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Exponential sum estimates over prime fields

Doowon Koh∗ Mozhgan Mirzaei † Thang Pham‡ Chun-Yen Shen §

Abstract

In this paper, we prove some extensions of recent results given by Shkredov and

Shparlinski on multiple character sums for some general families of polynomials over

prime fields. The energies of polynomials in two and three variables are our main

ingredients.

1 Introduction

Let Fp be a prime field, and χ be a non-trivial multiplicative character of F∗
p. Let δ > 0

be a real number. The Paley graph conjecture states that for any two sets A,B ⊂ Fp with

|A|, |B| > pδ, there exists γ = γ(δ) such that the following estimate holds:
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∣

∣

∣

∣

∑

a∈A,b∈B

χ(a + b)

∣

∣

∣

∣

∣

< p−γ|A||B|, (1)

for any sufficiently large prime p and any non-trivial character χ.

If |A| > p
1

2
+δ and |B| > pδ, the conjecture has been confirmed by Karatsuba in [10, 11, 12]. In

other ranges, the conjecture remains widely open, even in the balance case |A| = |B| ∼ p1/2.

In [6], it is shown that if we have a restricted condition on the size of the sumset B + B,

then the inequality (1) is true. The precise statement is as follows.
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Theorem 1.1 ([6]). Let δ and K be positive numbers. Let A,B be sets in F
∗
p with p > p(δ,K)

large enough and χ a non-trivial multiplicative character of F∗
p. Suppose that

|A| > p
4

9
+δ,

|B| > p
4

9
+δ,

|B +B| < K|B|.

Then there exists γ = γ(δ,K) > 0 such that

∣

∣

∣

∣

∣

∑

a∈A,b∈B

χ(a+ b)

∣

∣

∣

∣

∣

< p−γ|A||B|.

In a recent work, Shkredov and Volostnov [18] improved this theorem in the case A = B

using a Croot-Sisask lemma on almost periodicity of convolutions of characteristic functions

of sets [5]. For the sake of completeness, we will state their result in a general form as follows.

Theorem 1.2 ([18]). Let δ, K and L be positive numbers. Let A,B be sets in F
∗
p with

p > p(δ,K, L) large enough and χ a non-trivial multiplicative character of F∗
p. Suppose that

|A| > p
12

31
+δ,

|B| > p
12

31
+δ,

|A+ A| < K|A|,

|A+B| < L|B|.

Then we have
∣

∣

∣

∣

∣

∑

a∈A,b∈B

χ(a+ b)

∣

∣

∣

∣

∣

<

√

L log 2K

δ log p
|A||B|.

Using recent advances in additive combinatorics, it has been indicated by Shkredov and

Shparlinski [17] that if we study the sums with more variables, then the problem becomes

much easier. Namely, given four sets T ,U ,V,W in F
∗
p and two sequences of weights α =

(αt)t∈T , β = (βu,v,w)u,v,w∈U×V×W with

max
t∈T

|αt| ≤ 1, max
(u,v,w)∈U×V×W

|βuvw| ≤ 1,
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they considered the following sum

Sχ(T ,U ,V,W, α, β, f) :=
∑

t∈T ,u∈U ,v∈V ,w∈W

αtβuvwχ(t+ f(u, v, w)),

where f(x, y, z) is a polynomial in three variables in Fp[x, y, z].

Throughout this paper, we denote the cardinality of T ,U ,V,W ⊂ Fp by T, U, V,W, respec-

tively. We use X ≪ Y if X ≤ CY for some constant C > 0 independent of the parameters

related to X and Y, and write X ≫ Y for Y ≪ X. The notation X ∼ Y means that both

X ≪ Y and Y ≪ X hold. In addition, we use X . Y to indicate that X ≪ (log Y )Y.

For the specific cases f(x, y, z) = x+ yz and f(x, y, z) = x(y+ z), Shkredov and Shparlinski

[17] deduced the following result.

Theorem 1.3 ([17]). For U ,V,W, T ⊂ F
∗
p, let M = max{U, V,W}. If f(x, y, z) = x + yz

or f(x, y, z) = x(y + z), then for any fixed integer n ≥ 1, we have

|Sχ(T ,U ,V,W, α, β, f)| ≪
(

(UVW )1−
1

4n +M
1

2n (UVW )1−
1

2n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

We note that this theorem is an improvement of the work of Hanson [8]. In order to indicate

the strength of Theorem 1.3, the following interesting cases were considered by Shkredov

and Shparlinski [17].

1. If U ∼ V ∼ W ∼ T ∼ N, then by setting n = 1, we have

|Sχ(T ,U ,V,W, α, β, f)| ≪ N
11

4 p
1

2 ,

which is non-trivial whenever N ≥ p
2

5
+ǫ for some ǫ > 0.

2. Suppose that T ≥ pǫ for some ǫ > 0 and U ∼ V ∼ W ∼ N. Taking n = ⌊2
ǫ
⌋ + 1, we

have

|Sχ(T ,U ,V,W, α, β, f)| ≪ N3− 3

4nTp
1

4n ,

which is non-trivial as long as N ≥ p
1

3
+δ for some δ > 0.

