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Abstract—In this paper, we propose a high-throughput and
energy-efficient Processing-in-Memory accelerator (PIM-Aligner)
to execute DNA short read alignment based on an optimized and
hardware-friendly alignment algorithm. We first reconstruct the
existing sequence alignment algorithm based on BWT and FM-
index such that it can be fully implemented in PIM platforms. It
supports exact alignment and also handles mismatches to reduce
excessive backtracking. We then develop PIM-Aligner platform
that transforms SOT-MRAM array to a potential computational
memory to accelerate the reconstructed alignment-in-memory
algorithm incurring a low cost on top of original SOT-MRAM
chips (less than 10% of chip area). Accordingly, we present a local
data partitioning, mapping, and pipeline technique to maximize
the parallelism in multiple computational sub-array while doing
the alignment task. The simulation results show that PIM-Aligner
outperforms recent platforms based on dynamic programming
with ~3.1x higher throughput per Watt. Besides, PIM-Aligner
improves the short read alignment throughput per Watt per
mm? by ~9x and 1.9x compared to FM-index-based ASIC and
processing-in-ReRAM designs, respectively.

I. INTRODUCTION

Advances in high-throughput sequencing technologies have
enabled accurate and fast generation of large-scale genomic
data for each individual, and is capable of measuring molec-
ular activities in cells. Genomic analyses, including mRNA
quantification, genetic variants detection, and differential gene
expression, promise to help improve phenotype predictions and
provide more accurate disease diagnostics [1]. The sequencing
data generated from one patient sample consists of tens of
millions of short DNA sequences (reads) that range from
50 to thousands nt in length. Most genomic pipelines rely
on the alignment of sequencing reads with respect to the
reference genome [2], which remains to be a time-consuming
and technically difficult step. Specifically, the human reference
genome is comprised of two twistings, paired strands and each
strand carries approximately 3.2 billion nucleotide bases (A, T,
C, 3), and the bases on two strands follow the complementary
base pairing rule: A-T" and C-G [3]. Therefore, the DNA
sequence alignment task is becoming to determine the read’s
likely point of origin on the 3.2 billion base pair (bp) reference
genome. Although several sequence alignment algorithms have
been developed in recent years, the continuously increasing
volume of DNA sequencing data still calls for rapid and
accurate aligners. Even the most efficient algorithm such as
BWA [2] or Bowtie [4] using Burrows-Wheeler Transforma-
tion (BWT) require hours or days to align such large amount
of data using powerful CPU/GPU-based systems.

Today’s sequencing acceleration platforms including CPU,
GPU [5], ASIC [6]-[8], and FPGA [9] are mostly based
on the Von-Neumann architecture with separate computing
and memory components connecting via buses and inevitably
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consume a large amount of energy in data movement between
them. Besides, Processing-in-Memory (PIM) architectures, as
a potentially viable way to solve the memory wall challenge,
have been well explored for different applications that lead to
remarkable savings in off-chip data communication energy and
latency. The PIM platform has become even more intriguing
when integrated with emerging Non-Volatile Memory (NVM)
technologies, such as Resistive RAM (ReRAM) [3], [10].
The most recent ReRAM-based PIM solutions for short read
alignment [10], [11] rely on Ternary Content-Addressable
Memory (TCAM) arrays that unavoidably impose significant
area and energy overheads to the system [3] due to associative
processing dealing with Smith-Waterman (SW)-based algo-
rithms that require many write operations and takes 75% of the
ReRAM cells to store the intermediate data [12]. Alternatively,
RADAR [10] and AligneR [3] present ReRAM-based PIM
architectures that can directly map more efficient algorithms
such as BLASTN and FM-index-based searches, respectively.
In addition, Magnetic RAM (MRAM) is another promising
high performance NVM paradigm, due to its ultra-low switch-
ing energy and compatibility with CMOS technology [13].

