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Exponential sum estimates over prime fields

Doowon Koh*  Mozhgan Mirzaei I Thang Pham!  Chun-Yen Shen $

Abstract

In this paper, we prove some extensions of recent results given by Shkredov and
Shparlinski on multiple character sums for some general families of polynomials over
prime fields. The energies of polynomials in two and three variables are our main
ingredients.

1 Introduction

Let F, be a prime field, and x be a non-trivial multiplicative character of F;. Let 6 > 0
be a real number. The Paley graph conjecture states that for any two sets A, B C F, with
|A], |B| > p°, there exists v = v(§) such that the following estimate holds:

Z x(a+b)

acAbeB

<p7[A|lB], (1)

for any sufficiently large prime p and any non-trivial character y.

If |A] > p2T9 and |B| > p°, the conjecture has been confirmed by Karatsuba in [10, 11, 12]. In
other ranges, the conjecture remains widely open, even in the balance case |A| = |B| ~ p'/2.

In [6], it is shown that if we have a restricted condition on the size of the sumset B + B,
then the inequality (1) is true. The precise statement is as follows.
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Theorem 1.1 ([6]). Let § and K be positive numbers. Let A, B be sets in I, with p > p(d, K)
large enough and x a non-trivial multiplicative character of Fy. Suppose that

|A] > pot?,

B| > pot,
|B+ B| < K|B|.
Then there ezists v = (5, K) > 0 such that

Z x(a+b)

acA,beB

<p "|A[[B].

In a recent work, Shkredov and Volostnov [18] improved this theorem in the case A = B
using a Croot-Sisask lemma on almost periodicity of convolutions of characteristic functions
of sets [5]. For the sake of completeness, we will state their result in a general form as follows.

Theorem 1.2 ([18]). Let 6, K and L be positive numbers. Let A, B be sets in Fy with
p > p(6, K, L) large enough and x a non-trivial multiplicative character of Fy. Suppose that

A > p3r e,
|B| > p ™,
|A+ Al < K|A]|,
|A+ B| < L|B|.
Then we have
> xa+b)| < L;‘fﬂmum
acAbEB o8P

Using recent advances in additive combinatorics, it has been indicated by Shkredov and
Shparlinski [17] that if we study the sums with more variables, then the problem becomes
much easier. Namely, given four sets 7,4, V, W in F; and two sequences of weights o =
()ier; B = (Buww)upweuxvxw With

max [a;| < 1, max  |Buw| <1,
teT (w,v,w)EUXVXWV



they considered the following sum

SX(T?U’V>W>O‘aﬁ> f) = Z O‘tﬁuvwX(t+f(u>'an))>

teT ueld eV, weW

where f(z,y, z) is a polynomial in three variables in F,[z,y, z|.

Throughout this paper, we denote the cardinality of 7,U,V, W C F, by T, U, V, W, respec-
tively. We use X < Y if X < CY for some constant C' > 0 independent of the parameters
related to X and Y, and write X > Y for Y <« X. The notation X ~ Y means that both
X <Y and Y < X hold. In addition, we use X <Y to indicate that X < (logY)Y.

For the specific cases f(z,y,2) = x+yz and f(x,y,z) = x(y + z), Shkredov and Shparlinski
[17] deduced the following result.

Theorem 1.3 ([17]). For U, V,W,T C Fy, let M = max{U,V,W}. If f(x,y,2) = v+ yz
or f(z,y,z) = x(y + 2), then for any fized integer n > 1, we have
T%p% if n=1

S T,U,V,Waa> ) < uvw 1_ﬁ +M% vvw 1_% ‘
1Sy ( B, 1)l <( ) ( ) ) Tpw + Tipz if n > 2.

We note that this theorem is an improvement of the work of Hanson [8]. In order to indicate

the strength of Theorem 1.3, the following interesting cases were considered by Shkredov
and Shparlinski [17].

1. U~V ~W ~T ~ N, then by setting n = 1, we have
‘SX(Tvuvvuwaavﬁafﬂ << N%pév

. . . 2
which is non-trivial whenever N > p5™¢ for some € > 0.

2. Suppose that T' > p® for some € > 0 and U ~ V ~ W ~ N. Taking n = [2]| + 1, we
have ,
ST, UV, W, @, 8, f)] < N*in Tpin,

which is non-trivial as long as N > p3™ for some § > 0.