One can see [2, 3, 4, 7, 8, 9, 18, 13, 14, 19] and references therein for related results.

1.1 Statement of main results

The main purpose of this paper is to extend Theorem 1.3 to a general form. More precisely,

we consider any quadratic polynomial f(x, y, z) which is not in the form of g(h(x)+k(y)+l(z))
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for some polynomials g, h, k, l in one variable. We will also study the case of polynomials f

in two variables. Our first result is as follows.

Theorem 1.4. Let f ∈ Fp[x, y, z] be a quadratic polynomial that depends on each vari-

able and that does not have the form g(h(x) + k(y) + l(z)). For U ,V,W ⊂ F
∗
p, let Ω =

max{U−1, V −1,W−1} and let T ⊂ F
∗
p. Then the following statements hold:

1. If UVW ≪ p2, then we have

|Sχ(T ,U ,V,W, α, β, f)| ≪
(

(UVW )1−
1

4n + UVWΩ
1

n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

2. If UVW ≫ p2, then we have

|Sχ(T ,U ,V,W, α, β, f)| ≪
(

UVW

p1/2n
+ UVWΩ

1

n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

As an immediate consequence of Theorem 1.4, we get the following corollaries.

Corollary 1.5. Let f ∈ Fp[x, y, z] be a quadratic polynomial defined in Theorem 1.4. Let

U ,V,W, T ⊂ F
∗
p such that U ∼ V ∼ W ∼ N and T ≥ pǫ for some ǫ > 0. Then the following

statements hold:

1. If p
1

3
+δ ≪ N ≪ p

2

3 for some δ > 0 and n > ⌊ 1
2ǫ
⌋ + 1, then we have

|Sχ(T ,U ,V,W, α, β, f)| ≪ N3− 3

4nTp
1

4n .

2. If N ≫ p
2

3 and n > ⌊ 1
2ǫ
⌋+ 1, then we have

|Sχ(T ,U ,V,W, α, β, f)| ≪ N3T

p1/4n
.

Corollary 1.6. Let f ∈ Fp[x, y, z] be a quadratic polynomial defined in Theorem 1.4. For

U ,V,W, T ⊂ F
∗
p with U ∼ V ∼ W ∼ T ∼ N, we have the following conclusions:

1. Suppose that p
2

5
+δ ≪ N ≪ p

2

3 for some δ > 0, then we have

|Sχ(T ,U ,V,W, α, β, f)| ≪ N11/4p1/2 (n = 1).

2. Suppose that N ≫ p2/3, then we have

|Sχ(T ,U ,V,W, α, β, f)| ≪ N7/2 (n = 1).
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Now we address the results for two variable quadratic polynomial f ∈ Fp[x, y]. Let χ be

a non-trivial multiplicative character of F∗
p. Given three sets T ,U ,V in F

∗
p, a polynomial

f ∈ Fp[x, y], and two sequences of weights α = (αt)t∈T , β = (βu,v)u,v∈U×V with

max
t∈T

|αt| ≤ 1, max
(u,v)∈U×V

|βuv| ≤ 1,

we define

Sχ(T ,U ,V, α, β, f) =
∑

t∈T ,u∈U ,v∈V

αtβuvχ(t+ f(u, v)).

We are interested in finding an upper bound of the sum Sχ(T ,U ,V, α, β, f). In particular, we

deduce strong results on this problems in the case when f ∈ Fp[x, y] is a quadratic polynomial

which is not of the form g(αx + βy) for some polynomial g in one variable. Relating this

problem for two variable polynomials to that of three variable polynomials, we are able to

prove the following result for two variable polynomials.

Theorem 1.7. Let f ∈ Fp[x, y] be a quadratic polynomial which depends on each variable

and which does not take the form g(ax + by). Given U ,V, T ⊂ F
∗
p with |U − V| ∼ kU for

some parameter k > 0, the following two statements hold:

1. If V 2|U − V| ≪ p2, then we have

|Sχ(T ,U ,V, α, β, f)| .
(

k
3

4n · UV

U1/4nV 1/2n
+ k

1

n · UV

V 1/n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

2. If V 2|U − V| ≫ p2, then we have

|Sχ(T ,U ,V, α, β, f)| .
(

k
1

n · UV

p1/2n
+ k

1

n · UV

V 1/n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

As a consequence of Theorem 1.7 for k = 1, we have the following corollary.

Corollary 1.8. Let f ∈ Fp[x, y] be a quadratic polynomial defined as in Theorem 1.7. As-

sume that U ,V, T ⊂ F
∗
p with |U − V| ∼ U, U ∼ V ∼ N, and T ≥ pǫ for some ǫ > 0. Then

the following statements hold:

1. Suppose that p
1

3
+ǫ′ ≪ N ≪ p

2

3 for some ǫ′ > 0 and n > ⌊1/2ǫ⌋ + 1. Then we have

|Sχ(T ,U ,V, α, β, f)| . N2− 3

4nTp
1

4n .
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2. Suppose that N ≫ p2/3 and n > ⌊1/2ǫ⌋ + 1. Then we have

|Sχ(T ,U ,V, α, β, f)| . N2T

p1/4n
.