In this work, we propose a solid software-hardware
alignment-in-memory solution to perform DNA sequence
alignment efficiently. The main contributions of this work are
listed below: (1) We reconstruct the existing sequence align-
ment algorithm based on BWT and FM-index such that it can
be fully implemented in PIM platforms. It supports exact align-
ment and handles mismatches. (2) We design a reconfigurable
PIM platform based on SOT-MRAM, PIM-Aligner. We de-
velop a set of new microarchitectural and circuit-level schemes
that make PIM-Aligner a massive data-parallel computational
unit for short read alignment; (3) We propose a local data
partitioning methodology, mapping, and pipeline technique to
maximize the parallelism in multiple computational sub-arrays
while doing the alignment task. (4) We extensively assess
and compare PIM-Aligner’s performance and energy-efficiency
with recent short read alignment accelerators based on GPU,
ASIC, FPGA, processing-in-ReRAM, etc.

II. BWT-BASED READ MAPPING BACKGROUND

The BWT of a string is a reversible permutation of the
characters in the string. Short read alignment algorithms (e.g.,
BWA [2] and Bowtie [4]) take all the advantages of BWT and
index the large reference genome-S to do the read alignment
efficiently. Exact alignment finds all occurrences of the m-
bp short-read R in the n-bp reference genome-S. Fig. 1 gives
an intuitive example of such alignment of a sample read-
R = CTA to a sample reference S = TGCT A$ extracted
from a gene, where $ denotes the end of a sequence. BW
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Fig. 1. Short read alignment concept.

matrix is constructed by circulating string S and then lexi-
cographically sorting them. Thus, the Suffix Array (S4) of a
reference genome-S is a lexicographically-sorted array of the
suffixes of S, where each suffix is represented by its position
in S. In this way, BWT of the reference-S is given by the last
column in the BW matrix, BWT(S) = ATGTC$. The FM-
Index is then built on top of BWT providing the occurrence
information of each symbol in BWT. The S, interval (low,
high) covers a range of indices where the suffixes have the
same prefix. Then a backward search of the matched positions
in the reference genome-S is executed for each short read-R
starting from the rightmost nucleotide (A in Fig. 1). During the
backward search, the matched lower bound (low) and upper
bound (high) in a S4 of the S for each nucleotide in R are
determined based on FM-Index and count function [2]. Thus,
the result of read searching is represented as an S, interval. At
the end of search, if low < high, R has found a match in S.
Conversely, if low > high, it has failed to find a match. Such
alignment algorithm complexity is linearly proportional to the
number of nucleotides in a read (O(m)) in contrast to dynamic
programming algorithms such as Smith-Waterman (SW) with
O(nm) complexity [14]. Backtracking can simply extend the
BWT technique to allow mismatches to support approximate
alignment. In this approach, the DNA short read is permuted
using edit operations (substitutions, insertions or deletions).

III. PIM-ALIGNER DNA SEQUENCING ALGORITHM

The DNA alignment algorithm consists of two stages:
exact alignment and inexact alignment. For most sequencing
data, up to ~70% of short reads should be exactly aligned
to the reference genome after stage one [9]. The remaining
reads are then processed through the stage two. Most genome
variations are relatively small. If we only allow exact match
between short reads and the reference genome, the reads
contain the genome variations from the sample cannot map to
the reference. In addition, the genome variations (e.g., single
nucleotide mutations) cannot be identified based on the exact
alignment algorithm. Thus, such potential molecular signatures
cannot be applied for disease phenotype prediction. In the
following, we elaborate these two stage, respectively.

Exact Alignment-in-Memory Algorithm: Our alignment
algorithm is developed based on BWT and FM-Index se-
quencing algorithm [2], but reconstructed to use particular in-
memory functions that are parallelable in hardware. As the
first step of such process, shown in Fig. 2, some important
tables are needed to be pre-computed based on reference
genome-S. However, it is just a one-step computation and
only BWT, Marker Table (M7), and S4 will be stored in the
memory, which will consume ~12GB of memory space. To
enable fast memory access and parallel in-memory computing,
these data has to be reconstructed and saved into different
memory arrays, banks and chips. Such data reconstruction
and mapping methodology will be discussed in Section V.
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Algorithm 1 PIM-Aligner’s Exact Match.

