;) = Poiss(0.7). (c.d) Scarce energy

where the first equality follows from the definition of P*®
in (5); the second equality is obtained by moving the indicator
function into the summation bounds; and the subsequent
inequality follows from the fact that min(z + em, Ne) > &
for more values of ey when is larger. [

C. Proof of Lemma 4

The proof follows by induction. Since value itera-
tion converges for any initialization, select Vy([b,e,h])
to be non-decreasing in b. Assume that Vi([b,e, h]) is
non-decreasing in b. We prove that Vi, ([b,e, h]) is also
non-decreasing in b. By definition,

]’]H-l([b: €, h])
agﬂﬂ){c({b, h]., ﬂr) + '}(]Eb’?e’,h’ [m([b’, 6!, h!])]}

i b,e,h
aE%{L,h)Qt—i_l([PR],G.),

(30)

where the expectation is over the transition probability func-
tion P(s’|s, a) defined in Section I'V. In Lemma 1.1, we estab-
lished that the cost function ¢([b, h], a) is non-decreasing in b.
Additionally, since V;([b, e, h]) is non-decreasing in b by the
induction hypothesis and &’ is stochastically increasing in b by
Lemma 3, the expected future value is non-decreasing in b.
It follows that Q¢ 1([b, e, h], a) is also non-decreasing in b.

Let a* be the optimal action in state (b+ 1, e, k). Assuming
that a* € A(b, e, h), we have

T’]H-l([b +1,e, h’]) = Qt-l-l([b + L€, h]: a*)
QH—l([b: €, h]:a*)

i b,e,h
aeﬁi,h)Qt—i_l([y €y],G)

=]’ft-i-l([b: €, h])

v IV

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2522

where the first inequality follows from the fact that
Q:11([b, e, h],a) is non-decreasing in b and the second
inequality follows from optimality. [

D. Proof of Lemma 6

We may express the value function defined in (14) as
Vibeh) = min {b+E/[V(b~f.e—erx(h.a).h)]}

=b+3 PI(fla")V (b~ fre—erx(h,a®),),
where a* € {0,1,..

..., Ng} denotes the optimal action in state
(b,e, h). IfV (b, e, h) (1) has increasing differences in b, (ii) has
increasing differences in €, or (iii) is submodular in (b, &), then
the results follow from the fact that a non-negative weighted
sum of functions with increasing (decreasing) differences has
increasing (decreasing) differences. []

E. Proof of Proposition 1

Recall from (13) that the optimal PDS value function,
V*([b,&,k]), can be written in terms of the optimal value
function, V*(b, e, h). It is clear that the first term in the sum
in (13) is non-decreasing in b. Also, from Lemma 4, we note
that the second term in the sum is non-decreasing in b. The
proof then follows from the fact that a non-negative weighted
sum of non-decreasing functions is non-decreasing. [

E Proof of Proposition 3

Consider the value iteration algorithm, which converges
for any initial condition. Initialize the PDS value func-
tion VuLb €, h) to satisfy (21). Assume that (21) holds for
Vt(b €, h), for some ¢ > 0. We aim to show that (21) holds for
Vi41(b, €, h). Recall from (13) that the PDS value function can
be expressed as a function of the conventional value function.
The first term on the r.h.s. of (13) has increasing differences
in b. Thus, we only need to show that the second term on the
rh.s. of (13) has increasing differences in b. This is implied
if the following holds:

V—t([?;"i_ I]Nb:e!: h!) - T"(:‘3([?!‘;_ 1+ E]Nb: 6’, h’)
<Ve(b+ 1+, e 1) = Vi(b+ 1™, €/ 1Y), (31)

where [z]Y = min(z,N) and ¢/ = min(€ + eg, N,). If we

let Ny = oo, then (31) reduces to
Vi(b+1,e b)) —Vi(b—1+1,¢€ k)
<Vi(b+1+1€, k)= Vib+1,¢e,R),

which holds by Lemma 6.1. This concludes the proof. []