One can see [2, 3,4, 7, 8,9, 18, 13, 14, 19] and references therein for related results.

1.1 Statement of main results

The main purpose of this paper is to extend Theorem 1.3 to a general form. More precisely,
we consider any quadratic polynomial f(x,y, z) which is not in the form of g(h(x)+k(y)+I(z))



for some polynomials g, h, k, [ in one variable. We will also study the case of polynomials f
in two variables. Our first result is as follows.

Theorem 1.4. Let f € Fylz,y, 2] be a quadratic polynomial that depends on each vari-
able and that does not have the form g(h(x) + k(y) + l(2)). For U,V W C Fy, let Q =
max{U~", V-1, W™} and let T C F}. Then the following statements hold:

1. IfUVW < p?, then we have

T:p: if n=1

S T,U,V,W,Cl{, 9 << UVW 1_ﬁ —I—UVWQ% . )
LN 8.0 < (wvw) ) Tk Tk i n3a

2. IfUVW > p?, then we have

UVW Thoy if m—1
|5x(T7U,V,W,a,5,f)I<<(T+UVWQi)' oyt
pt/en Tpin + Tzpz if n> 2.

As an immediate consequence of Theorem 1.4, we get the following corollaries.

Corollary 1.5. Let f € F,lx,y, 2| be a quadratic polynomial defined in Theorem 1.4. Let
U VW, T CF, such that U ~V ~W ~ N and T > p® for some € > 0. Then the following
statements hold:

1. If p3td < N < p3 for some § >0 and n > | 5] + 1, then we have

S\ (T UV W, a, B, f)] < N*n Tpin.

2. If N> p3 andn > | 5] + 1, then we have

3

N°T
|SX(T,Z/{,V,W,O(,5,]C)| L =7

p1/4n ’

Corollary 1.6. Let f € F,[z,y, 2] be a quadratic polynomial defined in Theorem 1.4. For
UVW, T CFywithU ~V ~W ~T ~ N, we have the following conclusions:

1. Suppose that p%” <K N K p% for some 6 > 0, then we have

1S\ (T, U, VW, a, B, f)| < N'WApL/2 (n = 1).

2. Suppose that N > p*/3, then we have
ST, U VW, 0,8, )] < N2 (n = 1),
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Now we address the results for two variable quadratic polynomial f € FF,[z,y|. Let x be
a non-trivial multiplicative character of ;. Given three sets 7,4,V in F; a polynomial
f e[z, y|, and two sequences of weights o = (o)ier, 5 = (Buw)uveuxy with

<1 <1
neplod <1 e, bul <1

we define

SX(TJ/{?V’auﬁv f) = Z O‘tﬁqu(t"_f(U,’U)).

teT ueld wey

We are interested in finding an upper bound of the sum S, (7,U, V, «, 3, f). In particular, we
deduce strong results on this problems in the case when f € F,[x, y] is a quadratic polynomial
which is not of the form g(ax + Sy) for some polynomial g in one variable. Relating this
problem for two variable polynomials to that of three variable polynomials, we are able to
prove the following result for two variable polynomials.

Theorem 1.7. Let f € F,[z,y| be a quadratic polynomial which depends on each variable
and which does not take the form g(ax + by). Given U,V, T C Fy with U — V| ~ kU for
some parameter k > 0, the following two statements hold:

1. If VU — V| < p?, then we have

+ k-

N Uv . UV Tsps if n=
|SX(T,U,V,OK,B,JC)‘ rg <k4n W Vl/n){

2. If V2|U — V| > p?, then we have

1 1 T%% ] —
\SX(T,U,V,a,ﬁ,fﬂg(kn.Uv 1 UV),{ p2 if n

pl/2n + ko Vi/n

As a consequence of Theorem 1.7 for kK = 1, we have the following corollary.

Corollary 1.8. Let f € F,[z,y] be a quadratic polynomial defined as in Theorem 1.7. As-
sume that U, V, T C Fy with [U —V| ~ U, U~V ~ N, and T > p for some € > 0. Then
the following statements hold:

1. Suppose that ps+¢ < N < p3 for some € >0 andn > |1/2¢| + 1. Then we have

1S (T U, V, a0, B, )] < N> 5 Tp.