Require: : Pre-Compute and Data Mapping to PIM-Aligner: Partition pre-computed BWT,
Marker Table (M) and Suffix Array (Sa) into PIM-Aligner chip.
input: DNA Short Read-R
output: positions of short read-R in reference genome-S
Step-1. Initialization:
: low + 0, high + |S| — 1
Step-2. Backward Search:
: for i := |[R|—1to 0 do
low < LFM(Mrp[|low/d]], R[i], low)
high < LEM(Mr[| high/d|], R[i], high)
if low > high then
break & return 0 ©> there is no exact alignment
Step-3. Get matched positions from stored suffix array based on search result:
: for j := low to high — 1 do
positions < MEM(S4[j])
Define procedure LFM:
9: Procedure: LFM(My. nt,id)
10: count_match < 0
11: for j := 0 to j < (id mod d) do > count number of nt within the BWT region
12: if XNOR_Match(nt, BWT[id — (id mod d) + j]) == 1 then
13: count_match = count_match + 1
14: marker + MEM(Mt([|id/d]], nt])
15: return IM-ADD(marker, count_match)
16: end Procedure

AUrwR =

% =

> Read positions from Suffix Array memory

> compute matched interval

> Read Marker Table value

In Fig. 2, Count(nt) represents the number of nucleotides
in the first column of BW matrix that are lexicographically
smaller than the nucleotide-nt. It only contains 4 elements for
DNA sequence computation. The Occurrence (Occ.) table, also
called FM-index, is built upon the BWT, where each element-
Occli, nt] indicates the number of occurrences of nucleotide-
nt in the BWT from position 0 to 2 — 1. Due to its large size,
it is sampled every d positions (bucket width) to construct
another Sampled Occ-table. Thus, the table size is reduced
by a factor of d. Then, My is constructed by element-wise
addition of Sampled Occ-table with C'ount(nt), which leads to
the same size as Sampled Occ-Table. M7 contains the matched
position of the nucleotides in BWT in the First Column and
helps to efficiently retrieve the values of low and high in
each iteration. As shown in Algorithm-1, the read searching
function can be reconstructed through the proposed hardware-
friendly LFM (Myp,nt,id) procedure (line-9) performed on
BWT, which computes the updated interval bound (either
low or high) value from Mr with bucket width d and input
index-id. Such procedure is iteratively used in every step of
‘for’ loop and PIM-Aligner will be especially developed to
handle such computation-intensive load through performing
comparison and addition of the current ‘marker’ value with the
occurrence counting result of the needed nucleotides between
checkpoint position and remaining positions in BWT.
In-exact Alignment-in-Memory Algorithm: Here, we pro-
pose to extend our alignment algorithm to handle inexact
match during short read alignment as shown in Algorithm-2.
Such inexact alignment-in-memory algorithm has a tolerance
for number of mismatches between short read-R and reference
genome-S. As an extension of exact sequence alignment,
inexact matching searches for intervals-/ that match R with no
more than z differences. We can handle mismatch by recur-
sively calculating the intervals that match R[0, ¢] with no more
than z differences on the condition that R[i + 1] matches{low,

BW matrix Marker Suffix
First Column Last Ccu’umnocc' table Sampled Table Array
(sorted BWT)  (BWT) gy Occ.table (M1)  (Sa)
_-‘-.:’I'_L — d_ACGT ACGT
A
Count(C) g~ %Dcug;
c +Oao=|:|:]:]:
Count{G) —*{+—
Ci (1) . d
ount|
T 7

Table Size 38 (X2bits) 3B (X2bits) 3Bx4 int. (3Bx4 int.)/d (3Bx4 int.)/d  3Bint.

Mem. Size 750MB  750MB 45GB 100MB (d=128) 100MB (d=128) 11GB

Stored? no yes no no yes yes
Fig. 2. Pre-computation needed in PIM-Aligner’s algorithm.
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Algorithm 2 PIM-Aligner’s Inexact Match.

Require: : Pre-Compute and Data Mapping to PIM-Aligner: Partition pre-computed BWT,
Marker Table (M) and Suffix Array (S,) into PIM-Aligner chip.
input: DNA Short Read-R. » mismatches allowed in the alignment.
output: positions of short read-R in reference genome-S with up to z mismatches.
Step-1. Initialization:
1: low < 0, high + |S| —1
2. return I= InexactRecursive(R, |R|, low, high, z):
3 for i :=|I|—1to 0 do
4 positions < MEM(S4[I[i]])
Define procedure InexactRecursive :
5. Procedure: InexactRecursive(R, i, low, high, =) > z is the number of mismatches
allowed
6: if = < 0 then
7 break & return 0
8: if i <0 then
9 return [low,high]
10: I+0
11: I < I'U InexactRecursive(R.i— 1,low, high, z — 1)
12: for each b € {A,C.G, T} do
13: low < LFM(Mry[|low/d]], R[], low)

