
AlignS: A Processing-In-Memory Accelerator for
DNA Short Read Alignment Leveraging SOT-MRAM

Shaahin Angizi†, Jiao Sun‡, Wei Zhang‡ and Deliang Fan†
† Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

‡ Department of Computer Science, University of Central Florida, Orlando, FL 32816
{angizi,jiao.sun}@knights.ucf.edu,{wzhang.cs,dfan}@ucf.edu

ABSTRACT
Classified as a complex big data analytics problem, DNA short
read alignment serves as a major sequential bottleneck to massive
amounts of data generated by next-generation sequencing plat-
forms. With Von-Neumann computing architectures struggling to
address such computationally-expensive and memory-intensive
task today, Processing-in-Memory (PIM) platforms are gaining
growing interests. In this paper, an energy-efficient and parallel PIM
accelerator (AlignS) is proposed to execute DNA short read align-
ment based on an optimized and hardware-friendly alignment algo-
rithm. We first develop AlignS platform that harnesses SOT-MRAM
as computational memory and transforms it to a fundamental pro-
cessing unit for short read alignment. Accordingly, we present a
novel, customized, highly parallel read alignment algorithm that
only seeks the proposed simple and parallel in-memory operations
(i.e. comparisons and additions). AlignS is then optimized through a
new correlated data partitioning and mapping methodology that al-
lows local storage and processing of DNA sequence to fully exploit
the algorithm-level’s parallelism, and to accelerate both exact and
inexact matches. The device-to-architecture co-simulation results
show that AlignS improves the short read alignment throughput
per Watt permm2 by ∼12× compared to the ASIC accelerator. Com-
pared to recent FM-index-based ReRAM platform, AlignS achieves
1.6× higher throughput per Watt.

1 INTRODUCTION
Powered by the high-throughput genomic technologies, the new
DNA sequencing method is able to determine the accurate order of
nucleotides (nt) along genomes, and capable of measuring molec-
ular activities in cells. It empowers disease diagnostics and other
aspects of medical care, including tailor patient treatment and pre-
natal testing [1]. The sequence data generated from one patient
sample consists of tens of millions short DNA sequences (reads)
that range from 50 to 500 nt in length. These short reads do not
come with position information, and we do not know what part of
the chromosome/genome they came from. Thus, the short reads
must be aligned to the reference genome before most Genomic
analyses can begin. However, the reference genome is really big.
It contains two twisting, paired strands and each strand carries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317764

approximately 3 billion nucleotide bases (A,T ,C ,G) in human, and
the bases on two strands are paired specifically: A-T and C-G [2].
Therefore, the DNA sequence alignment task for one sample is
becoming to map the tens of millions of short reads to a 3 billion
base pair (bp) reference genome with 1-2 mismatches allowed on
each short read. Several sequence alignment algorithms have been
developed during the last decade. However, even the most efficient
algorithm such as BWA [3] or Bowtie [4] using Burrows-Wheeler
Transformation (BWT) requires hours or days to align such large
amount of data using DNA sequencing machine and even very pow-
erful CPU/GPU-based computing systems. Therefore, the genomic
information from DNA sequencing data cannot be widely applied
for disease diagnosis and prognosis as the other physiological data
in clinics and hospitals.

From computing hardware perspective, today’s sequencing ac-
celeration solutions including CPU, GPU [5], ASIC [1, 6, 7], and
FPGA [8] are mostly based on the Von-Neumann architecture with
separate computing and memory components connecting via buses
and inevitably consume a large amount of energy in data move-
ment between them. In the last two decades, Processing-in-Memory
(PIM) architectures, as a potentially viable way to solve the memory
wall challenge, have been well explored for different applications
[9]. The key concept behind PIM is to realize logic computation
within memory to process data by leveraging the inherent par-
allel computing mechanism and exploiting large internal mem-
ory bandwidth. It could lead to remarkable savings in off-chip
data communication energy and latency. The PIM architecture
has become even more intriguing when integrated with emerging
Non-Volatile Memory (NVM) technologies, such as Resistive RAM
(ReRAM) [2, 10]. ReRAM offers more packing density (∼ 2 − 4×)
than DRAM, but they suffer slower and more power hungry writing
operation. The most recent ReRAM-based PIM solutions for short
read alignment [10, 11] rely on Ternary Content-Addressable Mem-
ory (TCAM) arrays that unavoidably impose significant area and
energy overheads to the system [2] due to associative processing
dealing with Smith-Waterman (SW)-based algorithms that require
many write operations and takes 75% of the ReRAM cells to store
the intermediate data [12]. Alternatively, RADAR [10] and AligneR
[2] present ReRAM-based PIM architectures that can directly map
more efficient algorithms such as BLASTN and FM-index-based
searches, respectively. In emerging NVM technologies, Magnetic
RAM (MRAM) is another promising high performance paradigm,
due to its ultra-low switching energy, non-volatility, superior en-
durance, and compatibility with CMOS technology [13, 14].

In this work, we intertwine the innovation from both architec-
ture and algorithm perspectives: (1) We first design a reconfigurable
PIM architecture based on Spin Orbit Torque MRAM (SOT-MRAM),
AlignS, based on a set of novel microarchitectural and circuit-level

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:49:05 UTC from IEEE Xplore. Restrictions apply.

