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The λ phase of nitrogen was reported in 2016 and is one of more than a dozen high-pressure solid
nitrogen forms that have been discovered. However, its crystal structure could not be solved unam-
biguously from powder diffraction alone; rather the reported structure was determined by combining
experimental monoclinic lattice parameters with atomic positions from an earlier, computationally
predicted structure that had similar unit cell dimensions. Here, we revisit this structure using density
functional theory and higher-level fragment-based second-order Møller-Plesset perturbation theory
(MP2) and coupled cluster singles, doubles, and perturbative triples (CCSD(T)). Crystal structure
prediction is performed to demonstrate that the reported P21/c structure is indeed the likeliest
candidate for the λ phase. Furthermore, we provide further evidence for the structural assignment
by demonstrating good agreement between its predicted and experimental structural parameters
and Raman spectra. Finally, the thermodynamic stability of the λ phase relative to other phases
has been uncertain, but the calculations do suggest that it may be the thermodynamically most
stable phase for at least part of the pressure range over which it has been observed.

I. INTRODUCTION

Solid nitrogen exhibits fascinating phase behavior at
high pressures, with at least 13 molecular and polymeric
phases reported.1 Some of these phases exhibit well-
defined regions of thermodynamic stability. Others are
kinetically accessible but thermodynamically metastable
polymorphs, as evidenced by the often overlapping tem-
perature and pressure conditions reported for different
phases. These factors make mapping out the phase di-
agram (Figure 1) challenging. Furthermore, solving the
crystal structure for high-pressure phases can also be dif-
ficult. The structures for the ζ,2–5 θ,6 and κ phases5 are
currently unknown, for example. The structure of the ι
phase was reported only in 2018.7

The monoclinic λ phase was discovered in 2016.1 This
molecular nitrogen phase can be synthesized by compres-
sion of high-purity liquid nitrogen at low temperatures.
It has been stabilized between 0.3-110 GPa at 77 K and
between 32-140 GPa at 300 K. Like the ζ-phase, λ nitro-
gen transforms into the η phase at pressures above 100
GPa. This exceptionally wide range of pressure stabil-
ity means that the λ phase can coexist with nine other
phases: the γ, ε, ζ, ι, θ, κ, amorphous η, polymeric
cg, and polymeric layered phases. It remains unclear
whether the λ phase is thermodynamically preferred or
only metastable relative to these other phases in this re-
gion of the phase diagram.

Solving the crystal structure of λ nitrogen experimen-
tally proved challenging. Full Rietveld refinement of the
structure from powder X-ray diffraction data was not
possible due to the small sample sizes, sample graini-
ness, and low X-ray scattering intensities for nitrogen.1

Instead, the crystal structure determination relied heav-
ily on an earlier density functional theory (DFT) crystal
structure prediction study.8 That study identified several
low-enthalpy monoclinic and orthorhombic crystal struc-
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FIG. 1: Phase diagram of nitrogen. The λ phase has been
observed over the conditions highlighted in red, though its
thermodynamic stability relative to the other phases remains
unclear.

tures which had not previously been observed experimen-
tally. Frost and co-workers1 found that fitting their ex-
perimental diffraction data to a monoclinic cell produced
lattice parameters in fairly good agreement with the pre-
viously predicted P21/c structure. Their final reported
crystal structure was then constructed by combining the
experimental lattice parameters with the previously pre-
dicted fractional coordinates of the atoms.
While this structural determination approach is rea-

sonable, further evidence for the determined structure
would be beneficial. For example, the long-accepted
structure of phase III carbon dioxide, which was solved
from relatively challenging powder x-ray diffraction
data,9 has recently been challenged. High-quality mod-
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eling and comparison against a variety of experimental
data found in the literature suggest that carbon diox-
ide phases III and VII are actually identical, with phase
VII being the true structure.10 Density functional theory
predictions of the structures and Raman spectrum were
used to help confirm the ι structure as well.7

Here, we re-visit the λ phase of nitrogen computation-
ally to provide further structural and spectroscopic ev-
idence for the reported crystal structure and to assess
its overall thermodynamic stability. Modeling molecular
nitrogen in the solid state can be difficult. The weak,
non-specific non-covalent interactions between molecules
produce a relatively flat crystal energy landscape, with
many possible crystal structures exhibiting similar en-
ergetic stabilities. For example, the 2009 DFT crystal
structure prediction study8 whose results were used to
help solve the λ N2 structure found several low-enthalpy
structures within ∼0.5 kJ/mol of each other at 40 GPa.