The rest of this paper is organized as follows: in Section 2 we prove Theorem 1.4, and in

Section 3 we present the proof of Theorem 1.7.

2 Proof of Theorem 1.4

The following result is our main step in the proof of Theorem 1.4. This is the unbalanced

energy version of Theorem 1.1 in [15].

Theorem 2.1. Suppose that f ∈ Fp[x, y, z] is a quadratic polynomial which depends on each

variable and which does not take the form g(h(x) + k(y) + l(z)). For U ,V,W ⊂ F
∗
p with

UVW ≪ p2, let E be the number of tuples (u, v, w, u′, v′, w′) ∈ (U × V × W)2 such that

f(u, v, w) = f(u′, v′, w′). Then we have

E ≪ (UVW )3/2 +max{V 2W 2, V 2U2, U2W 2}.

Proof. Let f(x, y, z) be a quadratic polynomial that is not of the form g(h(x)+ k(y)+ l(z)).

Then f has at least one of the mixed terms xy, yz, xz, because otherwise f would be in the

form of h(x)+k(y)+ l(z). Moreover, we may assume that f does not have any constant term,

because the value E is independent of the constant term in f(x, y, z). Therefore, we may

assume that f(x, y, z) = axy+bxz+cyz+r(x)+s(y)+t(z) where one of a, b, c ∈ Fp is not zero,

and r, s, t are polynomials in one variable with degree at most two and no constant terms.

Furthermore, from the symmetric property of f(x, y, z) we only need to prove Theorem 2.1

for the following three cases:

Case 1: f(x, y, z) = axy + bxz + r(x) + s(y) + t(z) with a 6= 0 and deg(t) = 2.

Case 2: f(x, y, z) = axy + bxz + r(x) + s(y) + t(z) with a 6= 0 and deg(t) = 1.

Case 3: f(x, y, z) = axy + bxz + r(x) + s(y) with a, b 6= 0.

Case 4: f(x, y, z) = axy + bxz + cyz + r(x) + s(y) + t(z) with a, b, c 6= 0.

Notice that if one or two of the three mixed terms does not appear in the polynomial f(x, y, z)

(i.e. Case 1, 2 or 3), then the statement of Theorem 2.1 follows immediately from Lemma

2.2, 2.3 and 2.4 below. On the other hand, if the polynomial f(x, y, z) has all the three

mixed terms (i.e. Case 4), then Theorem 2.1 is a direct consequence of Lemma 2.5. Hence,

the proof of Theorem 2.1 is complete if we have the following four lemmas whose proofs will

be given in the subsection below.
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Lemma 2.2. Let f(x, y, z) = axy + bxz + r(x) + s(y) + t(z) be a quadratic polynomial in

Fp[x, y, z] that depends on each variable with a 6= 0 and deg(t) = 2. If U ,V,W ⊂ F
∗
p with

UVW ≪ p2, then we have

E ≪ (UVW )3/2 +max{U, V }(UVW ),

where E denotes the number of tuples (x, y, z, x′, y′, z′) ∈ (U ×V×W)2 such that f(x, y, z) =

f(x′, y′, z′).

Lemma 2.3. Let f(x, y, z) = axy + bxz + r(x) + s(y) + t(z) be a quadratic polynomial in

Fp[x, y, z] that depends on each variable with a 6= 0 and deg(t) = 1. Then for U ,V,W ⊂ F
∗
p

with UVW ≪ p2, we have

E ≪ (UVW )3/2 +max{V 2W 2, V 2U2, U2W 2},

where E is the number of tuples (x, y, z, x′, y′, z′) ∈ (U × V × W)2 such that f(x, y, z) =

f(x′, y′, z′).

Lemma 2.4. Let f(x, y, z) = axy+ bxz+ r(x)+ s(y) be a quadratic polynomial in Fp[x, y, z]

that depends on each variable with a, b 6= 0. Then for U ,V,W ⊂ F
∗
p with UVW ≪ p2, we

have

E ≪ (UVW )3/2 +max{U, V }(UVW ),

where E is the number of tuples (x, y, z, x′, y′, z′) ∈ (U × V × W)2 such that f(x, y, z) =

f(x′, y′, z′).

Lemma 2.5. Let f(x, y, z) = axy+ bxz+ cyz+ r(x) + s(y)+ t(z) be a quadratic polynomial

in Fp[x, y, z] with a, b, c 6= 0 which depends on each variable and which does not take the form

g(h(x) + k(y) + l(z)). If U ,V,W ⊂ F
∗
p with UVW ≪ p2, then

E ≪ (UVW )3/2 +max{V 2W 2, V 2U2, U2W 2},

where E denotes the number of tuples (x, y, z, x′, y′, z′) ∈ (U ×V×W)2 such that f(x, y, z) =

f(x′, y′, z′).

