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Deciphering the complex information contained in jets produced in collider events requires a physical
organization of the jet data. We introduce two-particle correlations (2PCs) by pairing individual particles as
the initial jet representation from which a probabilistic model can be built. Particle momenta as well as
particle types and vertex information are included in the correlation. A novel, two-particle correlation
neural network (2PCNN) architecture is constructed by combining neural-network-based filters on 2PCs
and a deep neural network for capturing jet kinematic information. The 2PCNN is applied to boosted boson
and heavy flavor tagging, and it achieves excellent performance by comparing to image-based convolu-
tional neural network and telescoping deconstruction. Major correlation pairs exploited in the trained
models are also identified, which shed light on the physical significance of certain jet substructure.
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In high-energy collider events, hundreds or even thousands
of particles are produced, and the understanding of their high-
dimensional probability distributions can be a formidable
task.Anemergent structure consisting of collimated particles,
referred to as jets, is typically observed. The kinematic
distribution and many aspects of the internal structure of
jets have been the testing ground of quantum chromodynam-
ics (QCD) in perturbative calculations and nonperturbative
modeling, with remarkable success witnessed in reasonably
accurate descriptions of collider data via Monte Carlo (MC)
simulations and analytic calculations. However, the dynami-
cal hadronization process which turns partonic degrees of
freedom to hadronic degrees of freedom has not been fully
understood, and new ways of quantifying hadron distribu-
tions may shed light on the description of hadronization.
In this paper, two-particle correlations (2PCs) are explored

as a novel representation of jet information to illuminate the
physics underlying jet formation from parton evolution to
hadronization. This is one step beyond processing individual
particle information by constructing particle pairs as basic
information elements, from which probabilistic models can
be built and physical analysis can be performed. The model
includes particle momenta for energy flow information, and
it can also seamlessly include electric charge and vertex

information which are sensitive to hadronization as well as
bottom quark decays. Significant features can build up,
because relevant jet information is already contained in
2PC pairs.
Remarkably, modern computation power has made pos-

sible the use of machine learning techniques on complex
data, and many methods have been applied successfully on
classification and regression problems in particle and
nuclear physics, such as jet classification [1–20], correlation
of particles [21,22], anomaly detection [23–26], event
generation [27–29], and other tasks [30,31]. We will tackle
classic classification problems such as boosted boson and
heavy flavor jet tagging, as a way to discover and highlight
certain jet properties which are relevant in these tasks.
Specifically, the discrimination of two-prong jets (W jets and
Higgs jets from theH → bb̄ decay channel) and three-prong
jets (fully hadronic top jets) against light-quark q (q ¼ u, d,
c, s quark) jets, aswell asWþ vsW− [20], and quark vs gluon
jet discrimination, are studied. Excellent performance of a
2PC-based neural network and comparisons with an image-
based convolutional neural network (CNN) [20] and tele-
scoping deconstruction [9] will be presented in all of the
tasks. In particular, the network optimized for W tagging
successfully identifies the two-prong structure and color-
singlet nature of W jets by weighing strongly on these two
features. Themodel behavior will be analyzed by examining
collinear and soft contributions from soft-drop [32,33] and
collinear-drop [34] constituents and their correlations. We
demonstrate that a combination of machine learning and
physics analysis methods benefits significantly from the use
of a physically organized and unbiased jet representation so
that one can extract the physics features themodel identifies.

*kfjack@phys.ntu.edu.tw
†yang-ting.chien@stonybrook.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 114025 (2020)

2470-0010=2020=101(11)=114025(6) 114025-1 Published by the American Physical Society

https://orcid.org/0000-0003-1304-3782
https://orcid.org/0000-0002-9336-0800
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.114025&domain=pdf&date_stamp=2020-06-24
https://doi.org/10.1103/PhysRevD.101.114025
https://doi.org/10.1103/PhysRevD.101.114025
https://doi.org/10.1103/PhysRevD.101.114025
https://doi.org/10.1103/PhysRevD.101.114025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The analysis is performed with samples generated from
MC simulations using MADGRAPH [35] for hard scattering
processes and PYTHIA8 [36] for parton shower and hadro-
nization. Jets are defined using the anti-kT algorithm [37]
implemented in FastJet 3 [38], with R ¼ 0.8 for the studies of
tagging high-pT two- or three-prong jets and with R ¼ 0.4
for the studies of quark gluon discrimination. The high-pT
R ¼ 0.8 jets are generated using decays of hypothetical
heavy Z0 bosons (Z0 → WþW−; ZH; tt̄; qq̄) with the invari-
ant mass fixed at 2 TeV, while the jets used in quark gluon
discrimination are generated with the standard model QCD
processes. For the samples generated using Z0 decays, jets
are produced and reconstructed in the same kinematic
region; therefore, the classification is not affected by the
hard process kinematics. The truth particle information is
passed through a DELPHES [39] fast detector simulation and
converted into particle flow candidates, with track, electro-
magnetic calorimeter, and hadronic calorimeter informa-
tion. A parametric model based on the CMS detector [40] at
the Large Hadron Collider is introduced in the simulation.
Two different sets of 2PC inputs are included. A basic set