We have empirically verified that Proposition 3 holds for the
finite-buffer case, as well, throughout our extensive empirical
evaluations. Moreover, we can analytically show its validity
for N finite, when b + [# N,. However, completing the
proof, to include this boundary case, turns out to be extremely
challenging. We summarize in the following the reasons why.
First, we note that (31) is sufficient, but not necessary for
the desired result. To derive the necessary condition, we must
expand each term in (21) using (13). As stated above, we can
show that (21) holds in the finite-buffer case (i.e., Np < o0)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

except when b+l= Ny in (13). In this case, (21) reduces to
the following condition:

P'(Ny — b)Eeyy o [V* (Ny, min(€ + egr, Ne), h')

_V*(Nb - lrmlﬂ(g—'— BH:NE)rh!)] <, (32)

where P! is the data packet arrival distribution and 7 is
the overflow cost. Unfortunately, since the value function is
recursively defined, a closed form expression for it does not
exist. Additionally, we are not able to derive any meaningful
upper bound for the left-hand side of (32) that we can compare
to the overflow cost. Consequently, we are not able to prove
the validity of (21), only for this single case of b+ 1 = N,
when N is finite. However, if b < Ny — M;, where M, is the
maximum number of data packets that can arrive in one time
slot, then we do not have to worry about this single case, and
we can conclude that (21) holds even when N, is finite.

G. Proof of Proposition 4

Consider the value iteration algorithm, which converges
for any initial condition. Initialize the PDS value function
Vo(b, e, k) to have increasing differences in the PDS battery
state e, i.e., to satisfy (22). Assume that (22) holds for
Vt(b € hl for some ¢t > 0. We aim to show that (22) holds
for Vii1(b, e h) Recall from (13) that the PDS value function
can be expressed as a function of the conventional value
function. The first term on the r.h.s. of (13), i.e., 7Y ;. P'(1)
max(b + | — N,,0) does not depend on & therefore, it has
increasing differences in e. Thus, we only need to show that
the expected future value (i.e., the second term on the rh.s.
of (13)) has increasing differences in e. This is implied if the
following condition holds:

Vi(¥', min(€ + ez, Ne), ') — Ve(¥, min(e — 1+ eg, Ne), k')
< Vi(t,min(E+ 1 + ez, Ne), i)

_m(b’: mln(€+ €H, NE)': h’)u (33)

where b = min(b+ [, Np). To verify that (33) holds, we con-
sider the following three cases.

Case I (e+1+ey < N.): Assuming that e+1+em < N,
we may rewrite (33) as follows:

Ve(b',e+en, h') = Vi(b',e—1+en, k')
<Vi(t,e+1+em,h') - Vi(V,€+em, '),

which holds by Lemma 6.2.

Case 2 (e+em = N): Assuming that e+ey = N, we may
rewrite (33) as follows:
Vb, Ney K)—Vi (b, Ne—1, b)) < V;(b', N, B)V (b, Ne, h),

which holds by Lemma 5.
Case 3 (e+1+ey > N.): Assuming that e+1+em > N,
we may rewrite (33) as follows:

Ve(V', Ne, b') = Vi (b', Ne, b') < Vi(V', Ne, ') — Vi (V', Ne, B),

which holds because both sides are equal to 0. O

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

SHARMA et al.: DELAY-SENSITIVE ENERGY-HARVESTING WIRELESS SENSORS

H. Proof of Proposition 5

Consider the value iteration algorithm, which converges
for any initial condition. Initialize Vo (b, €, h) to satisfy (23).
Assume that (23) holds for V}(b €, h), for some ¢ > 0. We aim
to show that (23) holds for Vi 1(b, €, h) Recall from (13)
that the PDS value function can be expressed as a function
of the conventional value function. The first term on the r.h.s.
of (13) is submodular in (b, €). Thus, we only need to show
that the expected future value (i.e., the second term on the
rh.s. of (13)) is submodular in (b, €), i.e.,

Ve(b” + 1%, [¢” + 11V, ') — V("1™ [+ 1]V, B)
< Ve(" + 1%, [N,) — V("1™ [, B'), - (39)

where we use [z]V £ min(z,N), b’ £ b+l and ¢’ £ &+
er to keep the equations compact. To verify that (34) holds,
we consider the following two cases.