When discriminating between such closely ranked crys-
tal structures, it is important to model the interactions
carefully. The neglect of van der Waals dispersion inter-
actions in the 2009 DFT study could impact the relative
energies, for example. Further insights and energy refine-
ment can be gained by employing higher-level correlated
wave function techniques such as second-order Møller-
Plesset perturbation theory (MP2) or even coupled clus-
ter models. Periodic local MP2 calculations have pro-
vided insight into the phase transitions between the α,
γ, ε, and polymeric cg phases,11,12 but such calculations
are relatively expensive, and nuclear gradients that would
allow geometry optimizations and other response proper-
ties to be predicted readily have not been implemented.

Alternatively, fragment-based methods13–16 such as
the hybrid many-body interaction (HMBI) model17–19

provide an computationally practical strategy for ap-
plying high-level correlated wave function methods to
periodic systems. In HMBI, individual molecules and
their short-range pairwise intermolecular interactions are
modeled with MP2 or other high-level electronic struc-
ture methods, while longer-range pairwise interactions
and non-additive many-body intermolecular interactions
arising from the infinite lattice are approximated with
a polarizable force field. When coupled with a quasi-
harmonic treatment of thermal expansion, the HMBI
model predicts structural, mechanical, and spectroscopic
properties of several phases of carbon dioxide in excel-
lent agreement with experiment.10,20–22 HMBI-predicted
structural and spectroscopic data was used to support
the aforementioned argument that carbon dioxide phases
III and VII are the same phase.10 The HMBI fragment
approach also predicts the polymorphic phase diagram
of methanol with ∼0.5 kJ/mol accuracy,23,24 and it has
been applied to larger polymorphic organic crystals such
as aspirin25 and oxalyl dihydrazide.26 The related bi-
nary interaction fragment model27,28 has proved simi-
larly effective for modeling molecular crystal structures
and properties in solid hydrogen fluoride,29,30 carbon
dioxide,31–34 and ices.35–37

Here, we investigate the λ phase of nitrogen using a
mixture of periodic planewave DFT theory and fragment-
based MP2 calculations. We confirm the previously re-
ported structure of the λ phase through a combination
of DFT-based crystal structure prediction (employing ab

initio random structure searching, or AIRSS) and higher-
level refinement with MP2. Further support for the λ
phase structure is provided by comparison between the
predicted and experimentally observed Raman spectra.
Finally, to investigate whether the λ phase is a thermo-
dynamically stable phase on the phase diagram (rather
than a kinetically accessible metastable one), the thermo-
dynamic stability of the λ phase relative to several other
experimentally known phases which can exist under the
same thermodynamic conditions is investigated.

II. METHODS

Density functional theory calculations: DFT cal-
culations were employed to optimize structures and pro-
vide an initial stability ranking. The calculations were
performed using the B86bPBE density functional38,39

with the exchange-hole dipole moment (XDM) dispersion
correction,40 an 80 Ry planewave cutoff, and a 6×6×6
Monkhorst-Pack k-point grid, as implemented in Quan-
tum Espresso version 6.2.1.41,42 Projector-augmented
wave (PAW) potentials for nitrogen atoms were produced
using A. Dal Corso’s Atomic code v6.1. External pressure
was applied to the variable cell optimizations to mimic
the experimental conditions. See Supplemental Informa-
tion for validation and convergence testing of the DFT
models.
Fragment-based hybrid many-body interaction