contains only the energy flow information,1 including the
transverse momentum fraction z ¼ pi

T=pTðjetÞ, relative
pseudorapidity Δη ¼ ηi − ηðjetÞ, and relative azimuthal
angle Δϕ ¼ ϕi − ϕðjetÞ of the jet constituents labeled by
the index i. Here pi

T , ηi, and ϕi are the transverse
momentum, pseudorapidity, and azimuthal angle of
particle i, respectively, and pTðjetÞ, ηðjetÞ, and ϕðjetÞ are
the corresponding quantities of the jet. The other set of
inputs contains the 2PCs of charged tracks, including the
vertex position and the charge of each particle.
Based on the 2PC inputs, we design a two-particle

correlation neural network (2PCNN)2 to model the proba-
bility distribution of jet particles (see Fig. 1), which is
implemented using Keras [42] with TensorFlow back end [43].
Since the number of jet particles can vary, the 2PCNN layer
is designed to handle inputs with variable sizes. Inspired by
one of the key ideas from the CNN, the 2PCNN model
implements a collection of filters3 with shared weights to
process the input of all 2PC data, while CNN filters process
only local patches of the jet image. In the prototype model,
the number of filters is set to 64 to extract features from the
energy flow information. The vertex and charge information
is processed with a parallel 2PCNN layer containing 32
filters. Each filter processes and gives outputs to all input
2PCs. The filter outputs are then ranked according to their

numerical values, and only the top-k-ranked 2PCs of each
filter are kept as the inputs for the subsequent decision-
making, fully connected network. In order to balance
between performance and complexity, k ¼ 4 has been set;
therefore, the total number of output nodes is 256 ¼ 64 × 4,
which is equal to the number of filters times k.
Besides the 2PCNN layers, we use a dense network to

include the jet kinematic information pTðjetÞ, ηðjetÞ, and
ϕðjetÞ which is the baseline input for standard analysis. The
outputs of the dense network and the 2PCNN layer are sent
to another fully connected layer of 128 nodes (or 256 nodes
if two 2PCNN layers are used), followed by two output
nodes with the softmax activation function for the final
decision. The model is optimized by minimizing a categori-
cal cross-entropy loss function with the Adam optimizer
[45]. Input samples for each task are split into three subsets:
one set consisting of 80 thousand jets is used to optimize the
weights in the model, and another set of 40 thousand jets is
used to validate if the model reaches its optimal perfor-
mance. The other set of 40 thousand jets is used for an
independent measure of the model performance.
In order to benchmark the 2PCNN performance, we

compare with a deep neural network model based on
telescoping deconstruction of energy flow information
(referred to as the T-jet model) [9,46–48] and CNN models
based on jet image information. The telescoping decon-
structionmethod systematically decomposes jet information
into a fast-converging subjet series expansion

P
N TN which

is ordered by the number of subjets N. These subjets are
defined as the sets of particles along dominant energy flow
directions within a variable subjet radius. Such organization
is motivated by the infrared structure of QCD. Energetic,
collinear particles are captured at lower orders, and the series
gradually reaches out to soft, wide-angle particles. In this
paper, the T-jet model includes jet information up to the T3

order and scans energy flows with four values of subjet
radius. The energy flow directions and subjet kinematics
consist of 60 input variables. Together with the jet kinematic
information, these inputs are processed by a fully connected
network layer of 128 nodes followed by two output nodes.
The same activation function, loss function, and optimizer
are adopted as in the 2PCNN model.

FIG. 1. The schematic view of the 2PCNN model. It processes
two-particle correlations as inputs and uses filters with shared
weights to benchmark the importance of each 2PC pair. The top-
k-ranked filter outputs, together with jet kinematic information,
are fed into a fully connected network for decision making.