&> Insertion

14: high < LFM(Mry[| high/d]], R[], high)

15: if low < high then

16: I < I U InexactRecursive(R. i, low, high, z — 1) > Deletion
17: if b = R[i] then

18: I U InexactRecursive(R,i —1,low, high, =) > Exact Match
19: else

20: I U InexactRecursive(R,i—1,low, high, = — 1) > Inexact Match
21: return [

22: end Procedure

high}. As long as there is still tolerance for differences up to
current position 4, we should consider all possible alignments
when updating the intervals I. The intervals I for position ¢
should take union for all intervals including intervals for match
(line 16) and mismatch (line 18). At the end, we report all the
target positions (line 4) in the reference genome that the short
read can map to with no more than z mismatches. We can
see Algorithm-2 still iteratively uses previously-proposed LFM
function and can be readily accelerated by a PIM platform.

IV. PIM-ALIGNER PLATFORM

A. Macro-architecture

We design and develop PIM-Aligner as an energy-efficient
and high-performance accelerator on top of main memory
architecture. To run the proposed DNA exact and inexact
algorithms supporting backtracking with a hardware PIM plat-
form, we use the block level accelerator architecture shown in
Fig. 3. It includes BWT-based mapping based on iteratively-
used LFM procedure and Sy and My query as the crucial
operations. A Digital Processing Unit (DPU) is associated
with the PIM-Aligner to control the entire process through
different steps. The DPU takes the reference genome-S and
number of mismatches-z as the inputs and accordingly adjusts
the controller unit to govern timing and data flow of the
alignment task. The index-low and index-high boundaries are
initialized to the length of the reference DNA, 0 and N,
respectively. As mentioned earlier, the possible locations of
the suffixes candidate are indicated with the range of index-
low and index-high. The backtracking is then performed in
each iteration based on the alignment algorithms discussed in
Section IIl. To implement the LFM procedure totally within
memory, we exploits three functions, i.e. MEM (memory read),
XNOR_Match (Comparison-XNOR?2), and IM_ADD (Addition-
add), as highlighted in Algorithm-1 and -2 and also Fig.
3. MEM function is to access data in the saved M7 or Sy
based on the provided index. XNOR_Match is to conduct
parallel in-memory XNOR2 logic to determine if current input-
nt matches with BWT elements stored in the whole word-line.
IM_ADD is to conduct 32-bit integer (index range) addition
operation within memory to enable fast ‘marker+count_match’
computation without need to send to other computing units. To
reduce the computation load by the down sampling scheme
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Fig. 3. The block level architecture of PIM-Aligner to support the alignment

algorithms with backtracking.

for reconstructing Occ. table PIM-Aligner exploits multiple
XNOR_Match modules in parallel. Given a 512x256 memory
sub-array, 128-bps could be compared to maximize the query
speed for 2-bit DNA bases. This will be elaborated in Section
V. To handle one and two mismatch alignment based on input-
z, we exploit an additional control logic (in DPU) to per-
form bi-directional backtracking. For each allowed mismatch,
DPU’s registers store the state (i.e. symbol, low and high).
PIM-Aligner then uses the states with the updated values of
high and low pointers (after running LFM procedure) to control
the backtracking based on Algorithm-2. The architecture is
designed to locate all possible alignment hits for the given
number of mismatches and then readily perform the insertion
and deletion tasks without sending data to off-chip processing
unit. The alignment results are then stored locally in memory.

B. Micro-architecture

PIM-Aligner is designed based on typical main memory
hierarchy. Each memory chip is divided into multiple memory
banks that contains 2D sub-arrays of memory cells. The
computational memory sub-arrays of PIM-Aligner based on
SOT-MRAM is shown in Fig. 4a. The controller (Ctrl) unit
can configure the sub-arrays to perform data-parallel intra-
sub-array computations according to the physical address of
operands within memory.