(HMBI) calculations: The structures and stability
rankings of the DFT structures were subsequently refined
with correlated wave function methods via the HMBI
model.17–19 HMBI decomposes the total energy of the
crystal according to a many-body expansion,

EHMBI
crystal = EQM

1-body + EQM
SR 2-body + EMM

LR 2-body

+EMM
many-body (1)

where 1-body terms correspond to the energies of individ-
ual nitrogen molecules in the unit cell, two-body terms to
the interaction energies between pairs of molecules (both
within the central unit cell and involving periodic image
molecules), and many-body terms to the non-additive
three-body and higher contributions. The 1-body and
short-ranged two-body terms (i.e. dimers separated by no
more than 6 Å) were computed with MP2 or CCSD(T),
while the long-range two-body and many-body terms are
approximated using the periodic Hartree-Fock (pHF) or
AMOEBA polarizable force field43c calculations under
periodic boundary conditions. The number of monomer
and dimer fragments that need to be computed is reduced
by exploiting space group symmetry.44

The density-fitted MP2 calculations were performed
using Molpro 2012,45 CCSD(T) calculations (with
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core electrons frozen) were employed using PSI4
v1.0,46 the pHF calculations were carried out using
CRYSTAL17,47 and the polarizable force field calcula-
tions were conducted using the Tinker version 6.3.48 Ex-
isting AMOEBA force field parameters were used for
the N2 molecule.43 Single-point MP2 and CCSD(T) frag-
ment energies were computed with counterpoise correc-
tion at the extrapolated complete basis set (CBS) limit.
The CBS results were estimated via the combination of
HF/aug-cc-pVQZ energies plus two-point extrapolation
of the correlation energy contributions49 obtained from
the aug-cc-pVTZ and aug-cc-pVQZ basis sets. The im-
pact of basis set on predicted energies in small molecule
crystals has been studied extensively elsewhere.16,21,22

Single-point pHF fragment energies were computed using
the pob-TZVP basis set,50 which is version of the popular
def2-TZVP basis set51 that has been adapted for periodic
calculations. Empirical testing in small nitrogen clusters
suggests that this basis set, with no counterpoise correc-
tion, provides intermolecular many-body HF interaction
energies that agree fairly well with those obtained from
much larger basis sets.
Structure refinement and quasi-harmonic ap-

proximation: Because the predicted molar volume is
sensitive to the level of theory and because the HMBI-
based MP2 or CCSD(T) calculations can potentially pro-
vide higher-accuracy structures than those from the DFT
model, one would like to refine the structures at the
MP2/CCSD(T) levels of theory. Full crystal relaxations
with MP2 or CCSD(T) are somewhat more computation-
ally expensive than those with DFT (especially with the
larger basis sets needed for the correlated wave function
models). To make the initial structure refinements less
expensive, the following simplified quasi-1-D optimiza-
tion approach was employed: First, the geometries were
optimized with DFT at a series of external pressures.
Second, single-point HMBI electronic energies were com-
puted with MP2 or CCSD(T) and different many-body
treatments at each DFT geometry. A PV pressure-
volume contribution was added to the resulting energies
to obtain enthalpies versus volume: H = E(V ) + PV .
The enthalpy-volume curves were fitted to the Mur-
naghan equation of state,

H(V ) = H0 +
B0V

B
′

0

[

(V0/V )B
′

0

B
′

0 − 1
+ 1

]

−
B0V0

B
′

0 − 1
(2)

where the enthalpy (H0), volume (V0), bulk modulus

(B0), and its first pressure derivative (B
′

0) at zero pres-
sure are the fitting parameters. The optimal volume V0

and corresponding enthalpy H0 were extracted from the
minimum of the fit. Atomic coordinates were obtained
via interpolation of the DFT fractional coordinates to the
optimal volume extracted from the equation of state fit.
This approach is similar to how the quasi-harmonic ap-
proximation (QHA) is sometimes performed (see Ref 22,
for example), except the zero-point and thermal vibra-
tional contributions are neglected here. This neglect is

reasonable at higher pressures where thermal expansion
effects are expected to be small.