Proofs of Lemmas 2.2, 2.3, 2.4, and 2.5

In order to estimate the energy E given in four lemmas above, we use the point-plane

incidence bound due to Rudnev [16]. A short proof can be found in [21].
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Theorem 2.6 (Rudnev). Let R,S denote a set of points in F
3
p and a set of planes in F

3
p,

respectively. Suppose that |R| ≪ |S| and |R| ≪ p2. In addition, assume that there is no line

that contains k points of R and is contained in k planes of S. Then we have

I(R,S) := |{(p, π) : p ∈ R, π ∈ S}| ≪ |R|1/2|S|+ k|S|.

We also need the following Lemma.

Lemma 2.7 (Kővari–Sós–Turán theorem, [1]). Let G = (A∪B,E(G)) be a K2,t-free bipartite

graph. Then the number of edges between A and B is bounded by

|E(G)| ≪ t1/2|A||B|1/2 + |B|.

Proof of Lemma 2.2 Let E be the number of tuples (x, y, z, x′, y′, z′) ∈ (U × V × W)2

such that f(x, y, z) = f(x′, y′, z′), where the quadratic polynomial f takes the form in Case

1. This implies that

ayx− ax′y′ + (bxz + r(x) + t(z)− s(y′)) = bx′z′ + r(x′) + t(z′)− s(y).

This relation can be viewed as an incidence between the point (x, y′, bxz+r(x)+ t(z)−s(y′))

in F
3
p and the plane defined by ayX − ax′Y + Z = bx′z′ + r(x′) + t(z′)− s(y). Let R be the

following point set:

R := {(x, y′, bxz + r(x) + t(z)− s(y′)) : (x, y′, z) ∈ U × V ×W} ⊂ F
3
p,

and S be the following plane set

S := {ayX − ax′Y + Z = bx′z′ + r(x′) + t(z′)− s(y) : (x′, y, z′) ∈ U × V ×W}.

For each fixed (u, v, w) ∈ R, at most two elements (x, y′, z) in U × V × W reproduce the

(u, v, w), because deg(t) = 2. In fact, we can take x = u, y′ = v, and z values are solutions

to

t(z) + buz + r(u)− s(v) = w.

By the same argument, we see that each fixed plane in S can be determined by at most two

elements (x′, y, z′) ∈ U × V ×W. Also notice that each element in U × V ×W determines a

point in R and a plane in S. Hence, we have that

|R| ∼ |S| ∼ UVW and E ∼ I(R,S).

This shows that our problem is reducing to estimate of I(R,S). To bound this, we apply

Rudnev’s point-plane incidence theorem. Since |R| ∼ UV W, the condition |R| ≪ p2 in

8



Theorem 2.6 is clearly satisfied from our assumption that UV W ≪ p2. Now, we count the

number of collinear points in R. Let R′ be the projection of R onto the first two coordinates.

It is clear that R′ = U × V. Thus any line contains at most max{U, V } points unless it is

vertical. In the case of vertical lines, we can see that no plane in S contains such lines,

because the z-coordinate of normal vectors of planes in S is one. Therefore, we can apply

Theorem 2.6 with k = max{U, V }. In other words, we obtain

E ≪ (UVW )3/2 +max{U, V }(UVW ).

This completes the proof of Lemma 2.2. �.

Proof of Lemma 2.3 Since deg(t) = 1, without loss of generality, we assume that t(z) =

mz for some m ∈ F
∗
p and so f(x, y, z) = axy + bxz + r(x) + s(y) + mz. As in the proof of

Lemma 2.2, we define the set R of points and the set S of planes as follows:

R := {(x, y′, bxz + r(x) +mz − s(y′)) : (x, y′, z) ∈ U × V ×W} ⊂ F
3
p,

S := {ayX − ax′Y + Z = bx′z′ + r(x′) +mz′ − s(y) : (x′, y, z′) ∈ U × V ×W}.

The only reason we need to prove Lemma 2.3 is that if u = −m/b ∈ U , then the triples

(−m/b, v, w) ∈ R can be determined by many triples (x, y′, z) ∈ U × V × W. For this

case, we need to do some more technical steps. If −m/b 6∈ U , then Lemma 2.3 follows

immediately from the same argument as in the proof of Lemma 2.2. Thus we may assume that

u = −m/b ∈ U . As above, we first need to estimate the sizes of R and S. For (u, v, w) ∈ R
and (x, y′, z) ∈ U × V ×W, we consider the following system of three equations:

u = x, v = y′, w = buz + r(u) +mz − s(v).

If u ∈ U satisfies bu = −m, i.e. u = −m/b ∈ U , then we have

u = x, v = y′, w = r(u)− s(v) for all z ∈ W. (2)

Let R1 be the set of points (u, v, w) ∈ R with u = −m/b. Then R1 is a set with V points,

since for any v = y′ ∈ V, w is determined uniquely. By (2) and the definition of R1, notice

that each point in R1 is determined by W triples (x, y′, z) ∈ U × V ×W. Let R2 = R \R1.

Also notice that each point in R2 is determined by exactly one triple (x, y′, z) ∈ U ×V ×W.