1The energy flow input here includes infrared and collinear
unsafe information.

2The prototype 2PCNN example code and test samples are
available from Ref. [41].

3The filter consists of a fully connected dense network with
2PCs as the input, processed with a hidden layer, and then a layer
of single nodes as the output. We use the ReLU [44] activation
function at each layer; therefore, the output can be only non-
negative floating-point numbers.
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On the other hand, the reference CNN models are
constructed based on the implementation described in
Ref. [20]. The particle data have been converted to jet
images with a dimension of 75 × 75 pixels, in the range of
jΔηj < 0.8 and jΔϕj < 0.8. A rotation in Δη − Δϕ coor-
dinate system is performed to align the principle axis of the
jet constituents horizontally. Two channels are considered
in the CNN models: a pT channel and a jet charge (Qκ)
channel. In the pT channel, the value of each jet image pixel
is the sum of the pT’s for the particles within the pixel. In
the Qκ channel, the pixel value is equal to the sum of Qi ×
ðpi

TÞκ=ðpTðjetÞÞκ for the particles within the pixel, where
Qi is the charge of the particle and κ is set to 0.15. The input
jet images are connected to a combination of three two-
dimensional convolutional layers (32 filters of 6 × 6 pixels,
128 filters of 4 × 4 pixels, and 256 filters of 6 × 6 pixels)
and max-pooling layers of 2 × 2 pixels. The network is
ending with two fully connected layers of 512 nodes,
followed by two output nodes with the softmax activation
function for final classification. We compared with the

CNN model with only the pT channel, which provides a
direct comparison with models using only energy flow
information. We also tested the model including both pT
and Qκ channels.
Figure 2 shows the receiver operating characteristic

(ROC) curves, plotting the background rejection rate as
a function of the signal efficiency, for two discrimination
tasks as representative examples: high-pT Higgs jet vs
light-quark jet, as well as top jet vs light-quark jet. The
model performances are quantified by the area under the
ROC curve (AUC) and the average accuracy (ACC), which
is the fraction of correctly predicted jet samples. As
summarized in Table I, the 2PCNN, the T-jet model, and
the CNN model with the pT channel based on energy flow
information show nearly the same performance. This
confirms the baseline capability of the 2PCNN model,
which is comparable to the state-of-the-art methods that are
all capable of modeling the energy flow probability dis-
tributions very well. With the additional vertex and charge
information, the 2PCNN model achieves excellent perfor-
mance in all the classification tasks. The vertex information
has a strong impact on tagging jets which contain one or
more secondary vertices such as the high-pT Higgs and top
jets. The electric charges of particles are also essential for
separating jets fromWþ andW− bosons, although the CNN
model with both pT and Qκ channels still provides a better
discriminant power. The power-law factor with preassigned
κ ¼ 0.15 is found to be optimal in the task of Wþ and W−

separation. With κ ¼ 1, the performance of CNN model is
comparable to the performance of 2PCNN.
We also compare the actual numbers of trainable

parameters in these models. The 2PCNN model with only
energy flow information includes 6.2 thousand parameters
for feature extraction and 34 thousand parameters for the
decision-making fully connected network. The 2PCNN
model with full information contains 15 thousand param-
eters for feature extraction and 101 thousand parameters
for the subsequent fully connected network. The T-jet
model is implemented with a fully connected network of

FIG. 2. The receiver operating characteristic curves for classi-
fication of Higgs jets vs light-quark jets (left) and top jets vs light-
quark jets (right). The solid curves show the performance of the
2PCNN model based on energy flow information. The dashed
curves correspond to the 2PCNN model with additional electric
charges and vertex inputs. The dotted curves give the result from
the T-jet model.

TABLE I. The performance of the 2PCNN, T-jet, and CNN models, as quantified by the average accuracy (ACC) and the area under
the receiver operating characteristic curve (AUC), for W, Higgs, and top tagging as well as Wþ vs W− and quark vs gluon
discrimination. The energy flow 2PCNN model has comparable performance with the T-jet model and the CNN model with the pT
channel. The 2PCNN model with additional information of electric charges and vertex of charged tracks outperforms significantly the
other models in most of the tasks, except theWþ andW− separation. The uncertainty due to the finite sample size in ACC is smaller than
0.003.