For the most promising λ phase structure candidate,
full QHA calculations including phonon contributions
were performed. DFT geometry optimizations were car-
ried out over a wide pressure range (at 28 pressures rang-
ing 0–150 GPa). Again, MP2 and CCSD(T) single-point
energy refinements were computed using HMBI, as de-
scribed above. Harmonic Γ-point phonons were com-
puted at the DFT level, and the volume-dependence of
the phonon frequencies was approximated using mode-
specific Grüneisen parameters that were computed via
finite-difference, as described previously.22 Optimal vol-
umes and energies were then obtained by minimizing the
Gibbs free energies,

G(T, P ) = E(V ) + PV + Fvib(T ) (3)

where Fvib is the standard harmonic Helmholtz vibra-
tional free energy. This combination of DFT geome-
tries and phonons plus higher-level energies in quasi-
harmonic calculations effectively reproduced thermal ex-
pansion and thermochemical properties in an earlier
study on several small-molecule crystals.22

Simulated powder X-ray diffraction (PXRD)
and Raman spectra: PXRD and Raman spectra were
modeled at the HMBI MP2 level for comparison with
experiment. To do so, the crystal structure was relaxed
at the HMBI MP2/aug-cc-pVDZ + AMOEBA level us-
ing fixed unit cell parameters determined from the HMBI
MP2/CBS QHA calculations described above. Previous
work on carbon dioxide10 demonstrated that when the
unit cell is constrained with the lattice parameters ob-
tained from a high level of theory, relaxing the atomic po-
sitions and predicting spectroscopic properties with MP2
in a smaller basis set does not introduce substantial er-
rors compared to larger basis set results, since the unit
cell dimensions constrain the packing density.

Simulated PXRD spectra were generated using
Mercury52 and the same 0.42418 Å wavelength as the ex-
periments. Simulated Raman spectrum are based on Γ-
point MP2/aug-cc-pVDZ + AMOEBA harmonic phonon
frequencies, using the analytical Hessian algorithms im-
plemented in Gaussian 09.53 The use of analytical Hes-
sians for each fragment contribution helps reduce numeri-
cal artifacts associated with summing contributions from
many fragment Hessians in the HMBI model. Raman
intensities were calculated from finite difference of po-
larizability derivatives, which were approximated via the
QM 1- and 2-body contributions only (no AMOEBA or
periodic HF many-body contribution). Because inter-
molecular many-body contributions are relatively small
in nitrogen, the effect on the Raman intensities from ne-
glecting the many-body contributions to the polarizabil-
ity derivatives should be small. This approach has been
described previously.10,35 Peaks in the simulated Raman
spectra are plotted with an arbitrary full width at half
maximum of 10 cm−1.
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FIG. 2: Crystal energy landscape for the low-energy crys-
tal structures at 34 GPa with the B86bPBE-XDM (red
Z=4/orange Z=2), MP2/CBS + pHF (dark blue Z=4/light
blue Z=2), and MP2/CBS + AMOEBA (dark green
Z=4/light green Z=2) levels of theory. Open symbols corre-
spond to further CCSD(T) refinements of the structures. The
experimentally inferred molar volume is indicated in purple.
Enthalpies at each level of theory are plotted relative to the
lowest-energy structure.

III. RESULTS AND DISCUSSION

Crystal structure prediction: To explore the land-
scape of potential crystal structures, crystal structure
prediction was performed via ab initio random struc-
ture searching (AIRSS).54 Employing experimental con-
straints can facilitate AIRSS by narrowing the search
space, as demonstrated for the unusually complex struc-
ture of ι N2.