2. Suppose that N > p*/® and n > |1/2¢] + 1. Then we have

N2T

p1/4n'

‘SX(Tvuvvuavﬁufﬂ 5

The rest of this paper is organized as follows: in Section 2 we prove Theorem 1.4, and in
Section 3 we present the proof of Theorem 1.7.

2 Proof of Theorem 1.4

The following result is our main step in the proof of Theorem 1.4. This is the unbalanced
energy version of Theorem 1.1 in [15].

Theorem 2.1. Suppose that f € F,[x,y, 2] is a quadratic polynomial which depends on each
variable and which does not take the form g(h(x) + k(y) + I(z)). For U,V, W C F; with
UVW < p?, let E be the number of tuples (u,v,w,u’,v',w') € (U x V x W)? such that
flu,v,w) = f(u',v',w'). Then we have

E < (UVW)32 + max{V2W? V2U? U*W?}.

Proof. Let f(x,y,z) be a quadratic polynomial that is not of the form g(h(x)+ k(y) +1(2)).
Then f has at least one of the mixed terms zy, yz, rz, because otherwise f would be in the
form of h(x)+k(y)+1(z). Moreover, we may assume that f does not have any constant term,
because the value F is independent of the constant term in f(z,y, z). Therefore, we may
assume that f(z,y, z) = avy+brz+cyz+r(z)+s(y)+t(z) where one of a, b, ¢ € F, is not zero,
and r, s,t are polynomials in one variable with degree at most two and no constant terms.
Furthermore, from the symmetric property of f(z,y, z) we only need to prove Theorem 2.1
for the following three cases:

Case 1: f(z,y,2) = axy + brz + r(z) + s(y) + t(2) with a # 0 and deg(t) = 2.
Case 2: f(z,y,2) = axy + brz + r(z) + s(y) + t(2) with a # 0 and deg(t) = 1.
Case 3: f(x,y,2) = axy + bxz + r(x) + s(y) with a,b # 0.

Case 4: f(x,y,z) = axy + bxz + cyz + r(z) + s(y) + t(z) with a,b, c # 0.

Notice that if one or two of the three mixed terms does not appear in the polynomial f(z,y, z)
(i.e. Case 1, 2 or 3), then the statement of Theorem 2.1 follows immediately from Lemma
2.2, 2.3 and 2.4 below. On the other hand, if the polynomial f(x,y,z) has all the three
mixed terms (i.e. Case 4), then Theorem 2.1 is a direct consequence of Lemma 2.5. Hence,
the proof of Theorem 2.1 is complete if we have the following four lemmas whose proofs will
be given in the subsection below.



Lemma 2.2. Let f(z,y,2) = axy + bxz + r(x) + s(y) + t(2) be a quadratic polynomial in
Fplz,y, 2] that depends on each variable with a # 0 and deg(t) = 2. If U, V,W C F, with
UVW < p?, then we have

E < (UVW)*? + max{U, VHUVW),

where E denotes the number of tuples (z,y,z,2',y',2") € (U XV xW)? such that f(x,y,z) =
)

Lemma 2.3. Let f(x,y,2) = axy + brz + r(x) + s(y) + t(z) be a quadratic polynomial in
Fplz,y, 2] that depends on each variable with a # 0 and deg(t) = 1. Then for U,V,W C F;
with UVW < p?, we have

E < (UVW)32 4 max{V2W?2 V2U? U*W?},
where E is the number of tuples (x,y,z,2',y',2") € U xV x W)? such that f(z,y,2) =

f@y, 2.

Lemma 2.4. Let f(x,y,2) = axy+brz+r(z)+s(y) be a quadratic polynomial in F,[z,y, 2]
that depends on each variable with a,b # 0. Then for U,V,W C F, with UVW < p?, we
have

E < (UVW)*? + max{U,VHUVW),

where E is the number of tuples (x,y,z,2',y',2") € U xV x W)? such that f(z,y,2) =
)

Lemma 2.5. Let f(x,y,2) = avy +brz + cyz +r(z) + s(y) + t(z) be a quadratic polynomial
inIF,[x, v, 2] with a,b, c # 0 which depends on each variable and which does not take the form
g(h(x) + k(y) +1(2)). FU VW CF; with UVW < p?, then

E < (UVW)32 4 max{V?W?2 V2U? U*W?},

where E denotes the number of tuples (z,y,z,2',y’,2") € (U XV xW)? such that f(x,y,z) =
)