This architecture mainly consists of Write Driver (WD),
Memory Row Decoder (MRD) , Memory Column Decoder
(MCD), reconfigurable Sense Amplifier (SA), and can be
adjusted by Ctrl unit to work in dual-mode that perform both
memory write/read and bit-line computing. For each SOT-
MRAM cell, the resistance of MTJ with parallel magnetization
in both magnetic layers (data-‘0’) is lower than that of MTJ
with anti-parallel magnetization (data-‘1"). Each cell located
in computational sub-arrays is associated with the Write Word
Line (WWL), Read Word Line (RWL), Write Bit Line (WBL),
Read Bit Line (RBL), and Source Line (SL). To write ‘1’ (/°0’)
in a cell, e.g. in the cell of 1st row and st column (M1), the
WD connected to WBLI is set to positive (/negative) write
voltage. This allows sufficient charge current flows from VDD
to GND (/-VDD to GND), leading to MTJ resistance in High-
Rap (/Low-Rp). The main idea to perform memory and bit-
line computing operations in PIM-Aligner is to select different
thresholds (references) within the Res-box (see Fig. 4b) when
sensing the selected memory cell(s). The proposed SA, as
depicted in Fig. 4b, consists of three sub-SAs and totally four
reference-resistance branches that can be selected by enable
control bits (Canps, Carars, Cors, Car) by the sub-array’s
Ctrl to realize the memory read and computation schemes,
as tabulated in the table in Fig. 4b. Such reconfigurable SA
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could implement memory read and one-threshold based logic
functions only by activating one enable at a time e.g. by
setting C'4yps to ‘1°, 3-input AND/NAND logic can be readily
implemented between operands located in the same bit-line.
The computational sub-array of PIM-Aligner is optimized
to perform LFM procedure and its three bulk bit-wise in-
memory operations (MEM, XNOR_Match, IM_ADD) between
the operands located in the same bit-line.

MEM: For memory read, a read current flows from the
selected cell to ground, generating a sense voltage (Vgense) at
the input of SA-III, which is compared with memory mode
reference voltage activated by C'hy (Vsensep<VietM < Vsense.AP)-
If the path resistance is higher (/lower) than Rj); (memory
reference resistance), i.e. Rap (/Rp), then the SA produces
High (/Low) voltage indicating logic ‘1’ (/°0’).

XNOR_Match: PIM-Aligner’s SA exploits a unique cir-
cuit design that allows single-cycle implementation of XOR3
in-memory logic. To realize XOR3 in-memory logic, every
three bits stored in the identical column can be selected
employing the MRD [15] and sensed simultaneously, as de-
picted in Fig. 4a. Then, the equivalent resistance of such
parallel connected cells and their cascaded access transistors
are compared with three programmable references by SA
(Ranp3, Rayag, Rors). Through selecting these reference
resistances simultaneously, the sub-SAs can perform basic 3-
input in-memory Boolean functions (i.e. AND3,MAJ, OR3).
The idea of voltage comparison between Ve and Vi to
realize these functions is shown on Fig. 5a. After SA-unit, we
used six control transistors to realize XOR3 function. Assuming
one row in memory sub-array initialized to one, XNOR2 can be
readily implemented in a single memory cycle out of XOR3
function. Therefore, every memory sub-array can potentially
perform XNOR_Match function in Algorithm 1 and 2.

IM_ADD: PIM-Aligner’s sub-array can perform addi-
tion/subtraction (add/sub) operation quite efficiently. The
carry-out of the full-adder can be directly produced by MAJ
function (Carry in Fig. 4b) just by setting Cps47 to ‘1’ in a
single memory cycle. Now, assume M1, M2, and M3 operands
(Fig. 4a), the PIM-Aligner can generate Carry-MAJ and Sum-
XNOR3 in-memory logics in a single memory cycle. The Ctrl’s
configuration for such add operation is tabulated in Fig. 4b.
To validate the variation tolerance of the sensing circuit, we
have performed Monte-Carlo simulation with 10000 trials. A
o = 2% variation is added to the Resistance-Area product
(RAp), and a o 5% process variation is added on the
Tunneling MagnetoResistive (TMR) of SOT-MRAM cells. The
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- > | i Data flow ctrl | Cm
MCD Ctr P Tt
o Jsense (Canos, Cwas, Cors, Cm)
L WWLE RBL Roard
1 fDmu
E b T L Cor3 v, =,