Case 1 (b"+1 < Np): Assuming that b” +1 < N, we may
rewrite (34) as follows:

m(bﬂ 4 11 [BH + I]Ne, hf) o m(bu, [eu T]_]Nc,h!]

<V + L[], H) — Vb, 1,).
If e’ +1 < N,, then the condition holds by Lemma 6.3 and,
if e’ +1 > N, then both sides are equal; thus, Case 1 holds.

Case 2 (b > Np): Assuming that b” > N,, we may
rewrite (34) as follows:

Vi(No, [e" + 1]V, 1) — Vi(No, [€” + 1]V<, b')
=< .Vi:(Nb: [B”]Nc 3 h!) - W(Nbu [B”]Ne 3 h!):

where both sides are equal to O; thus, Case 2 holds. [

I. Proof of Proposition 7

To simplify the proof, we introduce some new notation.
Using the PDS, we can factor the transition probabilities
into known and unknown components, where the known
component accounts for the transition from the current state
s to the PDS s and the unknown component accounts for the
transition from the PDS 5 to the next state s’ [22]. Formally,

ZEES

where the subscripts k and u denote the known and unknown
components, respectively. We can factor the cost function
similarly:

c(s,a) = cp(s,a) + des Pr(8]s,a)ey(s).

In our problem, the known and unknown costs and transition
probabilities are defined as:

P(s'|s,a) = Pu(s'[S)Pe (3]s,), (35)

(36)

ck(s,a) = b, (37
cu(s) = WZIEE PI(E)max(b+l_Nb: 0), (3%)
Pi1s,0) = PI(b— Bl gome_erxmanlizyy 39

Pu(s'[s) = deﬁ ZeHEE]I{b’=mi“(3+!sN‘=)}
Iie'—min(e+en,Ne)} Pi(1) Pey (er) Pu (R |R), (40)

2523

where ;. is the indicator function. Using this new notation,
we may rewrite (13) and (14) as follows:

V*(3) = () +wZ Pu(s'[5)V*(s") (41)
V*(s) = mln{ck(s a)—i—z s Pels, a)v*(‘)} (42)

Plugging (42) into (41), we define a mapping Hppgs that
maps a V-vector to a new V-vector HppgV, as follows

(HppsV)(3) = cu(®) +7 Y Puls9) ggg{c’c(st a)

'eS

+3 R(F |s',a)17(?)},v5 43)

#cS
where cg, ey, Py, P, denote the known cost, unknown cost,
known transition probabilities, and unknown transition prob-
abilities, respectively. We can show that Hppg is a con-
traction mapping (i.e., |[(HppsV) — V*|| < 4|V — V*||,
where || - || denotes the L., norm) and that PDS value
iteration (Algorithm 1) converges to the optimal PDS value

function V*.
Based on (43), applymg Hppg to the approximate value

function, V = A5V, we get

(HppsATV)() = cu®) +7) Puls'l5) mm{Ck(s a)

'eS

+> Pk(?|s',a)Ag—i}(?]}.

§es

Since A‘r} introduces a single-step error of 4, the previous
equation can be rewritten as,

(HppsASV)(3) < cu(® +7 Y Puls'3) mm{c,,(s a)

=t
+ Z Py(sls, “)(i}(?) + 6)} < (prsi})(g) + ~d.
eSS

Thus, applying Hpps to the approximate value function,
AV, gives

I(Hpps A4 V) — V*|| < ||(HppsV) +76 — 77|
< [(Hpps¥) = V*||+76 <[V = 7*|| 448 (44)