7 Experimental reports indicate that the λ
N2 phase adopts monoclinic space group symmetry with
two molecules in the unit cell (Z=2).1 Accordingly, the
AIRSS search was performed over all 13 monoclinic space
groups with Z=2. Structures were generated by placing
a single nitrogen molecule at one possible Wyckoff po-
sition with random orientation and then applying the
space group symmetry operators to populate the other
molecules in the unit cell. Lattice parameters were ran-
domized within the constraint that the unit cell volume
remained within ±40% of the experimentally reported
value of 39.9 Å3 (or 12.0 cm3/mol) at 34 GPa. Be-
cause the C2, Cm, Cc, and C2/c space groups are not

amenable to Z=2, searches in those groups were run with
Z=4. The Z=4 searches produced a mixture of new
structures and structures which were supercell represen-
tations of previously predicted Z=2 structures.

In the end, at least 100 random structures were gener-
ated for each space group, for a total of over 1,300 struc-
tures. Each structure was fully relaxed with B86bPBE-
XDM at 34 GPa of external pressure. Some of the ran-
dom structures adopted covalent/polymeric forms upon
relaxation. At 34 GPa, the DFT enthalpies of the poly-
meric structures are significantly higher than those of
molecular forms, so they were discarded. In the end,
the AIRSS procedure generated 636 molecular structures
with Z=2 and 246 with Z=4. After clustering to remove
duplicate structures, 22 unique structures remained.

Figure 2 compares the crystal energy structure for the
15 structures whose B86bPBE-XDM energies lie within
20 kJ/mol of the most stable structure. Higher-energy
structures are unlikely to occur experimentally, since
the typical energy window for polymorphism is ∼10
kJ/mol.55,56 Pictures, lattice parameters, atomic coor-
dinates, and energetics for these predicted structures are
provided in the Supplemental Information. All of the
DFT-predicted structures exhibit molar volumes rang-
ing 10.8–11.3 cm3/mol, which is 6–10% smaller than the
12.0 cm3/mol inferred from the diffraction experiments.1

The neglect of expansion arising from zero-point energy
and thermal vibrational contributions will likely cause
some volume underestimation, but those effects should
be small at 34 GPa. Large volume errors are potentially
problematic when comparing different nitrogen phases,
since many nitrogen phase changes at high-pressure oc-
cur with volume changes of as little as 2%.

Refinement of the structures with correlated fragment-
based MP2/CBS with either pHF or AMOEBA many-
body treatments alters the relative enthalpies of the dif-
ferent candidate structures, but all models predict the
same densely packed P21/c structure to be the most sta-
ble one. This structure is identical to the P21/c structure
predicted by Pickard and Needs8 and which has been as-
cribed to the λ phase.1 Though the relative enthalpies dif-
fer depending on the model, all models predict that this
structure is more stable than the second-lowest structure
by ∼5 kJ/mol or more.

MP2 + pHF and MP2 + AMOEBA refinement also in-
crease the molar volumes by ∼2% and ∼9%, on average,
to 11.1–11.6 and 11.6–12.1 cm3/mol, respectively (Fig-
ure 2). With both many-body treatments, the volume of
the lowest-energy structure shifts closer toward the ex-
perimental value of 12.0 cm3/mol. Switching from MP2
to CCSD(T) increases the molar volumes further, by
about 0.2 cm3/mol. At the CCSD(T)/CBS + AMOEBA
level, the molar volume of 11.8 cm3/mol is 2% smaller
than the experimentally reported one.

These results demonstrate some sensitivity of the
predictions to the many-body treatment. With the
monomer and dimer contributions in the fragment model
treated with large-basis MP2 or CCSD(T), the largest re-





6

 8

 9

 10

 11

 12

 13

 14

 15

 16

 10  20  30  40  50  60  70  80  90

Equation of State
V

o
lu

m
e
 (

c
m

3
/m

o
l)

Pressure (GPa)

Experiment

B86bPBE-XDM

MP2/CBS+pHF

QHA MP2/CBS+pHF @ 300 K

QHA MP2/CBS+AMOEBA @ 300 K

QHA CCSD(T)/CBS+pHF @ 300 K

QHA CCSD(T)/CBS+AMOEBA @ 300 K

FIG. 4: Comparison of the predicted and experimentally
observed1 equations of state for λ N2.

perimentally reported structure at 34 GPa and the en-
thalpic stability of the P21/c structure relative to other
candidate structures generated by AIRSS crystal struc-
ture prediction support the assignment of this structure
to the λ phase.