Proofs of Lemmas 2.2, 2.3, 2.4, and 2.5

In order to estimate the energy E given in four lemmas above, we use the point-plane
incidence bound due to Rudnev [16]. A short proof can be found in [21].
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Theorem 2.6 (Rudnev). Let R, S denote a set of points in IF;’) and a set of planes in IF;’),
respectively. Suppose that |R| < |S| and |R| < p?. In addition, assume that there is no line
that contains k points of R and is contained in k planes of S. Then we have

I(R.S) = [{(p,7) : p € R,m € S} < |R['*|S| + K|S].

We also need the following Lemma.

Lemma 2.7 (Kévari-Sés—Turdn theorem, [1]). Let G = (AUB, E(G)) be a Ky -free bipartite
graph. Then the number of edges between A and B is bounded by

|E(G)| < Y% A||B|'? + | B|.

Proof of Lemma 2.2 Let E be the number of tuples (z,vy,2,2',y,2') € (U x V x W)?
such that f(x,y,2) = f(2/,y/, 2'), where the quadratic polynomial f takes the form in Case
1. This implies that

ayr — ax'y' + (brz +r(x) + t(2) — s(y)) = b2’ + r(a') + t(2) — s(y).

This relation can be viewed as an incidence between the point (z,vy’, brz+r(x)+t(z) —s(y’))
in 2 and the plane defined by ayX — az'Y + Z = ba'2' + r(2') + t(2') — s(y). Let R be the
following point set:

R = {(z,y bz +r(z) +t(z) —s)): (z,9/,2) eU XV x W} C IF?,,
and S be the following plane set
S:={ayX —ar’V + Z =b2'2' +r(2) + t(2') — s(y) : (2/,y,2") eU x V x W}.

For each fixed (u,v,w) € R, at most two elements (z,y’,z) in U x V x W reproduce the
(u,v,w), because deg(t) = 2. In fact, we can take x = u,y’ = v, and z values are solutions
to

t(z) + buz +r(u) — s(v) = w.

By the same argument, we see that each fixed plane in § can be determined by at most two
elements (2/,y,2') € U x V x W. Also notice that each element in U x V x W determines a
point in R and a plane in S. Hence, we have that

IR| ~|S| ~UVW and E ~ZI(R,S).

This shows that our problem is reducing to estimate of Z(R,S). To bound this, we apply
Rudnev’s point-plane incidence theorem. Since |R| ~ UVW, the condition |R| < p? in



Theorem 2.6 is clearly satisfied from our assumption that UV < p%. Now, we count the
number of collinear points in R. Let R’ be the projection of R onto the first two coordinates.
It is clear that R’ = U x V. Thus any line contains at most max{U, V'} points unless it is
vertical. In the case of vertical lines, we can see that no plane in & contains such lines,
because the z-coordinate of normal vectors of planes in S is one. Therefore, we can apply
Theorem 2.6 with & = max{U, V'}. In other words, we obtain

E < (UVW)*? + max{U, VHUVW).

This completes the proof of Lemma 2.2. [.

Proof of Lemma 2.3 Since deg(t) = 1, without loss of generality, we assume that t(z) =
mz for some m € F and so f(z,y,2) = ary + brz + r(x) + s(y) + mz. As in the proof of
Lemma 2.2, we define the set R of points and the set S of planes as follows:

R :={(z,y bxz+r(x) + mz—s(y)): (z,y,2) eU XV x W} C IF;’,,
S ={ayX —ax’Y +Z =022 +r(@)+mz' —s(y) : (2',y,2") €U x V x W}.

The only reason we need to prove Lemma 2.3 is that if uw = —m/b € U, then the triples
(—m/b,v,w) € R can be determined by many triples (x,7,z) € U x V x W. For this
case, we need to do some more technical steps. If —m/b ¢ U, then Lemma 2.3 follows
immediately from the same argument as in the proof of Lemma 2.2. Thus we may assume that
u=—m/beU. As above, we first need to estimate the sizes of R and S. For (u,v,w) € R
and (z,y',z) €U x V x W, we consider the following system of three equations:

u==z, v=y, w=buz+r(u) + mz — s(v).
If u € U satisfies bu = —m, i.e. u = —m/b € U, then we have
u=uz, v=9y, w=r(u)—s(v) foral zeW. (2)

Let Ry be the set of points (u,v,w) € R with u = —m/b. Then R, is a set with V points,
since for any v = ¢ € V, w is determined uniquely. By (2) and the definition of R, notice
that each point in R; is determined by W triples (x,9',z) € U x V x W. Let Ry = R\ R;.
Also notice that each point in R, is determined by exactly one triple (z,y/,2) € U x V x W.