2PCNN(E-flow) 2PCNN(full) T-jet model CNNðpTÞ CNNðpT;QκÞ
Task ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

W vs quark 0.879 0.942 0.877 0.943 0.880 0.945 0.881 0.944 0.869 0.934
Higgs vs quark 0.865 0.935 0.961 0.993 0.866 0.934 0.864 0.927 0.850 0.918
Top vs quark 0.897 0.960 0.924 0.976 0.900 0.963 0.894 0.960 0.888 0.955
Top vs W 0.940 0.983 0.952 0.987 0.941 0.982 0.936 0.981 0.934 0.979
Wþ vs W− 0.502 0.504 0.742 0.823 0.499 0.499 0.499 0.500 0.815 0.894
Quark vs gluon 0.739 0.811 0.749 0.823 0.732 0.803 0.731 0.800 0.730 0.797
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26 thousand free parameters only, since the feature extrac-
tion procedures have been carried out in the telescoping
deconstruction step. The CNN models include 1.2 million
parameters in the three convolutional layers, following by
3.5 million parameters for the decision-making network.
The 2PCNN models in our studies are still rather light
weighted, which already shows a good efficiency for
describing the jet data. A scaled-up 2PCNN configuration,
such as a model with more filters, with deeper or wider
filters, or with multiple layers, may improve the yet-optimal
performance in certain tasks such as Wþ and W− tagging.
We now discuss the physics properties of the 2PCs and

focus on the task of W jet and light-quark jet separation
using the energy flow 2PCNNmodel, aiming to identify the
key features which are useful for distinguishing the two jet
samples. Many other detailed studies will be presented
in a forthcoming paper. Thanks to the internal ranking of
2PC pairs, the importance of the top-k-ranked 2PC pairs

within a filter can potentially be quantified by their filter
output values. These sets of outputs represent the weights
on 2PCs which the 2PCNN has learned from separating the
two samples and are task dependent. Therefore, intrinsic
features of each jet sample can be illuminated by contrast-
ing with different jet samples potentially having distinct
features.
Figure 3 shows the display of a typical two-prong W jet

and a typical one-prong light-quark jet. The jet constituents
are shown as scattered circles and squares, with their sizes
proportional to the particle transverse momenta. The top-
one-ranked 2PC pair of each active 2PCNN filter is
indicated by a solid line, with the thickness representing
the strength of the filter output. Two distinct signatures of
the high-ranked 2PCs are identified: (i) strong internal
correlations within and between the prongs and (ii) strong
correlations between high-pT constituents within the
prongs and low-pT constituents scattered at wide angle.
Such behaviors of the high-ranked 2PC pairs are

further examined by the spatial distance ΔR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηi − ηjÞ2 þ ðϕi − ϕjÞ2

p
between the ith and jth particles

forming the 2PC, and their pT asymmetry AðpTÞ ¼
jpi

T − pj
T j=ðpi

T þ pj
TÞ. Figure 4 shows the comparisons

of a variety of ΔR and AðpTÞ distributions of W jets and
light-quark jets. In order to maximize the sensitivity to the
features extracted by the 2PCNN, the distributions corre-
sponding to the top-ranked 2PCs weighed by the output
values of 2PCNN filters, as an indication of their impor-
tance, are presented in the lower panels. For W jets,
strong features are identified at ΔR≈0 and ΔR ≈ 0.2∼
2mW=pTðjetÞ, whereas for light-quark jets the ΔR ≈ 0
feature is strong and the ΔR ≈ 0.2 feature is absent. This
indicates the intrinsic jet property of particle collimation for
both samples and the two-prong structure of W jets. The
filters tend to either select the 2PCs within the same prong
(therefore, with small ΔR values) or emphasize the corre-
lations between the two prongs for W jets and build up the

FIG. 3. Displays of a typical W jet (left) and a typical light-
quark jet (right) in the Δη − Δϕ plane. The charged tracks of jet
particles are shown as circles with charge signs, while the neutral
clusters are shown as squares. The sizes of the circles or the
squares are proportional to the pT’s of jet constituents. The solid
lines indicate the top-one-ranked 2PCs of the filters in the energy
flow 2PCNN model. The strength of filter outputs are represented
by the line thickness.