By the similar argument, we can partition the set of planes S into two sets S1 and S2 with

S2 = S \ S1 so that |S1| = V, each plane in S1 is determined by W triples (x′, y, z′) ∈
U ×V ×W, and each plane in S2 is determined by exactly one triple (x′, y, z′) ∈ U ×V ×W.

From the above observations, it follows that each incidence between R1 and S2, or between

R2 and S1 contributes to E by W, each incidence between R1 and S1 contributes to E by

9



W 2, and each incidence between R2 and S2 contributes to E by one. Namely, we have

E ≪ W 2 · I(R1,S1) +W · I(R1,S2) +W · I(R2,S1) + I(R2,S2).

Since |R1| = |S1| = V, it is clear that

I(R1,S1) ≪ V 2.

To bound I(R2,S2), recall that each element of R2 and S2 is determined by exactly one

element (x, y, z) ∈ U ×V ×W with x 6= −m/b. Hence, by the same argument as in the proof

of Lemma 2.2, we see that

I(R2,S2) ≪ (UVW )3/2 +max{U, V }(UVW ).

To bound I(R1,S2), we will use Lemma 2.7. Let G denote the bipartite graph with vertex

sets S2 and R1 such that there is an edge between a point in R1 and a plane in S2 if the

point lies on the plane. Since |R1| = V, each line contains at most V points in R1, and

so any two planes in S2 support at most V points in common. Thus letting A := R1 and

B := S2 and applying Lemma 2.7, we obtain that

I(R1,S2) = |E(G)| ≪ V 1/2V (UVW )1/2 + UVW = U1/2W 1/2V 2 + UVW.

Similarly, we also have

I(R2,S1) ≪ U1/2W 1/2V 2 + UVW.

In other words, we have proved that

E ≪ (UVW )3/2 +max{U, V,W}(UVW ) + V 2W 2 + U1/2V 2W 3/2

≪ (UVW )3/2 + V 2W 2 + V 2U2 + U2W 2

≪ (UVW )3/2 +max{V 2W 2, V 2U2, U2W 2}.

This completes the proof of Lemma 2.3. �.

Proof of Lemma 2.4: Since f(x, y, z) = axy + bxz + r(x) + s(y) with a, b 6= 0, as in the

proof of Lemma 2.2, we can define the set R of points and the set S of planes as follows:

R := {(x, y′, bxz + r(x)− s(y′)) : (x, y′, z) ∈ U × V ×W} ⊂ F
3
p,

S := {ayX − ax′Y + Z = bx′z′ + r(x′)− s(y) : (x′, y, z′) ∈ U × V ×W}.

10



Since b 6= 0 and U ⊂ F
∗
p, we have

|R| = |S| = UVW and E = I(R,S).

By the same argument as in the proof of Lemma 2.2, we conclude that

E ≪ (UVW )3/2 +max{U, V }(UVW ),

as desired. �.

Proof of Lemma 2.5: Now we would like to estimate E which is the number of tuples

(x, y, z, x′, y′, z′) ∈ (U × V ×W)2 satisfying the equation

f(x, y, z) = f(x′, y′, z′), (3)

where f(x, y, z) = axy+ bxz+ cyz+ r(x)+ s(y)+ t(z) is a quadratic polynomial in Fp[x, y, z]

with a, b, c 6= 0. Without loss of generality, we may assume that

f(x, y, z) = axy + bxz + cyz + dx2 + ey2 + gz2 + hx+ iy + jz,

where a, b, c 6= 0 and d, e, g, h, i, j ∈ Fq. We adapt the argument as in the proof of Lemma

2.3 in [15]. Since the polynomial f(x, y, z) is not in the form of g(h(x) + k(y) + l(z)), one of

the following equations is not satisfied:

4de = a2, 4dg = b2, 4eg = c2, hc = ja = ib.

Otherwise, we could write

f =

(√
dx+

√
ey +

√
gz +

h

2
√
d

)2

− h2

4d
,

if all of d, e, g are squares in Fq. On the other hand, if all of d, e, g are not squares in Fq, we

could write

f =
1

deg

(

d
√
egx+ e

√

dgy + g
√
dez +

h
√
eg

2

)2

− h2

4d
,

since the equations 4de = a2, 4dg = b2, 4eg = c2 imply that de, dg, eg are squares in Fq, and

e, d, g are nonzeros.

By permuting the variables, we may assume that one of the following equations does not

hold:

4eg = c2, ib = ja.
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The equation (3) is rewritten as

(ay + bz)x− x′(ay′ + bz′) + dx2 − e(y′)2 − cy′z′ − g(z′)2 + hx− iy′ − jz′

= d(x′)2 − ey2 − cyz − gz2 + hx′ − iy − jz.

This relation can be viewed as an incidence between the point (x, ay′ + bz′, dx2 − e(y′)2 −
cy′z′ − g(z′)2 + hx− iy′ − jz′) in F

3
p and the plane defined by

(ay + bz)X − x′Y + Z = d(x′)2 − ey2 − cyz − gz2 + hx′ − iy − jz.