O [wm2 | * o = W3 % &
| R Cw >, =2
S Iiﬂy‘ IEDDLT‘ IDE% RWL2 R 2=
: t : si2 Verz 3 e

t iM3. § h D]D e Cvas N T2

: ¥ B Ranps,
: : : L Veeps
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c—w > ] Teey T 07
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@ (b)
Fig. 4. (a) The PIM-Aligner’s computational sub-array based on SOT-MRAM
and (b) the proposed reconfigurable SA to realize in-memory functions.
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simulation result of Vg distributions in Fig. 5b shows the
sense margin for in-memory operations. We observe that sense
margin gradually reduces when increasing the number of fan-
ins. To avoid logic failure and guarantee the SA output’s
reliability, we have limited the number of sensed cells to
three. In order to provide a larger sense margin for MAJ3
operation, we increased SOT-MRAM cell’s t,, from 1.5nm to
2nm leading to ~45mV increase in the sense margin which
considerably enhances the reliability.

V. CORRELATED AND LOCALIZED COMPUTATION

Fartitioning: The pre-computed tables (BWT, My, and Sy)
require a large memory space, therefore, to fully leverage PIM-
Aligner’s parallelism, and maximize alignment throughput, we
come up with a partitioning, mapping and pipeline design.
Given a BWT index range, the accessed memory region of
M7 and BWT could be readily predicted and computation
could be localized if we store such correlated region into
the same memory sub-array. The correlated data partitioning
and mapping methodology, as shown in Fig. 6, locally stores
correlated regions of BWT and M7 vectors in the same memory
sub-array to enable fully local computation (i.e. XNOR_Match
and IM_ADD completely within the same sub-array without
inter-bank/chip communication). To do it, each PIM-Aligner’s
sub-array (512x256) is spilt into four zones to save four
different data types, i.e. BWT, CRef, My, and reserved space
for IM_ADD (Fig. 6a). First, 256 rows are filled with the
corresponding BWT, where each row stores up to 128 bps
(encoded by 2 bits). Besides, 4 nucleotide computational refer-
ence vectors (CRef) are initialized, in which each vector gives
one type of nucleotide with vector size of number of bits in
one word-line. CRef is designed to enable fully parallel match
operation- XNOR_Match. Next to it, the value of markers
(M7) is check-pointed every d (=128) positions (one row), and
vertically stored to keep the size in check within PIM-Aligner
platform. Hence, 256 columns are allocated for storing M,
each storing 4-byte value for bps (128-bit). After partitioning,
starting from the rightmost symbol in R,LFM procedure runs
and returns low and high for next symbol.

Mapping and Computation Considering current input nu-
cleotide is 7" and input index as id (in Fig. 6b), PIM-Aligner
converts the BWT index into the corresponding memory W L
and BL addresses storing data BWT[id — (id mod d)] to
BWTIid]. Then, such bits and corresponding CRef-7" can
implement the parallel comparison operations (XNOR_Match).
If the XNOR output is ‘1’ (a match is found), DPU’s embedded
counter counts up to eventually compute count_match for
next operation. Fig. 6b intuitively shows the XNOR_Match
procedure to locate 7's in a sub-array. When counting is
done, the sub-array returns the count_match and marker
address (marker_add), shown in Fig. 6c. The correlated

R R,
200 T T T T T T T o #"D .
m% 43my
0 0 0 ; 0

BRI TR

iy
: »
Verp! Vepar VeapatVaparap

5.82my 14.62my
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R R R T IR R R I R

2
SF A % 200
& $a Vf/\ mak 1 m" 428 my, " In
- < ] L L L
&= T8 0
§ 2 & 10 15 20 25 30 35 40
L& o V. (mv)
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a
Fig. 5. (a) Reference comparison to realize in-memory operations, (b) Monte-
Carlo simulation of Vgense distribution in different operations.
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Fig. 6. (a) PIM-Aligner’s sub-array partitioning for comparison and addition operations, (b) Parallel comparison operation (XNOR_Match), (c) MEM function

to retrieve marker_add, (d) IM_ADD function with two methods.