Let (HpDSA)™ denote the case when the contraction
mapping Hpps and the approximation operator A% are
applied m times consecutively. Then, we have

||(HPDSAgr)m17 -V

= ||(HppsAT)(HppsAT)™ 'V — V||

< Y0 +7||(HppsAF)™ 'V —V*||

< 48 + 428 +72||(HppsAy)™2V — V||
+ ™IV -V, (45)

=15y

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

2524

where all the inequalities follow from (44). Taking the limit
of (45) as m — oo, we get

Tim_||(HppsA)™V — V|

: = el 70
Jim {263+ T T = 2

= lim
~

Thus, the AVI algorithm converges to the optimal value

function within a bound € = %.

REFERENCES

[1] N. Sharma, N. Mastronarde, and J. Chakareski, “Structural properties
of optimal transmission policies for delay-sensitive energy harvesting
wireless sensors,” in Proc. IEEE Int. Conf. Commun., May 2018,
pp- 1-7.

[2] R.J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof,
“Energy harvesting for autonomous wireless sensor networks,” JIEEE
Solid State Circuits Mag., vol. 2, no. 2, pp. 29-38, Feb. 2010.

[3] J. Chakareski, “Uplink scheduling of visual sensors: When view pop-
ularity matters,” IEEE Trans. Commun., vol. 63, no. 2, pp. 510-519,
Feb. 2015.

[4] A. Seyedi and B. Sikdar, “Energy efficient transmission strategies for
body sensor networks with energy harvesting,” IEEE Trans. Commun.,
vol. 58, no. 7, pp. 2116-2126, Jul. 2010.

[5] J. Chakareski, “Aerial UAV-IoT sensing for ubiquitous immersive com-
munication and virtual human teleportation,” in Proc. IEEE INFOCOM
Workshops, Atlanta, GA, USA, May 2017, pp. 718-723.

[6] J. Chakareski, “Drone networks for virtual human teleportation,” in
Proc. 3rd ACM MobiSys Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications (DroNet), Niagara Falls, NY, USA, Jun. 2017,
pp. 21-26.

[71 J. Chakareski, “Informative state-based video communication,” IEEE
Trans. Image Process., vol. 22, no. 6, pp. 2115-2127, Jun. 2013.

[8] B. Gurakan and S. Ulukus, “Energy harvesting multiple access channel
with data arrivals,” in Proc. IEEE GLOBECOM, Dec. 2015, pp. 1-6.

[9] X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access
in cognitive radio networks with RF energy harvesting,” IEEE Wireless
Commun., vol. 21, no. 3, pp. 102-110, Jun. 2014.

[10] D. Gunduz, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing
intelligent energy harvesting communication systems,” IEEE Commun.
Mag., vol. 52, no. 1, pp. 210-216, Jan. 2014.

[11] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 2014.

[12] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-
sion with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743,
Sep. 2011.

[13] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless
communications with energy harvesting constraints,” IEEE Trans. Signal
Process., vol. 60, no. 9, pp. 48084818, Sep. 2012.

[14] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access
channel with energy harvesting transmitters,” J. Commun. Netw., vol. 14,
no. 2, pp. 140-150, Apr. 2012.

[15] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy
harvesting communication system,” IEEE Trans. Commun., vol. 60,
no. 1, pp. 220-230, Jan. 2012.

[16] A. Aprem, C. R. Murthy, and N. B. Mehta, “Transmit power control
policies for energy harvesting sensors with retransmissions,” IEEE J. Sel.
Topics Signal Process., vol. 7, no. 5, pp. 895-906, Oct. 2013.

[17] N. Michelusi, K. Stamatiou, and M. Zorzi, “On optimal transmission
policies for energy harvesting devices,” in Proc. Inf Theory Appl.
Workshop (ITA), Feb. 2012, pp. 249-254.

[18] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy
management policies for energy harvesting sensor nodes,” IEEE Trans.
Wireless Commun., vol. 9, no. 4, pp. 1326-1336, Apr. 2010.