Let R be the following set of points

R = {(x, ay′ + bz′, dx2 − e(y′)2 − cy′z′ − g(z′)2 + hx− iy′ − jz′) : (x, y′, z′) ∈ U × V ×W},

and S be the following set of planes

S = {(ay+bz)X−x′Y +Z = d(x′)2−ey2−cyz−gz2+hx′− iy−jz : (x′, y, z) ∈ U×V×W}.

It is clear that E is bounded from above by the number of incidences between R and S. In
the next step, we estimate the sizes of R and S. Indeed, for a given point (u, v, w) ∈ R, we

now count the number of triples (x, y′, z′) ∈ U × V ×W such that

u = x, v = ay′ + bz′, w = dx2 − e(y′)2 − cy′z′ − g(z′)2 + hx− iy′ − jz′.

These equations yield that

w = du2 − e(y′)2 − cy′
(

v − ay′

b

)

− g

(

v − ay′

b

)2

+ hu− iy′ − j

(

v − ay′

b

)

,

or

(

b2e− abc+ a2g
)

(y′)2+
(

bcv − 2agv + ib2 − jab
)

y′+
(

b2w − b2du2 + gv2 − b2hu+ bjv
)

= 0.

We consider the following two cases:

Case 1: If either b2e − abc + a2g or bcv − 2agv + ib2 − jab is non-zero, then at most two

solutions y′ of the above equation exist, and z′ value is determined in terms of v and y′.

Case 2: If both b2e− abc + a2g and bcv − 2agv + ib2 − jab are zero, then we will have the

following system:

b2e−abc+a2g = 0, (bc−2ag)v+(ib− ja)b = 0, b2w− b2du2+ gv2− b2hu+ bjv = 0. (4)

In this case, we need to do some more technical steps.
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In the case when bc − 2ag = 0, the second equation above tells us that ib = ja. Therefore,

it follows from the first equation that 4eg = c2, which contradicts our assumptions at the

beginning of the proof.

Thus we must have bc − 2ag 6= 0. This gives us v = −(ib2 − jab)/(bc − 2ag). For this value

of v and any u ∈ U , w is determined uniquely by the third equation of (4). Therefore, there

are at most U points (u, v, w) ∈ R which satisfy three equations above. We denote the set

of these points by R2 ⊂ R. Let R1 = R \ R2. We have |R2| = U and |R1| ∼ UVW. Note

that any point in R1 corresponds to at most two points in U × V ×W and any point in R2

corresponds to at most max{V,W} points (x, y′, z′) ∈ U × V ×W.

Likewise, we can also show that the plane set S can be partitioned into two sets S1 and S2,

where each plane in S1 corresponds to at most two points in U × V ×W, and each plane in

S2 corresponds to at most max{V,W} points in U × V ×W.

Set N := max{V,W}. We observe that an incidence between R2 and S1, or between R1 and

S2, contributes at most N to E, and an incidence betweenR2 and S2 contributes at most N2

to E. Hence, we obtain

E ≪ I(R1,S1) +N · I(R1,S2) +N · I(R2,S1) +N2 · I(R2,S2). (5)

Since |R2|, |S2| ≪ U, we have I(R2,S2) ≤ U2. To bound I(R1,S1), we will apply Theorem

2.6. Before doing this, we need to give an upper bound on the number of collinear points in

R.

One can cover the set R by U planes defined by the equations x = x0, x0 ∈ U. By a direct

computation, one can check that for each plane x = x0, the points of R on this plane lie on

either a line or a parabola, and for distinct y′ ∈ V, we have distinct parabolas or lines.

If a line l does not lie on any of those planes, then it intersects R in at most U points.

Suppose that l lies on the plane x = x0. Then there are two possibilities. If l is the same as

a line determined by some y′ ∈ V, then it contains W points. If it is not that case, then l

supports at most 2V points from R, since a line intersects a parabola or a line in at most

two points. In other words, we can say that the maximal number of collinear points in R is

at most U + 2V +W. By Theorem 2.6, we have

I(R1,S1) ≪ (UV W )3/2 +max{U, V,W}(UVW ).

To bound I(R1,S2) and I(R2,S1), we use Lemma 2.7 again. Let G be the bipartite graph

with vertex sets S2 and R1 such that there is an edge between a point and a plane if the

point lies on the plane. We showed that no max{U, V,W} + 1 points of R1 lie on a line.

Hence, any two planes of S2 contain at most max{U, V,W} points of R1 in common. Thus,
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we get

I(R1,S2) = |E(G)| ≪ (max{U, V,W})1/2 · U · (UVW )1/2 + UVW.

Using a similar argument, we get

I(R2,S1) ≪ (max{U, V,W})1/2 · U · (UVW )1/2 + UVW.

Putting all bounds together, it follows from (5) that

E ≪ (UVW )3/2 +M(UV W ) +NM
1

2U
3

2V
1

2W
1

2 +N(UVW ) +N2U2, (6)

where N = max{V,W} and M = max{U, V,W}. A direct computation shows that each of

the second, third, fourth, and fifth terms in the RHS of the equation (6) is dominated by

V 2W 2 + V 2U2 + U2W 2.