MCD

M
R

D

SA

WD
A A

Ct
rl XNOR2

B

XOR2/
XNOR2

MCD

M
R

D
SA

WD
A A

Ct
rl

B

C

M
R

D

MCD
V1

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M
R

D

MCD
V1

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

Sub-array

Ctrl

G
RD GWL

Bank

GRB

GWL GBL

c_addr
r_addr

Ctrl

GRB

MATMATMAT
GBL

MATMATMAT

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

GGGG

Compute.
Sub.

D
river

Ctrl

Compute.
Sub.

D
river

Ctrl

LRB

GRD

Mat

Reconfig. SA
Bank
Bank

Bank

Bank
buffer

I/O
Ctrl

Chip

Vref1

RAND

V s
en
se

Vref2

ROR

RMem

Iref

R
BL

Isense

RMAJ

Latch

Rst

Local Row Buffer

Command
Decoder

Cmd

Add Timing
Ctrl

Data
flow
ctrl

Ctrl

Rst

RWLn

RWLm

RWL1

MRD-extension

Din-IntraDD
Din-InterD+

W
e

D.
W
e LRB_out1D

A

D+
W
e

D.
W
e

D+
W
e

D.
W
e

VDD

-VDD

Write Driver (WD)

C

Ct l
B M

D

VDD
E

MAG3

MAG3

M
R

D

LRBout1

LRBout2

LRB_out2

CMAJ CAND COR CMem CmuxI CmuxII

XNOR2
read

MAJ3

ad
d

XOR3

Iref

Figure 1: (a) The AlignS memory organization, (b) Block level scheme of computational sub-array and SOT-MRAM realization
of XNOR2 and MAJ3 in-memory logic functions, (c) AlignS’s peripheral circuitry.

schemes that position AlignS as a massive data-parallel computa-
tional unit for short read alignment; (2) We investigate optimiza-
tion of fast BWT and FM-index based DNA sequence alignment
algorithm from hardware perspective to fully exploit AlignS’s par-
allelism to accelerate DNA alignment; (3) We design a dense data
mapping and partitioning scheme to process the indices locally and
handle various length DNA sequences; (4) We extensively evaluate
and compare AlignS’s efficiency compared with state-of-the-art
short read alignment accelerators i.e. GPU, ASIC, TCAM, etc.
2 ALIGNS ARCHITECTURE
AlignS is designed to be an independent, high-performance, energy-
efficient accelerator based on main memory architecture. The main
memory rank is a set of MRAM chips. Each chip is divided into
multiple Banks. Banks within the same chip typically share I/O,
buffer and banks in different chips working in a lock-step man-
ner. Each bank consists of multiple memory matrices (mats). The
general mat organization of AlignS is shown in Fig. 1a. Each mat
consists of multiple computational memory sub-arrays connected
to a Global Row Decoder (GRD) and a shared Global Row Buffer
(GRB). According to the physical address of operands within mem-
ory, AlignS’s Controller (Ctrl) is able to configure the sub-arrays
to perform data-parallel intra-sub-array computations. Moreover,
every two sub-arrays share a Local Row Buffer (LRB).

Fig. 1b depicts the presented PIM sub-array architecture based on
SOT-MRAM. This architecturemainly consists ofWrite Driver (WD)
(Fig. 1c E), Memory Row Decoder (MRD) D , Memory Column
Decoder (MCD), reconfigurable Sense Amplifier (SA) A , and can
be adjusted by Ctrl B unit to work in dual-mode that perform both
memory write/read and bit-line computing. SOT-MRAM device
is a composite structure of Spin Hall Metal (SHM) and Magnetic
Tunnel Junction (MTJ) [15]. The resistance of MTJ with parallel
magnetization in both magnetic layers (data-‘0’) is lower than that
ofMTJwith anti-parallel magnetization (data-‘1’). Each SOT-MRAM
cell located in computational sub-arrays is associated with theWrite
Word Line (WWL), Read Word Line (RWL), Write Bit Line (WBL),
Read Bit Line (RBL), and Source Line (SL) to perform operations
based on reconfigurability of memory SAs.

The key idea to perform memory read and bit-line computing in
AlignS is to choose different thresholds (references) when sensing
the selected memory cell(s). The proposed reconfigurable SA, as
depicted in Fig. 1c A , consists of two sub-SAs and totally four
reference-resistance branches that can be selected by control bits
(CMAJ , CAND , COR , CMem) by the sub-array’s Ctrl to realize the
memory and computation schemes. Later, the output is routed
through two mux controllers (CmuxI and CmuxI I) to either LR-
Bout1 and LRBout2. Such reconfigurable SA is especially optimized
to accelerate two read alignment’s intensive operations, i.e. 2-input
XNOR and addition aswell as typical memory read operation. There-
fore, there are only four available control-bit sequences (shown in
Fig. 1c B) that provide an efficient control circuitry for AlignS.