data partitioning methodology guarantees the read of marker
value (MEM) is always a local memory access within the
same memory array (Fig. 6c). Now, the marker and just
computed and transposed count_match are buffered in My
and reserved memory spaces, respectively, as shown in Fig.
6d. To further implement /M_ADD function, we propose two
distinct hardware-friendly methods; method-I performs the bit-
line addition within the same computational sub-array based
on PIM-Aligner’s in-memory addition operation though it
degrades the system performance as other sub-array resources
(MEM and XNOR_Match) are not used. To alleviate this issue,
method-II essentially duplicates the number of sub-arrays,
where only in-memory addition computation is transferred to

a second sub-array.
Pipeline Design: To improve the base-line PIM-Aligner’s

performance, the processing of multiple reads is considered
such that in each pipeline stage a different short read-R
could be processed. We take the partitioning method-II for
pipeline design. With a careful observation of DNA alignment
computation phases, we realized that the different computing
resources of a single sub-array could be set free by copying
the sub-array data into a new sub-array. Therefore, we define
P, as parallelism degree (i.e. # of the leveraged sub-arrays) to
control the trade-off of resources and performance metrics. For
instance, comparison resources of a particular sub-array can
be set free after duplicating (P,;=2) that sub-array (method-
IT). This pipeline technique is intuitively shown in Fig. 7
for a sample 3 reads; when the R1 is being processed for
IM_ADD in the second sub-array, 22 can exploits the parallel
XNOR_Match resources in the first sub-array to increase the
parallelism. This can be generalized to more number of sub-
arrays where more than two sub-arrays contribute to the
computation at the cost of a higher energy consumption.

R1

IM-Add

Update|

Ll index

|XNOR-MntCI| IM-Add MEM Sa

|XNOR-Mﬂtch MEM Mt

Update)|
memsa [ |R2

|XNOR-Match‘ MEM Mt

Update] > 3

IM-Add || MEMSa ||,
index

Fig. 7. The proposed pipeline technique with P;=2.

VI. EVALUATIONS

Evaluation Framework: To evaluate the performance of
PIM-Aligner, a comprehensive device-to-architecture evalua-
tion framework with two in-house simulators were developed.
At the device level, we jointly used the Non-Equilibrium
Green’s Function (NEGF) and Landau-Lifshitz-Gilbert (LLG)
with spin Hall effect equations to model SOT-MRAM bit-
cell [16]. For the circuit level, a Verilog-A model of 2TIR
SOT-MRAM device was developed to co-simulate with the
interface CMOS circuits in Cadence Spectre and SPICE. We
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used 45nm North Carolina State University (NCSU) Product
Development Kit (PDK) library in SPICE to analyze the
proposed design and achieve the performance. Besides, we
built an architectural-level simulator on NVSim [17]. It can
change the configuration files (.cfg) corresponding to different
array organization and report performance for PIM operations
based device/circuit level data. Then we fed the performance
data to a behavioral simulator based on Matlab to calculate the
latency and energy that PIM-Aligner spends on alignment task
based on the algorithms. We perform an extensive comparison
with the counterpart computing platforms including SW-based
Darwin [7], ReCAM [18] and RaceLogic [6], as well as FM-
Index-based platforms including Soap3-dp [5] on GPU, FPGA
[9], ASIC [8], AlignS [13], AligneR [3]. In the interest of
limited space, we refer the readership to the papers for the
detailed configuration of each accelerator. Note that, to perform
short read alignment on GPU, we used Soap3 [5] considering
only reads with <2 mismatches. We re-implemented, ReRAM-
, SOT-MRAM, and CAMs with NVSim [17]. For evaluation,
we generated 10 million 100-bps short read queries via ART
simulator [19] and align them to the human genome Hgl9
with different computing platforms. Note that the population
variation and genome error rate were set to 0.1% and 0.2%.