Hence, we have

E ≪ (UVW )3/2 + V 2W 2 + V 2U2 + U2W 2

≪ (UVW )3/2 +max{V 2W 2, V 2U2, U2W 2},

which completes the proof of Lemma 2.5. �

In addition to Theorem 2.1, the following lemma also plays an important role in providing

the complete proof of the first part of Theorem 1.4.

Lemma 2.8 ([17], Lemma 2.3). For T ⊂ F
∗
p with size T and a sequence of weights α =

(αt)t∈T with maxt∈T |αt| ≤ 1, and for any fixed integer n ≥ 1, we have

∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(λ+ t)

∣

∣

∣

∣

∣

2n

≪
{

Tp if n = 1

T 2np1/2 + T np if n ≥ 2.

To prove the second part of Theorem 1.4, we use following point-plane incidence theorem

due to Vinh ([20]).

Theorem 2.9 ([20], Theorem 5). Suppose that R is a collection of points in F
d
q , and S is a

collection of hyperplanes in F
d
q , with d ≥ 2. Then we have

I(R,S) := |{(p, π) : p ∈ R, π ∈ S}| ≪ |R||S|
q

+ q(d−1)/2|R|1/2|S|1/2.

Using Theorem 2.1 and the argument in [17], we are now ready to give a proof of Theorem

1.4.
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Proof of Theorem 1.4: Since max(u,v,w)∈U×V×W |βuvw| ≤ 1, we have

|Sχ(T ,U ,V,W, α, β, f)| ≤
∑

u∈U ,v∈V ,w∈W

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t+ f(u, v, w))

∣

∣

∣

∣

∣

.

For λ ∈ Fp, let N(U ,V,W, λ) be the number of solutions of the equation

f(u, v, w) = λ,

with (u, v, w) ∈ U × V ×W. One can check that

∑

λ∈Fp

N(U ,V,W, λ) = UVW,

and
∑

λ∈Fp

N(U ,V,W, λ)2 = E,

where E is the number of tuples (u, v, w, u′, v′, w′) ∈ (U × V × W)2 such that f(u, v, w) =

f(u′, v′, w′).

Thus we have

|Sχ(T ,U ,V,W, α, β, f)| ≤
∑

λ∈Fp

N(U ,V,W, λ)

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t+ λ)

∣

∣

∣

∣

∣

.

Using the Hölder inequality, we have

|Sχ(T ,U ,V,W, α, β, f)|2n ≤





∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t + λ)

∣

∣

∣

∣

∣

2n


 ·





∑

λ∈Fp

N(U ,V,W, λ)
2n

2n−1





2n−1

≤





∑

λ∈Fp

N(U ,V,W, λ)





2n−2

·





∑

λ∈Fp

N(U ,V,W, λ)2



 ·





∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t + λ)

∣

∣

∣

∣

∣

2n




= (UVW )2n−2 · E ·





∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t + λ)

∣

∣

∣

∣

∣

2n


 .
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It follows from Theorem 2.1 and Lemma 2.8 that if UVW ≪ p2, then

|Sχ(T ,U ,V,W, α, β, f)| ≪

(UVW )
2n−2

2n

(

(UVW )
3

2 +max{V 2W 2, V 2U2, U2W 2}
)

1

2n ·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

≪
(

(UV W )1−
1

4n + UV WΩ
1

n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2.

This completes the proof of the first part of Theorem 1.4.

Next we prove the second part of Theorem 1.4. Suppose that UVW ≫ p2. Instead of

Rudnev’s point-plane incidence theorem (Theorem 2.6), one can follow the proof of Theorem

2.1 with Vinh’s point-plane incidence theorem (Theorem 2.9). Then we see that

E ≪ (UV W )2/p+max{V 2W 2, V 2U2, U2W 2}.

With this bound of E, we have

|Sχ(T ,U ,V,W, α, β, f)| ≪
(

UVW

p1/2n
+ UVWΩ

1

n

)

·
{

T
1

2p
1

2 if n = 1

Tp
1

4n + T
1

2p
1

2n if n ≥ 2,

which completes the proof of the second part of Theorem 1.4. Thus the proof of Theorem

1.4 is complete. �

3 Proof of Theorem 1.7

In the proof of Theorem 1.7, we make use of the following result which can be obtained by

applying Theorem 2.1.

Theorem 3.1. Let f ∈ Fp[x, y] be a quadratic polynomial that depends on each variable

and that does not have the form g(ax + by). For U ,V ⊂ F
∗
p, let E be the number of tuples

(u, v, u′, v′) ∈ (U × V)2 such that f(u, v) = f(u′, v′). Suppose that V 2|U − V| ≪ p2. Then we

have

E . V |U − V|3/2 + |U − V|2.

Proof. For any t ∈ f(U ,V), letmt be the number of pairs (u, v) ∈ U×V such that f(u, v) = t.