Memory Mode: To write ‘1’ (/‘0’) in any of the SOT-MRAM
cells, e.g. in the cell of 1st row and 1st column (M1), the WD (V1)
connected to WBL1 is set to positive (/negative) write voltage. This
allows sufficient charge current flows from V1 to ground (/ground
to V1), leading to MTJ resistance in High-RAP (/Low-RP). For mem-
ory read, a read current flows from the selected cell to ground,
generating a sense voltage (Vsense) at the input of SA, which is com-
pared with memory mode reference voltage activated by CMem
(Vsense,P<Vref,M<Vsense,AP). If the path resistance is higher (/lower)
than RMem (memory reference resistance), i.e. RAP (/RP), then the
SA produces High (/Low) voltage indicating logic ‘1’ (/‘0’). The idea
of voltage comparison for memory read is shown in Fig. 2a.

Bit-line Computing Mode: The computational sub-array of
AlignS is optimized to perform two bulk bit-wise in-memory logic
operations between the operands located in the same bit-line. To
realize XNOR2 in-memory logic, every two bits stored in the iden-
tical column can be selected employing the MRD [16] and sensed
simultaneously, as depicted in Fig. 1b. Then, the equivalent resis-
tance of such parallel connected cells and their cascaded access
transistors are compared with two programmable references by
SA (RAND ,ROR). Through selecting different reference resistances,
the sub-SAs can perform basic 2-input in-memory Boolean func-
tions (i.e. AND2/NAND2 and OR2/NOR2), e.g. to realize AND2 operation,
RAND is set at the midpoint of RAP //RP (‘1’,‘0’) and RAP //RAP

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:49:05 UTC from IEEE Xplore. Restrictions apply.

(‘1’,‘1’). Accordingly, as shown in 1c A , we formed a capacitive volt-
age divider after OR2 and NAND2 outputs driving a CMOS inverter
(with low-Vth PMOS and high-Vth NMOS) to realize NAND2 func-
tion, thereby enabling a multi-kilobyte-wide bitwise XNOR2 of two
rows in AlignS’s sub-arrays. Note that, dual-threshold technique
can eliminate the leakage current through a transistor, thereby
decreasing leakage power consumption while maintaining perfor-
mance [17, 18]. The idea of voltage comparison between Vsense and
Vref to realize AND2/NAND2 and OR2/NOR2 is shown on Fig. 2b.

VP,P VAP,PVAP,AP

AND2OR2

VP VAP

Read

Vsense

RM
1

R1
Ise

ns
e

RM
2

R2

SA

RA
N

D

 o
r

Ire
f

Vref

Vsense

RM
1

R1
Ise

ns
e

SA

RM
em

Ire
f

Vref

(a)
VP,P,P VP,P,AP VAP,AP,AP

MAJ

Vsense

RM
1

R1

Ise
ns

e
RM

2
R2

SA

RM
AJ

Ire
f

VrefRM
3

R3

VP,AP,AP

RO
R

(b) (c)
Figure 2: The idea of voltage comparison between Vsense and
Vref for (a) memory read, (b) (N)AND2, (N)OR2, (c) MAJ3.

AlignS’s sub-array can perform addition/subtraction (add/sub)
operation quite efficiently. The carry-out of the full-adder can be di-
rectly produced by MAJ3 function (Carry in Fig. 1c A) just by setting
CMAJ to ‘1’ in a single memory cycle. As shown in Fig. 2c, to per-
form MAJ3 operation, RMAJ is set at the midpoint of RP //RP //RAP
(‘0’,‘0’,‘1’) and RP //RAP //RAP (‘0’,‘1’,‘1’). Meanwhile, the existing
latch in LRB (Fig. 1c C) is equipped with additional NOT and XOR2
gates to first store intermediate carry outputs and then perform the
summation of next bits using two XOR2 gates (implementing XOR3).
Now, assume A, B, and C operands (Fig. 1b), the 3- and 2-input
in-memory logic schemes can generate Carry(/Borrow) and Sum
(/Difference), respectively, in two consecutive cycles. The Ctrl’s con-
figuration for such add operation is shown in Fig. 1c B . To validate
the variation tolerance of the sensing circuit, we have performed
Monte-Carlo simulation with 10000 trials. A σ = 2% variation is
added to the Resistance-Area product (RAP), and a σ = 5% process
variation is added on the Tunneling MagnetoResistive (TMR). The
simulation result of Vsense distributions in Fig. 3 shows the sense
margin for the memory read, two and three fan-in sense-based op-
erations. It can be seen that sense margin gradually reduces when
increasing the number of fan-ins (selected cells for computation).
To avoid logic failure and guarantee the SA output’s reliability, we
have limited the number of sensed cells to three. In order to provide
a larger sense margin for MAJ3 operation, we increased SOT-MRAM

30 40 50 60 70 80 90 100 110 120
0

100
200

RAP RP

20 25 30 35 40 45 50 55 60
0

100
200

(RAP//RAP) (RAP//RP) (RP//RP)

10 15 20 25 30 35 40
Vsense (mV)

0
100
200

(RAP//RAP//RAP) (RAP//RAP//RP) (RP//RP//RAP) (RP//RP//RP)

43.31 mv

14.62 mv5.82 mv

4.28 mv

Figure 3:Monte-Carlo simulation of Vsense for (top)memory
read, and bit-line computing (middle) 2-row (down) 3-row.