Spectroscopic comparisons: Further insight into
this phase is gained by looking at the how the structure
and Raman spectrum changes with pressure. Figure 4
plots the equation of state predictions for several dif-
ferent models against experimentally reported volumes.
None of the models quite reproduce the experimental
volume data. B86bPBE-XDM underestimates the mo-
lar volume throughout the pressure range. The QHA
MP2 and CCSD(T) results with AMOEBA many-body
terms predict consistently larger molar volumes, which
end up being closer to the experimental values near ∼30–
40 GPa. The molar volumes from the models with peri-
odic HF many-body treatments are consistently smaller
and agree better with experiment at higher pressures
(as one might expect from the better HF treatment of
many-body exchange-overlap at high pressures). For a
given many-body treatment, CCSD(T) predicts a slightly
larger volume than MP2. The additional expansion ob-
tained by including the QHA treatment is small through-
out the pressure range. The impact of the QHA approxi-
mation would be more noticeable at even lower pressures,
of course.

Using the 300 K QHA CCSD(T) structures, MP2/aug-
cc-pVDZ + AMOEBA harmonic phonons and Raman
intensities were computed at various pressures. As de-
scribed in the Methods section, the atomic positions were

relaxed within the fixed QHA CCSD(T) unit cells at this
same level of theory to ensure stationarity of the energy
with respect to atomic position, as required by the har-
monic phonon approximation. Figure 5a plots represen-
tative spectra at 70 GPa, while Figure 5b predicts how
the Raman-active librational mode frequencies vary with
pressure. The librational modes provide a useful finger-
print for crystal packing. The number of Raman active
modes and their relative intensities in the predicted spec-
tra agree well with the experimental ones. The agreement
between the predicted and experimental frequencies is
rather good at low pressures, but the errors reach up to
∼50–100 cm−1 at high pressures.

While the overall agreement between theory and exper-
iment in the pressure-volume and Raman data is fairly
good, it is unclear why the disagreement between the
models and experiment is as large as it is. Earlier work
on high-pressure phases of carbon dioxide in the ∼10–
60 GPa range found that a very similar fragment-based
modeling approach generally reproduced the molar vol-
umes to within 1%, while the positions of the Raman-
active librational modes were reproduced to within 10–
15 cm−1.10 The treatment of one- and two-body inter-
actions at the CCSD(T)/CBS level is likely well con-
verged (it differs only modestly from the MP2/CBS re-
sults). The treatment of the many-body effects appears
to be a larger problem, and perhaps computing those
contributions with a larger basis set and/or higher level
of theory would be helpful. It’s possible, for example,
that terms such as the generally repulsive Axilrod-Teller-
Muto three-body dispersion term or other, higher-order
exchange overlap contributions that are missing from HF
become important at these high pressures. Alternatively,
given the small size and low-orientational specificity of
the intermolecular interactions in the crystals, anhar-
monic and/or dynamical contributions may be more im-
portant in high-pressure nitrogen phases than in carbon
dioxide.

Beyond possible errors in the modeling, problems with
the experimental measurements and their interpretation
cannot be ruled out. Pressure gradients, inhomogeneous
samples (e.g. due to partial phase transformations), and
other factors can impact high-pressure studies such as
those used to characterize this phase. Despite the mod-
erate disagreements between theory and experiment, the
overall collection of crystal structure and property pre-
dictions here support assignment of this P21/c structure
to the λ phase of nitrogen.