By the similar argument, we can partition the set of planes § into two sets S; and Sy with
Sy = 8§\ &1 so that |Si| = V), each plane in §; is determined by W triples (2/,y,2') €
U xV x W, and each plane in S, is determined by exactly one triple (z/,y,2") € U X V x W.

From the above observations, it follows that each incidence between R, and Sy, or between
R, and S; contributes to £ by W, each incidence between R, and &; contributes to E by



W2, and each incidence between Ry and S, contributes to F by one. Namely, we have

E<W? - Z(R,8) + W -Z(Ry,8) + W - I(Ry,S1) + Z(R», Ss).

Since |R4| = |S1]| =V, it is clear that

[(Rl, 81) < V2

To bound I(Rs,Ss), recall that each element of Ry and S, is determined by exactly one
element (z,y,z) € U xV x W with x # —m/b. Hence, by the same argument as in the proof
of Lemma 2.2, we see that

(R, Sy) < (UVW)*? 4 max{U, VHUVW).

To bound (R4, Ss), we will use Lemma 2.7. Let G denote the bipartite graph with vertex
sets Sy and R; such that there is an edge between a point in R; and a plane in Sy if the
point lies on the plane. Since |R;| = V, each line contains at most V' points in R;, and
so any two planes in Sy support at most V' points in common. Thus letting A := R, and
B := 8, and applying Lemma 2.7, we obtain that

I(R1,S,) = |E(G)| < V2V(UVIW)Y2 + UVW = U'VPW2V2 L UVW.

Similarly, we also have
I(Ry,S) < UYVPWY2V2 L UVWV.

In other words, we have proved that

E < (UVW)32 4 max{U,V,WHUVW) 4+ V2W? + U223/
< (UVW)*2 2 VW2 4 V2U? + UPW?
< (UVW)*? 4+ max{V*W?2 V2U? U*W?.

This completes the proof of Lemma 2.3. [.

Proof of Lemma 2.4: Since f(z,y, 2) = axy + bxz + r(x) + s(y) with a,b # 0, as in the
proof of Lemma 2.2, we can define the set R of points and the set S of planes as follows:

R = {(z,y bz +r(x) —s(v)): (z,y,2) eU XV x W} C Ff,,
S ={ayX —ax’Y +Z =022 +r(@) —s(y): (2',y,2") €U x V x W}.
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Since b # 0 and U C F;, we have
IR|=|S|=UVW and FE=7Z(R,S).
By the same argument as in the proof of Lemma 2.2, we conclude that
E < (UVW)*? + max{U, VHUVW),
as desired. [
Proof of Lemma 2.5: Now we would like to estimate F which is the number of tuples
(r,y,2,2",y,2") € (U x V x W)? satisfying the equation

.f(x7 y? Z) = f(l’,’ y,’ Z/)’ (3)

where f(x,y,2) = axy+brz+cyz+r(r)+s(y) +1t(z) is a quadratic polynomial in [F, [z, y, 2]
with a, b, ¢ # 0. Without loss of generality, we may assume that

f(z,y,2) = axy + brz + cyz + da* + ey® + g2° + ha + iy + jz,

where a,b,c # 0 and d, e, g,h,t,5 € F,. We adapt the argument as in the proof of Lemma
2.3 in [15]. Since the polynomial f(z,y, z) is not in the form of g(h(z) + k(y) +1(2)), one of
the following equations is not satisfied:

4de = a?, 4dg = b*, deg = ¢*, hc = ja = ib.
Otherwise, we could write

Vi h\° K
f:< da?+\/5y+\/§z+2—\/a) —4—d,

if all of d, e, g are squares in [F,. On the other hand, if all of d, e, g are not squares in [F,, we
could write

1 h > p?
f:d—eg<d\/@x+e\/dgy+g\/%z+ é@) 1

since the equations 4de = a?,4dg = b*,4eg = ¢* imply that de, dg, eg are squares in F,, and
g g Yy q

e,d, g are nonzeros.