Figure 4: Short read alignment concept.
cell’s tox from 1.5nm to 2nm leading to ∼45mV increase in the sense
margin which considerably enhances the reliability.
3 ALIGNS SEQUENCING ALGORITHM
BWT-basedReadMapping: The BWT is a reversible permutation
of the characters of a string. Short read alignment algorithms (e.g.,
BWA [3] and Bowtie [4]) take all the advantages of BWT and index
the large reference genome-S to do the read alignment efficiently.
Exact alignment finds all occurrences of them-bp short-read R in
the n-bp reference genome-S . Fig. 4 gives an intuitive example of
such alignment of a sample read-R = TTC to a sample reference
S = ATTCG$ extracted from a gene, where $ denotes the end of
a sequence. BW matrix is constructed by circulating string S and
then lexicographically sorting them. Thus, the Suffix Array (SA)
of a reference genome-S is a lexicographically-sorted array of the
suffixes of S , where each suffix is represented by its position in S .
BWT of such reference-S is given by the last column in the BW
matrix, here, BWT (S) = G$TCTA. The FM-Index is then built on
top of BWT providing the occurrence information of each symbol
in BWT. The SA interval (low , hiдh) covers a range of indices where
the suffixes have the same prefix. Then a backward search of the
matched positions in the reference genome-S is executed for each
short read-R starting from the rightmost nucleotide (C in Fig. 4).
During the backward search, the matched lower bound (low) and
upper bound (hiдh) in a SA of the S for each nucleotide in R are
determined based on FM-Index and count function [3]. Thus, the
result of read searching is represented as a SA interval. At the end
of search, if low<hiдh, R has found a match in S . Conversely, if
low ≥ hiдh, it has failed to find a match. Such alignment algorithm
complexity is linearly proportional to the number of nucleotides in
a read (O(m)) in contrast to dynamic programming algorithms such
as Smith-Waterman (SW) with O(nm) complexity [19]. Moreover,
BWT-based read mapping algorithms can be simply extended to
allow mismatches in the read mapping [3].

Alignment-in-Memory Algorithm: The presented DNA ex-
act alignment-in-memory algorithm is based on BWT and FM-Index
sequencing algorithm [3], but optimized using AlignS’s functions,
i.e. MEM , XNOR_Match, and IM_ADD. As the first step of such
process, shown in Fig. 5a, some important tables are needed to be
pre-computed based on reference genome-S . However, it is just a
one-step computation and only BWT, Marker Table (MT), and SA
will be stored in the AlignS , which will consume ∼12GB of mem-
ory space. To enable fast memory access and parallel in-memory
computing, these data has to be reconstructed and saved into dif-
ferent memory arrays, banks and chips. Such data reconstruction
and mapping methodology will be discussed in the next section.
In Fig. 5a, Count (nt) represents the number of nucleotides in the
first column of BW matrix that are lexicographically smaller than
the nucleotide-nt . It only contains 4 elements for DNA sequence

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:49:05 UTC from IEEE Xplore. Restrictions apply.

Figure 5: (a) Pre-computation needed in AlignS’s alignment
algorithm, (b) The Bound procedure implementation.

computation. The Occurrence (Occ.) table, also called FM-index, is
built upon the BWT, where each element-Occ[i,nt] indicates the
number of occurrences of nucleotide-nt in the BWT from position 0
to i − 1. Due to its large size, it is sampled every d positions (bucket
width) to construct another Sampled Occ-table. Thus, the table size
is reduced by a factor of d . Then MT is constructed by element-wise
addition of Sampled Occ-table with Count (nt), which leads to the
same size as Sampled Occ-Table. MT contains the matched position
of the nucleotides in BWT in the First Column and helps AlignS to
efficiently retrieve the values of low and hiдh in each iteration.

As shown in Fig. 5b, the read searching operation is mainly
implemented through the proposed Bound(MT ,nt , id) procedure
performed on BWT, which computes the updated interval bound
(either low or hiдh) value from MT with bucket width d and input
index-id . Such procedure is iteratively used in every step of ‘for’
loop and AlignS is especially designed to handle such computation-
intensive load through summing the current ‘marker’ value with
the occurrence counting result of the needed nucleotides between
checkpoint position and remaining positions in BWT. To imple-
ment the Bound procedure totally within memory, we exploit three
AlignS’s functions, i.e. MEM (memory read), XNOR_Match (XNOR2),
and IM_ADD (add), as highlighted in Fig. 5b.MEM function is to
access data in the saved MT or SA based on the provided index.
XNOR_Match is to conduct parallel in-memory XNOR logic to de-
termine if current input-nt matches with BWT elements stored in
the whole word-line in only one computational cycle. IM_ADD is
to conduct 32-bit integer (index range) addition operation within
memory to enable fast ‘marker+count_match’ computation without
need to send to CPU or other computing units.
4 ALIGNS HARDWARE MAPPING
Correlated Data Partitioning: Due to large memory space re-
quirement of pre-computed tables (BWT,MT, and SA) for alignment-
in-memory algorithm, we have to partition these tables to fully
leverage AlignS’s parallelism, and to maximize alignment computa-
tion throughput. Given a BWT index range, the accessed memory
region of MT and BWT could be easily predicted and computation
could be localized if we could store such correlated region into
the same memory sub-array. Thus, we propose a novel, correlated
data partitioning and mapping methodology as shown in Fig. 6