It is clear that mt ≤ UV for all t ∈ f(U ,V). It follows that

E =
∑

t∈f(U ,V)

m2
t =

∑

j

∑

t∈f(U ,V),2j≤mt<2j+1

m2
t ≪

log(UV )
∑

j=0

22j+2k2j , (7)
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where k2j denotes the cardinality of the set Dj := {t ∈ f(U ,V) : mt ≥ 2j}. We now bound

k2j as follows.

Let h(x, y, z) = f(x−z, y). Since f(x, y) is not of the form g(ax+by), by a direct computation,

we have h(x, y, z) satisfies the conditions of Theorem 2.1. We now consider the following

equation

h(x, y, z) = t, (8)

where x ∈ V, z ∈ V − U , y ∈ V, t ∈ Dj ⊂ f(U ,V). Let N(h) be the number of solutions of

this equation. It is easy to see that N(h) ≥ 2jk2jV. By Cauchy-Schwarz inequality, we have

N(h) ≪ k
1/2

2j

∣

∣{(x, y, z, x′, y′, z′) ∈ (V × V × (V − U))2 : h(x, y, z) = h(x′, y′, z′)}
∣

∣

1/2

≪ k
1/2

2j

(

V 3/2|U − V|3/4 + |U − V|V
)

,

where the second inequality follows from Theorem 2.1 with the condition V 2|U − V| ≪ p2.

Putting the lower bound and the upper bound of N(h) together we get

2jk2jV ≪ k
1/2

2j

(

V 3/2|U − V|3/4 + |U − V|V
)

.

This gives us

k2j ≪
V |U − V|3/2 + |U − V|2

22j
.

Combining this estimate with the inequality (7), we see that

E ≪
(

V |U − V|3/2 + |U − V|2
)

log(UV )
∑

j=0

1 . V |U − V|3/2 + |U − V|2.

This concludes the proof of Theorem 3.1.

Proof of Theorem 1.7: The proof of Theorem 1.7 is similar to Theorem 1.4 except that

we use Theorem 3.1 instead of Theorem 2.1. For the completeness, we will include the

detailed proof here.

Since max(u,v)∈U×V |βuv| ≤ 1, we have

|Sχ(T ,U ,V, α, β, f)| ≤
∑

u∈U ,v∈V ,w∈W

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t+ f(u, v))

∣

∣

∣

∣

∣

.

For λ ∈ Fp, let N(U ,V, λ) be the number of solutions of the equation

f(u, v) = λ,
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with (u, v) ∈ U × V. It is easy to see

∑

λ∈Fp

N(U ,V, λ) = UV, and
∑

λ∈Fp

N(U ,V, λ)2 = E,

where E is defined as in Theorem 3.1. Thus we have

|Sχ(T ,U ,V, α, β, f)| ≤
∑

λ∈Fp

N(U ,V, λ)
∣

∣

∣

∣

∣

∑

t∈T

αtχ(t+ λ)

∣

∣

∣

∣

∣

.

Using the Hölder inequality, we have

|Sχ(T ,U ,V, α, β, f)|2n ≤





∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t + λ)

∣

∣

∣

∣

∣

2n


 ·





∑

λ∈Fp

N(U ,V, λ) 2n
2n−1





2n−1

≪





∑

λ∈Fp

N(U ,V, λ)





2n−2

·





∑

λ∈Fp

N(U ,V, λ)2


 ·





∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t + λ)

∣

∣

∣

∣

∣

2n




= (UV )2n−2 · E ·





∑

λ∈Fp

∣

∣

∣

∣

∣

∑

t∈T

αtχ(t+ λ)

∣

∣

∣

∣

∣

2n


 .

By Theorem 3.1 and Lemma 2.8, we see that if V 2|U − V| ∼ kUV 2 ≪ p2, then

|Sχ(T ,U ,V, α, β, f)| .
(

k
3

4n · UV

U1/4nV 1/2n
+ k

1

n · UV

V 1/n

)

·
{

T 1/2p1/2 if n = 1

Tp1/4n + T 1/2p1/2n if n ≥ 2.

This proves the first part of Theorem 1.7.

To prove the second part of Theorem 1.7, assume that V 2|U − V| ≫ p2. We can follow the

proof of Theorem 3.1 with Vinh’s point-plane incidence theorem (Theorem 2.9) to obtain

E ≪ V 2|U − V|2/p+ |U − V|2. With this bound of E, we have

|Sχ(T ,U ,V, α, β, f)| .
(

k1/n · UVW

p1/2n
+ k1/n · UVW

V 1/n

)

·
{

T 1/2p1/2 if n = 1

Tp1/4n + T 1/2p1/2n if n ≥ 2,

which completes the proof of the second part of Theorem 1.7. �
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[20] L. A. Vinh, The Szemerédi–Trotter type theorem and the sum-product estimate in finite

fields, European Journal of Combinatorics, 32(8) (2011): 1177–1181.

[21] F. de Zeeuw: A short proof of Rudnevs point-plane incidence bound, arXiv: 1612.02719

(2016).

20


	1 Introduction
	1.1 Statement of main results

	2 Proof of Theorem ??
	3 Proof of Theorem ??