[19] D. Zordan, T. Melodia, and M. Rossi, “On the design of temporal
compression strategies for energy harvesting sensor networks,” IEEE
Trans. Wireless Commun., vol. 15, no. 2, pp. 1336-1352, Feb. 2016.

[20] N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for
energy-efficient wireless communication,” IEEE Trans. Signal Process.,
vol. 59, no. 12, pp. 62626266, Dec. 2011.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 4, APRIL 2020

[21] D. V. Djonin and V. Krishnamurthy, “MIMO transmission control in
fading channels—A constrained Markov decision process formulation
with monotone randomized policies,” IEEE Trans. Signal Process.,
vol. 55, no. 10, pp. 5069-5083, Oct. 2007.

[22] N. Mastronarde and M. van der Schaar, “Joint physical-layer and system-
level power management for delay-sensitive wireless communications,”
IEEE Trans. Mobile Comput., vol. 12, no. 4, pp. 694-709, Apr. 2013.

[23] A. Goldsmith, Wireless Communications. Cambridge, U.K.:
Cambridge Univ. Press, 2005.

[24] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality. Hoboken, NJ, USA: Wiley, 2007.

[25] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1987.

[26] N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar, “An on-

line learning algorithm for energy efficient delay constrained scheduling

over a fading channel,” IEEE J. Sel. Areas Commun., vol. 26, no. 4,

pp. 732742, May 2008.

R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2nd ed. Cambridge, MA, USA: MIT Press, 2018. [Online]. Available:

http://incompleteideas.net/book/the-book-2nd.html

[28] A. Krause and D. Golovin, “Submodular function maximization,” in
Tractability: Practical Approaches to Hard Problems. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[29] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237-285, May 1996.

[27]

Nikhilesh Sharma received the B.Tech. degree in
electronics and communication engineering from the
National Institute of Technology Srinagar, India,
in 2014, and the M.S. degree in electrical engineer-
ing from University at Buffalo, NY, USA, in 2017,
where he is currently pursuing the Ph.D. degree in
electrical engineering. His research interests include
reinforcement learning, deep learning, Markov deci-
sion processes, resource allocation in wireless net-
works and systems, and 4G/5G networks.

Nicholas Mastronarde (S’07-M’11-SM’16)
received the B.S. and M.S. degrees from the
University of California at Davis, Davis, CA, USA,
in 2005 and 2006, respectively, and the Ph.D. degree
from the University of California at Los Angeles,
Los Angeles, CA, USA, in 2011, all in electrical
engineering. He is currently an Associate Professor
with the Department of Electrical Engineering,
University at Buffalo, Buffalo, NY, USA. His
research interests include reinforcement learning,
Markov decision processes, resource allocation and
scheduling, UAV networks, and 4G/5G networks.

Jacob Chakareski completed his Ph.D. degree
in electrical and computer engineering at Rice
and Stanford, held research appointments with
Microsoft, HP Labs, and EPFL, and sat on the
advisory board of Frame, Inc. He is currently an
Associate Professor with the Ying Wu College of
Computing, NJIT, where he leads the Laboratory
for VR/AR Immersive Communication (LION). His
research interests span networked virtual and aug-
mented reality, UAV IoT sensing and networking,
real-time reinforcement leaming, 5G wireless edge
computing/caching, ubiquitous immersive communication, and societal appli-
cations. His research was supported by NSF, AFOSR, Adobe, Tencent
Research, NVIDIA, and Microsoft. He is the organizer of the first NSF
Visioning Workshop on networked VR/AR communications. He received the
Adobe Data Science Faculty Research Award in 2017 and 2018, the Swiss
NSF Career Award Ambizione in 2009, the AFOSR Faculty Fellowship in
2016 and 2017, and the Best/Fast-Track Paper Awards at IEEE ICC 2017 and
IEEE Globecom 2016. For further information, please visit www.jakov.org.

Authonzed licensed use limited to: University at Buffalo Libraries. Downloaded on June 26,2020 at 16:09:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