Power & Throughput: The power consumption of the
DNA alignment task for different accelerators is calculated
and shown in Fig. 8a. We implemented the baseline (PIM-
Aligner-n) and the pipelined PIM-Aligner (P,=2, PIM-Aligner-
p). Our first observation is that SW-based platforms (except for
RaceLogic [6]) require a larger power-budget as we expected,
compared with FM-index-based designs. Besides, among FM-
index-based platforms, the PIMs generally show less power
consumption. ReRAM-based AligneR [3], ASIC [8] and SOT-
MRAM-based AlignS [13] respectively consume the least
power. PIM-Aligner-n stands as the fourth power-efficient
design. It is noteworthy that PIM-Aligner uses three SAs per
bit-line to perform the computation in a single cycle, while
the AlignS [13] has two SAs and a two-cycle addition scheme.
That is why our design consumes more power compared to the
SOT-MRAM counterpart. The throughput results for different
platforms are reported in Fig. 8b. We observe that PIM-
Aligner-p shows the highest throughput compared with other
platforms except RaceLogic due to its massively-parallel and
local computational scheme. Based on this plot, our pipeline
technique with P,=2 has improved the performance by ~40%
compared to the baseline design.

Trade-off: The performance/power trade-off can be better
explained by correlated parameters, as plotted in Fig. 9a-
b. We observe that SOT-MRAM-AlignS achieves the highest

1269

Authorized licensed use limited to: University of Central Florida. Downloaded on June 27,2020 at 04:58:23 UTC from IEEE Xplore. Restrictions apply.



1E+04 1E+07
—
2
1E+03 =
— =
E =4
5 1E+02 S 1E+06
= 2
o =
&~ E3
1E+01 3
2
=
=
1E+00 1E+05
£ LD U F & = S o< F &
EZERSE%%E 55 EZEE55%%85 5
50 ~ & X b= g g ESXO0O&EZ 5282
|z - - Az e 22
= =55 = Iz
SW FM-index 2= = SW FM-index 2Z =
[=SEN="] ==
a b)
Fig. 8. (a) Power consumption and (b) Throughput of different accelerators

compared to PIM-Aligner (Y-axis:Log scale)

throughput per Watt compared to other platforms. Where PIM-
Aligner-n stands as the second most efficient design. Our
design improves short read alignment’s performance by 3.1x
over the RaceLogic [6], the best SW-based accelerator, and ~
2x, 43.8x, 458x over ASIC [8], FPGA [9], and GPU [5]
platforms, respectively. Fig. 9b takes estimated area of the
chips into account. Considering the area factor, we observe
that PIM-Aligner improves read alignment performance sig-
nificantly over all the other solutions, e.g. by ~9x and 1.9x
compared to FM-index-based ASIC and processing-in-ReRAM
designs, respectively. Fig. 9c shows the trade-off between
power and throughput w.r.t. parallelism degree. We can see that
by increasing the P,, both power consumption and throughput
will increase. Therefore, P, can be tailored according to the
system constraints to provide the best solution.
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Fig. 9.  (a) Throughput/Watt, (b) Throughput/Watt/Area, and (c) Power-
throughput trade-off w.r.t. P,;.

Off-Chip Memory Access: Figure 10a shows the required
off-chip memory access for different accelerators. We observe
that FM-index-based GPU [5] and FPGA [9] platforms heavily
rely on off-chip memory consuming humongous energy to
fetch data from stored tables and queries. Note that, ASIC
design performs the alignment with only 1GB off-chip memory
after compression. Figure 10b reports the Memory Bottleneck
Ratio (MBR). Based on this, PIM-Aligner spends less than
~18% time for memory access and data transfer. It is worth
pointing out that other PIM platforms also spend less than
25% time waiting for the loading data. AligneR solution shows
higher memory bottleneck ratio compared with PIM-Aligner
owning to its unbalanced computation and data movement. The
less MBR can be translated as the higher Resource Utilization
Ratio (RUR) for the computing platforms, shown in Fig. 10c.
We can see that PIM-Aligner-p shows the highest resource
utilization with up to ~86%.

VII. CONCLUSION
In this work, we presented PIM-Aligner to execute DNA
alignment based on a hardware-friendly alignment algorithm.
We then developed PIM-Aligner platform based on SOT-
MRAM array to accelerate our reconstructed algorithm. The
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Fig. 10. (a) Off-chip memory, (b) Memory Bottleneck Ratio, (c) Resource
Utilization Ratio for different accelerators.

results show that PIM-Aligner outperforms recent platforms
based on dynamic programming with ~3.1 x higher throughput
per Watt and improves throughput per Watt per mm? by ~9x
and 1.9x compared to FM-index-based ASIC and processing-
in-ReRAM designs, respectively.
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