Q*

CR
ef

m
ar

ke
rs

T AA
A CC

128 bps
G
T

T GA
C TA

T
T

C CC
A AA

C
A

G GG
T TT

G
T

Co
rr

es
po

nd
in

g
m

ar
ke

r

25
6-

ro
w BW

T A
A

C
C

C
A

G
T

C
T

4-
ro

w

12
8-

ro
w T

C

G

A

32-bit

BWT

CRef
MT

reserved

XNOR_Match

IM_ADD

254
5664

3628
5454G

286
5696

3660
5486

4318
9755

7692
9518

4350
9787

7724
9550

A

12
4-

ro
w

a0

a1

a30

a31

b0

b1

b30

b31

c0

c1

c30

c31

d0

d1

d30

d31

0 0 0 0

Res. for
Sum

Res. for
Carry

0 0 0 0

0 0 0 0LRB 0 0 0 0 Q

32

2

M
T

Co
un

t_
m

at
ch

(a)

Compute.
Sub-arrays

Lc

Lcp

(b)

BWT

CRef
MT

reserved

32
e0

e1

e30

e31

f0

f1

f30

f31

g0

g1

g30

g31

h0

h1

h30

h31

32

Figure 6: AlignS’s sub-array partitioning for efficient local
(a) Parallel search and (b) Rank computation.

to locally store correlated regions of BWT and MT vectors in the
same memory sub-array and enable fully local computation (i.e.
XNOR_Match and IM_ADD completely within the same sub-array
without inter-bank/chip communication).

As discussed earlier, AlignS architecture consists of multiple
memory chips, each consisting of banks, mats, and memory sub-
arrays in a hierarchical way. Each sub-array (512 rows×256 columns)
is divided into four zones to store four different data types, i.e. BWT,
CRef, MT, and reserved space for IM_ADD and buffer (Fig. 6a). First
256 rows are occupied with the corresponding BWT, where each
row stores up to 128 bps (encoded by 2 bits). In addition, we propose
to store four nucleotide computational reference vectors (CRe f), in
which each vector represents one type of nucleotide with vector
size of number of bits in one word-line. CRef is especially designed
to enable fully parallel match operation- XNOR_Match. Next to
it, the value of markers (MT) is pre-calculated and checkpointed
every d (=128) positions (one row), and vertically saved to keep
the size in check within AlignS platform. Hence, 256 columns are
allocated for storing MT, each storing 4-byte value for bps (128-bit).
The same colors are used in Fig. 6a to show the BWT rows and the
corresponding marker columns. After mapping the data, starting
from the rightmost symbol in R (e.g., C in Fig. 4), two steps need
to be taken in order to implement Bound procedure and return low
and hiдh for next symbol-T .

Parallel Search: Considering current input nucleotide is T and
input index as ‘id’, AlignS’s Ctrl can readily convert this BWT index
into the corresponding memory WL and BL addresses storing data
BWT[id-(id mod d)] to BWT[id]. Then, such bits and corresponding
CRef-T is sensed at the same time using the AlignS’s XNOR circuits
to implement the parallel search operations (XNOR_Match). If the
XNOR output is ‘1’, representing a match is found, Ctrl’s embeded
counter counts up to eventually compute ‘count_match’ for next

0 1
1 0

0 0

1 0
0 0

1 1
0 1

BW
T

(C
)

0 0
0 1

1 1

1 0
0 0

1 1
0 1

0 1
1 1

1 1

1 0
0 0

1 1
0 1 T

C

G

A

0 0 1 1 0 1
not

matched
not

matched

0 1
1 0

0 0

0 1

0 1
1 1

0 0
0 1

1 1

0 1

1 1
1 0

0 1
1 1

1 1

0 1

1 1
1 0

Ge
t c

or
re

sp
on

di
ng

 m
ar

ke
r

XNOR_Match

Counter marker_add

col_add

Base

T

G

A

C

Binary code
0 0

0 1

1 0

1 1

matched

Counter
Ctrl+1

0 1
1 0

0 0

1 0
0 0

1 1
0 1

0 0
0 1

1 1

1 0
0 0

1 1
0 1

0 1
1 1

1 1

1 0
0 0

1 1
0 1 T

C

G

A

1 1 1 0 1 1
not

matched
matched
+1

+1

matched

CR
ef

m
ar

ke
r

BW
T

(C
)

XNOR_Match MEM

R:TTC

Figure 7: AlignS’s parallel search operation.

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:49:05 UTC from IEEE Xplore. Restrictions apply.

operation. Fig. 7 shows the XNOR_Match procedure to locate T s in
a sub-array. After parallel alignment of the first row, the Ctrl starts
aligning the second row and so on. When counting is done, the sub-
array returns the ‘count_match’ and marker address (marker_add).
Note that, the correlated data partitioning methodology guarantees
the read of ‘marker’ value (MEM) is always a local memory access
within the same memory array.