By permuting the variables, we may assume that one of the following equations does not
hold:
deg = 2, ib = ja.

11



The equation (3) is rewritten as

(ay + b2)x — 2/ (ay’ + b2") + da* — e(y')? — cy'? — g(&)> + hx — iy — j2'
=d(2)* — ey® — cyz — g2* + ha' — iy — jz.

This relation can be viewed as an incidence between the point (x,ay’ + bz, dz* — e(y')? —
cy'? — g(2)* + ha — iy’ — j2') in F and the plane defined by

(ay +b2)X —2'Y + Z = d(2')* — ey® — cyz — g2* + ha' — iy — jz.
Let R be the following set of points
R = {(z,ay + bz, d2* —e(y)? — cy/2' — g(2')* + hax — iy’ — j2'): (v,y,2)) €U x V x W},
and S be the following set of planes
S={(ay+b2)X —2'Y +Z = d(z')* —ey? —cyz—g2* + ha' —iy—jz : (z',y,2) EUXV X W}.

It is clear that E is bounded from above by the number of incidences between R and S. In
the next step, we estimate the sizes of R and S. Indeed, for a given point (u,v,w) € R, we
now count the number of triples (x,y’,2’) € U x V x W such that

u=u1z, v=ay +b, w=dr*—e(y) —cy's —g(z)*+hx —iy —j7.

These equations yield that

P N\ 2 P,
w:duQ—e(y')Q—cy’<U bay)_g(v bay) —l—hu—iy'—j(v bay),

or
(b*e — abc + a®g) (v')*+ (bev — 2agv + ib* — jab) y' + (b*w — b*du® + gv* — b*hu + bjv) = 0.

We consider the following two cases:

Case 1: If either b’e — abc + a?g or bev — 2agv + ib*> — jab is non-zero, then at most two
solutions g’ of the above equation exist, and 2z’ value is determined in terms of v and y/'.

Case 2: If both b%e — abc + ag and bev — 2agv + ib®> — jab are zero, then we will have the
following system:

b’e—abc+a*g =0, (bc—2ag)v+(ib—ja)b =0, b*w—b*du®+ gv* —b?hu+bjv = 0. (4)

In this case, we need to do some more technical steps.
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In the case when bc — 2ag = 0, the second equation above tells us that b = ja. Therefore,
it follows from the first equation that 4eg = c?, which contradicts our assumptions at the
beginning of the proof.

Thus we must have bec — 2ag # 0. This gives us v = —(ib* — jab)/(bc — 2ag). For this value
of v and any u € U, w is determined uniquely by the third equation of (4). Therefore, there
are at most U points (u,v,w) € R which satisfy three equations above. We denote the set
of these points by Ry C R. Let Ry = R\ Ry. We have |Ry| = U and |R,| ~ UVW. Note
that any point in Ry corresponds to at most two points in & x )V x VW and any point in R,
corresponds to at most max{V, W} points (x,y’,2') € U x V x W.

Likewise, we can also show that the plane set S can be partitioned into two sets &7 and S,
where each plane in &; corresponds to at most two points in & x )V x W, and each plane in
S, corresponds to at most max{V, W} points in U x ¥V x W.

Set N := max{V, W}. We observe that an incidence between R, and S, or between R; and
S,, contributes at most N to £, and an incidence betweenR, and S, contributes at most N?
to E. Hence, we obtain

E<ZI(Ri,8)+ N -I(Ri,S) + N -I(Ry,81) + N* - I(R2,Ss). (5)

Since |Ra|, |Sz| < U, we have Z(R,,S;) < U?. To bound Z(R4,S;), we will apply Theorem
2.6. Before doing this, we need to give an upper bound on the number of collinear points in

R.

One can cover the set R by U planes defined by the equations x = xg, 29 € U. By a direct
computation, one can check that for each plane x = x, the points of R on this plane lie on
either a line or a parabola, and for distinct v’ € V, we have distinct parabolas or lines.