Thermodynamic stability: Finally, we turn to the
question of the thermodynamic stability of the λ phase
compared to other potential phases it overlaps with on
the phase diagram. The original experimental study in-
dicated that the λ phase potentially coexists with nine
other phases on the phase diagram: γ, ε, ζ, ι, θ, κ, η, cg,
and the layered polymeric phase.1 The fragment-based
approach used here is not well-suited to model the net-
work covalent phases, so the cg and layered polymeric
phases are not considered further. Those network co-
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duced this behavior nicely, predicting these transitions
to occur at 0.42 and 2.25 GPa, respectively.11 Here, the
CCSD(T)/CBS + AMOEBA fragment-based enthalpies
at 0 K predict the α −→ γ and γ −→ ε transitions to
occur at 0.45 and 3.0 GPa, respectively, which is also
in rather good agreement with the experimentally re-
ported transitions. Switching to the pHF many-body
treatment stabilizes the γ phase relative to α and ε some-
what. The γ-ε transition shifts only slightly, to 3.2 GPa,
but the α phase (incorrectly) becomes less stable than γ
all the way down to zero pressure (by 0.8 kJ/mol). The
AMOEBA many-body treatment is nominally perform-
ing better than periodic HF for these transitions, though
given the subtle differences in energetics between mod-
els, this could also represent fortuitous error cancellation.
The calculations here also predict the ι phase to be less
stable than ε in the ∼10–60 GPa range, especially with
the periodic HF many-body treatment. This result con-
trasts earlier PBE DFT calculations,7 which found ι to
be more stable than ε. In both cases, however, the en-
ergy differences between the two phases are only a few
kJ/mol or less, and the calculations are performed at 0 K,
rather than the elevated temperatures where ι nitrogen
has been observed experimentally.
Regarding the λ phase, both sets of CCSD(T) calcula-

tions in Figure 7 suggest that λ may be more stable than
the α, γ, ε, and ι phases under certain pressure condi-
tions, though the specific pressure windows varies with
the many-body treatment. While the uncertainties in
the models and the omission of several other phases with
unknown or network covalent structures prevent defini-
tive statements, it appears plausible that λ nitrogen may
represent a thermodynamically stable phase on the phase
diagram, at least at low temperatures.

IV. CONCLUSIONS

To summarize, the experimentally reported crystal
structure for λ nitrogen reflected a mixture of partial
solution powder x-ray diffraction data together with a
previously predicted structure which had similar lat-
tice parameters. Here, a detailed study of λ nitrogen
has been carried out to confirm this structure, using
both dispersion-corrected density functional theory and
higher-level fragment-based MP2 and CCSD(T) calcu-

lations. AIRSS crystal structure prediction over mon-
oclinic space groups predicted this λ structure as the
most stable monoclinic one by ∼5 kJ/mol or more at 34
GPa. While the lattice constants predicted by B86bPBE-
XDM were already in decent agreement with experiment,
refining the structure further with MP2 and CCSD(T)
brought them even closer to the experimental one. Fur-
ther support for assigning this structure to the λ phase
was provided by comparison between the predicted and
experimentally reported equation of state and Raman
spectra over a broad pressure range. Taken together,
the body of evidence provides support for the λ nitrogen
structure first proposed by Frost et al.1

Because it has been unclear whether λ nitrogen is the
thermodynamically stable or only a kinetically accessible
phase under the conditions where it has been observed,
the stability of this λ phase relative to that of several
other experimental phases which are known to co-exist in
the same temperature and pressure conditions was com-
pared. Though the sensitivity/uncertainties associated
with energetics are relatively large and not all possible
phases have been considered, the results do suggest that
the λ phase may well be the thermodynamically most sta-
ble phase at low temperatures and moderate pressures.
Finally, on the methodological side, the fragment-

based MP2 and CCSD(T) models do generally out-
perform the B86bPBE-XDM density functional for these
nitrogen phases. However, the predicted structures and
properties at high pressure are somewhat sensitive to
the treatment of many-body interactions. For pressures
near ∼100 GPa and above in particular (e.g. where the
largest errors in the predicted Raman data occur), it
may be important in the future to employ even bet-
ter treatments of the many-body interactions. Periodic
local MP2 corrected with coupled cluster calculations
have been demonstrated, for example.66 Pragmatic ap-
proaches that account for many-body dispersion effects
might also prove useful.67,68 More careful assessment of
these issues should be carried out in the future.
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