Rank Calculation: After parallel search, the ‘marker’ and just
computed and transposed ‘count_match’ are buffered in MT and
reservedmemory spaces, respectively, as shown in Fig. 6b, to further
implement IM_ADD function. Now, considering n-activated sub-
arrays with the reserved row size of 124 × 256, each sub-array can
easily handle the parallel add of up to 256 elements of 32-bit to
maximize the throughput. The memory sub-array organization for
such parallel computation is delineated in Fig. 6b. Two reserved
rows for Carry results initialized by zero and 32 reserved rows are
considered for Sum results. We have shown the current state (Q) as
well as the next state (Q*) of LRB after being enabled for further
clarification. Here, we use the add operation of two 4-bit values
(11 and 5) in Fig. 8 to elaborate how multi-bit addition operates in
the AlignS. Every two corresponding elements that are going to
be added together are aligned in the same bit-line. Now parallel
addition can be performed based on the steps detailed in Fig. 8 to
generate 16 as the output.

0 1 0 1
0 1 1 1

0 1 1 1
0 1 1 1

11

w
rit
e

0
1
1
0

1
1
0
1

1
1
0
1

0
1
0
1

0
0
0
1

1
0
1
0

1
0
0
1

1
1
1
1

0 0 0 0

0 0 0 1

0
1
1
0

1
1
0
1

1
1
0
1

0
1
0
1

0
0
0
1

1
0
1
0

1
0
0
1

1
1
1
1

0
1

0
0

0
0

1
0

Carry

0
1
1
0

1
1
0
1

1
1
0
1

0
1
0
1

0
0
0
1

1
0
1
0

1
0
0
1

1
1
1
1

0
1
1

0
0
0

0
0
1

1
0
0

0
1
1
0

1
1
0
1

1
1
0
1

0
1
0
1

0
0
0
1

1
0
1
0

1
0
0
1

1
1
1
1

0
1
1
1

0
0
0
0

0
0
1
0

1
0
0
1

11 11 106

5 9 158

1

0
0
0
0

16

0 1 1 0

Sum

C1
S1

S2

C1 Selecting 3 RWLs, AlignS generates Carry (MAJ3).
Writing the carry into both latch and reserved WLC2

S1 Selecting 2 RWLs and Latch, AlignS generates Sum (XOR3)
Writing the sum into the reserved WLS2

0 1 1 1
0 1 0 1

0 0 0 0
0 1 1 0

0 1 1 0
0 1 1 1

0 1 1 1
0 1 0 1

0 1 0 1
0 1 1 1

Q
Q*

S1
C2

C1
C2

C1
S1

5
+

m
ar

ke
r

Co
un

t

m
ar

ke
r

Co
un

t

m
ar

ke
r

Co
un

t

m
ar

ke
r

Co
un

t

Figure 8: AlignS’s in-memory multi-bit addition used in
rank calculation.

Extend to Inexact Alignment: Our discussed alignment algo-
rithm and its mapping to AlignS could be easily extended to handle
inexact match during short read alignment based on the method
fully-explained in [3]. However, due to lack of space, we leave it for
the future work. Inexact match for sequence alignment has a toler-
ance for number of mismatches between short read-R and reference
genome-S . We can handle mismatch by recursively calculating the
intervals that match R[0, i] with no more than z differences on the
condition that R[i + 1] matches {low , hiдh}. As long as there is still
tolerance for differences up to current position i , we consider all
possible alignments when updating the intervals. The intervals for
position i should take union for all intervals including intervals for
match and mismatch. At the end, we report all the target positions
in the reference genome that the short read can be mapped to with
no more than z mismatches. Such algorithm iteratively uses the
Bound procedure and can be readily accelerated by AlignS.

5 EXPERIMENTAL RESULTS
5.1 Accelerators’ setup
To assess the performance of AlignS as a new PIM platform, a com-
prehensive device-to-architecture evaluation framework along with
two in-house simulators are developed. First, at the device level,
we jointly use the Non-Equilibrium Green’s Function (NEGF) and
Landau-Lifshitz-Gilbert (LLG) with spin Hall effect equations to
model SOT-MRAM bit-cell [13, 15]. For the circuit level simula-
tion, a Verilog-A model of 2T1R SOT-MRAM device is developed to
co-simulate with the interface CMOS circuits in Cadence Spectre
and SPICE. 45nm North Carolina State University (NCSU) Prod-
uct Development Kit (PDK) library [20] is used in SPICE to ver-
ify the proposed design and acquire the performance. Second, an
architectural-level simulator is built based on NVSim [21]. Based on
the device/circuit level results, our simulator can alter the configu-
ration files (.cfg) corresponding to different array organization and
report performance metrics for PIM operations. The controllers and
add-on circuits are synthesized by Design Compiler [22] with an
industry library. Third, a behavioral-level simulator is developed in
Matlab taking architectural-level results to calculate the latency and
energy that AlignS spends on alignment task based on alignment-
in-memory algorithm. It has a mapping optimization framework to
maximize the performance w.r.t. the available resources.