If a line [ does not lie on any of those planes, then it intersects R in at most U points.
Suppose that [ lies on the plane x = xy. Then there are two possibilities. If [ is the same as
a line determined by some 3’ € V| then it contains W points. If it is not that case, then [
supports at most 2V points from R, since a line intersects a parabola or a line in at most
two points. In other words, we can say that the maximal number of collinear points in R is
at most U + 2V + W. By Theorem 2.6, we have

Z(R1,S1) < (UVW)32 4 max{U,V,W}{UVW).

To bound (R4,S:) and I(Rs,S), we use Lemma 2.7 again. Let G be the bipartite graph
with vertex sets S; and Ry such that there is an edge between a point and a plane if the
point lies on the plane. We showed that no max{U,V, W} + 1 points of R; lie on a line.
Hence, any two planes of Sy contain at most max{U, V, W} points of R; in common. Thus,
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we get
I(R1,S:) = |E(G)| < (max{U,V,WH?. U - (UVW)? + UVW.

Using a similar argument, we get
I(Ry,8)) < (max{U,V,WWH?.U - (UVW)Y? + UVW.
Putting all bounds together, it follows from (5) that
E< (UVW)2 + M(UVW) + NM2U2V2Wz + N(UVW) + N2U?, (6)

where N = max{V, W} and M = max{U,V,W}. A direct computation shows that each of
the second, third, fourth, and fifth terms in the RHS of the equation (6) is dominated by

VEW? 4+ VAU? + UPWR
Hence, we have
E < (UVW)32 £ V2W2 4+ VU2 4+ UPW?
< (UVW)3? 4 max{V2W?2 V2U? U*W?},
which completes the proof of Lemma 2.5. [

In addition to Theorem 2.1, the following lemma also plays an important role in providing
the complete proof of the first part of Theorem 1.4.

Lemma 2.8 ([17], Lemma 2.3). For T C F; with size T' and a sequence of weights o =
()ier with maxer |ay| < 1, and for any fized integer n > 1, we have

2n
Tp of n=1
5 (.

AcF, T2+ Trp if n > 2.

Z agx(A+ 1)

teT

To prove the second part of Theorem 1.4, we use following point-plane incidence theorem
due to Vinh ([20]).

Theorem 2.9 ([20], Theorem 5). Suppose that R is a collection of points in Fg, and S is a
collection of hyperplanes in Fg, with d > 2. Then we have

I(R,S) .= {(p,7) :pe R, me S} < @ + D2 IRV S|V,

Using Theorem 2.1 and the argument in [17], we are now ready to give a proof of Theorem
1.4.

14



Proof of Theorem 1.4: Since max(yvuw)cuxvxw |Buvw| < 1, we have

ST UV W, 8,01 < > D aux(t+ fu,v,w))|.

ueU veVweW | teT

For A € F,,, let N(U,V, W, ) be the number of solutions of the equation
flu,v,w) = A,
with (u,v,w) €U x ¥V x W. One can check that

> ONU VWA = UV,

A€EF,,

and
> O NU VWA =E,
AEF,
where E is the number of tuples (u, v, w,u/,v",w’) € (U x V x W)? such that f(u,v,w) =

flu' o' w').

Thus we have

ST UV W, .8, ) <D NUY, WA D anx(t+ )|
A€, teT
Using the Holder inequality, we have
m 2n—1
S (T UV, a8 O < | S ant+ 0| |- | D N, v, w5
\eF, | teT AEF,

Z agx(t+ )

teT

<(ZN(L{,V,W,)\)) -(ZN(L{,V’W,W 203

AR, AeF, A€EF,,

\

)

Z agx(t+ N)

teT

= (UVW)* . E. (Z

A€EF,
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It follows from Theorem 2.1 and Lemma 2.8 that if UVIV < p?, then

ST - U VW, 0, B, f)] <

2n—2

(UVW)™

. 1
((UVW)% +max{V2W2,V2U2,U2W2}> " { 1

Tips if n=1

< ((UVW)l——+UVWQ ) A
Tpin +T2pam if n > 2.

This completes the proof of the first part of Theorem 1.4.

Next we prove the second part of Theorem 1.4. Suppose that UVW > p?. Instead of
Rudnev’s point-plane incidence theorem (Theorem 2.6), one can follow the proof of Theorem
2.1 with Vinh’s point-plane incidence theorem (Theorem 2.9). Then we see that

E < (UVW)?/p + max{V*W?2 V2U? U*W?}.
With this bound of E, we have

Uvw Tzpz if n=1
S (TUVWan)\«( +UVWQ) prnnes
Tpin +T2p2m it n> 2,
which completes the proof of the second part of Theorem 1.4. Thus the proof of Theorem

1.4 is complete. [

3 Proof of Theorem 1.7

In the proof of Theorem 1.7, we make use of the following result which can be obtained by
applying Theorem 2.1.