FIG. 4. The distributions of spatial distance ΔR (left two panels) and pT asymmetry AðpTÞ (right two panels) between particles in
2PCs forW jets and light-quark jets. The lower panels show the distributions for top-ranked 2PCs weighed by the 2PCNN filter outputs,
while the upper panels have equal weights for all the 2PCs. In each subfigure, the solid lines represent the histograms from all 2PC pairs,
which are decomposed into three stacked, hatched, or unfilled components corresponding to groomed-groomed, groomed-dropped, and
dropped-dropped 2PC pairs, respectively, as categorized by soft-drop and collinear-drop methods.
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ΔR ≈ 0.2 feature. On the other hand, a clear feature at
AðpTÞ ≈ 1 shows up in the filter-output weighed AðpTÞ
distributions for both samples. Such a signature corre-
sponds to highly unbalanced pT’s in the 2PCs; therefore,
one of the particles has to be soft. This shows the
importance of low-pT constituents which are often
neglected or suppressed in many other jet tagging methods.
In order to further examine the properties of 2PCs which

are responsible for the learned jet features, soft drop and
collinear drop with parameters zcut ¼ 0.2 and β ¼ 0 are
used to classify jet constituents into two categories. The jet
constituents surviving soft drop are referred to as
“groomed,” while those surviving collinear drop belong
to the “dropped” category. Therefore, the 2PCs form three
distinct sets: groomed-groomed, groomed-dropped, and
dropped-dropped. We can see that the one- and two-prong
structures are dominantly determined by the groomed-
groomed 2PC pairs from the two soft-drop branches.
Also, there is a significant dropped-dropped contribution
at medium and large ΔR values for light-quark jets. On the
other hand, the feature at AðpTÞ ≈ 1 dominantly comes
from the groomed-dropped 2PC pairs which correlate hard,
collinear particles to soft, wide-angle particles, while most
other 2PC pairs form a fairly flat AðpTÞ distribution.
Tohighlight thepower and sensitivity of 2PCNNin feature

extraction, we contrast with theΔR andAðpTÞ distributions
ofW and light-quark jets formedwith equalweight for all the
2PC pairs (upper panels in Fig. 4). Evidence of one- or two-
prong structure from the falling ΔR distribution with a
“shoulder” around ΔR ≈ 0.2, as well as the significant soft
particle contributions in the AðpTÞ ≈ 1 region, is observed.
Similar conclusions can be reached by decomposing the
distributions into groomed-groomed, groomed-dropped, and
dropped-dropped components; however, all the features are
much more convincingly identified by the 2PCNNmodel as
a very useful guide for physics analysis.
We discuss the similarity and difference among 2PCNN

and other related methods. While 2PCNN and graph-based
networks both have particle inputs as sets and use corre-
lations [21,22], 2PCNN does not perform convolution,
whereas ParticleNet [22] does edge convolution. Also,
2PCNN treats exclusively particle correlations, while
energy flow network [21] and spectral analysis [17–19]
use concretely defined jet observables.
The number of 2PCs scales quadratically with the

number of particles; therefore, it creates a redundancy in
the jet representation and increases computational com-
plexity in the analysis of 2PC data. However, since the
processing of 2PC data is carried out only once for each

filter, the actual computational cost is similar only to a
process of generic two-body decay reconstruction. The
2PC pairs can be reduced by introducing preselections such
as a minimum particle pT threshold or a maximum ΔR
angular separation. On the other hand, the 2PCNN filters
concern only the top-ranked 2PCs; therefore, a dynamical
way of reducing 2PCs can be achieved if those low-ranked
2PC pairs are removed during or after the training process.
A further optimization of the algorithm in terms of
computational complexity is foreseeable.
In conclusion, we have constructed a new neural network

architecture which utilizes 2PCs as a fundamental descrip-
tion of jets. The input for 2PCNN is dynamically deter-
mined by the number of jet constituents with no artificial
reduction of input information and no particular biased
ordering of jet particles. The structure of the 2PC neural
network is driven by the physics needs rather than a direct
application of existing deep learning methods developed
for solving problems in other subjects. We demonstrate that
the 2PCNN model based on energy flow information has
comparable performance with the model using variables
from telescoping deconstruction as well as the image-based
convolutional neural network model, which are the most
effective methods for factorizing jet information. By
including additional information from charged tracks, such
as electric charges and vertex, the 2PCNN model achieves
an unprecedentedly promising power for a variety of jet
tagging tasks. Besides the excellent tagging performance,
an important benefit of the 2PCNN model is the ranking of
2PCs which can be directly extracted from the filter
outputs. Since two-particle correlations are fundamental
descriptions of particles relations, this physical machine-
learning method can be potentially useful in subsequent
physics studies such as the hadronization process and
collective behaviors of quark-gluon plasma remnants in
high-energy collisions. The 2PCNN will shed light on
physics signatures which are difficult to identify with
conventional methods.
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