Accelerators: We perform an extensive comparison with state-
of-the-art accelerators including SW-based Darwin [1], RaceLogic
[6], ReCAM [23], and FM-Index-based acceleration solutions such
as Soap2 [5]/Soap3-dp [5] on CPU/GPU, AligneR [2], FPGA [8], and
ASIC [7]. Due to the lack of space, we refer the readership to the pa-
pers for the detailed configuration of each accelerator. Note that, to
perform short read alignment on CPU/GPU, we use Soap2/Soap3 [5]
considering only reads with ≤2 mismatches. Besides, ReRAM-based
arrays and CAMs are simulated with NVSim [21] and NVSim-CAM
[24], respectively.Methodology: To evaluate the performance of
AlignS and other accelerators and provide a solid comparison, we
generate 10 million 100-bp short read queries via ART simulator
[25] and align them to the human genome Hg19 1.
5.2 Results
Figure 9a and b report the power consumption and throughput of
under-test accelerators, respectively.

Throughput
(query/sec)

Power (W)

Ar
ea

 (m
m

2)

0
10000

1

10

104

2

5000
1

3

5
0 0

C
PU

G
PU

FP
G

A
AS

IC
Al

ig
ne

R
R

eC
AM

D
ar

w
in

R
ac

e
Al

ig
nS

100

102

104

C
PU

G
PU

FP
G

A
AS

IC
Al

ig
ne

R
R

eC
AM

D
ar

w
in

R
ac

e
Al

ig
nS

0

5

10 106

AligneR

AlignSReCAM
FPGA

Darwin

Race

GPU

CPU

106

106
Throughput (query/sec)Power (W)

(a) (b) (c)
Figure 9: (a) Normalized log scale power consumption, (b)
Throughput, (c) Trade-off between area, power, and through-
put of different accelerators compared to AlignS.

Power-Throughput-Area Trade-offs:We observe that ASIC
design [7] and ReRAM-based AligneR [2] consume the least power
1The population variation and genome error rate were set to 0.1% and 0.2%, respectively.

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:49:05 UTC from IEEE Xplore. Restrictions apply.

compared to other designs, where AlignS stands as the third-best
power-efficient design. From the throughput point of view, Race
Logic [6] and Darwin [1] show the best performance compared to
others. However,AlignS can show the highest throughput compared
to others such as GPU, ASIC, FPGA, ReCAM, and AligneR due to
its massively-parallel and local computational scheme. Therefore,
we can analyze the existing trade-offs between power, through-
put, and area as Fig. 9c. Such trade-off can be better understood
by correlated parameters as tabulated in Table 1. Based on this
table, we observe that AlignS outperforms different accelerators
w.r.t.Throuдhput/Watt .AlignS can improve short read alignment’s
throughput per Watt by 4.8× over the best SW-based accelerator,
Race Logic [6], and ∼1.6×, 3.4×, 67.5× over AligneR [2], ASIC [7],
and FPGA [8] acceleration solutions, respectively. Table 1 also re-
ports throughput per Watt permm2 for different accelerators. Con-
sidering the area factor, we observe that AlignS can improve read
alignment performance significantly over all the other solutions
except AligneR. AlignS improves the throughput per Watt permm2

by ∼12× compared to the ASIC accelerator. Therefore, AlignS’s
parallel computing schemes can be leveraged to accelerate short
read alignment and provide ultra-high internal bandwidth.
Table 1: Performance of short read alignment accelerators.

GPU ASIC FPGA AligneR Darwin Race ReCAM AlignS
Throughput/Watt 581.3 122K 6.1K 259.6K 12.8K 85K 26.81 412.28K

Throughput/Watt/mm2 0.39 547 0.42 7.2K 0.47 47 0.24 6.6K

Memory Wall: Figure 10a shows the required off-chip memory
access for different accelerators. We observe that all the FM-Index
accelerators including CPU/GPU[5], ASIC [7], and FPGA [8], ex-
cept PIM platforms (i.e. AligneR, ReCAM, and AlignS) heavily rely
on off-chip memory consuming humongous energy to fetch data
from stored tables and queries. Note that, ASIC design performs
FM-Index-based alignment with 1GB off-chip memory after com-
pression. Figure 10b reports the Memory Bottleneck Ratio (MBR),
i.e. the time fraction at which the computation has to wait for data
and on-/off-chip data transfer obstructs its performance (memory
wall happens). The evaluation is performed according to the peak
throughput for each platform considering number of memory ac-
cess. The results show the AlignS’s efficiency for solving memory
wall issue. We observe that AlignS spends less than ∼15% time for
memory access and data transfer owning to the PIM acceleration
schemes. Note that, ASIC and other PIM platforms spend less than
50% time waiting for the loading data. AligneR solution shows
higher memory bottleneck ratio compared with AlignS due to its
unbalanced computation and data movement. The less MBR can
be translated as the higher Resource Utilization Ratio (RUR) for
the accelerators plotted in Fig. 10c. We observe that AlignS has the
highest resource utilization with up to ∼76%. Overall, PIM solu-
tions demonstrate high ratio (>60%) which reconfirms the results
reported in Fig. 10b.
6 CONCLUSION
In this paper, we propose an efficient processing-in-memory acceler-
ator based on SOT-MRAM (AlignS) to execute short read alignment
based on a hardware-friendly alignment algorithm. AlignS is op-
timized through a new correlated data partitioning and mapping
technique that provides local storage and processing of indices to
fully exploit the algorithm-level’s parallelism to accelerate both ex-
act and inexact matches. The results show that AlignS improves the