Theorem 3.1. Let f € F,[z,y] be a quadratic polynomial that depends on each variable
and that does not have the form g(ax + by). For U,V C Ty, let E be the number of tuples
(u,v,u',v") € (U x V)? such that f(u,v) = f(u',v"). Suppose that VU — V| < p*. Then we
have

E<VIU-VP?+U-V

Proof. For any t € f(U,V), let m; be the number of pairs (u,v) € U xV such that f(u,v) = t.
It is clear that my; < UV for all t € f(U,V). It follows that

log(UV)
SDIRCED SEEED SRR Dl )
tef(U,yv) JotefU,V),2i <my<2i+1 Jj=0
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where ko; denotes the cardinality of the set D; := {t € f(U,V): m; > 2/}. We now bound
ko as follows.

Let h(x,y,z) = f(x—z,y). Since f(x,y) is not of the form g(ax+by), by a direct computation,
we have h(z,y, z) satisfies the conditions of Theorem 2.1. We now consider the following
equation

hx,y,2) =1, (8)

where v € V.2 € V-U,y € V,t € D; C f(U,V). Let N(h) be the number of solutions of
this equation. It is easy to see that N(h) > 27k, V. By Cauchy-Schwarz inequality, we have

N(h) < kY |{(z,y, 2,2y, 2) € (Vx V x (V=U))*: hiz,y, 2) = b, o/, )}

< kP (VAR - VP u -V,

where the second inequality follows from Theorem 2.1 with the condition VU — V| < p2.
Putting the lower bound and the upper bound of N(h) together we get

Wk V < key)® (V32U = VP [ U = V|V).

This gives us

ViU - V)32 + U —-V)?
22 ’

Combining this estimate with the inequality (7), we see that

ko K

log(UV)
E<(VIU=VPP+U-VP) Y 1SVU-VPP+u—V°
=0
This concludes the proof of Theorem 3.1. O

Proof of Theorem 1.7: The proof of Theorem 1.7 is similar to Theorem 1.4 except that
we use Theorem 3.1 instead of Theorem 2.1. For the completeness, we will include the
detailed proof here.

Since max(y,v)euxv |Buu| < 1, we have

|SX(T7U7V7Q7B7J0)|§ Z

ueU veV weW

S anx(t + f(u, )

teT

For A € F,,, let N(U,V, \) be the number of solutions of the equation

f(uav) = A
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with (u,v) € U x V. It is easy to see

> NUV,\)=UV, and > NU,V,\’=E

AeF, AeF,

where F is defined as in Theorem 3.1. Thus we have

1SU(T UV, 0,8, )] <> NU,V,N)

A€EF,,

Z ax(t+ )| .

teT

Using the Holder inequality, we have

2n—1
S (T, UV, o, 8, O < | Y Zatxt+)\ SN YN
NeF, | teT \eF,
2n—2

< (Do NUYN A Do NuU YA ZZMHA

AeF, AeF, XEF, | teT

2
=OV)" 2B YD anx(t+ )
XEF, | teT

By Theorem 3.1 and Lemma 2.8, we see that if VU — V| ~ kUV? < p?, then

uv . UV TY?2pl? if n=1
< .27 me— .
|Sx(T7U,V,OA,57 f)‘ ~ </{34 Ul/4ny/1/2n + k Vl/n) {Tp1/4n +T1/2p1/2" if n>2.

This proves the first part of Theorem 1.7.

To prove the second part of Theorem 1.7, assume that V2[U — V| > p?. We can follow the
proof of Theorem 3.1 with Vinh’s point-plane incidence theorem (Theorem 2.9) to obtain
E < VYU - V)?/p+ U —V]?. With this bound of E, we have

TU21/2 3f 1 = 1
|SX(T,U,V,a,5,f)|§ (kl/n_UVW kl/n.UVW).{ P if n

pi/an Vi/n Tpl/4n 4 TV2pl2n if > 2,

which completes the proof of the second part of Theorem 1.7. [
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