C
PU

G
PU

FP
G

A
AS

IC
Al

ig
ne

R
R

eC
AM

D
ar

w
in

R
ac

e
Al

ig
nS

0

50

100

150

C
PU

G
PU

FP
G

A
AS

IC
Al

ig
ne

R
R

eC
AM

D
ar

w
in

R
ac

e
Al

ig
nS

0

50

100

C
PU

G
PU

FP
G

A
AS

IC
Al

ig
ne

R
R

eC
AM

D
ar

w
in

R
ac

e
Al

ig
nS

0

20

40

60

80

00

Off-Chip Memory (GB) MBRȀ(%) RUR (%)

0

(a) (b) (c)
Figure 10: (a) Off-chip memory, (b) Memory Bottleneck Ra-
tio, (c) Resource Utilization Ratio for different accelerators.

read alignment throughput per Watt permm2 by ∼12× compared
with the ASIC design. Besides, it achieves 1.6× higher throughput
per Watt compared to recent FM-index-based ReRAM platform.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science Foundation under
Grant No. 1740126, No. 1755761, and Semiconductor Research Corporation
nCORE.
REFERENCES
[1] Y. Turakhia et al., “Darwin: A genomics co-processor provides up to 15,000 x

acceleration on long read assembly,” in 23rd ASPLOS. ACM, 2018, pp. 199–213.
[2] F. Zokaee et al., “Aligner: A process-in-memory architecture for short read align-

ment in rerams,” IEEE Computer Architecture Letters, 2018.
[3] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–

wheeler transform,” bioinformatics, vol. 25, pp. 1754–1760, 2009.
[4] B. Langmead et al., “Ultrafast and memory-efficient alignment of short dna

sequences to the human genome,” Genome biology, vol. 10, p. R25, 2009.
[5] R. Luo et al., “Soap3-dp: fast, accurate and sensitive gpu-based short read aligner,”

PloS one, vol. 8, p. e65632, 2013.
[6] A. Madhavan et al., “Race logic: A hardware acceleration for dynamic program-

ming algorithms,” in ACM SIGARCH Computer Architecture News, vol. 42, 2014.
[7] Y.-C. Wu et al., “A 135-mw fully integrated data processor for next-generation

sequencing,” IEEE TBioCAS, vol. 11, pp. 1216–1225, 2017.
[8] J. Arram et al., “Leveraging fpgas for accelerating short read alignment,”

IEEE/ACM TCBB, vol. 14, pp. 668–677, 2017.
[9] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise operations

using commodity dram technology,” in Micro. ACM, 2017, pp. 273–287.
[10] W. Huangfu et al., “Radar: a 3d-reram based dna alignment accelerator architec-

ture,” in 55th DAC. ACM, 2018, p. 59.
[11] S. K. Khatamifard et al., “A non-volatile near-memory read mapping accelerator,”

arXiv preprint arXiv:1709.02381, 2017.
[12] L. Yavits et al., “Resistive associative processor,” IEEE Computer Architecture

Letters, vol. 14, pp. 148–151, 2015.
[13] S. Angizi et al., “Cmp-pim: an energy-efficient comparator-based processing-in-

memory neural network accelerator,” in 55th DAC. ACM, 2018, p. 105.
[14] S. Angizi, Z. He, and D. Fan, “Dima: a depthwise cnn in-memory accelerator,” in

2018 ICCAD. IEEE, 2018, pp. 1–8.
[15] X. Fong et al., “Spin-transfer torque devices for logic and memory: Prospects and

perspectives,” IEEE TCAD, vol. 35, 2016.
[16] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories,” in 2016 53nd DAC. IEEE, 2016.
[17] S. V. Kosonocky et al., “Enchanced multi-threshold (mtcmos) circuits using vari-

able well bias,” in ISLPED, 2001, pp. 165–169.
[18] H. Ozdemir et al., “A capacitive threshold-logic gate,” IEEE Journal of Solid-State

Circuits, vol. 31, no. 8, pp. 1141–1150, 1996.
[19] S. Canzar et al., “Short read mapping: An algorithmic tour,” Proceedings of the

IEEE, pp. 436–458, 2017.
[20] (2011) Ncsu eda freepdk45. [Online]. Available: http://www.eda.ncsu.edu/wiki/

FreePDK45:Contents
[21] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area model for

emerging nonvolatile memory,” IEEE TCAD, vol. 31, 2012.
[22] P. Kurup et al., Logic synthesis using Synopsys®, 2012.
[23] R. Kaplan et al., “A resistive cam processing-in-storage architecture for dna

sequence alignment,” IEEE Micro, vol. 37, pp. 20–28, 2017.
[24] S. Li et al., “Nvsim-cam: a circuit-level simulator for emerging nonvolatile memory

based content-addressable memory,” in 35th ICCAD. ACM, 2016.
[25] W. Huang et al., “Art: a next-generation sequencing read simulator,” Bioinformat-

ics, vol. 28, pp. 593–594, 2011.

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:49:05 UTC from IEEE Xplore. Restrictions apply.

